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Abstract

We address the problem of recoverability i.e. deciding whether there exists a con-
sistent estimator of a given relation Q, when data are missing not at random. We
employ a formal representation called ‘Missingness Graphs’ to explicitly portray
the causal mechanisms responsible for missingness and to encode dependencies
between these mechanisms and the variables being measured. Using this represen-
tation, we derive conditions that the graph should satisfy to ensure recoverability
and devise algorithms to detect the presence of these conditions in the graph.

1 Introduction

The “missing data” problem arises when values for one or more variables are missing from recorded
observations. The extent of the problem is evidenced from the vast literature on missing data in such
diverse fields as social science, epidemiology, statistics, biology and computer science. Missing
data could be caused by varied factors such as high cost involved in measuring variables, failure of
sensors, reluctance of respondents in answering certain questions or an ill-designed questionnaire.
Missing data also plays a major role in survival data analysis and has been treated primarily using
Kaplan-Meier estimation [30].

In machine learning, a typical example is the Recommender System [16] that automatically gen-
erates a list of products that are of potential interest to a given user from an incomplete dataset of
user ratings. Online portals such as Amazon and eBay employ such systems. Other areas such as
data mining [7], knowledge discovery [18] and network tomography [2] are also plagued by miss-
ing data problems. Missing data can have several harmful consequences [23, 26]. Firstly they can
significantly bias the outcome of research studies. This is mainly because the response profiles of
non-respondents and respondents can be significantly different from each other. Hence ignoring
the former distorts the true proportion in the population. Secondly, performing the analysis using
only complete cases and ignoring the cases with missing values can reduce the sample size thereby
substantially reducing estimation efficiency. Finally, many of the algorithms and statistical tech-
niques are generally tailored to draw inferences from complete datasets. It may be difficult or even
inappropriate to apply these algorithms and statistical techniques on incomplete datasets.

1.1 Existing Methods for Handling Missing Data

There are several methods for handling missing data, described in a rich literature of books, articles
and software packages, which are briefly summarized here1. Of these, listwise deletion and pairwise
deletion are used in approximately 96% of studies in the social and behavioral sciences [24].

Listwise deletion refers to a simple method in which cases with missing values are deleted [3]. Un-
less data are missing completely at random, listwise deletion can bias the outcome [31]. Pairwise

1For detailed discussions we direct the reader to the books- [1, 6, 13, 17].
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deletion (or “available case”) is a deletion method used for estimating pairwise relations among vari-
ables. For example, to compute the covariance of variables X and Y , all those cases or observations
in which both X and Y are observed are used, regardless of whether other variables in the dataset
have missing values.

The expectation-maximization (EM) algorithm is a general technique for finding maximum like-
lihood (ML) estimates from incomplete data. It has been proven that likelihood-based inference
while ignoring the missing data mechanism, leads to unbiased estimates under the assumption of
missing at random (MAR) [13]. Most work in machine learning assumes MAR and proceeds with
ML or Bayesian inference. Exceptions are recent works on collaborative filtering and recommender
systems which develop probabilistic models that explicitly incorporate missing data mechanism
[16, 14, 15]. ML is often used in conjunction with imputation methods, which in layman terms,
substitutes a reasonable guess for each missing value [1]. A simple example is Mean Substitution, in
which all missing observations of variable X are substituted with the mean of all observed values of
X . Hot-deck imputation, cold-deck imputation [17] and Multiple Imputation [26, 27] are examples
of popular imputation procedures. Although these techniques work well in practice, performance
guarantees (eg: convergence and unbiasedness) are based primarily on simulation experiments.

Missing data discussed so far is a special case of coarse data, namely data that contains observations
made in the power set rather than the sample space of variables of interest [12]. The notion of coars-
ening at random (CAR) was introduced in [12] and identifies the condition under which coarsening
mechanism can be ignored while drawing inferences on the distribution of variables of interest [10].
The notion of sequential CAR has been discussed in [9]. For a detailed discussion on coarsened data
refer to [30].

Missing data literature leaves many unanswered questions with regard to theoretical guarantees for
the resulting estimates, the nature of the assumptions that must be made prior to employing various
procedures and whether the assumptions are testable. For a gentle introduction to the missing data
problem and the issue of testability refer to [22, 19]. This paper aims to illuminate missing data
problems using causal graphs [See Appendix 5.2 for justification]. The questions we pose are:
Given a target relation Q to be estimated and a set of assumptions about the missingness process
encoded in a graphical model, under what conditions does a consistent estimate exist and how can
we elicit it from the data available?

We answer these questions with the aid of Missingness Graphs (m-graphs in short) to be described
in Section 2. Furthermore, we review the traditional taxonomy of missing data problems and cast it
in graphical terms. In Section 3 we define the notion of recoverability - the existence of a consistent
estimate - and present graphical conditions for detecting recoverability of a given probabilistic query
Q. Conclusions are drawn in Section 4.

2 Graphical Representation of the Missingness Process

2.1 Missingness Graphs
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Figure 1: m-graphs for data that are: (a) MCAR, (b) MAR, (c) & (d) MNAR; Hollow and solid
circles denote partially and fully observed variables respectively.

Graphical models such as DAGs (Directed Acyclic Graphs) can be used for encoding as well as
portraying conditional independencies and causal relations, and the graphical criterion called d-
separation (refer Appendix-5.1, Definition-3) can be used to read them off the graph [21, 20]. Graph-
ical Models have been used to analyze missing information in the form of missing cases (due to
sample selection bias)[4]. Using causal graphs, [8]- analyzes missingness due to attrition (partially
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observed outcome) and [29]- cautions against the indiscriminate use of auxiliary variables. In both
papers missing values are associated with one variable and interactions among several missingness
mechanisms remain unexplored.

The need exists for a general approach capable of modeling an arbitrary data-generating process and
deciding whether (and how) missingness can be outmaneuvered in every dataset generated by that
process. Such a general approach should allow each variable to be governed by its own missingness
mechanism, and each mechanism to be triggered by other (potentially) partially observed variables
in the model. To achieve this flexibility we use a graphical model called “missingness graph” (m-
graph, for short) which is a DAG (Directed Acyclic Graph) defined as follows.

Let G(V, E) be the causal DAG where V = V ∪ U ∪ V ∗ ∪ R. V is the set of observable nodes.
Nodes in the graph correspond to variables in the data set. U is the set of unobserved nodes (also
called latent variables). E is the set of edges in the DAG. Oftentimes we use bi-directed edges as
a shorthand notation to denote the existence of a U variable as common parent of two variables in
Vo ∪ Vm ∪ R. V is partitioned into Vo and Vm such that Vo ⊆ V is the set of variables that are
observed in all records in the population and Vm ⊆ V is the set of variables that are missing in
at least one record. Variable X is termed as fully observed if X ∈ Vo and partially observed if
X ∈ Vm.

Associated with every partially observed variable Vi ∈ Vm are two other variables Rvi
and V ∗i ,

where V ∗i is a proxy variable that is actually observed, and Rvi represents the status of the causal
mechanism responsible for the missingness of V ∗i ; formally,

v∗i = f(rvi , vi) =

{
vi if rvi = 0
m if rvi = 1

(1)

Contrary to conventional use, Rvi is not treated merely as the missingness indicator but as a driver
(or a switch) that enforces equality between Vi and V ∗i . V ∗ is a set of all proxy variables and
R is the set of all causal mechanisms that are responsible for missingness. R variables may not
be parents of variables in V ∪ U . This graphical representation succinctly depicts both the causal
relationships among variables in V and the process that accounts for missingness in some of the
variables. We call this graphical representation Missingness Graph or m-graph for short. Since
every d-separation in the graph implies conditional independence in the distribution [21], the m-
graph provides an effective way of representing the statistical properties of the missingness process
and, hence, the potential of recovering the statistics of variables in Vm from partially missing data.

2.2 Taxonomy of Missingness Mechanisms

It is common to classify missing data mechanisms into three types [25, 13]:
Missing Completely At Random (MCAR) : Data are MCAR if the probability that Vm is missing
is independent of Vm or any other variable in the study, as would be the case when respondents
decide to reveal their income levels based on coin-flips.
Missing At Random (MAR) : Data are MAR if for all data cases Y , P (R|Yobs, Ymis) = P (R|Yobs)
where Yobs denotes the observed component of Y and Ymis, the missing component. Example:
Women in the population are more likely to not reveal their age.
Missing Not At Random (MNAR) or “non-ignorable missing”: Data that are neither MAR nor
MCAR are termed as MNAR. Example: Online shoppers rate an item with a high probability either
if they love the item or if they loathe it. In other words, the probability that a shopper supplies a
rating is dependent on the shopper’s underlying liking [16].

Because it invokes specific values of the observed and unobserved variables, (i.e., Yobs and Ymis),
many authors find Rubin’s definition difficult to apply in practice and prefer to work with definitions
expressed in terms of independencies among variables (see [28, 11, 6, 17]). In the graph-based
interpretation used in this paper, MCAR is defined as total independence between R and Vo∪Vm∪U
i.e. R⊥⊥(Vo ∪Vm ∪U), as depicted in Figure 1(a). MAR is defined as independence between R and
Vm∪U given Vo i.e. R⊥⊥Vm∪U |Vo, as depicted in Figure 1(b). Finally if neither of these conditions
hold, data are termed MNAR, as depicted in Figure 1(c) and (d). This graph-based interpretation uses
slightly stronger assumptions than Rubin’s, with the advantage that the user can comprehend, encode
and communicate the assumptions that determine the classification of the problem. Additionally, the
conditional independencies that define each class are represented explicitly as separation conditions
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in the corresponding m-graphs. We will use this taxonomy in the rest of the paper, and will label
data MCAR, MAR and MNAR according to whether the defining conditions, R⊥⊥Vo ∪ Vm ∪U (for
MCAR), R⊥⊥Vm ∪ U |Vo (for MAR) are satisfied in the corresponding m-graphs.

3 Recoverability

In this section we will examine the conditions under which a bias-free estimate of a given proba-
bilistic relation Q can be computed. We shall begin by defining the notion of recoverability.
Definition 1 (Recoverability). Given a m-graph G, and a target relation Q defined on the variables
in V ,Q is said to be recoverable inG if there exists an algorithm that produces a consistent estimate
of Q for every dataset D such that P (D) is (1) compatible with G and (2) strictly positive over
complete cases i.e. P (Vo, Vm,R = 0) > 0.2

Here we assume that the observed distribution over complete cases P (Vo, Vm, R = 0) is strictly
positive, thereby rendering recoverability a property that can be ascertained exclusively from the
m-graph.
Corollary 1. A relation Q is recoverable in G if and only if Q can be expressed in terms of the
probability P (O) where O = {R, V ∗, Vo} is the set of observable variables in G. In other words,
for any two models M1 and M2 inducing distributions PM1 and PM2 respectively, if PM1(O) =
PM2(O) > 0 then QM1 = QM2 .

Proof: (sketch) The corollary merely rephrases the requirement of obtaining a consistent estimate to
that of expressibility in terms of observables.

Practically, what recoverability means is that if the data D are generated by any process compatible
with G, a procedure exists that computes an estimator Q̂(D) such that, in the limit of large samples,
Q̂(D) converges to Q. Such a procedure is called a “consistent estimator.” Thus, recoverability is
the sole property ofG andQ, not of the data available, or of any routine chosen to analyze or process
the data.

Recoverability when data are MCAR For MCAR data we have R⊥⊥(Vo ∪ Vm). Therefore, we
can write P (V ) = P (V |R) = P (Vo, V

∗|R = 0). Since both R and V ∗ are observables, the joint
probability P (V ) is consistently estimable (hence recoverable) by considering complete cases only
(listwise deletion), as shown in the following example.
Example 1. Let X be the treatment and Y be the outcome as depicted in the m-graph in Fig. 1
(a). Let it be the case that we accidentally deleted the values of Y for a handful of samples, hence
Y ∈ Vm. Can we recover P (X,Y )?
From D, we can compute P (X,Y ∗, Ry). From the m-graph G, we know that Y ∗ is a collider and
hence by d-separation, (X ∪ Y )⊥⊥Ry . Thus P (X,Y ) = P (X,Y |Ry). In particular, P (X,Y ) =
P (X,Y |Ry = 0). When Ry = 0, by eq. (1), Y ∗ = Y . Hence,

P (X,Y ) = P (X,Y ∗|Ry = 0) (2)

The RHS of Eq. 2 is consistently estimable from D; hence P (X,Y ) is recoverable.

Recoverability when data are MAR When data are MAR, we have R⊥⊥Vm|Vo. Therefore
P (V ) = P (Vm|Vo)P (Vo) = P (Vm|Vo, R = 0)P (Vo). Hence the joint distribution P (V ) is re-
coverable.
Example 2. Let X be the treatment and Y be the outcome as depicted in the m-graph in Fig. 1 (b).
Let it be the case that some patients who underwent treatment are not likely to report the outcome,
hence the arrow X → Ry . Under the circumstances, can we recover P (X,Y )?

FromD, we can compute P (X,Y ∗, Ry). From them-graphG, we see that Y ∗ is a collider andX is
a fork. Hence by d-separation, Y⊥⊥Ry|X . Thus P (X,Y ) = P (Y |X)P (X) = P (Y |X,Ry)P (X).

2In many applications such as truncation by death, the problem forbids certain combinations of events
from occurring, in which case the definition need be modified to accommodate such constraints as shown in
Appendix-5.3. Though this modification complicates the definition of “recoverability”, it does not change the
basic results derived in this paper.
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In particular, P (X,Y ) = P (Y |X,Ry = 0)P (X). When Ry = 0, by eq. (1), Y ∗ = Y . Hence,

P (X,Y ) = P (Y ∗|X,Ry = 0)P (X) (3)
and since X is fully observable, P (X,Y ) is recoverable.

Note that eq. (2) permits P (X,Y ) to be recovered by listwise deletion, while eq. (3) does not; it
requires that P (X) be estimated first over all samples, including those in which Y is missing. In
this paper we focus on recoverability under large sample assumption and will not be dealing with
the shrinking sample size issue.

Recoverability when data are MNAR Data that are neither MAR nor MCAR are termed MNAR.
Though it is generally believed that relations in MNAR datasets are not recoverable, the following
example demonstrates otherwise.
Example 3. Fig. 1 (d) depicts a study where (i) some units who underwent treatment (X = 1) did
not report the outcome (Y ) and (ii) we accidentally deleted the values of treatment for a handful
of cases. Thus we have missing values for both X and Y which renders the dataset MNAR. We
shall show that P (X,Y ) is recoverable. From D, we can compute P (X∗, Y ∗, Rx, Ry). From the
m-graph G, we see that X⊥⊥Rx and Y⊥⊥(Rx ∪ Ry)|X . Thus P (X,Y ) = P (Y |X)P (X) =
P (Y |X,Ry = 0, Rx = 0)P (X|Rx = 0). When Ry = 0 and Rx = 0 we have (by Equation (1) ),
Y ∗ = Y and X∗ = X . Hence,

P (X,Y ) = P (Y ∗|X∗, Rx = 0, Ry = 0)P (X∗|Rx = 0) (4)
Therefore, P (X,Y ) is recoverable.

The estimand in eq. (4) also dictates how P (X,Y ) should be estimated from the dataset. In the first
step, we delete all cases in which X is missing and create a new data set D′ from which we estimate
P (X). DatasetD′ is further pruned to form datasetD′′ by removing all cases in which Y is missing.
P (Y |X) is then computed from D′′. Note that order matters; had we deleted cases in the reverse
order, Y and then X , the resulting estimate would be biased because the d-separations needed for
establishing the validity of the estimand: P (X|Y )P (Y ), are not supported by G. We will call this
sequence of deletions as deletion order.

Several features are worth noting regarding this graph-based taxonomy of missingness mechanisms.
First, although MCAR and MAR can be verified by inspecting the m-graph, they cannot, in general
be verified from the data alone. Second, the assumption of MCAR allows an estimation procedure
that amounts (asymptotically) to listwise deletion, while MAR dictates a procedure that amounts
to listwise deletion in every stratum of Vo. Applying MAR procedure to MCAR problem is safe,
because all conditional independencies required for recoverability under the MAR assumption also
hold in an MCAR problem, i.e. R⊥⊥(Vo, Vm) ⇒ R⊥⊥Vm|Vo. The converse, however, does not
hold, as can be seen in Fig. 1 (b). Applying listwise deletion is likely to result in bias, because the
necessary condition R⊥⊥(Vo, Vm) is violated in the graph. An interesting property which evolves
from this discussion is that recoverability of certain relations does not require RVi

⊥⊥Vi|Vo ; a subset
of Vo would suffice as shown below.
Property 1. P (Vi) is recoverable if ∃W ⊆ Vo such that RVi⊥⊥V |W .

Proof: P (Vi) may be decomposed as: P (Vi) =
∑

w P (V
∗
i |Rvi = 0,W )P (W ) since Vi⊥⊥RVi

|W
and W ⊆ Vo. Hence P (Vi) is recoverable.

It is important to note that the recoverability of P (X,Y ) in Fig. 1(d) was feasible despite the fact
that the missingness model would not be considered Rubin’s MAR (as defined in [25]). In fact, an
overwhelming majority of the data generated by each one of our MNAR examples would be outside
Rubin’s MAR. For a brief discussion on these lines, refer to Appendix- 5.4.

Our next question is: how can we determine if a given relation is recoverable? The following
theorem provides a sufficient condition for recoverability.

3.1 Conditions for Recoverability

Theorem 1. A query Q defined over variables in Vo ∪ Vm is recoverable if it is decomposable into
terms of the form Qj = P (Sj |Tj) such that Tj contains the missingness mechanism Rv = 0 of
every partially observed variable V that appears in Qj .
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Proof: If such a decomposition exists, every Qj is estimable from the data, hence the entire expres-
sion for Q is recoverable.
Example 4. Equation (4) demonstrates a decomposition of Q = P (X,Y ) into a product of two
terms Q1 = P (Y |X,Rx = 0, Ry = 0) and Q2 = P (X|Rx = 0) that satisfy the condition of
Theorem 1. Hence Q is recoverable.
Example 5. Consider the problem of recovering Q = P (X,Y ) from the m-graph of Fig. 3(b).
Attempts to decompose Q by the chain rule, as was done in Eqs. (3) and (4) would not satisfy the
conditions of Theorem 1. To witness we write P (X,Y ) = P (Y |X)P (X) and note that the graph
does not permit us to augment any of the two terms with the necessary Rx or Ry terms; X is
independent of Rx only if we condition on Y , which is partially observed, and Y is independent of
Ry only if we condition on X which is also partially observed. This deadlock can be disentangled
however using a non-conventional decomposition:

Q = P (X,Y ) = P (X,Y )
P (Rx, Ry|X,Y )

P (Rx, Ry|X,Y )

=
P (Rx, Ry)P (X,Y |Rx, Ry)

P (Rx|Y,Ry)P (Ry|X,Rx)
(5)

where the denominator was obtained using the independencies Rx⊥⊥(X,Ry)|Y and
Ry⊥⊥(Y,Rx)|X shown in the graph. The final expression above satisfies Theorem 1 and
renders P (X,Y ) recoverable. This example again shows that recovery is feasible even when data
are MNAR.
Theorem 2 operationalizes the decomposability requirement of Theorem 1.
Theorem 2 (Recoverability of the Joint P (V )). Given a m-graph G with no edges between the R
variables and no latent variables as parents of R variables, a necessary and sufficient condition
for recovering the joint distribution P (V ) is that no variable X be a parent of its missingness
mechanism RX . Moreover, when recoverable, P (V ) is given by

P (v) =
P (R = 0, v)∏

i P (Ri = 0|paori , pamri , RPam
ri

= 0)
, (6)

where Paori ⊆ Vo and Pamri ⊆ Vm are the parents of Ri.

Proof. (sufficiency) The observed joint distribution may be decomposed according to G as

P (R = 0, v) =
∑
u

P (v, u)P (R = 0|v, u)

= P (v)
∏
i

P (Ri = 0|paori , pa
m
ri ), (7)

where we have used the facts that there are no edges between the R variables, and that there are no
latent variables as parents of R variables. If Vi is not a parent of Ri (i.e. Vi 6∈ Pamri ), then we have
Ri⊥⊥RPam

ri
|(Paori ∪ Pa

m
ri ). Therefore,

P (Ri = 0|paori , pa
m
ri ) = P (Ri = 0|paori , pa

m
ri , RPam

ri
= 0). (8)

Given strictly positive P (R = 0, Vm, Vo), we have that all probabilities P (Ri =
0|paori , pa

m
ri , RPam

ri
= 0) are strictly positive. Using Equations (7) and (8) , we conclude that

P (V ) is recoverable as given by Eq. (6).

(necessity) If X is a parent of its missingness mechanism RX , then P (X) is not recoverable based
on Lemmas 3 and 4 in Appendix 5.5. Therefore the joint P (V ) is not recoverable.

The following theorem gives a sufficient condition for recovering the joint distribution in a Marko-
vian model.
Theorem 3. Given am-graph with no latent variables (i.e., Markovian) the joint distribution P (V )
is recoverable if no missingness mechanism RX is a descendant of its corresponding variable X .
Moreover, if recoverable, then P (V ) is given by

P (v) =
∏

i,Vi∈Vo

P (vi|paoi , pami , RPam
i
= 0)

∏
j,Vj∈Vm

P (vj |paoj , pamj , RVj
= 0, RPam

j
= 0), (9)

where Paoi ⊆ Vo and Pami ⊆ Vm are the parents of Vi.
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Proof: Refer Appendix-5.6

Definition 2 (Ordered factorization). An ordered factorization over a set O of ordered V vari-
ables Y1 < Y2 < . . . < Yk, denoted by f(O), is a product of conditional probabilities f(O) =∏

i P (Yi|Xi) whereXi ⊆ {Yi+1, . . . , Yn} is a minimal set such that Yi⊥⊥({Yi+1, . . . , Yn}\Xi)|Xi.

Theorem 4. A sufficient condition for recoverability of a relation Q is that Q be decomposable into
an ordered factorization, or a sum of such factorizations, such that every factor Qi = P (Yi|Xi)
satisfies Yi⊥⊥(Ryi

, Rxi
)|Xi. A factorization that satisfies this condition will be called admissible.

X1
X3X2 X4

RX RY

(b)(a)

x
3

R RZRY
RX

Z X Y

(c) (d)

RY RZ
RXx

4 x
2

R R

X Y
X Y Z

Figure 2: Graph in which (a) only P (X|Y ) is recoverable (b) P (X4) is recoverable only when
conditioned onX1 as shown in Example 6 (c) P (X,Y, Z) is recoverable (d) P (X,Z) is recoverable.

Proof. follows from Theorem-1 noting that ordered factorization is one specific form of decompo-
sition.

Theorem 4 will allow us to confirm recoverability of certain queries Q in models such as those in
Fig. 2(a), (b) and (d), which do not satisfy the requirement in Theorem 2. For example, by applying
Theorem 4 we can conclude that, (1) in Figure 2 (a), P (X|Y ) = P (X|Rx = 0, Ry = 0, Y ) is
recoverable, (2) in Figure 2 (c), P (X,Y, Z) = P (Z|X,Y,Rz = 0, Rx = 0, Ry = 0)P (X|Y,Rx =
0, Ry = 0)P (Y |Ry = 0) is recoverable and (3) in Figure 2 (d), P (X,Z) = P (X,Z|Rx = 0, Rz =
0) is recoverable.

Note that the condition of Theorem 4 differs from that of Theorem 1 in two ways. Firstly, the
decomposition is limited to ordered factorizations i.e. Yi is a singleton and Xi a set. Secondly, both
Yi and Xi are taken from Vo ∪ Vm, thus excluding R variables.

Example 6. Consider the query Q = P (X4) in Fig. 2(b). Q can be decomposed in a variety of
ways, among them being the factorizations:
(a) P (X4) =

∑
x3
P (X4|X3)P (X3) for the order X4, X3

(b) P (X4) =
∑

x2
P (X4|X2)P (X2) for the order X4, X2

(c) P (X4) =
∑

x1
P (X4|X1)P (X1) for the order X4, X1

Although each of X1, X2 and X3 d-separate X4 from RX4 , only (c) is admissible since each factor
satisfies Theorem 4. Specifically, (c) can be written as

∑
x1
P (X∗4 |X1, RX4 = 0)P (X1) and can

be estimated by the deletion schedule (X1, X4), i.e., in each stratum of X1, we delete samples for
which RX4 = 1 and compute P (X∗4 , Rx4 = 0, X1). In (a) and (b) however, Theorem-4 is not
satisfied since the graph does not permit us to rewrite P (X3) as P (X3|Rx3 = 0) or P (X2) as
P (X2|Rx2 = 0).

3.2 Heuristics for Finding Admissible Factorization

Consider the task of estimating Q = P (X), where X is a set, by searching for an admissible
factorization of P (X) (one that satisfies Theorem 4), possibly by resorting to additional variables,
Z, residing outside of X that serve as separating sets. Since there are exponentially large number
of ordered factorizations, it would be helpful to rule out classes of non-admissible ordering prior
to their enumeration whenever non-admissibility can be detected in the graph. In this section, we
provide lemmata that would aid in pruning process by harnessing information from the graph.

Lemma 1. An ordered set O will not yield an admissible decomposition if there exists a partially
observed variable Vi in the orderO which is not marginally independent ofRVi

such that all minimal
separators (refer Appendix-5.1, Definition-4) of Vi that d-separate it from Rvi

appear before Vi.

Proof: Refer Appendix-5.7
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Figure 3: demonstrates (a) pruning in Example-7 (b) P (X,Y ) is recoverable in Example-5

Applying lemma-1 requires a solution to a set of disjunctive constraints which can be represented
by directed constraint graphs [5].
Example 7. Let Q = P (X) be the relation to be recovered from the graph in Fig. 3 (a). Let
X = {A,B,C,D,E} and Z = F . The total number of ordered factorizations is 6! = 720.
The independencies implied by minimal separators (as required by Lemma-1) are: A⊥⊥RA|B,
B⊥⊥RB |φ, C⊥⊥RC |{D,E}, ( D⊥⊥RD|A or D⊥⊥RD|C or D⊥⊥RD|B ) and (E⊥⊥RE |{B,F} or
E⊥⊥RE |{B,D} or E⊥⊥RE |C). To test whether (B,A,D,E,C,F) is potentially admissible we need
not explicate all 6 variables; this order can be ruled out as soon as we note that A appears after B.
Since B is the only minimal separator that d-separates A from RA and B precedes A, Lemma-1 is
violated. Orders such as (C,D,E,A,B, F ), (C,D,A,E,B, F ) and (C,E,D,A, F,B) satisfy the
condition stated in Lemma 1 and are potential candidates for admissibility.

The following lemma presents a simple test to determine non-admissibility by specifying the condi-
tion under which a given order can be summarily removed from the set of candidate orders that are
likely to yield admissible factorizations.
Lemma 2. An ordered set O will not yield an admissible decomposition if it contains a partially
observed variable Vi for which there exists no set S ⊆ V that d-separates Vi from RVi

.

Proof: The factor P (Vi|Vi+1, . . . , Vn) corresponding to Vi can never satisfy the condition required
by Theorem 4.

An interesting consequence of Lemma 2 is the following corollary that gives a sufficient condition
under which no ordered factorization can be labeled admissible.
Corollary 2. For any disjoint sets X and Y , there exists no admissible factorization for recovering
the relation P (Y |X) by Theorem 4 if Y contains a partially observed variable Vi for which there
exists no set S ⊆ V that d-separates Vi from RVi

.

4 Conclusions

We have demonstrated that causal graphical models depicting the data generating process can serve
as a powerful tool for analyzing missing data problems and determining (1) if theoretical imped-
iments exist to eliminating bias due to data missingness, (2) whether a given procedure produces
consistent estimates, and (3) whether such a procedure can be found algorithmically. We formalized
the notion of recoverability and showed that relations are always recoverable when data are missing
at random (MCAR or MAR) and, more importantly, that in many commonly occurring problems,
recoverability can be achieved even when data are missing not at random (MNAR). We further
presented a sufficient condition to ensure recoverability of a given relation Q (Theorem 1) and oper-
ationalized Theorem 1 using graphical criteria (Theorems 2, 3 and 4). In summary, we demonstrated
some of the insights and capabilities that can be gained by exploiting causal knowledge in missing
data problems.
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5 Appendix

5.1 d-separation

Definition 3 (d-separation3). A path p is said to be d-separated by a set of nodes Z if and only if:
(1) p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in Z, or
(2) p contains an inverted fork (or collider) i → m ← j such that the middle node m is not in Z
and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a
node in Y and is denoted by Y⊥⊥X|Z.

Definition 4 (Minimal Separator). Given two sets of nodes X and Y in DAG and a set Z that
d-separates X from Y , Z is a minimal separator if no proper subset of Z d-separates X from Y .
There are polynomial time algorithms to find minimal separators4.

5.2 Benefits of Graphical Models

Although the results in this paper could have been obtained from conditional independencies alone
oblivious to causal directionalities in the m-graph, it behooves us to emphasize that the power of
graphical models stem from its causal interpretation. It is only through such interpretation that a user
can decide the plausibility of the conditional independence assumptions embedded in the graph. The
non-graphical literature on missing data, though based on conditional independencies, rarely pays
attention to the cognitive question of whether researchers are capable of judging the plausibility of
those assumptions. Another advantage of graphical models, be they causal or probabilistic, is that
the sum total of conditional independencies that follow from a given set of assumptions are explicitly
represented in the graph and need not be derived by lengthy procedures involving say, probability
theory or graphoid axioms.

5.3 Constrained Recoverability

For any set S ⊆ Vm, let RS represent the set of R variables corresponding to variables in S. In any
observation (r, v∗, vo), letting S ⊆ Vm be the set of observed variables, we have

P (r, v∗, vo) = P (RS = 0, RVm\S = 1, s, vo). (10)

We assume that we are given a missingness pattern that specifies which sets of variables in Vm
are never observed simultaneously and which could be observed simultaneously. We will represent
the observed missingness pattern (more precisely observability pattern) as a collection C of sets
S ⊆ Vm such that P (RS = 0, RVm\S = 1, s, vo) > 0 for some (s, vo) values. We denote C the
collection of the rest of sets S in Vm with P (RS = 0, RVm\S = 1, s, vo) = 0 for all s and vo values.

Definition 5 (Recoverability). Given a m-graph G, and observed missingness pattern C, a target
probabilistic relation Q defined on the variables in V is said to be recoverable if there exists an
algorithm that produces a consistent estimate of Q. In other words, Q is recoverable if it can be
expressed in terms of the observed strictly positive probabilities P (RS = 0, RVm\S = 1, S, Vo)

for S ∈ C - that is, if QM1 = QM2 for every pair of models PM1(V,U,R) and PM2(V,U,R)
compatible with G with PM1(RS = 0, RVm\S = 1, S, Vo) = PM2(RS = 0, RVm\S = 1, S, Vo) >
0 for all S ∈ C.

Note that for recoverability it is not necessary to require PM1(RS = 0, RVm\S = 1, S, Vo) =

PM2(RS = 0, RVm\S = 1, S, Vo) = 0 for all S ∈ C.

3Pearl, Judea. Causality: models, reasoning and inference, Cambridge Univ press, 2009.
41. Acid, Silvia, and Luis M. De Campos. ”An algorithm for finding minimum d-separating sets in belief

networks.” Proceedings of the Twelfth international conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 1996.
2. Tian, Jin, Azaria Paz, and Judea Pearl. Finding minimal d-separators. Computer Science Department,
University of California, 1998.
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5.4 Recoverable-MNAR vs Rubin’s MAR: A brief discussion

Fig. 1(d) is an example of a problem which we label MNAR and which permits recoverabil-
ity of P (X,Y ). Among others, the following conditional independence claims hold in Fig 1(d):
Y⊥⊥(Rx, Ry)|X and X⊥⊥Rx. Given data from this example conditional independence such as
P (Rx = 1, Ry = 0|X,Y ) = P (Rx = 1, Ry = 0|Y ) required by MAR is not dictated by the graph
and so, it will be violated by all but a small fraction of the distributions generated by the graph.
Each distribution that violates this equality would be labeled MNAR by Rubin[25] and would be
considered recoverable-MNAR in our graph-based taxonomy. The same holds for all examples that
we labeled MNAR. In fact, only exceptional distributions may have a chance of being classified as
MAR.

5.5 Necessity Proof for Theorem 2

Lemma 3. P (X) is not recoverable in a m-graph G over (V,U,R) containing a single edge X →
RX .

Proof. To prove non-recoverability of P (X) we present two models compatible with G:

PM1(v, u, r) = P1(x, rX)
∏

i,Vi 6=X

P (vi)
∏
j

P (uj)
∏

k,Rk 6=RX

P (rk), (11)

PM2(v, u, r) = P2(x, rX)
∏

i,Vi 6=X

P (vi)
∏
j

P (uj)
∏

k,Rk 6=RX

P (rk). (12)

We construct P1(x, rX) and P2(x, rX) as given in Table 1 such that they agree on the observed
distributions: P1(X,RX = 0) = P2(X,RX = 0) > 0 and P1(RX = 1) = P2(RX = 1) > 0, but
disagree on the query P1(X) 6= P2(X).

X RX P1(X,RX) P2(X,RX)

0 0 1/3 1/3
1 0 1/3 1/3
0 1 0 1/3
1 1 1/3 0

Table 1: Two distributions for X → RX .

Then we have that the two models agree on all the observed distributions:

PMi(RS = 0, RX = 0, RV ′
m\S = 1, x, s, vo) = Pi(RX = 0, x)P (RS = 0, RV ′

m\S = 1, s, vo), i = 1, 2,

(13)

and

PMi(RS = 0, RX = 1, RV ′
m\S = 1, s, vo) = Pi(RX = 1)P (RS = 0, RV ′

m\S = 1, s, vo), i = 1, 2,

(14)

where V ′m = Vm \ {X} and S ⊆ V ′m. But PM1(x) = P1(x) disagrees with PM2(x) = P2(x).

Lemma 4. If a target relation Q is not recoverable in m-graph G, then Q is not recoverable in the
graph G′ resulting from adding a single edge to G.5

Proof. If Q is not recoverable in G, then there exist two models PM1(V,U,R) and PM2(V,U,R)
compatible with G decomposed as

PMk(v, u, r) =
∏
i

PMk(vi|pavi )
∏
j

PMk(uj |pauj )
∏
l

PMk(rl|parl ), k = 1, 2, (15)

5This lemma and its proof closely follow Lemma 13 in J. Tian and J. Pearl, On the identification of causal
effects, UCLA Cognitive Systems Laboratory, Technical Report (R-290-L), 2003.
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such that, for all S ⊆ Vm
PM1(RS = 0, RVm\S = 1, S, Vo) = PM2(RS = 0, RVm\S = 1, S, Vo) > 0, (16)

and

QM1 6= QM2 . (17)

For the graph G′, we can specify model parameters in such a way that the extra edge added to G
is ineffective and hence construct the same distributions as M1 and M2. Without loss of generality,
assuming G′ is obtained from G by adding edge X → Vq where X could be a V or U variable. We
construct two models M ′1 and M ′2 compatible with G′ with parameters given by

PM ′
k(vq|pavq , x) = PMk(vq|pavq), k = 1, 2, (18)

PM ′
k(vi|pavi ) = PMk(vi|pavi ), i 6= q, k = 1, 2, (19)

PM ′
k(uj |pauj ) = PMk(uj |pauj ), ∀j, k = 1, 2, (20)

PM ′
k(rl|parl ) = PMk(rl|parl ), ∀l, k = 1, 2. (21)

Clearly PM ′
k(v, u, r) = PMk(v, u, r), k = 1, 2. Therefore the two models M ′1 and M ′2 also satisfy

Eqs. (16) and (17). And we conclude Q is not recoverable in G′. The same arguments apply if G′ is
obtained from G by adding a parent to U or R variable.

5.6 Proof of Theorem 3

Proof. Since the model is Markovian, P (v) may be decomposed as

P (v) =
∏

i,Vi∈Vo

P (vi|paoi , pami )
∏

j,Vj∈Vm

P (vj |paoj , pamj ). (22)

RPam
i

must be non-descendants of Vi, otherwise they will be descendants of Pami . Therefore
Vi⊥⊥RPam

i
|(Paoi ∪ Pami ). Similarly, RVj

and RPam
j

must be non-descendants of Vj and we have
Vj⊥⊥(RVj ∪RPam

j
)|(Paoj ∪ Pamj ). Using these conditional independences we obtain Eq. (9) from

(22).

5.7 Proof of Lemma-1

Proof. Let the order be O = V1, V2, V3, ...Vn. The factorization corresponding to O is :

P (V1, .., Vn) =
∏

j P (Vj |Vj+1, ..., Vn) = P (Vi|Vi+1, ...Vn)
∏

j 6=i P (Vj |Vj+1, ..., Vn)

If there is no (minimal) separator S such that S ⊆ {Vi+1, ...Vn} then we must have
Vi��⊥⊥RVi |Vi+1, ...Vn. Thus we have shown that there exists a term P (Vi|Vi+1, ...Vn) in the fac-
torization that does not satisfy the condition in Theorem-4, thereby making O non-admissible.
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