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ABSTRACT OF THE THESIS

Towards Fortifying the Safety and Security of IoT Systems
by
Dang Tu Nguyen

Master of Science, Graduate Program in Computer Science
University of California, Riverside, December 2018
Dr. Srikanth V. Krishnamurthy, Chairperson

Today’s IoT systems include event-driven smart applications (apps) that inter-
act with sensors and actuators. A problem specific to IoT systems is that buggy apps,
unforeseen bad app interactions, or device/communication failures, can cause unsafe and
dangerous physical states. Detecting flaws that lead to such states, requires a holistic view
of installed apps, component devices, their configurations, and more importantly, how they
interact. In this paper, we design IOTSAN, a novel practical system that uses model check-
ing as a building block to reveal “interaction-level” flaws by identifying events that can lead
the system to unsafe states. In building IOTSAN, we design novel techniques tailored to
IoT systems, to alleviate the state explosion associated with model checking. IOTSAN also
automatically translates IoT apps into a format amenable to model checking. Finally, to
understand the root cause of a detected vulnerability, we design an attribution mechanism
to identify problematic and potentially malicious apps. We evaluate IOTSAN on the Sam-
sung SmartThings platform. From 76 manually configured systems, IOTSAN detects 147

vulnerabilities. We also evaluate IOTSAN with malicious SmartThings apps from a previous



effort. TOTSAN detects the potential safety violations and also effectively attributes these

apps as malicious.
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Chapter 1

Introduction

A variety of IoT (Internet-of-Things) systems are already widely available on the
market. These systems are typically controlled by event-driven smart apps that take as
input either sensed data, user inputs, or other external triggers (from the Internet) and
command one or more actuators towards providing different forms of automation. Exam-
ples of sensors include smoke detectors, motion sensors, and contact sensors. Examples of
actuators include smart locks, smart power outlets, and door controls. Popular control plat-
forms on which third-party developers can build smart apps that interact wirelessly with
these sensors and actuators include Samsung’s SmartThings [I14], Apple’s HomeKit [7],
and Amazon’s Alexa [6], among others.

While conceivably, IoT is here to stay, current research studies on security/safety
of IoT systems are limited in two fronts [I0I]. First, they focus on individual components
of ToT systems: there are papers on the security of communication protocols [36] [49] [64,

87, 1111, 119, 102, 100], firmware of devices [127, [1} 138 113| 24} 33], platforms [45] 78], and



smart apps [44] [45] 78, [129]. Very few efforts have taken a holistic perspective of an IoT
system. Second, most current research efforts only focus on securing the cyberspace, and do
not address the safety and security of the physical space, which is one of the key obstacles
for real-world IoT deployment [91] [13].

Our thesis is that a holistic view of an IoT system is important i.e., the distributed
sensors and actuators, and the apps that interact with them need to be considered jointly.
While the compromise of an individual component may lead to the compromise of the whole
system, certain complex security and safety issues are only revealed when the interactions
between components (e.g., a plurality of poorly designed apps) and/or possible device/com-
munication failures are considered. These latent problems are very real since apps are often
developed by third-party vendors without coordination, and are likely to be installed by one
or more users (e.g., family members) at different times. Moreover, both legitimate device
failures [54], [136], 134, [47] (e.g., from battery depletion) and induced communication failures
(e.g., via jamming [104]) can lead to missed interactions between autonomous components,
which in turn can cause the entire system to transition into a bad state. = These issues
are especially dangerous, because bad or missed interactions can be deliberately induced
by attackers via spoofing sensors [125, [121], luring users to install malicious apps [78], or

jamming sensor reports.

1.1 Goals

In this paper, our goal is to build a holistic system which, given an IoT system and a

set of default plus user-defined safety properties with regards to both the cyber and physical



spaces, (a) finds if components of an IoT system or interactions between components can
lead to bad states that violate these properties; and, (b) attributes the detected violations
to either benign misconfigurations or potential malicious apps. With regards to (a) we
account for cases wherein app interactions or failed device(s)/communications can cause a
bad state. With regards to (b) we look for repeated instantiations of unsafe states since
malicious apps are likely to consistently try to coerce the IoT system into exploitable bad
states (e.g., those described in [78§]).

To achieve our goal, we need to solve a set of technical challenges. Among these,
the key challenge lies in the scope of the analysis: as the number of IoT devices and apps
is already large and is only likely to grow in the future [56] [76], physical replication and
testing of IoT systems is hard (due to scale). Thus, it is desirable to build a realistic model

of the system, which captures the interactions between sensors, apps, and actuators.

1.2 Our Solution

We achieve our goal by addressing the above and other practical challenges, in
a novel framework IOTSAN (for IoT Sanitizer). In brief, IOTSAN uses model checking as
a basic building block. Towards alleviating the state space explosion problem associated
with model checking [30], we design two optimizations within IOTSAN to (i) only consider
apps that interact with each other, and (ii) eliminate unnecessary interleaving that is un-
likely to yield useful assessment of unsafe behaviors. We also design an attribution module
which flags potentially malicious apps, and attributes other unsafe states to bad design or

misconfiguration.



We develop a prototype of IOTSAN based on the SPIN model checker [68] and apply
it to the Samsung SmartThings platform. As one contribution, we design an automated
model generator that translates apps written in Groovy (the programming language of
SmartThings apps) into Promela, the modeling language of SPIN. To evaluate IOTSAN,
we postulate 45 common sense safety properties and consider 150 smart apps with 76
configurations. With this setup, IoTSAN discovered 147 violations of 20 safety properties
due to app interactions (135 violations) and device/communication failures (12 violations).
In an extreme case, 4 smart apps needed to interact to cause a violation, which is extremely
difficult to spot manually. We evaluate our attribution module with 9 malicious apps
from [78] that are relevant to our problem scope (e.g., causing bad physical states). IOTSAN

attributes all 9 apps to be potentially malicious.

1.3 Contributions

A summary of our contributions is as follows:

e We map the problem of detecting potential safety issues of an IoT system into a
model checking problem. We develop novel pre-processing methods to alleviate the

state explosion problem in model checking.

e We design IOTSAN to detect safety violations in IoT systems and develop a pro-
totype that applies to the Samsung SmartThings platform. We provide the source
code of TOTSAN for download at https://github.com/dangtunguyen/IoTSan. We de-
velop tools to automatically translate the app source code into Promela. We evaluate

ToTSAN with 150 smart apps from the SmartThings’ market place and discover 147



possible safety violations.

e We propose a method to attribute safety violations to either bad apps or misconfigu-

rations. The method attributes 9 known malicious apps with 100% accuracy.



Chapter 2

Background and Synopsis

Today’s IoT systems [114} [7, [6, 133}, [75], 86, 94] typically consist of three major
components viz., (i) a hub and the IoT devices it controls, (ii) a platform (can be the hub, a
cloud backend, or a combination) where smart apps execute, and (iii) a companion mobile
app and/or a web-based app to configure and control the system. Without loss of generality,
we design IOTSAN assuming this underlying architecture. Therefore, although the imple-
mentation of IOTSAN is tailored to the SmartThings platform given its recent popularity,
[44] 45 78], 129, 23], 22], conceptually IOTSAN is also applicable to other IoT platforms.
We use the term “IoT system” to refer to those used in smart homes as in recent papers
such as [44], 45, [78, 129, 23], 22] for ease of exposition; however, our approach can apply
to other application scenarios (e.g., IoT based enterprise deployments or manufacturing

systems [71), 95] 35 [89]).



2.1 Samsung SmartThings

2.1.1 Overview

The Samsung SmartThings architecture is shown in Figure It consists of three
major components viz., (i) a hub and the IoT devices it controls, (ii) the cloud backend
where smart apps execute, and (iii) a companion mobile app, that communicates with the
cloud backend via the Internet, using the SSL protocol [12]. The companion mobile app
allows users to connect devices to the hubs, install smart apps from SmartThings market
place, configure smart apps with devices, and control devices remotely via the Internet.
Developers can create smart apps using the Groovy programming language. The platform
and apps interact with devices through device handlers; written in Groovy, these are virtual
representations of physical devices that expose the devices’ capabilities. To publish a device
handler, a developer needs to get a certificate from Samsung. Typically, smart apps and

device handlers are executed in the SmartThings cloud backend inside sandboxes.

2.1.2 Programming Model

A smart app subscribes to events generated by device handlers (e.g., motion de-
tected) and/or controls some actuators using method calls (e.g., turn on a bulb). Smart
apps can also send SMS and make network calls using the SmartThings’ APIs. A smart
app can discover and connect to devices, in two ways. Typically, at installation time, the
companion app shows a list of supported devices to a user; after configuration, the list of
the user’s chosen devices are returned to the app. The second (lesser-known) way is that

SmartThings provides APIs that allow apps to query all the devices connected to the hub.
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Figure 2.1: SmartThings architecture overview.
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Besides subscribing to device events, smart apps can also register callbacks for events from

external services (e.g., IFTTT [72]) and timers.

2.1.3 Communications

ZigBee, which is build upon the PHY and MAC layers specified by IEEE 802.15.4,
and Z-Wave, which adheres to the ITU-T G.9959 PHY and MAC layers, are among the
most common wireless protocol stacks supported by an alliance of IoT product vendors
[124, 107,139, [40]. Recent studies on link reliability of ZigBee and Z-Wave wireless networks
have shown that one-hop retransmission is optionally supported by MAC layer and end-to-
end retransmission is done by upper layers (e.g., application support sublayer) and depends
on the implementation of the vendors [15] 2, 90, 8T, 50, [141].

Our study on communication protocols of Samsung SmartThings confirms that the
hub communicates with IoT devices using a protocol such as ZWave or ZigBee. Experiments
using the EZSync CC2531 Evaluation Module USB Dongle [74] of Texas Instruments, reveal
that the ZigBee implementation in SmartThings supports four (single hop) MAC layer re-
transmissions. In addition, SmartThings has an application support sublayer that performs

15 end-to-end retransmissions (for a total of 60 retransmissions of a packet). These are in



line with ZigBee specifications as also verified in [15] 2 90, 8I]. Thus, typically, it is rare

that the system will transition to unsafe states because of benign packet losses.

2.2 Motivating Examples

We use two examples of violations found via our experiments (more details in §
to motivate our work. Although simple, these examples exemplify the safety problems that

arise with third party IoT apps.

2.2.1 Unsafe physical states

In this example, a user installs three smart apps viz., Light Off When Close, Good
Night, and Big Turn Off to automate her smart home. Light Off When Close will turn
off configured lights when the configured contact sensor detects a door closing; Good Night
will change the location mode to Sleeping when all the monitored lights and motion sensors
are inactive for a configured period during night; and Big Turn Off will turn off all the
configured devices when (i) the user touches the app or (ii) the app detects a location mode
change.

If we define a safety property as temperature should always be higher than 0 degree
Celsius, a violation instance can be discovered by IOTSAN as follows. At night, after the
owner closes the door monitored by the Light Off When Close app, it turns off the lights.
After a while, the app Good Night changes the location mode to Sleeping. Upon the location
mode change, Big Turn Off turns off all of the configured devices, which includes a heater.

Because the temperature can be below 0 degree Celsius during the night, (and this is not



noticed) this can lead to a violation of our safety property.

The violation scenario can be avoided if (i) Big Turn Off turns off the configured
devices only when the user touches the app, (ii) Big Turn Off explicitly asks users to
configure that devices to be turned off only upon transitioning to a specific mode(s) (e.g.,
“Away” wherein the heater is only turned off when users are away), (iii) Big Turn Off is
installed together with only apps that change the location mode to “Away” when people
leave home (there are no other mode changes), or (iv) Big Turn Off is not configured to
turn off the heater. Unfortunately, the first three options are not feasible and with regards

to the fourth, users may have valid reasons to configure the app to control the heater.

2.2.2 Misconfiguration Problems

Besides malicious apps, misconfiguration is a common cause for safety violations.
When installing a smart app, a user has to configure the app with sensor(s) and actuator(s).
Poor configurations can transition the IoT system to unsafe physical states. There are
many common causes for such misconfigurations, e.g., (i) the app’s description is unclear,
(ii) there are too many configuration options, and (iii) normal users often do not have good
domain knowledge to clearly understand the behaviors of smart devices and smart apps.
To exemplify these issues, we conduct a user study (more details in §10) where we asked
7 student volunteers to configure various apps as they deemed fit. Among these apps, one
app is called Virtual Thermostat and describes itself as “Control a space heater or window
air conditioner (AC) in conjunction with any temperature sensor, like a SmartSense Multi.”
Figure [2.2] shows the inputs needed from a user, which include a temperature measurement

sensor (lines 2-4), the power outlets into which the heater or the AC are plugged (lines 5-7),

10



1 preferences {

2 section("Choose a temperature sensor... "){

3 input "sensor", "capability.temperatureMeasurement", title: "Sensor"

4

5 section("Select the heater or air conditioner outlet(s)... "){

6 input "outlets", "capability.switch", title: "Outlets", multiple: true

7

8 section("Set the desired temperature..."){

9 input "setpoint", "decimal", title: "Set Temp"

10 }

11 section("When there’s been movement from (optional)"){

12 input "motion", "capability.motionSensor", title: "Motion", required: false

13

14 section("Within this number of minutes..."){

15 input "minutes", "number", title: "Minutes", required: false

16}

17 section("But never go below (or above if A/C) this value with or without motion
R

18 input "emergencySetpoint", "decimal", title: "Emer Temp", required: false

19

20 section("Select ’heat’ for a heater and ’cool’ for an air conditiomer..."){

21 input "mode", "enum", title: "Heating or cooling?", options: ["heat",6"cool"]

22

23}

Figure 2.2: Example of input info needed from users to configure the app Virtual Thermo-
stat.

a desired temperature (lines 8-10), etc. Although the developers use the word or and the
app only expects either a heater or an AC, 5 out of 7 student volunteers thought the app
controls both a heater and an AC to maintain the desired temperature and mis-configured
the app to control both the AC outlet and the heater outlet. To exacerbate the confusion,
the app expects the configuration of outlets (capability.switch) instead of the actual
devices that are plugged into the outlets (i.e., AC or heater) (note that the SmartThings
UI displays all available outlets to the user). As a result of volunteer misconfigurations,
when the temperature is higher than a predefined threshold, the Virtual Thermostat would
turn on both the configured outlets (i.e., both the heater and the AC). This violates the
following two commonsense properties: (i) a heater is turned on when temperature is above

a predefined threshold and (ii) an AC and a heater are both turned on.

11



While these examples are quite simple, it exemplifies an important problem: it is
very possible that users may not carefully evaluate their IoT systems so it can be driven
into bad states, especially when apps are installed or configured at different times or by
different users. In practice, it is also difficult for typical users who do not have a strong
technical background to assess if bad interactions are possible. Even if cursory examinations
reveal simple violations, complex violations are harder to find manually. The latter is true
especially if such interactions result from a chain of sensing and actuation events across
multiple devices controlled by independent apps. Thus, an automated way of discovering

such bad interactions is necessary.

2.3 Model Checking as a Building Block

The problem of reasoning if and why the IoT system could transition into a bad
physical state is challenging because the number of apps and devices is likely to grow in
the future and thus, analyzing all possible interactions between them will be hard. Static
analysis tools tend to sacrifice completeness for soundness, and thus result in lots of false
positives. In contrast, typical dynamic analyses tools verify the properties of a program
during execution, but can lead to false negatives.

Model checking is a technique that checks whether a system meets a given speci-
fication [77], by systematically exploring the program’s state. In an ideal case, the model
checker exhaustively examines all possible system states to verify if there is any violation
of specifications relating to safety and/or liveness properties. However, the complexity of

modern system software makes this extremely challenging computationally. So in practice,

12



when the goal is to find bugs, a model checker is usually used as a falsifier i.e., it explores a
portion of the reachable state space and tries to find a computation that violates the spec-
ified property. This is sometimes also called bounded model checking [18], 80 [92], 32, [42].

We adopt model checking as a basic building block since: (i) it provides the flexi-
bility towards verifying all the desired properties with linear temporal 10gi(ﬂ (ii) it provides
concrete counter-examples [0, [126] which are very useful in analyzing why and how the
bad states occur, (iii) its holistic nature of checking can capture interactions among mul-
tiple apps, and (iv) it is more efficient than exhaustive testing [16]. However, a successful
model checker must address the state explosion problem, i.e., the state space could become
unwieldy and requires exponential time to explore.

Model checking can be grouped into two classes: (a) explicit model checking [29]
where progress is made one state at a time and, (b) symbolic model checking [88] that
examines sets of states in each step. Literature suggests that neither is a clear winner with
regards to yielding complete verification within reasonable times in all settings [8] 41, [70].

In brief, symbolic model checking is considered to perform better for synchronous
hardware systems and explicit model checking is better for concurrent software systems
82, 27, 39]. Biere et al., claim that explicit model checking is the most efficient model
checking technique in practice if the number of reachable states is small, i.e., below several
million states [I7]. Eisner et al. argue that a symbolic model checker performs better even
for asynchronous systems [41]. However, there are other reports that indicate that a direct

comparison of the two categories is almost impossible [8, 41, [70].

! Linear temporal logic (LTL) is a modal temporal logic with modalities referring to time. LTL is used
to verify properties of reactive systems [9].

13



Given its popularity and flexibility in modelling both concurrent and synchronous
systems [82], 27], B9], we use SPIN [68] for checking if a given set of safety properties can be
possibly violated. Since an IoT system may be composed of a large number of apps and
smart devices, we use SPIN’s verification mode with BITSTATE hashing—an approximate
technique that stores the hash code of states in a bitfield instead of storing the whole
states. Although the BITSTATE hashing technique does not provide a complete verification,
empirical results and theoretical analysis have proved its effectiveness in terms of state

coverage [69] 21, 25 [67, [66].

14



Chapter 3

Scope and Threat Model

In this work, our goal is to detect safety issues (i.e., vulnerabilities) of IoT systems
that are exploitable by attackers to transition the system into bad physical states or leak
sensitive information. Safety requirements (i.e., definition of bad states and information
leakage) can come from both the users and security experts. Examples of bad physical
states are (i) the front door is unlocked when no one is at home, and (ii) a heater is turned
off when the temperature is below a predefined threshold. With regards to information
leakage we require that: (i) private information is sent out via only message interfaces (e.g.,
sendSmsMessage and sendPushMessage in SmartThings) but not via network interfaces
(e.g., hitpPost in SmartThings), and (ii) the recipients of methods for sending messages
match the configured phone numbers or contacts. We point out that legitimate apps might
use network interfaces to send some control information (e.g., relating to crashes) back to
the server. In such cases, we assume that users dictate whether to allow/disallow such

operations (based on their privacy preferences).

15



We consider all devices (hub, sensors, and actuators), the cloud, and the companion
app as our trusted computing base (TCB), and do not consider software attacks against
them. However, IOTSAN does mitigate physical attacks that can inject event(s) into the
system (e.g., by physically increasing the temperature or spoofing the sensors) or maliciously
induced device or communication failures (e.g., by jamming [104]). IOTSAN seeks to identify
and prevent such events from leading the system into safety violations. However, targeted
solutions to those attacks (e.g., preventing spoofing of sensors or jamming mitigation) are
out-of-scope.

We also consider potential bad states that can arise due to natural device failures.
Note that many users have reported the failures of their ZigBee and Z-Wave IoT devices
(e.g., motion sensors, water leak sensors, presence sensors, and garage door openers) in the
SmartThings Community [54] 136, 134, [47]. Failures could also result from device batteries
running out. We seek to identify if such device failures can cause an IoT system to transition
into a bad physical state.

Malicious apps can exploit weaknesses in the configuration and attack other apps
by introducing problematic events. We only seek to attribute an app as possibly malicious

and leave the confirmation to human experts or other systems.
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Chapter 4

System Overview

4.1 Chain of Events in an IoT System

Figure illustrates a high level view of the chain of events in an IoT system.
In brief, sensors sense the physical world and convert them into events in the cyber world;
these events, in turn, are passed onto apps that subscribe to such events. Upon processing
the cyber events these apps may output commands to actuators, which then trigger new
physical or cyber events. Apps may also directly generate new cyber events. Therefore, a

single event could lead to a large sequence of subsequent cyber/physical events.

Event in cyber
Physical events Event in Command
(e.g., temperatufe' Sensor cyber in cyber Actuator
up, motion) *

Physical events (e.g., temperature |
down, humidity increase)

Figure 4.1: Chain of events in an IoT system.
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Result  }

Grey boxes are existing modules/packages

Figure 4.2: TOTSAN architecture overview.

4.2 Overall Architecture

Figure depicts the architecture of our system IOTSAN. It consists of five mod-
ules viz., App Dependency Analyzer, Translator, Configuration Extractor, Model Generator,
and Output Analyzer. In designing IOTSAN, we tackle two main challenges: (i) alleviating
the state space explosion with model checking [30] for our context, and (ii) the transla-
tion of smart apps’ source code to Promela (to facilitate model checking). We address the
first problem partially in the App Dependency Analyzer and partially in the Model Gener-
ator. The second problem is handled partially in the Translator and partially in the Model
Generator.

App Dependency Analyzer (§ : This module constructs dependency graphs
to capture interactions between event handlers of different apps and identifies handlers that
must be jointly analyzed by the model checker. This precludes the unnecessary analysis of
unrelated event handlers.

Translator (§ @: We build a translator within IOTSAN, that automatically con-

verts Groovy programs into Promela. In doing so, we address the following challenges:

o Implicit Types. In Groovy programs, data types of variables and return types of

18



functions are not explicitly declared. To solve this problem, we design an algorithm

to infer data types of variables and return types of functions.

o Built-in Utilities. Groovy has many built-in utilities, e.g., find, findAll, each,
collect, first, + on list types, and map. We manually analyzed the behavior of

each utility and translated them into corresponding code in Promela.

Configuration Extractor (§ : IoT platforms often provide a companion mobile
app and/or web-based app to manage/configure the installed smart apps and devices of
an IoT system. This module automatically extracts the system’s configurations from the
manager app.

Model Generator (§ : This module takes the Promela code of event handlers,
the configuration of the IoT system, and safety properties (both pre-defined and user-
defined) as inputs, and creates the Promela model of the system. We use sequential design
to model the IoT system instead of concurrent design. This significantly reduces the problem
size by eliminating unnecessary interleaving that is unlikely to yield useful assessment of
unsafe behaviors. The generated model is checked by SPIN for possible property violations.

Output Analyzer (§ @: This module analyzes the verification logs and attributes
safety violations to potentially malicious apps, bad designs or misconfiguration. Based on
the result, it provides the user, a suggestion to either remove a bad app(s) or change an

app(s)’s configuration.
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Table 4.1: Comparison of IOTSAN and related work.

Feature

SIFT [83]

DeLorean [34]

Soteria [23]

TIotSan

Detects physical safety viola-
tions

v

v

v

Detects information leakage

Detects violations due to com-
munication/device failures

Detects violations due to mis-
configuration problems

Handles complex code beyond
IFTTT rules

Performs violation attribution

Accounts for app interactions

v

S\ENEEENERENERNIN

4.3 Our Work in Perspective

IOTSAN can be envisioned as a service that jointly considers the apps, devices

and their configurations of an IoT system, and checks whether a set of a priori defined

properties hold. In addition to detecting safety violations of the physical space, it also

detects information leakage. Finally, it also determines if communication/device failures can

cause unsafe states and detects violations due to misconfiguration problems. In Table

we show the features that IOTSAN offers compared to the most related recent systems. A

discussion of related work is deferred to §
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Chapter 5

App Dependency Analyzer

The model checker should not have to check the interactions between event han-
dlers that do not interact. To find event handlers that can interact and thus jointly influence

actuator actions, this module constructs a dependency graph (DG).

5.1 Extracting Input/Output Events

Each smart app registers one or more event handlers that get notified of events to
which it has subscribed. An event handler takes one or more input events, and can induce
zero or more output events. Input events are (i) explicitly declared in the subscribe
commands or, (ii) identified via APIs that read states of smart devices, or (iii) indicated by
interrupts at specific times defined by schedule method calls. Output events are invoked

via APIs that change states of smart devices.
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Table 5.1: An example to showcase the construction of a dependency graph.

App’s Name Event Handler Vertex’s | Input Events | Output
ID Events
Brighten Dark | contactOpenHandler | 0 contact/open, | switch/on
Places illumi-
nance/“...”
Let There Be | contactHandler 1 contact/“...” switch/on,
Dark! switch /off
Auto Mode | presenceHandler 2 presence/“...” location/mode
Change
appTouch 3 app/touch lock /unlocked
Unlock Door cﬁgngedLocationMode 4 l(f)ci{cion/ mode lockfunlocked
. appTouch 5 app/touch switch/on
Big Turn On clll);)ngedLocationMode 6 l(i)cz/tion/ mode switch?on

We enumerate the input and output events of an app using static analysis as
follows. First, we parse and identify all the read and write APIs in each function of the
smart app. Second, we build call sequences whose entry points are event handlers. The
input events of an event handler are identified by (i) the read APIs in its call sequence, (ii)
the events specified in its subscribe, and times in its schedule method calls. The output

events are identified by the write APIs in its call sequence.

5.2 Dependency Graph Construction

Once the input and output events are identified, we construct a directed DG as
follows. Each event handler is denoted by a vertex in the DG. An edge from a vertex u to
a vertex v (u — v) is added if the output events of u overlap with the input events of v. u
is then called the parent vertex of the child vertex v. The vertices in a strongly connected
component are merged into a composite vertex (a union of input and output events). A leaf

vertex does not have any child.
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switch mode
app/, lock/ app/ switch Jon lock/
touch” ! unlocked touch Ton unlocked

(a) Dependency graph.

contact/ |IIum|nance contact/*. presence/“.. ‘
open
switch/on switch/off switch/on
location, C?

] location witch  switch P @sw_nch swntch( )
!
/mode /on /off o Jon /off

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(b) Related sets (each box represents a related set).

Figure 5.1: Example of a dependency graph and its corresponding related sets.

5.3 Example

To illustrate, consider the following example. Table summarizes the event
handlers and the associated input/output events with a set of sample smart apps. The
description of an event is in the format attribute/event type (e.g., contact/open means “a
contact sensor is open”); empty quotes (“...”) denote “any” event of that type. Given these
apps, we show the DG that is built in Figure For each vertex, the incoming arrows
denote input events and the outgoing arrows denote output events. For example, vertex 2
has two children viz., vertex 4 and vertex 6; all vertices except vertex 2 are leaf vertices.

Related sets: The initial related set of a leaf vertex v € DG includes all of its
ancestors and v itself. There is no need to find such related sets for vertices that are not

leaves, since those sets are subsets of other leaves’ related sets. Table shows the initial

related sets in the DG from Figure
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Table 5.2: Related sets of the dependency graph in Figure [5.1a; (a) Initial related sets, (b)

Potential conflicting sets, and (c) Final related sets.

(a) (b) ()

Set | Vertexes Set | Vertexes Set | Vertexes
1 |0 1 10,1 1 |3
2 |1 2 | 1,5 2 12,4
3 |3 3 11,2,6 3 10,1
4 |5 4 |1,5
5 2,4 5 11,2,6
6 2,6

The initial related sets constructed as above are incomplete. This is because, two
vertices u and v may have common output events but the types of these events could be
different or what we call conflicting. For example, nodes 0 and 1 have conflicting output
events viz., switch/off and switch/on. In such cases, the related sets to which u and v
belong, must be merged to account for such conflicts. Table shows the related sets of
vertices with potential output conflicts in our example. Note here that to check for such
output conflicts, we need to examine O(E?) links in the worst case (given E output edges
from the event handlers); our experiments show that such checks are very fast.

We point out that if a related set ¢ is a subset of a bigger related set j, the model
checker automatically verifies ¢ when j is verified; thus, there is no need to re-verify 1.
In Table [5.2¢| and Figure we show the final related sets associated with the DG in
Figure after removing all redundant subsets. These related sets are jointly analyzed

by the model checker.
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Chapter 6

Translator

Given its popularity and ease of use [120, 51}, 128 5], we build IOTSAN using
the Bandera Tool Set [59, [60], which is a collection of program analysis, transformation,
and visualization components designed to apply model-checking to verify Java source code.
Bandera generates a program model and specification in the language of one of several
existing model-checking tools (including SPIN, dSpin, SMV, JPF). When a model-checker
produces an error trail, Bandera renders the error trail at the source code level and allows
the user to step through the code along the path of the trail while displaying values of
variables and internal states of Java lock objects [59, [60].

Since Bandera does not handle Groovy code, in order to analyze smart apps for
SmartThings, we need to convert their code into Java which is challenging for the following
reasons. First, since SmartThings added several language features to Groovy to simplify
smart app development, the standard Groovy compiler cannot directly process an app’s code

and SmartThings’s compiler is not open sourced. Second, Groovy uses dynamic typing [57]
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Grey boxes are existing modules/packages. The SPIN Trans module in Bandera is modified.

Apps| SmartThings | tandarg (* | | Javacodey
code]! Handler Groovy arser ! 1 ( )
; VL Parser ‘ ]

! Groovy AST ) Java

| 3 AsT |Generator
\G2J Translator | |iJava Front-end i

; 1 - | Jimple
confi uraAtFi]oF;ss Promela Back-ends 1
9 Model code of SPIN Trans | |

BIR

User-defined | Generator | event
| handlers
properties

Promela

3{dSPIN Trans‘ I | Constructor
model of the S
0T system | ‘ SMV Trans ‘ 3

loTSan Bandera

Figure 6.1: TOTSAN is built around Bandera.

(i.e., data types are checked at run-time) but Java is static typed (i.e., data types are
explicitly declared and checked at compile-time). Thus, we need to perform type inference
during the translation of Groovy into Java. Lastly, Groovy supports many built-in utilities
such as list and map, not supported by Bandera (i.e., Bandera supports only Java’s array
type).

The key component we develop is the G2J Translator (see Figure , which trans-
lates the smart app Groovy source into Java’s Abstract Syntax Trees (ASTs). In addition,
the SmartThings Handler is designed to handle the new language syntaxes introduced by
SmartThings, and the GParser parses the regular Groovy source code into Groovy ASTs.
Basically, each smart app in Groovy is translated into a Java class, whose method comprises
of a method’s header and a block of statements. The translation procedure of a block is
straightforward: iterate through the statement list of the input Groovy block, translate
each Groovy statement into Java, add the result to a list of Java statements, and build

a Java block from the result list. To implement these, we extended the Groovy compiler
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(org.codehaus.groovy) which is then integrated into the Bandera’s front-end.

6.1 Handling SmartThings’ Language Features

There are several new language syntaxes introduced in SmartThings. Our Smart-
Things Handler parses these new syntaxes and converts them into vanilla Groovy code
using specifications based on the domain knowledge of SmartThings. For instance, (as can
be seen in in Figure each input function defines a global variable (or a class field) of
the app. Therefore, we traverse the Groovy’s AST of the app and visit all input functions
to extract all global variables of the app. In addition, apps can use some predefined objects
or variables (e.g., location) and APIs (e.g., setLocationMode), which are not defined in

vanilla Groovy. Therefore, we manually add definitions of these global objects.

6.2 Type Inference

Although the Groovy Compiler org.codehaus. groovy already has a sub-package
CompileStatic for performing static type inference, it only works when the argument type
and the return type of a method are given. In other words, a variable declared inside a
method can take different runtime types depending on the argument type. Thus, we still
need to infer the argument and return type statically. To do so, we consult the calling
context of each method invocation by recursively tracking the arguments and return values
to their corresponding anchor points—declaration of variables with explicit types (Groovy

supports static typing as well), assignment to constant values (e.g., we can infer that the
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1 private onSwitches () {
2 switches + onSwitches

3}

(a) Groovy’s code

1 private STSwitch[] onSwitches () {

2 STSwitch [] STSwitchArr0;

3 int arrIndex0 = 0;

4 int index3 = 0;

5 while(index3 < TheBigSwitch_switches.length){

6 STSwitch it = TheBigSwitch_switches [index3];
7 STSwitchArr0[arrIndex0] = it;

8 arrIndex0-++;

9 index3++;

10

11 int index4 = O0;

12 while(index4 < TheBigSwitch_onSwitches.length) {
13 STSwitch it = TheBigSwitch_onSwitches [index4 ];
14 STSwitchArrO[arrIndex0] = it;

15 arrIndex0++;

16 index4++;

17

18 return STSwitchArr0;

19 }

(b) Corresponding Java’s code

Figure 6.2: Example of translating a Groovy method into the corresponding Java’s method.

type of variable a is numeric from def a = 0), assignment to return values of known APIs,

and known objects and their properties. The inference procedure works roughly as follows.

When traversing the AST of a method, we store the names and data types of variables

at anchor points; the types of other variables are inferred by propagating the types from

anchor points. This is done iteratively until we find no more new variables whose type can

be inferred.

6.3 Handling Groovy’s Built-in Utilities

Another challenge arises when we translate Groovy into Java for use with Bandera.

We find that Bandera understands only a very basic set of Java. For instance, it supports

only the array type natively. In contrast, Groovy’s collection types (e.g., Collection, List,
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ArrayList, Set, Map, and HashSet) all need to be translated into Java’s array type. We
support the popular collection types that are commonly used in smart apps. An example
is shown in Figure that translates one Groovy list into a corresponding Java imple-
mentation using array. Since the type of switches and onSwitches is List of STSwtich, we
infer the return type of onSwitches() method as List of STSwtich, which is translated into
Java’s array type (i.e., STSwitch[]). The + operation on List type (line 2 in Figure is
automatically translated into corresponding Java’s code (lines 2-17 in Figure [6.2b]). Finally,

since this method is a non-void method, we add an explicit return statement (line 18 in

Figure [6.2D]).
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Chapter 7

Configuration Extractor

IoT platforms typically provide a mobile companion app and/or a web-based app
to manage and configure smart apps and devices. For Samsung SmartThings, we develop a
crawler in Java, using the Jsoup| package to automatically extract the system’s configuration
from the management web app [123]. Given a SmartThings account (user’s name and
password), the crawler logs in to the management web app and extracts (i) installed devices,
(ii) installed smart apps, and (iii) configurations of apps. Moreover, whenever a user installs
a new generic smart device (e.g., a smart power outlet), we have an interface to get the
device association info (e.g., this new outlet is used to control an AC) from the user. The
extracted configuration is then saved to a file and used later by the Model Generator. The

process is straightforward and we omit the details in the interest of space.
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Chapter 8

Model Generator

8.1 Modeling an IoT system

To correctly verify safety properties, we need to model two key components (not
part of the app code): (i) the IoT platform and its interactions with smart apps and (ii) IoT
devices and their interactions with smart apps. IoT platforms [72] 114, [7, [6, 94] typically
provide apps with some methods to register callback functions (i.e., event handlers). Based
on apps’ configurations provided by the Configuration Extractor, we model these special
registration functions so as to invoke callbacks at appropriate times.

We model IoT devices (sensors and actuators) as per their specifications. Note
that both sensors and actuators can generate events of interest to apps. For instance, a
motion sensor can generate motion active/inactive events whereas a door lock (actuator)
can generate status update events (locked/unlocked). Each device is modeled as having an
event queue and a set of notifiers to inform the smart apps that have subscribed to specific

types of events. Currently, we support 30 different IoT devices. Note here that we model
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events generated by the environment (e.g., sunrise and sunset) as sensor generated inputs
and location mode changes (e.g., Home, Away, and Night) as actuations; thus inputs such
as users leaving home (sensed input) can trigger the mode to change from Home to Away
(actuation).

We model system time as a monotonically increasing variable. We extract the
triggering times and callback functions from the scheduling method calls. The callback
functions are then triggered at appropriate times based on the value of the modeled system
time.

Algorithm [1] shows the pseudo code of the main process that models behaviors
of an IoT system. The model checker enumerates all possible permutations of the input
physical events up to a maximum number of events per user’s configuration to exhaustively
verify the system. At each iteration, a sensor and a corresponding physical event in the
permutation space are selected (line 2). Then, the selected sensor updates its state and
event queue, and notifies its subscribers of the state change event (line 3). When an event
is pending, it is dispatched to the subscribed apps and the corresponding event handlers
of apps are invoked to handle the event (lines 4-6). Each event handler may send some
commands to some actuators, which may generate some new cyber events and trigger event
handlers of the subscribers.

To model natural or induced (e.g., using jamming [104]) device/communication
failures, when generating a sensor event we enumerate two scenarios: (i) the sensor is
available/online and (ii) the sensor is unavailable/offline. Similarly, whenever receiving a

command from a smart app, an actuator may be either online or offline. If a device is offline,
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Algorithm 1 Modeling an IoT system

1:
2:

@

10:
11:
12:

13:
14:

15:

16:
17:
18:
19:
20:
21:

for i = 1 to maximum number of events do { Main event loop of an IoT system}
Select a sensor and a corresponding event in the permutation space {Generate a physical
event }
sensor_state_update(evt)
while any event pending do
dispatch_event(evt) { Dispatch the pending event to the subscribed apps and invoke the cor-
responding app_event_handler(evt) to process the event}
end while
end for
{sensor_state_update(evt)}
if evt # current state of the sensor then
Add the evt to the event queue
Update the state of the sensor
Notify the subscribers of the state change event
end if
{app-event_handler(evt)}
if some conditions hold then
Send some command to some actuator {Invoke actuator_state_update(evt), which may subse-
quently generate some new event}
end if
{actuator_state_update(evt)}
Verify conflicting and repeated commands violations
if evt # current state of the actuator then
Add the evt to the event queue
Update the state of the actuator
Notify the subscribers of the state change event
end if

it will not change its state and hence not broadcast a state change event to its subscribers.

If a device is online, the communication (i.e., sending a state change event or receiving a

command) between the device and the hub/cloud may either succeed or fail (we enumerate

both cases).

8.2 Concurrency Model

Since an app’s event handler is only triggered by the subscribed event(s) and event

handlers of different apps do not share any global variable [72], [114. [7], [0, [94], the execution of
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an app’s event handler can be considered as atomic. This means that the concurrency level
of a model only depends on the interleaving of apps’ event handlers. To model a concurrent
IoT system therefore, we only need to verify the behaviors of the system with interleavings
of all of the external events (e.g., smoke detected) sensed by sensors and internal events
(e.g., unlocked) caused by apps’ behaviors. Even though the events are concurrent, the
interleaving is in fact reflected by the order of the (incoming) events processed by event
handlers, i.e., we can obtain the strict concurrency by considering all order permutations
of external and internal events. However, this approach takes a very long verification time
as the number of events grow, and causes the state space to explode. Instead, we can
obtain a weaker concurrency by considering the permutations of only external events in a
sequential design shown in Algorithm This implicitly assumes that the internal events
associated with an external event are handled atomically in order. It is unclear if enforcing
strict concurrency would lead to the discovery of more unsafe states. We experiment with
the two design options with several small systems and find that the sequential approach
offering weak consistency, discovered all violations that the strict concurrent model found.
Based on this, we use the sequential approach given that it significantly mitigates the time

complexity of execution.

8.3 The lIoT System Model in Promela

With the concurrent approach, each device and smart app is modeled by a process
(i.e., proctype). There is also a process for generating the sensed and environmental events.

The processes communicate with each other using message passing (i.e., chan). We use
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a single process for the whole system with our sequential design, using inline methods
to model the behavior of devices and smart apps. The devices, smart apps, and event

generators, communicate via shared global variables.

8.4 Safety Properties

We seek to verify 45 properties of the following types:

e Free of conflicting commands [99]: When a single external event happens, an actuator

should not receive two conflicting commands (e.g., both on and off) — (1 property).

o Free of repeated commands: When a single event happens, an actuator should not
receive multiple repeated commands of the same type or with the same payload — (1

property). The latter could indicate a potential DoS or replay attack.

e Safe physical states: Table [8.1] and Table [8.2] show some sample safe physical states
that the user desires the system to satisfy. These kinds of properties can be verified
using linear temporal logic (LTL) [9] — (38 properties). We envision that a more
complete list will likely be provided by safety regulations associated with the IoT

industry in the future.

o Flree of other known suspicious app behaviors—security-sensitive command and infor-
mation leakage: Examples of security-sensitive commands are unsubscribe (disabling
an app’s functionality) and creating fake events (e.g., an app may generate a “smoke
detected” event when there is no smoke in the physical environment); we raise viola-

tions when such commands are executed. Information leakage can occur with sending
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SMS and using network interfaces. When sending SMS is triggered, for instance, we
check whether the recipient matches with the configured phone number to prevent

leakage — (4 properties).

e Robustness to device/communication failure: An app should quickly check that a
command sent to an actuator was acted upon to be robust to device and communi-
cation failures. Upon detecting a failure, the app should notify users via SMS/Push

messages. This property can be verified using LTL as well — (1 property).

Note that we provide users with an interface to select the list of safety properties
they want to verify. Based on the device association information (recall § (7)) provided by
the Configuration Extractor, the LTL format of the selected properties are automatically

generated.

8.5 Example

Consider the smart home of a single owner Alice (say), which comprises of a smart
lock that controls the main door viz., Door Lock, and a presence sensor viz., Alice’s
Presence (which checks if Alice is at home). Assume that Alice installs two smart apps:
Auto Mode Change, which manages the location mode based on the events from Alice’s
Presence and, Unlock Door, which unlocks the Door Lock based on explicit user input or
a “location mode” change event. When this system is analyzed by the model checker, a

violation is detected as described below.
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SmartThings0.prom:2690 (state 295) [generatedEvent.eviType = notpresent]

2 SmartThings0.prom:2609 (state 332) [g_STPresSensorArr.element[STPresSensorindex].subNotifiers[index2] = g_STPresSensorArr.element[
STPresSensorindex].subNotifiers[index2] + 1]

3 SmartThings0.prom:2725 (state 757) [((9_STPresSensorArr.element[AutoModeChange_people.element[0].gArrindex].subNotifiers|
AutoModeChange_people.element[0].eventCountindex] > 0))]

4 SmartThings0.prom:2728 (state 759) [g_STPresSensorArr.element[AutoModeChange_people.element[0].gArrindex].subNotifiers|AutoModeChange_people
.element[0].eventCountIndex] = g_STPresSensorArr.element[AutoModeChange_people.element[0].gArrindex].subNotifiersfAutoModeChange_people
.element[0].eventCountIndex] - 1]

5 SmartThings0.prom:1913 (state 937) [(!((location.mode == AutoModeChange_newMode)))]

6 SmartThings0.prom:2308 (state 1797) [ST_Command.evtType = Away]

7 SmartThings0.prom:2438 (state 1765) [location.mode = HandleLocationEvt_mode]

8 SmartThings0.prom:2451 (state 1788) [location.subNotifiers[index0] = location.subNotifiers[index0] + 1]

9 SmartThings0.prom:2704 (state 346) [((location.subNotifiers[UnlockDoor_location] > 0))]

10 SmartThings0.prom:2707 (state 348) [location.subNotifiers{lUnlockDoor_location] = location.subNotifiers[UnlockDoor_location] - 1]

11 SmartThings0.prom:1832 (state 596) [ST_Command.evtType = unlock]

12 SmartThings0.prom:2357 (state 665) [HandleSTLockEvt_state = 48]

13 SmartThings0.prom:2553 (state 703) [g_STLockArr.element[m_JJJCTEMP_0.gArrindex].currentLock = HandleSTLockEvt_state]

14 spin: _spin_nvr.tmp:3, Error: assertion violated

15 spin: text of failed assertion: assert(!(!((((g_STPresSensorArr.element[alicePresence_STPresSensor].currentPresence != 18)||(g_STLockArr.
element[doorLock_STLock].currentLock!=48))))))

Figure 8.1: Example violation log (filtered).

Figure [8.1] shows the (filtered) violation log (a counter-example) output by SPIN.
The format of each line in the violation log is as follows: file name (SmartThings0.prom),
line number, state number, and the executed code. In particular, the counter example has
the following steps. (1) The event not present is generated by Alice’s presence if Alice
leaves home (line 1) and its subscribers are notified of this state change (line 2). (2) The
app Auto Mode Change reads and processes this state change event (lines 3-5) and notifies
the location manager to change the location mode to Away (line 6). (3) The location
manager changes its mode and notifies its subscribers of this change (lines 7-8). (4) The
app Unlock Door reads and processes this mode change event (lines 9-10) and sends an
unlock command to the device Door Lock (line 11), which unlocks the door (lines 12-13).
Thus, the system enters an unsafe physical state (i.e., the main door is unlocked when no
one is at home) (lines 14-15).

Upon closer inspection, the description of Unlock Door suggests that it unlocks

the door only upon user input. However, in practice, it also unlocks the door whenever the
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location mode changes (i.e., there is an inconsistency between the app’s description and its

implementation).
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Table 8.1: Sample safe physical states.

Category

Property

Thermostat,
AC, and
Heater

—_

Temperature should be within a predefined range when people are at
home

An AC and a heater should not be both turned on

The cooling set-point of a thermostat should be set to a value which
is the same as the configured one

The heating set-point of a thermostat should be set to a value which
is the same as the configured one

Thermostat should be turned off when a window/door is opened

Lock and
door
control

The main door should be locked when no one is at home

The main door should be locked when people are sleeping

N = Ot

The main door should be locked when no one is at home and smoke
detector state is clear

The main door lock should be locked when people are sleeping and
smoke detector state is clear

A door control should be closed when no one is at home

(@)

When a door is closed, a lock should be locked

When all people leave home, some locks should be locked and location
mode should be changed to Away

A door should be locked after being unlocked

Location
mode

—| co

Location mode should be changed to Away when no one is at home

\V)

Location mode should be changed to Home when some one arrives at
home

Location mode should be set to the configured mode at sunset

Water and
sprinkler

Soil moisture should be within a predefined range

A water valve should be closed when a water sensor’s state is wet

WD | W

When there is water leakage, an SMS/Push message should be sent
to the owner

Others

Some devices should not be turned on when no one is at home

A tone should not beep when people are sleeping

A fridge should be always on

A music player should not play when people are sleeping

QY | W DN =

An audio notification should not play when people are sleeping
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Table 8.2: Sample safe physical states (continue).

Category | # | Property
1 An alarm should not strobe/siren when smoke detector state is clear
2 A surveillance camera should be always on
3 Bulbs around surveillance cameras should be on when it is dark
4 An alarm should strobe/siren when detecting smoke
5 An alarm should strobe/siren when a lock is unlocked and people are
. sleeping or not at home
Security - - :
and 6 An a}arm should strobe/siren when detecting motion and people are
alarming sleeping or not at home
7 An audio notification should play when detecting motion and no one
is at home
8 Notification should be sent when a door is opened and no one is at
home
9 When there is smoke, an SMS/Push message should be sent to the
owner
10 | When there is motion and no one is at home, an SMS/Push message
should be sent to the owner
11 | Alarm mode should be enabled when location mode changes to target
mode
12 | Alarm mode should be enabled when all people leave home
13 | A water valve should be opened when detecting smoke
14 | An alarm should be triggered when a door is opened
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Chapter 9

Output Analyzer

The Output Analyzer attributes a violation to either a misconfiguration or a ma-
licious app using a heuristic-based algorithm. The algorithm consists of two phases. In
the first phase, when a user installs a new smart app, the output analyzer enumerates all
possible configurations for this app. It verifies if the user-defined properties hold with each
configuration independently. If the proportion of violations (violation ratio) is greater than
a predefined threshold (e.g., 90%), the new smart app is attributed as a malicious app.

If this is not the case, in the second phase, the new app is verified in conjunction
with other apps that were previously installed by the user. Again, all configurations are
considered. If the violation ratio is greater than a predefined threshold, the new app is
attributed as a bad app and a report is provided to the user. Otherwise, the violation is
attributed to misconfiguration and suggestions of safe configurations with regards to the
user defined properties are provided. If there is no violation, a successful verification is

reported.
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Chapter 10

Evaluations

Our experiments (model checking) are performed on a MacBook Pro with macOS
Sierra, 2.9 GHz Intel Core i5, 16 GB 1867 MHz DDRJ3, and 256 GB SSD. We check if there
are violations of the properties discussed in We also look at other performance metrics
such as the running times, and the scale ratio (which quantifies the reduction in the number

of event handlers to be jointly verified) to evaluate IOTSAN.

10.1 Test Cases and Configurations

We perform four different sets of experiments described below. The first three
examine the fidelity with which bad apps and configurations are identified. The last set
evaluates the performance of different design choices we make.

Market apps with expert configurations: We check the safety properties with
150 apps (assuming they are benign) from the SmartThings’ market place [122, B1], 123].

We (the authors) came up with independent configurations for the apps (based on common
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sense with regards to how the apps may be used). To illustrate, consider the app Virtual
Thermostat, the required input to which is shown in Figure Assume that the following
devices are deployed: (1) one temperature sensor (myTempMeas), (2) one outlet to control
the heater (myHeaterOutlet), (3) one outlet to control the air conditioner (myACOutlet),
(4) one outlet to control the light in the living room (livRoomBulbOutlet), (5) one outlet
to control the light in the bedroom (bedRoomBulbOutlet), (6) one outlet to control the
light in the bathroom (batRoomBulbOutlet), (7) one motion sensor in the living room
(livRoomMotion), and (8) one motion sensor in the bathroom (batRoomMotion). Our
configuration is as follows: myTempMeas for the temperature sensor (line 3 in Figure ,
myACOutlet for “outlets” (line 7 in Figure , 75 as the “setpoint” temperature if people
are present (line 9 in Figure , livRoomMotion for “motion” (line 12 in Figure , 10
“minutes” for turning off the AC/heater when no motion is sensed (line 15 in Figure , 85
as the “emergencySetPoint” temperature at which the AC is turned on (to set) regardless
of whether people are present (line 18 in Figure , and “cool” for “mode” (line 21 in
Figure .

We randomly divide the 150 apps into six groups (25 apps per group) with one
configuration each, and feed them into IOTSAN. Upon encountering a violation, we remove
the minimum number of the associated apps (e.g., if there are two apps causing conflicting
commands, we randomly remove one of them); we then iterate the process. The experiment
stops when no violation is detected. These experiments are performed with and without

device/communication failures.
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Market apps with non-expert configurations: To eliminate biases, we also
conduct a user study where we request 7 independent student volunteers to configure 10
groups of apps with the assumption that they would deploy them at home. Each group
comprises of about 5 related apps (as determined by our app dependency analyzer). A group
receives one configuration from each volunteer and this leads to a total of 70 configurations.
Our Office of Research Integrity determined that there was no need to go through an IRB
approval process (since no private information is collected).

Malicious apps: We consider 25 malicious apps created in [78]. In this set, we
find that only 9 apps are relevant to our evaluations (e.g., affect the physical state and can
be compiled correctly by the SmartThings’ own web-based IDE). There are four apps that
IOoTSAN cannot currently handle viz., Midnight Camera, Auto Camera, Auto Camera 2,
and Alarm Manager, since they dynamically discover and control the devices in the system;
we will extend IOTSAN to handle such apps in future work. We evaluate whether IOTSAN
correctly attributes these malicious apps when they are installed together with other apps.
The configurations of the 9 malicious apps are identical to those in [78]. We also choose 11
potentially bad apps (found via the previous experiments) from the market place for a total
of 20 bad apps. In conjunction, we select 10 good apps from the market place to create a
reasonable input set. Here, we specifically evaluate the fidelity of our attribution module.

Performance: We compare the performance of concurrent versus sequential de-

sign. We use two bad groups of apps viz., (Auto Mode Change, Unlock Door) and (Brighten
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Table 10.1: Verification results with market apps.

Violation Number| Example violated prop- | Apps related to exam-
type of vio- | erty ple
lations
Conflicting 8 A light receives “on” and | (Brighten Dark Places, Let
commands “off” simultaneously There Be Dark)
Repeated 10 A light receives repeated | (Automated light,
commands “on” commands Brighten My Path)
Unsafe A heater is turned off at | (Energy Saver)
. 20 . .
physical night when temperature is
states below a predefined thresh-
old
The main door is unlocked | (Light Follows Me, Light
when people are sleeping at | Off When Close, Good-
night Night, Unlock Door)

Dark Places, Let There Be Dark), and one good group of apps viz., (Good Night, It’s Too
Cold) that control 3 switch devices, 3 motion sensors, and 1 temperature measurement

Sensor.

10.2 Identifying Unsafe Configurations

Market apps with expert configurations: Table summarizes the results
from our first set of experiments in the absence of device and communication failures. The
apps in parenthesis jointly cause a violation. We find 38 violations of 11 properties, some
of which can be very dangerous from a user’s perspective. For example, there is violation
where “The main door is unlocked when people are sleeping at night”, which involves 4 apps.
The interactions between the apps that lead to this violation is shown in Figure[I0.1al when

lights are turned off at night a mode change is initiated by the Good Night app, which in
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No i
motion Light follow me Light 1 turned off Ent Unlock door
Good n er. N
ftar 10PN % sfeeping ":'jinlr; :;:5

mode

Door (" Light off when
close close Light 2 turned off v

(a) Example violation due to bad app interactions.

it | change moce oy it 0 Jdocr
motion{ behind me J turned change modejaway |_it so door

off r;lode locked

(b) Example violation due to a device failure. Dotted arrows
are expected events that do not occur due to the failure of
the motion sensor.

Figure 10.1: Violation examples: boxes depict apps and high level abstractions are shown
for inputs/outputs.

turn causes the unsafe action of unlocking the main door by the Unlock door app.

Device/communication failures cause violations of 9 additional properties with
some dangerous cases. One such case is showcased in Figure When people leave
home, the Make it so app should automatically lock the entrance door; however, due
to the failure of the motion sensor, the Make it so app is not triggered and thus, the
door is left unlocked. Moreover, this failure also causes NO notification to be sent to law
enforcement upon physical intrusion. An alarming discovery is that none of the analyzed
apps check if the commands sent to the actuators were actually carried out (which might
not be the case if the device has failed).

Market apps with non-expert configurations: The verification results from
the second set of experiments are in Table and Table From 10 groups of apps
with 70 configurations, we find 97 violations of 10 properties. For example, the property
“An AC and a heater are both turned on” is violated by 21 configurations across 5 groups.

Note that in some configurations multiple properties are violated and thus, the number of
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violations is more than the number of configurations.

10.3 Violation Attribution

IoTSAN attributes all of the ContexIoT’s malicious apps [78] correctly when each is
independently considered with violation ratios of 100 % (recall . As shown in Table
two apps violated the information leakage property as the command hittpPost was executed;
two apps violated the “using security-sensitive command property”, i.e., they generated
fake carbon monoxide detection events and an unsubscribe is executed; the remaining 5
apps violated safety properties in the physical space, e.g., a main door is unlocked when
no one is at home and, when smoke is detected, a water valve switch is turned off. From
among the 11 market apps, 6 were detected with a 100% violation ratio, both when verified
independently and in conjunction with other apps; they were thus attributed as bad apps.
The remaining were attributed to cause violations (with 70% or lower violation ratio) due

to bad configurations (there existed safe configurations with no violations).

10.4 Scalability

Table shows the scalability benefits of our app dependency analyzer in the
above experiments with 150 market apps. In this table, “Original Size” is the total num-
ber of event handlers of a group and “New Size” is the number of event handlers of the
largest related set after running the App Dependency Analyzer module. On average, App

Dependency Analyzer reduced the problem size by a factor 3.4x.
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10.5 Concurrent vs. Sequential

Model checkers using both concurrent and sequential design detected all violations
within 1 second. Table shows the runtimes of the two models with a good group of apps
(2 apps and 7 devices), which does not violate any property. We see that sequential design
significantly reduces the runtime of the verification. Note that forever means the experiment
ran for a week and then was forced to stop. Moreover, we also verified the runtime of our
sequential approach with a much bigger system, which comprises of 5 related apps and 10
devices and does not have any violation. As shown in Table the verification time for
10 events is about 5 hours, which is quite reasonable for a laptop with limited computing

resources.
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Table 10.2: Verification result with market apps, with volunteer configuration.

Group | Violations Related Apps Percentage
of bad
configs

A microwave is turned on when | Big Turn On, Auto Mode | 28.6%
no one is at home Change
An AC and a heater are both Big Turn On, Auto Mode | 28.6%
turned on Change
The Big Switch 42.9%
1 A heater is turned on when Big Turn On, Auto Mode | 28.6%
temperature is above a Change
predefined threshold and no one | The Big Switch 42.9%
is at home
An AC is turned on when Big Turn On, Auto Mode | 42.9%
temperature is below a Change
predefined threshold The Big Switch 71.4%
Brighten Dark Places, Let | 85.7%
There Be Dark!
Once a Day, Let There Be | 14.3%
Dark!
Conflicting commands Once a Day, Curling Iron | 71.4%
Once a Day, Light On Mo- | 28.6%
2 tion
Brighten Dark Places, | 14.3%
Once a Day
Curling Iron, Light On Mo- | 42.9%
tion
Repeated commands Once a Day, Let There Be | 14.3%
Dark!
An AC and a heater are both | Once a Day 28.6%
turned on
A heater is turned on when tem- | Once a Day 28.6%
perature is above a predefined
threshold
An AC is turned on when tem- | Once a Day 57.1%
perature is below a predefined
threshold
3 No violation
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Table 10.3: Verification result with market apps, with volunteer configuration (continue).

Group | Violations Related Apps Percentage
of bad
configs

An AC is turned off when tem- | Energy Saver 42.9%
perature is above a predefined
threshold
A heater is turned off when tem- | Energy Saver 42.9%
4 perature is below a predefined
threshold
AND Switch, Away Mode | 14.3%
Repeated commands With Eco Turn Off
AND Switch, Energy Saver | 14.3%
5 No violation
Automated light, Brighten | 42.9%
My Path
Repeated commands Automated light, Garage | 14.3%
6 check open/close App
Brighten My Path, Garage | 14.3%
check open/close App
An AC is turned off when tem- | Light Follows Me, Light | 14.3%
perature is above a predefined | Off When Close, Big Turn
threshold at night Off, Good Night
A heater is turned off when tem- | Light Follows Me, Light | 14.3%
perature is below a predefined | Off When Close, Big Turn
threshold at night Off, Good Night
7 No violation
Conflicting commands Multi-way On/Off Tog- | 57.1%
3 gle Switch Using a Mod-
ded PEQ Door Open/-
Close Sensor, Undead early
warning
An AC and a heater are both | Virtual Thermostat 71.4%
turned on
An AC is turned on when tem- | Virtual Thermostat 42.9%
perature is below a predefined
threshold
A heater is turned on when tem- | Virtual Thermostat 28.6%
perature is above a predefined
threshold
9 No violation
10 Repeated commands Let There Be Light!, De- | 28.6%
layed Command Execution
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Table 10.4: Verification result of ContexIoT’s malicious apps.

No. | App’s Malicious functions Violated properties
Name

1 Battery When the motion sensor detects that | The main door is un-

Monitor nobody is at home, the app would un- | locked when no one is
lock the door. If the motion sensor | at home
detects that the user comes, the app
would lock the door again.

2 Bon When all people leave home, the app | Information leak-
Voyage would notify the attackers via http | age (The command
Repackage | post. httpPost is executed)

3 | Fake The app triggers a fake CO detecting | Using security-sensitive
Alarm event. command  (generated

CO detecting event)

4 | Leaking The app would strobe the light when | A light is turned on

Info there is nobody home to signal the at- | when no motion is de-
tacker. When user comes home (the | tected and nobody is at
motion sensor detects motion), the | home
light stops strobing.

5 Water The app does not let the user pull out | When smoke is de-
Valve the water until he pays the ransom | tected, a water valve

money. switch is turned off

6 | Fire The app sends http post to the at- | An alarm sirens when
Alarm tacker periodically to get the attacker’s | smoke is not detected

command by http response. If the at-
tacker’s response is true, it would trig-
ger a false alarm to annoy the users.

7 | Powers If the battery of the lock runs out, the | Information leak-
Out Alert | app would not send message to the user | age (The command

about the low battery. Instead, it sends | httpPost is executed)
the message to the attacker so that the
attacker could break in easily.

8 Smoke De- | The app sends http post to the attacker | Using security-sensitive

tector to get the dynamic command. The at- | command (unsubscribe
tacker could add the unsubscribe() to | is executed)
the response so that he could disable
the alarm subscribe.

9 | Presence The PresenceSensor sends the signal to | A light is turned on
Sensor the malicious light that there is nobody | when nobody is at

home. The malicious light start to use
side channel to tell the MaliciousCam-
eralPC. The MaliciousCameralPC re-
ceives this signal and sends it to the
attacker.

home
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Table 10.5: Scalability with dependency graphs

Group | Original Size | New Size | Scale Ratio

1 37 11 3.4
2 27 5 5.4
3 34 23 1.5
4 30 12 2.5
5 42 19 2.2
6 34 6 5.7

Mean scale ratio 3.4

Table 10.6: Runtimes with concurrent and sequential design.

Number of events | Concurrent | Sequential

1 1s 1s

2 56.5s 1s

3 139m 1s

4 forever 1s

) 1s

6 4.2s

7 16.3s

Table 10.7: Verification time vs. number of events.

Number of events

6

7 8

9

10

11

Verification time

6.61s

50.9s | 396s | 49.83m

5.89h

23.39h
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Chapter 11

Discussion

11.1 Application to other IoT Platforms

For ease of exposition, our narrative integrated some aspects of implementation
specific to SmartThings, when describing the design of IoTSAN. Conceptually, the design of
ToTSAN applies to other IoT platforms. To illustrate, given its recent popularity we choose
IFTTT (IF This Then That [72]) [83 131, 93] to show that this is the case. IFTTT is a task
automation platform for IoT deployments. An IFTTT rule (also called applet) comprises of
two main parts: “Trigger Service” (This) and “Action Service” (That). To apply IOTSAN to
IFTTT, most of the modules (i.e., App Dependency Analyzer, Model Generator, and Output
Analyzer) can be reused almost as is; the relatively big change will be in the Translator.

IFTTT to Java Translator: We use the crawler of [93] to fetch the published
applets from IFTTT website into a json file. We then developed an IFTTT Handler in Java
based on the org.json.simple package to extract the subscribed device and event from the

trigger service, and the controlled device and expected command from the action service
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of each IFTTT rule. The translation is relatively simple. Each rule is considered as an
app, which has only a single event handler, in IOTSAN and is translated into a Java class.
Each event handler (i.e., a Java method) has only a single instruction (i.e., the expected
command); the subscribed device and controlled device become class fields. Even though
the technical details of IFTTT Handler are somewhat different from SmartThings Handler,
the translation procedures are very similar (e.g., all Java objects and grammars are exactly
the same).

Minor changes in Model Generator: Each service is map-ped onto (modeled
as) a sensor device(s) or an actuator device(s). We have modeled 8 popular IoT-related
services based on the events/actions they provides on the IFTTT website. For example,
Amazon Alexa [6] and Google Assistant are modeled as sensor devices; Nest Thermostat
is modeled as an actuator device. The difference is that Samsung SmartThings inherently
provides handlers for several kinds of devices (e.g., outlet, lock, motion sensor, and contact
sensor). The change needed is to add more device types to the collection of modeled devices.

We have validated our basic IFTTT prototype implementation with 10 IoT rules/ap-
plets (from [72]) assuming that all of these rules are installed in a smart home. We perform
limited experiments and as shown in Table (hyperlinks to a rule —e.g., rule #1 — can

be seen by clicking on the rule), we find 7 violations of 4 unsafe physical states.

11.2 Limitations

While our prototype of IOTSAN has been shown to be very effective in identifying

bad apps and unsafe configurations, it has the following limitations. First, the SPIN model
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Table 11.1: Verification results with IFTTT rules.

Violated properties Related rules

Siren/strobe is not activated when intruder (i.e., motion) is | (rule #1, rule #4), (rule

detected #3, rule #4)

Siren/strobe is activated when no intruder is detected (rule #2)

The main/front door is unlocked when no one is at home (rule #5)), (rule #6)

A phone call is not triggered when intruder is detected (rule #7, rule #10),
(rule #8, rule #10)

checker has a predefined threshold for the size of Promela code (and cannot handle a file
size greater than this). Depending on apps’ source code sizes and dependencies among
the apps, IOTSAN can handle a system with about 30 apps. We assume that users are
unlikely to have many more than this today and will investigate further scalability in the
future. Second, we require smart apps to explicitly subscribe to specific devices they want to
control and cannot handle smart apps that dynamically discover devices and interact with
them. Such apps are very dangerous since they can control any device without permissions
from users. Identifying such apps and ensuring that they do not compromise the physical
state is beyond the scope of this effort. Third, in Algorithm [I) we let the model checker
enumerate all possible permutations of the event types; thus, it may consider scenarios
that are unlikely to happen in the real world (e.g., the temperature is set to a minimum
value in the first iteration and set to a maximum value in the second one). However, we
include these scenarios to catch bad or malicious apps. If such scenarios can be eliminated,
the state explosion issue can be further mitigated. Fourth, we do not explicitly model
the behavior of the physical environment after an actuator executes a command (e.g., the
system temperature should increase after a heater is turned on). However, such physical

changes are implicitly covered by the way the model checker exhaustively verifies a system.

95


https://ifttt.com/applets/156916p-strobe-my-smartthings-siren-if-category-1-hurricane-winds-are-nearby
https://ifttt.com/applets/342118p-alexa-tells-smarthings-to-turn-off-siren
https://ifttt.com/applets/260978p-motion-siren-on
https://ifttt.com/applets/260978p-motion-siren-on
https://ifttt.com/applets/342118p-alexa-tells-smarthings-to-turn-off-siren
https://ifttt.com/applets/342120p-alexa-tells-smarthings-to-turn-on-siren
https://ifttt.com/applets/115638p-let-me-in-checkin-with-a-hashtag-to-unlock-your-door
https://ifttt.com/applets/348905p-alexa-unlock-the-frond-door
https://ifttt.com/applets/419985p-disarm-your-arlo-camera-network-with-alexa
https://ifttt.com/applets/413211p-if-arlo-detects-motion-call-my-phone
https://ifttt.com/applets/raiAMZLh-tell-google-assistant-to-disarm-your-arlo
https://ifttt.com/applets/413211p-if-arlo-detects-motion-call-my-phone

Fifth, the G2J Translator currently does not support heterogeneous collections (e.g., a list,
array, or map that stores entries of different types) and dynamic features (e.g., overloading
operator and generic data types). Note that most of the SmartThings apps do not use these

features.
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Chapter 12

Related Work

IoT systems have grown in popularity and have already hit the markets. Samsung’s
SmartThings [114], Apple’s HomeKit [7], Google’s Weave/Brillo [52], Vera’s Smart Home
Controller [133], and Intel’s Smart Buildings [75] are among the most popular platforms.
Third party apps to drive these systems are also proliferating and can enable diversity in
usage and new features as they evolve. However, the safety of using such applications will

have to be ensured to protect users. IOTSAN addresses this issue.

12.1 IoT Security

Current research on IoT security can be roughly divided into three categories that
focus on devices [110, 48] [63], 5], protocols [49, [64, 87, [11T1], [46], and platforms. There have
been efforts addressing information leakage and privacy [20), 137, 118, 14} 140, 22], and vul-
nerabilities of firmware images [33]. Fernandes et al. have recently reported security-critical

design flaws in the IoT permission model that could expose smart home users to signifi-
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cant harm such as break-ins [44]. To address these, they propose FlowFence [45], a system
that requires smart apps to declare their intended data flow patterns. It then explicitly
embeds some extra code into the smart app’s structure to block undeclared flows. Contex-
IoT [78], provides contextual integrity by supporting fine-grained context identification for
sensitive actions, to help users perform effective access control. ProvThings [I35] performs
code instrumentation of apps and device handlers and audit system activities at run time.
SmartAuth [129] generates a user interface that facilitates educated authorizations based on
the app’s functions and operations. Rahmati et al. have proposed a risk-based permission
model for smart home platforms, to limit the risk that apps pose to smart home users [109].
He et al. have suggested using capability-based, instead of device-based, access-control to
minimize the consequences of falsely allowing or denying access [62]. In contrast, our work
statically identifies possible violations of given physical/cyber safety properties of IoT sys-
tems without requiring any app or platform modifications. Specifically we seek to identify
interactions among installed smart apps, behaviors of malicious apps, and device failure

triggers, that cause bad physical states.

12.2 Model Checking

Model checking, a formal verification technique for assessing functional properties
of information and communication systems, has been widely used by researchers across
many areas [58, 26], 42, 116, [3, 103]. This technique has also been used to verify system-
level threats [97, 98, [96] and basic correctness properties [83] B34, 23, Q9] of IoT systems.

IoTRiskAnalyzer [98] is a probabilistic model checking system that takes a set of deploy-
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ment configurations (e.g., IoT devices and their network), operational policies (i.e., the
rules based on which the sensing data is processed and actuation commands are triggered),
vulnerability exploitation scores of individual IoT components, and attacker capabilities as
inputs. It then generates system and threat models to capture the risk exposure of each
input configuration. IoTSAT [96] utilizes Satisfiability Modulo Theories (SMT) [37] to for-
mally model the generic behavior of IoT systems based on device configurations, network
topologies, user policies and an IoT-specific attack surface. The model is then used to mea-
sure system’s resilience against potential attacks and identify threat vectors and specific
attack techniques. SIFT [83] takes app’s rules as inputs and uses a synthesis engine to
generate code that is specific to the deployment environment. SIFT then uses white-box
model checking to verify that synthesized IoT apps do not violate safety policies. Sote-
ria [23] and DeLorean [34] use model checking to verify basic correctness properties of IoT
systems. IoTMon [38] uses static analysis and IFTTT-based [72] modelling to discover po-
tential interaction chains across applications. In contrast with these efforts, IOTSAN targets
developing a practical platform for ensuring the physical safety of today’s IoT systems. It
not only addresses the practical challenges (e.g., scale issues and making Groovy amenable
to model checking) in identifying configurations that violate user properties relating to the
physical state, but also addresses robustness (failures) and security issues (malicious app
attribution). Table shows what IOTSAN offers compared to the most related recent

systems.
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Chapter 13

Conclusions

Badly designed apps, undesirable interactions between installed apps and/or de-
vice/communication failures can cause an IoT system to transition into bad states. In
this paper, we design and prototype a framework IOTSAN that uses model checking as a
basic building block to identify causes for bad physical/cyber states and provides counter-
examples to exemplify these causes. IOTSAN addresses practical challenges such as alle-
viating state space explosion with model checking, and automatic translation of app code
into a form amenable for model checking. Our evaluations show that IOTSAN identifies
many (sometimes complex) unsafe configurations, and flags considered bad apps with 100%

accuracy.

60



Bibliography

1]

[10]

[11]

M. Ahmad. Reliability models for the internet of things: A paradigm shift. In 2014
IEEE International Symposium on Software Reliability Engineering Workshops, pages
52-59, Nov 2014.

R. Alena, R. Gilstrap, J. Baldwin, T. Stone, and P. Wilson. Fault tolerance in zigbee
wireless sensor networks. In 2011 Aerospace Conference, pages 1-15, March 2011.

M. Q. Ali and E. Al-Shaer. Probabilistic model checking for ami intrusion detection.
In Proc. IEEE Conference on Smart Grid Communications (SmartGridComm), pages
468-473, Vancouver, Canada, October 2013.

Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Force: A fast and easy-to-
implement variable-ordering heuristic. In Proceedings of the 13th ACM Great Lakes
Symposium on VLSI, GLSVLSI 03, pages 116-119, 2003.

Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. Sok: Security
evaluation of home-based iot deployments. In Proc. 40th IEEE Symposium on Security
and Privacy, 2019.

Amazon. Alexa. https://developer.amazon.com/alexa, June 2018.
Apple. Homekit. https://developer.apple.com/homekit/, June 2018.

George S. Avrunin, James C. Corbett, and Matthew B. Dwyer. Benchmarking finite-
state verifiers. International Journal on Software Tools for Technology Transfer,
2(4):317-320, Mar 2000.

C. Baier and J. P. Katoen. Principles of Model Checking. The MIT Press, Cambridge,
Massachusetts, London, England, 2008.

I. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky, T. Heyman, A. Landver,
P. Paanah, Y. Rodeh, G. Ronin, and Y. Wolfsthal. RuleBase: Model checking at IBM,
pages 480-483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

I. Beer, S. Ben-David, C. Eisner, and A. Landver. Rulebase: an industry-oriented
formal verification tool. In 83rd Design Automation Conference Proceedings, 1996,
pages 655—660, Jun 1996.

61


https://developer.amazon.com/alexa
https://developer.apple.com/homekit/

[12]

Brian Belleville, Patrick Biernat, Adam Cotenoff, Kevin Hock, Tanner
Prynn, Sivaranjani Sankaralingam, Terry Sun, and Daniel Mayer. In-
ternet of things security. https://www.nccgroup.trust/us/our-research/
internet-of-things-security/, 2018.

7. Berkay Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel. Program Analysis
of Commodity IoT Applications for Security and Privacy: Challenges and Opportu-
nities. ArXiv e-prints, September 2018.

Elisa Bertino, Kim-Kwang Raymond Choo, Dimitrios Georgakopolous, and Surya
Nepal. Internet of things (IoT): Smart and secure service delivery. ACM Trans.
Internet Technol., 16(4), December 2016.

August Betzler, Carles Gomez, Ilker Demirkol, and Josep Paradells. A holistic ap-
proach to zighee performance enhancement for home automation networks. Sensors,
14(8):14932-14970, 2014.

Dirk Beyer and Thomas Lemberger. Software verification: Testing vs. model check-
ing. In Hardware and Software: Verification and Testing, pages 99-114. Springer
International Publishing, 2017.

Armin Biere. Verifying sequential behavior with model checking. In Proc. IEEE
Conference on ASIC, pages 29-32, Shanghai, China, October 2001.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic Model
Checking without BDDs, pages 193-207. Springer, Heidelberg, 1999.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. In IEEE
Transaction on Computers, volume 35, pages 667-691. 1986.

Christoph Busold, Stephan Heuser, Jon Rios, Ahmad-Reza Sadeghi, and N. Asokan.
Smart and secure cross-device apps for the internet of advanced things. In Proc.
Financial Cryptography and Data Security, Puerto Rico, US, 2015.

T. Cattel. Modelization and verification of a multiprocessor realtime os kernel. In
Proc. 7th FORTE Conference, pages 35-51, Bern, Switzerland, 1994.

Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A. Selcuk Uluagac. Sensitive information tracking in com-
modity iot. In USENIX Security 18, Baltimore, MD, 2018.

7. Berkay Celik, Patrick McDaniel, and Gang Tan. Soteria: Automated IoT safety
and security analysis. In USENIX ATC 18, Boston, MA, 2018.

H. Chandra, E. Anggadjaja, P. S. Wijaya, and E. Gunawan. Internet of things: Over-
the-air (ota) firmware update in lightweight mesh network protocol for smart urban
development. In APCC 16, pages 115-118, Aug 2016.

J. Chaves. Formal methods at at&t, an industrial usage report. In Proc. 4th FORTE
Conference, pages 83-90, Sydney, Australia, 1991.

62


https://www.nccgroup.trust/us/our-research/internet-of-things-security/
https://www.nccgroup.trust/us/our-research/internet-of-things-security/

[26]

[27]

[28]

K. Z. Chen, N. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. Magrino, E. Wu,
M. Rinard, and D. Song. Contextual policy enforcement in android applications
with permission event graphs. In Proc. Network and Distributed System Security
Symposium (NDSS’13), 2013.

Yunja Choi. From nusmv to spin: Experiences with model checking flight guidance
systems. Springer Formal Methods in System Design, 30(3):199-216, Jun 2007.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new symbolic model
verifier. In Proc. of the 11th International Conference on Computer Aided Verification,
pages 495-499, London, UK, 1999.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic, pages 52-71. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1982.

Edmund M. Clarke, William Klieber, Milos Novacek, and Paolo Zuliani. Tools for
Practical Software Verification. Springer, Heidelberg, 2012.

SmartThings Community. Community smart apps. https://community.
smartthings.com/c/smartapps, September 2018.

Lucas Cordeiro, Jeremy Morse, Denis Nicole, and Bernd Fischer. Context-Bounded
Model Checking with ESBMC' 1.17, pages 534-537. Springer, Heidelberg, 2012.

A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-scale analysis of the
security of embedded firmwares. In Proc. USENIX Security 14, pages 95-110, San
Diego, CA, USA, August 2014.

Jason Croft, Ratul Mahajan, Matthew Caesar, and Madan Musuvathi. Systematically
exploring the behavior of control programs. In USENIX ATC 15, pages 165176, Santa
Clara, CA, 2015.

CropMetrics. Irrigation management. http://cropmetrics.com/, 2018.

Dolly Das and Bobby Sharma. General survey on security issues on internet of things.
International Journal of Computer Applications, 139(2), 2016.

Leonardo De Moura and Nikolaj Bjgrner. Satisfiability modulo theories: Introduction
and applications. Commun. ACM, 54(9):69-77, September 2011.

Wenbo Ding and Hongxin Hu. On the safety of iot device physical interaction control.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 18, pages 832-846, 2018.

Yifei Dong, Xiaoqun Du, Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakr-
ishnan, Scott A. Smolka, Oleg Sokolsky, Eugene W. Stark, and David S. Warren.
Fighting Livelock in the i-Protocol: A Comparative Study of Verification Tools, pages
74-88. Springer, Heidelberg, 1999.

63


https://community.smartthings.com/c/smartapps
https://community.smartthings.com/c/smartapps
http://cropmetrics.com/

[40]
[41]

[42]

[45]

[46]

[47]

Ecobee. Ecobee thermostat. https://www.ecobee.com/, June 2018.

Cindy Eisner and Doron Peled. Comparing Symbolic and Explicit Model Checking of
a Software System, pages 230-239. Springer Berlin Heidelberg, Berlin, Heidelberg,
2002.

Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. Idle port
scanning and non-interference analysis of network protocol stacks using model check-
ing. In USENIX Security 10, USA, August 2010.

E. Felt, G. York, R. Brayton, and A. Sangiovanni-Vincentelli. Dynamic variable
reordering for bdd minimization. In Proceedings of EURO-DAC 93 and EURO-VHDL
93- European Design Automation Conference, pages 130-135, Sep 1993.

E. Fernandes, J. Jung, and A. Prakash. Security analysis of emerging smart home
applications. In Proc. IEEE Symposium on Security and Privacy, pages 636—654, San
Jose, CA, USA, May 2016.

E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash.
Flowfence: Practical data protection for emerging IoT application frameworks. In
USENIX Security 16, pages 531-548, USA, August 2016.

Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. Decentralized
action integrity for trigger-action iot platforms. In NDSS, 2018.

Joe Filippello. Smartsense presence sensor failure. https://community.
smartthings.com/t/smartsense-presence-sensor-failure/16644/9, June 2018.

D. Fisher. Pair of  bugs open honeywell home con-
trollers up to easy hacks. https://threatpost.com/
pair-of-bugs-open-honeywell-home-controllers-up-to-easy-hacks/113965/,
June 2018.

B. Fouladi and S. Ghanoun. Honey, I'm home!! - hacking z-wave home automation
systems. Black Hat, Las Vegas, NV, USA, 2013.

Jonathan D. Fuller, Benjamin W. Ramsey, Mason J. Rice, and John M. Pecarina.
Misuse-based detection of z-wave network attacks. Computers and Security, 64:44—
58, 2017.

Patrice Godefroid and Koushik Sen. Combining Model Checking and Testing, pages
613-649. Springer International Publishing, 2018.

Google. Weave. https://developers.nest.com/weave/), June 2018.

Anjana Gosain and Ganga Sharma. A Survey of Dynamic Program Analysis Tech-
niques and Tools, pages 113-122. Springer International Publishing, Cham, 2015.

Dorset Gray. Devices offline and unavailable. https://community.smartthings.
com/t/devices-offline-and-unavailable/100248) June 2018.

64


https://www.ecobee.com/
https://community.smartthings.com/t/smartsense-presence-sensor-failure/16644/9
https://community.smartthings.com/t/smartsense-presence-sensor-failure/16644/9
https://threatpost.com/pair-of-bugs-open-honeywell-home-controllers-up-to-easy-hacks/113965/
https://threatpost.com/pair-of-bugs-open-honeywell-home-controllers-up-to-easy-hacks/113965/
https://developers.nest.com/weave/
https://community.smartthings.com/t/devices-offline-and-unavailable/100248
https://community.smartthings.com/t/devices-offline-and-unavailable/100248

[55]

[67]

[68]

Alex Groce, Klaus Havelund, Gerard Holzmann, Rajeev Joshi, and Ru-Gang Xu.
Establishing flight software reliability: testing, model checking, constraint-solving,
monitoring and learning. Annals of Mathematics and Artificial Intelligence, pages
315-349, 2014.

Amy Groden-Morrison. How the internet of things will drive mo-
bile app development. https://wuw.alphasoftware.com/blog/
internet-of-things-will-drive-mobile-app-development/, June 2018.

Groovy. Type checking extensions. http://docs.groovy-lang.org/next/html/
documentation/type-checking-extensions.html, June 2018.

Seth T. Hamman, Kenneth M. Hopkinson, and Jose E. Fadul. A model checking ap-
proach to testing the reliability of smart grid protection systems. In IEEFE Transaction
on Power Delivery, volume PP, pages 1-8. 2016.

John Hatcliff and Matthew Dwyer. Using the Bandera Tool Set to Model-Check Prop-
erties of Concurrent Java Software, pages 39-58. Springer, Heidelberg, 2001.

John Hatcliff and Matthew Dwyer. About bandera. http://bandera.projects.cs.
ksu.edu/, June 2018.

John Hatcliff and Matthew Dwyer. About nusmv, September 2018.

Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Diirmuth, Earlence
Fernandes, and Blase Ur. Rethinking access control and authentication for the home
internet of things (iot). In 27th USENIX Security Symposium (USENIX Security 18),
pages 256-272, 2018.

A. Hesseldahl. A hacker’s-eye view of the internet of things. https://www.recode.
net/2015/4/7/11661182/a-hackers-eye-view-of-the-internet-of-things,
June 2018.

G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner. Smart locks:
Lessons for securing commodity internet of things devices. In ACM ASIACCS 16,
pages 461-472, China, 2016.

G. J. Holzmann. On limits and possibilities of automated protocol analysis. In Proc.
Tth IFIP Workshop on Protocol Specification, Testing, and Verification, pages 137—
161, North-Holland Publ., Amsterdam, 1987.

G. J. Holzmann. Proving the value of formal methods. In Proc. 7th FORTE Confer-
ence, pages 385396, Bern, Switzerland, 1994.

G. J. Holzmann. The theory and practice of a formal method: Newcore. In 13th IFIP
World Computer Congress, Germany, 1994.

G. J. Holzmann. The model checker spin. In IEEE Transaction on Software Engi-
neering, volume 23, pages 279-295. 1997.

65


https://www.alphasoftware.com/blog/internet-of-things-will-drive-mobile-app-development/
https://www.alphasoftware.com/blog/internet-of-things-will-drive-mobile-app-development/
http://docs.groovy-lang.org/next/html/documentation/type-checking-extensions.html
http://docs.groovy-lang.org/next/html/documentation/type-checking-extensions.html
http://bandera.projects.cs.ksu.edu/
http://bandera.projects.cs.ksu.edu/
https://www.recode.net/2015/4/7/11561182/a-hackers-eye-view-of-the-internet-of-things
https://www.recode.net/2015/4/7/11561182/a-hackers-eye-view-of-the-internet-of-things

[69]

[70]

[71]

[72]

73]

[77]

[78]

G. J. Holzmann. An analysis of bitstate hashing. In Formal Methods in System
Design, volume 13, pages 289-307, 1998.

Gerard J. Holzmann. The Engineering of a Model Checker: the Gnu i-Protocol Case
Study Revisited., pages 232-244. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

IBM. Ibm iot for manufacturing. https://www.ibm.com/internet-of-things/
industries/iot-manufacturing, 2018.

IFTTT. Ifttt homepage. https://ifttt.com/, June 2018.

Satoshi Tkeda, Masahiro Jibiki, and Yasushi Kuno. Coverage estimation in model
checking with bitstate hashing. In IEEE Transaction on Software Engineering, vol-
ume 39, pages 477-486. 2013.

Texas Instruments. Ezsync cc2531 evaluation module usb dongle. http://www.ti.
com/to0l/CC2531EMK, June 2018.

Intel. Smart buildings. https://www.intel.com/content/www/us/en/
internet-of-things/smart-building-solutions.html, June 2018.

BI  Intelligence. Here’s  how  the internet of  things  will
explode by 2020. http://www.businessinsider.com/
iot-ecosystem-internet-of-things-forecasts-and-business-opportunities/
2016-2, June 2018.

Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Computing
Surveys (CSUR), 41(4):21, 20009.

Y. J. Jia, Q. A. Chen, S. Wangy, A. Rahmati, E. Fernandes, Z. M. Mao, and
A. Prakash. ContexloT: Towards providing contextual integrity to appified IoT plat-
forms. In NDSS’17, USA, March 2017.

M. Kovatsch, S. Mayer, and B. Ostermaier. Moving application logic from the firmware
to the cloud: Towards the thin server architecture for the internet of things. In
2012 Sixth International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, pages 751-756, July 2012.

Daniel Kroening and Michael Tautschnig. CBMC — C Bounded Model Checker, pages
389-391. Springer, Heidelberg, 2014.

J. S. Lee, Yuan-Ming Wang, and C. C. Shen. Performance evaluation of zighee-based
sensor networks using empirical measurements. In IEEE CYBER 12, pages 5863,
May 2012.

Flavio Lerda, Nishant Sinha, and Michael Theobald. Symbolic model checking of
software. FElsevier FElectronic Notes in Theoretical Computer Science, 89:480-498,
September 2003.

66


https://www.ibm.com/internet-of-things/industries/iot-manufacturing
https://www.ibm.com/internet-of-things/industries/iot-manufacturing
https://ifttt.com/
http://www.ti.com/tool/CC2531EMK
http://www.ti.com/tool/CC2531EMK
https://www.intel.com/content/www/us/en/internet-of-things/smart-building-solutions.html
https://www.intel.com/content/www/us/en/internet-of-things/smart-building-solutions.html
http://www.businessinsider.com/iot-ecosystem-internet-of-things-forecasts-and-business-opportunities/2016-2
http://www.businessinsider.com/iot-ecosystem-internet-of-things-forecasts-and-business-opportunities/2016-2
http://www.businessinsider.com/iot-ecosystem-internet-of-things-forecasts-and-business-opportunities/2016-2

[83]

[84]

Chieh-Jan Mike Liang, Borje F. Karlsson, Nicholas D. Lane, Feng Zhao, Junbei Zhang,
Zheyi Pan, Zhao Li, and Yong Yu. Sift: Building an internet of safe things. In ACM
IPSN ’15, pages 298-309, USA, 2015.

F. J. Lin. Specification and validation of communications in client/server models. In
Proc. 199/ Int. Conference on Network Protocols (ICNP’9/4), pages 108-116, Boston,
Mass., 1994.

Alberto Lluch-Lafuente, Stefan Edelkamp, and Stefan Leue. Partial Order Reduc-
tion in Directed Model Checking, pages 112-127. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002.

Logitech. Harmony hub. https://www.logitech.com/en-us/product/
harmony-hub, June 2018.

N. Lomas. Critical flaw ided in zigbee smart home devices. https://techcrunch.
com/2015/08/07/critical-flaw-ided-in-zigbee-smart-home-devices/, June
2018.

K. L. McMillan. Symbolic Model Checking: An Approach to the State Fxplosion
Problem. Kluwer Academic Publishers, 1993.

Medria Solution. Livestock monitoring. http\protect\kern+.2222em\relax//www.
medria.fr/en/solutions/, 2018.

M. U. Memon, L. X. Zhang, and B. Shaikh. Packet loss ratio evaluation of the
impact of interference on zigbee network caused by wi-fi (ieee 802.11b/g) in e-health
environment. In 2012 IEEE 14th International Conference on e-Health Networking,
Applications and Services (Healthcom), pages 462-465, Oct 2012.

Andrew Meola. How the internet of things will affect security & privacy. http:
//www.businessinsider.com/internet-of-things-security-privacy-2016-8,
June 2018.

Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: Bounded Model Check-
ing of C and C++ Programs Using a Compiler IR, pages 146-161. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. An empirical char-
acterization of ifttt: Ecosystem, usage, and performance. In ACM IMC 17, pages
398-404, USA, 2017.

Microsoft. Azure IoT. https://azure.microsoft.com/en-us/services/iot-hub/,
June 2018.

Microsoft. Microsoft iot for manufacturing. https://www.microsoft.com/en-us/
internet-of-things/manufacturing, 2018.

67


https://www.logitech.com/en-us/product/harmony-hub
https://www.logitech.com/en-us/product/harmony-hub
https://techcrunch.com/2015/08/07/critical-flaw-ided-in-zigbee-smart-home-devices/
https://techcrunch.com/2015/08/07/critical-flaw-ided-in-zigbee-smart-home-devices/
http\protect \kern +.2222em\relax //www.medria.fr/en/solutions/
http\protect \kern +.2222em\relax //www.medria.fr/en/solutions/
http://www.businessinsider.com/internet-of-things-security-privacy-2016-8
http://www.businessinsider.com/internet-of-things-security-privacy-2016-8
https://azure.microsoft.com/en-us/services/iot-hub/
https://www.microsoft.com/en-us/internet-of-things/manufacturing
https://www.microsoft.com/en-us/internet-of-things/manufacturing

[96]

[97]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]
[108]

M. Mobhsin, Z. Anwar, G. Husari, E. Al-Shaer, and M. A. Rahman. IoTSAT: A formal
framework for security analysis of the internet of things (IoT). In IEEE CNS 16, pages
180-188, USA, October 2016.

M Mohsin, Z. Anwar, Farhat Zaman, and Ehab Al-Shaer. IToTChecker: A data-
driven framework for security analytics of internet of things configurations. FElsevier
Computer and Security, 70:199-223, September 2017.

M Mohsin, MU Sardar, O. Hasan, and Z. Anwar. IoTRiskAnalyzer: A probabilistic
model checking based framework for formal risk analytics of the internet of things.
IEEFE Acess, 5:5494-5505, April 2017.

Julie L. Newcomb, Satish Chandra, Jean-Baptiste Jeannin, Cole Schlesinger, and
Manu Sridharan. Tota: A calculus for internet of things automation. In Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2017, pages 119-133, 2017.

D. T. Nguyen, W. Choi, M. T. Ha, and H. Choo. A novel multi-ack based data for-
warding scheme in wireless sensor networks. In 2010 IEEE Wireless Communication
and Networking Conference, pages 1-6, April 2010.

D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. M. Colbert, and P. Mc-
Daniel. ToTSan: Fortifying the Safety of IoT Systems. ArXiv e-prints, October 2018.

N. D. Nguyen, D. T. Nguyen, M. L. Gall, N. Saxena, and H. Choo. Greedy forwarding
with virtual destination strategy for geographic routing in wireless sensor networks. In

2010 International Conference on Computational Science and Its Applications, pages
217-221, March 2010.

S. Ouchani, O. A. Mohamed, and M. Debbabi. A security risk assessment framework
for sysml activity diagrams. In Proc. IEEE Conference on Software Security and
Reliability (SERE), pages 227-236, Gaithersburg, MD, USA, June 2013.

K. Pelechrinis, M. Iliofotou, and S. V. Krishnamurthy. Denial of service attacks in
wireless networks: The case of jammers. IEEE Communications Surveys Tutorials,
13(2):245-257, Second 2011.

Doron Peled. Partial order reduction: Model-checking using representatives, pages
93-112. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

John Pescatore and Gal Shpantzer. Securing the Internet of Things Survey. SANS
Institute InfoSec Reading Room, 2014.

Philips. Philips hue. https://www2.meethue.com/en-us, June 2018.

H. C. Pohls and B. Petschkuhn. Towards compactly encoded signed IoT messages. In
2017 IEEE 22nd International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD), pages 1-6, June 2017.

68


https://www2.meethue.com/en-us

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Amir Rahmati, Earlence Fernandes, Kevin Eykholt, and Atul Prakash. Tyche: A
risk-based permission model for smart homes. In Proc. 3rd IEEE Cybersecurity De-
velopment Conference (SecDev 2018), 2018.

E. Ronen and A. Shamir. Extended functionality attacks on IoT devices: The case
of smart lights. In Proc. 2016 IEEE European Symposium on Security and Privacy,
pages 3-12, Germany, 2016.

Eyal Ronen, Colin O’Flynny, Adi Shamir, and Achi-Or Weingarten. IoT goes nuclear:
Creating a zigbee chain reaction. In Proc. IEEE Symposium on Security and Privacy,
pages 195-212, San Jose, CA, USA, May 2017.

R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams, pages
51-63. Springer US, Boston, MA, 2003.

J. E. Giral Sala, R. Morales Caporal, E. Bonilla Huerta, J. J. Rodriguez Rivas, and
J. d. J. Rangel Magdaleno. A smart switch to connect and disconnect electrical devices
at home by using internet. IEEE Latin America Transactions, 14(4):1575-1581, April
2016.

Samsung. Smartthings. https://www.smartthings.com/, June 2018.

Samsung. Smartthings’ api documentation. https://docs.smartthings.com/, June
2018.

Muhammad Usama Sardar, Nida Afaq, Khaza Anuarul Hoque, Taylor T. Johnson,
and Osman Hasan. Probabilistic Formal Verification of the SATS Concept of Opera-
tion, pages 191-205. Springer International Publishing, 2016.

M. Schwarz, C. Villarraga, D. Stoffel, and W. Kunz. Cycle-accurate software modeling
for rtl verification of embedded systems. In 2017 IEEE 20th International Symposium
on Design and Diagnostics of misc Circuits Systems (DDECS), pages 103-108, April
2017.

Letian Sha, Fu Xiao, Wei Chen, and Jing Sun. IloT-SIDefender: Detecting and
defense against the sensitive information leakage in industry IoT. World Wide Web,
pages 1-30, Apr 2017.

Muhammad K Shahzad, Dang Tu Nguyen, Vyacheslav Zalyubovskiy, and Hyunseung
Choo. Lndir: A lightweight non-increasing delivery-latency interval-based routing for
duty-cycled sensor networks. International Journal of Distributed Sensor Networks,
14(4):1550147718767605, 2018.

Natarajan Shankar. Combining Model Checking and Deduction, pages 651-684.
Springer International Publishing, 2018.

Hocheol Shin, Yunmok Son, Young-Seok Park, Yujin Kwon, and Yongdae Kim. Sam-
pling race: Bypassing timing-based analog active sensor spoofing detection on analog-
digital systems. In USENIX Workshop on Offensive Technologies, 2016.

69


https://www.smartthings.com/
https://docs.smartthings.com/

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

SmartThings. Smartthings community on github. https://github.com/
SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps, September
2018.

SmartThings. Smartthings management page. https://graph-na02-useastl.api.
smartthings.com/, June 2018.

SmartThings. Works with smartthings. https://www.smartthings.com/products,
June 2018.

Yunmok Son, Hocheol Shin, Dongkwan Kim, Young-Seok Park, Juhwan Noh, Kibum
Choi, Jungwoo Choi, Yongdae Kim, et al. Rocking drones with intentional sound
noise on gyroscopic sensors. In USENIX Security 15, pages 881-896, 2015.

Spin. What is spin? http://spinroot.com/spin/whatispin.html, June 2018.

A. Tekeoglu and A. S. Tosun. A testbed for security and privacy analysis of IoT
devices. In IEFEE MASS 16, pages 343-348, Oct 2016.

Bent Thomsen, Kasper Sge Luckow, Lone Leth, and Thomas Bggholm. From Safety
Critical Java Programs to Timed Process Models, pages 319-338. Springer Interna-
tional Publishing, 2015.

Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng Guo,
and Patrick Tague. Smartauth: User-centered authorization for the internet of things.
In USENIX Security 17, pages 361-378, Vancouver, BC, 2017.

B. Ur, J. Jung, and S. Schechter. The current state of access control for smart devices
in homes. In Workshop on Home Usable Privacy and Security (HUPS), Newcastle,
UK, 2013.

Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L. Littman. Trigger-action programming
in the wild: An analysis of 200,000 ifttt recipes. In ACM CHI Conference on Human
Factors in Computing Systems, pages 3227-3231, USA, 2016.

Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for analyses
and transformations, 1998.

Vera. Smart home controller. |http://getvera.com/controllers/vera3/, June
2018.

Amauri Viguera. More unavailable devices. https://community.smartthings.com/
t/more-unavailable-devices/98584) June 2018.

Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. Fear and logging in the
internet of things. In NDSS’18, USA, February 2018.

70


https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps
https://github.com/SmartThingsCommunity/SmartThingsPublic/tree/master/smartapps
https://graph-na02-useast1.api.smartthings.com/
https://graph-na02-useast1.api.smartthings.com/
https://www.smartthings.com/products
http://spinroot.com/spin/whatispin.html
http://getvera.com/controllers/vera3/
https://community.smartthings.com/t/more-unavailable-devices/98584
https://community.smartthings.com/t/more-unavailable-devices/98584

[136]

[137]

[138]

[139]

[140]

[141]

Evan  Wilkins. Devices showing up as ‘this device 1is unavail-
able at  the  moment’. https://community.smartthings.com/t/
devices-showing-up-as-this-device-is-unavailable-at-the-moment/94724,

June 2018.

Judson Wilson, Dan Boneh, Riad S. Wahby, Philip Levis, Henry Corrigan-Gibbs, and
Keith Winstein. Trust but verify: Auditing the secure internet of things. In ACM
MobiSys 17, pages 464-474, USA, 2017.

F. Xiao, L. T. Sha, Z. P. Yuan, and R. C. Wang. Vulhunter: A discovery for un-
known bugs based on analysis for known patches in industry internet of things. IEFEE
Transactions on Emerging Topics in Computing, PP(99):1-1, 2017.

Yale. Yale assure lock. https://www.yalehome.com/en/yale/yalehome/
residential/yale-real-living/assure-lock/yrl-assurelock-bluetooth/,
June 2018.

Yuchen Yang, Longfei Wu, Guisheng Yin, Lijie Li, and Hongbin Zhao. A survey on
security and privacy issues in internet-of-things. IEEFE Internet of Things Journal,
PP:1-10, April 2017.

M. B. Yassein, W. Mardini, and A. Khalil. Smart homes automation using z-wave
protocol. In 2016 International Conference on Engineering MIS (ICEMIS), pages
1-6, Sept 2016.

71


https://community.smartthings.com/t/devices-showing-up-as-this-device-is-unavailable-at-the-moment/94724
https://community.smartthings.com/t/devices-showing-up-as-this-device-is-unavailable-at-the-moment/94724
https://www.yalehome.com/en/yale/yalehome/residential/yale-real-living/assure-lock/yrl-assurelock-bluetooth/
https://www.yalehome.com/en/yale/yalehome/residential/yale-real-living/assure-lock/yrl-assurelock-bluetooth/

	List of Figures
	List of Tables
	Introduction
	Goals
	Our Solution
	Contributions

	Background and Synopsis
	Samsung SmartThings
	Overview
	Programming Model
	Communications

	Motivating Examples
	Unsafe physical states
	Misconfiguration Problems

	Model Checking as a Building Block

	Scope and Threat Model
	System Overview
	Chain of Events in an IoT System
	Overall Architecture
	Our Work in Perspective

	App Dependency Analyzer
	Extracting Input/Output Events
	Dependency Graph Construction
	Example

	Translator
	Handling SmartThings' Language Features
	Type Inference
	Handling Groovy's Built-in Utilities

	Configuration Extractor
	Model Generator
	Modeling an IoT system
	Concurrency Model
	The IoT System Model in Promela
	Safety Properties
	Example

	Output Analyzer
	Evaluations
	Test Cases and Configurations
	Identifying Unsafe Configurations
	Violation Attribution
	Scalability
	Concurrent vs. Sequential

	Discussion
	Application to other IoT Platforms
	Limitations

	Related Work
	IoT Security
	Model Checking

	Conclusions
	Bibliography



