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ABSTRACT

In this report, we present a methodology for assessing the benefits of different

vehicle coordination strategies on the safety of a platoon during emergency brak-

ing. One can say that a coordinated braking strategy B is more beneficial than a

strategy A, if strategy B leads to a larger reduction in the probability of a collision,

the expected number of collisions, and the expected relative velocity at impact as

compared to strategy A. We consider an emergency braking scenario, in which the

lead vehicle brakes at its maximum capability and the following vehicles brake while

obeying a vehicle following control law. The sequence of maximum deceleration of

vehicles in the platoon is assumed to be a sequence of independent and identically

distributed random variables; this distribution is assumed to be discrete and known.

Due to coordination, however, the “effective” deceleration of a following vehicle may

not necessarily be its maximum value.

The problem of assessing the benefits of coordination can be formulated as three

subproblems: the first subproblem deals with determining the probability distribu-

tion of the “effective” deceleration of following vehicles during emergency braking. It

is intuitive that the smaller the variance of this distribution, the greater the safety

benefits are. The second subproblem deals with determining the probability of an

intervehicular collision, the expected number of collisions and the expected relative

velocity at impact as a function of the difference in the braking capabilities of suc-

cessive vehicles in a platoon. The probability of an intervehicular collision and the

expected number of primary collisions are computed via a Markov chain. Here, the

asymptotic behavior (as the size of the string increases indefinitely) of the proba-

bility of an intervehicular collision and the expected number of primary collisions is

computed. The third subproblem deals with conducting Monte Carlo simulation to
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demonstrate the safety benefits of coordination during emergency braking and the

viability of our analytical approach to estimate them.
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CHAPTER I

INTRODUCTION

In the design of an Automated Highway System (AHS), the issue of safety is

central to preventing the loss of life and damage to the infrastructure. Motivated

by this issue, this report deals with development of a methodology for assessing the

benefits of coordination on the safety in AHS. In this report, we consider a platoon

consisting of “n” vehicles, whose maximum deceleration form a set of independent,

identically distributed random variables that follow a known, discrete probability

distribution. We obtain this deceleration from Godbole and Lygeros [3], who have

studied the uncoordinated braking problem earlier. Much of the basic formulation

of this problem comes from their work. We consider a scenario, where the initial

following distance and velocity of all vehicles is identical and the lead vehicle brakes at

its maximum possible deceleration. We are interested in determining the probability

of a collision, the expected number of collisions and the expected relative velocity

at impact as a function of the probability distribution of maximum deceleration of

vehicles, following distance, and possibly the coefficient of restitution.

In this report, we are interested in assessing the benefits of safety during such

a scenario when vehicles coordinate their actions. It is intuitive that if all vehicles

brake at the same deceleration, there will not be any collision. This corresponds to a

case when all vehicles communicate the value of their maximum braking deceleration

(for this case, every vehicle must be cognizant of this value), and the lead vehicle

brakes at the least value of the maximum deceleration of all vehicles (say, d1) in

the platoon. In this scenario, the “effective” deceleration of all vehicles is d1; the

corresponding probability distribution has zero variance. The benefits of coordination
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in this scenario is clear. Qualitatively, it is clear that if the variance of the probability

distribution of “effective” braking is small, the corresponding safety quantities such as

the probability of a collision, expected number of collisions and the expected relative

velocity at impact is small.

While this coordination scheme is “ideal”, in that, it offers the best possible safety

benefits, it may not be practical for many reasons: firstly, vehicles may not know their

maximum braking capability; even in the case, where vehicles know their braking

capability, it may be that the lead vehicle is compelled to brake at its maximum

deceleration or that a collision can be avoided if the first vehicle braked as hard as it

can, while all others follow their preceding vehicles according to a vehicle following

law. In some cases, where autonomous vehicle following laws are used, communication

of braking capability may not be possible; in this case, the effective deceleration of

the ith vehicle in the platoon is the minimum of the effective deceleration of the

preceding vehicle and its maximum braking deceleration.

The fact, that coordination renders effective braking of a vehicle different from its

maximum braking capability, leads us to a natural way of analyzing the problem: the

first step is that of determining how the coordination of vehicles alters the probability

distribution of “effective” braking; the second step is that of determining how one

can compute the probability of a collision, the expected number of primary collisions

and relative velocity at impact in a platoon of “n” vehicles, from the knowledge of

the probability distribution of “effective” braking and from the braking differential

that guarantees a collision/no-collision between successive vehicles; the third step

is that of conducting Monte Carlo simulation to demonstrate the safety benefits of

coordination during emergency braking and the viability of our analytical approach

to estimate them.

In this report, we consider a specific scheme of coordinated braking, where all
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vehicles employ the vehicle following control law developed in the paper by Hedrick

et. al. [4]. We also consider a variant of this scheme for emergency braking, which

is applicable to autonomous vehicle following schemes as well. In this variant, a

following vehicle that is saturated in braking, while employing the vehicle following

law, will be made the reference vehicle for its following vehicles; in other words, the

platoon is naturally broken into subplatoons, where none of the following vehicles in

the subplatoon saturate in braking. As a consequence, the effective deceleration of

the leaders of the subplatoon form a monotonically decreasing sequence of numbers.

Since the distribution is discrete, it is clear that the probability that a vehicle brakes

at the smallest of the set of possible decelerations is almost surely unity; in this sense,

there is almost surely perfect coordination among vehicles at the tail of the platoon.

It is intuitive that the safety benefits of this scheme asymptotically approximate that

of the “ideal” coordination scheme.

We have conducted a Monte Carlo simulation study to demonstrate the safety

benefits of coordination during emergency braking; we have used the probability

distribution of “maximum” braking from Godbole and Lygeros [3] for this purpose.
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CHAPTER II

MODELING OF EFFECTIVE BRAKING PROBABILITY DISTRIBUTION

We assume a point mass model for every vehicle in the platoon. By referring to

i as the index for a vehicle in the platoon, we mean that there are “i − 1” vehicles

ahead of it in the platoon; a vehicle with index 1 will be the lead vehicle and the

one with index n will be the last vehicle in a platoon of “n” vehicles. Let λi be the

effective deceleration of the ith vehicle in response to the hard braking by the lead

vehicle in the string. Let di represent its maximum deceleration. We assume that

the sequence, {di, i ≥ 1} is a sequence of independent and identically distributed

random variables, whose probability distribution is discrete and is known a-priori

[3]. Suppose that this variable is random and takes one of “r” possible discrete

values, namely, D1, D2, . . . , Dr; without any loss of generality, we will assume that

D1 < Di < Di+1 < Dr, i = 2, . . . r−2. We will represent the probability that di = Dj

as pj for all j = 1, . . . , r, i.e.,

pj := prob{di = Dj}, j = 1, . . . , r. (2.1)

It is clear that p1 + . . . + pr = 1. We will also assume that D1, . . . , Dr form an

arithmetic progression, with δ being the common difference. A typical probability

distribution that we use for estimation of safety parameters is given in the paper by

Godbole and Lygeros [3] as shown in figure 1.

A. Assumptions for Analysis

We make a distinction between a primary collision and a secondary collision. A

collision between two vehicles in a string is referred to as a primary collision if it
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Fig. 1. Probability Distribution for the Random Variable di

occurs irrespective of whether preceding vehicles are involved in a collision; otherwise,

it is referred to as a secondary collision.

As a first approximation, we assume that the expected relative velocity at impact

is the same as the expected relative velocity during primary collisions; similarly, the

expected number of total collisions in string is assumed to be proportional to the

expected number of primary collisions. These two assumptions allow us to circumvent

the mechanics of collision during analysis; however, we do consider a simple model

of collision, one that employs coefficient of restitution, in our numerical simulations.

Our numerical results on the metrics of safety include secondary collisions also.
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B. The Uncoordinated Braking

In this case, during an emergency maneuver, every vehicle brakes at its maximum

possible value, in other words,

ẍi = −di, i = 1, . . . , n. (2.2)

It is clear that the “effective” braking deceleration of the ith vehicle in the platoon is

its maximum braking deceleration, i.e., λi = di, i = 1, . . . , n. If a coordinated control

law is improperly designed, string instabilities can occur and the braking control effort

can saturate for every vehicle at the tail of the string. In such a scenario, λi = di for

i sufficiently large and the benefits of coordinated control law are not realizable.

C. The Coordinated Braking

With the coordination scheme given in the paper by Hedrick et. al. [4], if the first

vehicle in the platoon brakes at its maximum possible deceleration, i.e.,

ẍ1 = −d1, (2.3)

the following vehicles brake according to the vehicle following law given below:

ẍi(t) = uc,i(t), (2.4)

uc,i(t) = αẍi−1 + (1− α)ẍ1 − kv(ẋi − ẋi−1)

−kp(xi − xi−1 + L)− cv(ẋi − ẋ1)

−cp(xi − x1 + (i− 1)L), (2.5)

where α is a non-negative number that is upper bounded by unity and L is the desired

spacing distance between two vehicles. We incorporate saturation of control action,
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i.e., if uc,i(t) ≤ −di, then

uc,i(t) = −di. (2.6)

With an appropriate choice of the gains, α, kv, kp, cv, cp, one can guarantee string

stability [8]; this enables us to neglect spacing and velocity errors and model the

effective deceleration in the following way:

λ1 = d1, (2.7)

λi = min{αλi−1 + (1− α)λ1, di}, i = 2, . . . , n. (2.8)

The feedback terms are neglected to arrive at this simplification; while this may

not accurately model the problem, it captures the essence. The problem of under-

standing how the distribution for λi evolves as a function of i is considered in [6]; the

probability distribution of each λi can be determined from the original probability

distribution of di. In this report, we consider three variants of coordination, i.e.,

α = 0, α = 1, and 0 < α < 1. The following analysis points out that the maximum

safety benefit, due to coordination, corresponds to the case α = 1. Let qi,j denote the

probability that λi takes a value, Dj.

Case 1 (α = 0): The effective braking deceleration, {λi}, of vehicles in the platoon

form a sequence of dependent random variables, with a known probability distribution

for the first random variable. In this case, we have

λ1 = d1; (2.9)

λi = min{λ1, di}, i ≥ 2. (2.10)
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Therefore,

prob{λi ≥ Dj} = prob{d1 ≥ Dj} and prob{di ≥ Dj} (2.11)

= (pj + pj+1 + . . .+ pr)
2 (2.12)

where “prob” is meant by probability. From the above equation, it follows that

qi,j := prob{λi = Dj} = prob{λi ≥ Dj} − prob{λi ≥ Dj+1} (2.13)

= (pj + pj+1 + . . .+ pr)
2 − (pj+1 + . . .+ pr)

2 (2.14)

= p2
j + 2pj(pj+1 + . . .+ pr). (2.15)

In this case, the “effective” braking deceleration of all the following vehicles follow

the same probability distribution. Shown in figure 2 is a plot of the distribution of

the “effective” braking of following vehicles. The expected braking deceleration for
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this distribution is 6.56 m/s2 and the variance is 0.6779 m2/s4; the corresponding

quantities for the uncoordinated case are 7.15 m/s2 and 1.0750 m2/s4 respectively.

Clearly, these two quantities are smaller as compared to the uncoordinated case.

Case 2 (α = 1): While setting α = 1 in the constant spacing vehicle following law

may not render the string stable, this case can be implemented in a string stable

manner and corresponds exactly to the variant of the control law by Hedrick et.al.

[4] discussed earlier for emergency braking. Mathematically, we can describe the

situation here as follows:

λ1 = d1; (2.16)

λi = min{λi−1, di}, i ≥ 2. (2.17)

In this case, a following vehicle saturated in braking while employing the vehicle

following law, will be the reference vehicle for its following vehicles; this will result in

subplatoons, where none of the following vehicles in the subplatoon saturate in brak-

ing, while the effective deceleration of the leaders of the subplatoon form a decreasing

sequence. Therefore, the probability distribution can be computed as follows:

prob{λi ≥ Dj} = prob{dk ≥ Dj, k = 1, . . . , i} (2.18)

= (pj + pj+1 + . . .+ pr)
i (2.19)

qi,j := prob{λi = Dj} = prob{λi ≥ Dj} − prob{λi ≥ Dj+1} (2.20)

= (pj + . . .+ pr)
i − (pj+1 + . . .+ pr)

i. (2.21)

In this case, as shown in figure 3, the effective braking distribution for ith vehicle

will be different from that of kth vehicle, if i �= k. As i → ∞, the distribution for

λi almost surely converges to the unit distribution, i.e., prob{λi = D1} = 1, and
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prob{λi > D1} = 0.

Case 3 (0 < α < 1): Let zi := λi − d1, d̄i := di − d1, i ≥ 1. Then,

zi+1 = min{αzi, d̄i+1}. (2.22)

Clearly, {d̄i, i ≥ 2} will form a sequence of independent and identically distributed

random variables; the probability distribution will be discrete and symmetric. Let

[−D,D] represent the range of values d̄i will assume; it is clear that −D ≤ zi ≤ 0 for

all i. Let Cd(x) represent the probability that d̄ ≥ x where d̄ represents the difference

in the maximum braking capability of any two vehicles picked randomly. Let Cn(x)

represent the probability that zn ≥ x, then,

Cn+1(x) = Cn(
x

α
)Cd(x). (2.23)
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From the observation that −D ≤ zi ≤ 0 for all i, because the effective deceleration

is smaller than equal to its maximum deceleration it follows that Cn(x) ≡ 0 for all

x > 0 and Cn(x) ≡ 1 for all x ≥ −D. Since z2 = d̄2, it follows that C2(x) ≡ Cd(x).

Therefore,

Cn(x) =
n−1∏
k=1

Cd(
x

αk−1
). (2.24)

For x = 0, Cd(x) = 1
2
< 1 , therefore, Cn(x) → 0 as n → ∞. For any x < 0,

there exists a N(x) > 0, such that Cm(x) = Cn(x) for all m,n > N(x). Therefore,

the probability distribution of random variables, zi, converges pointwise (in fact,

uniformly) to a distribution, C∗(x). In fact, one can express C∗(x) as: C∗(x) :=

ΠN−1
k=0 Cd(

x
αk ) for all x lying in the interval, DN := [−αN−1D, −αND], and since the

interval [−D, 0] is the union of intervals DN , N = 1, 2, . . . , the function C∗(x) is

well defined. Moreover, the function is continuous, since continuity is preserved at

the ends of each interval, and at 0, the limit is zero from the left; earlier, it has been

established that the function C∗(x) tends to zero as x approaches zero from the right.

As a consequence, λi, as i→ ∞, converges distributionally and does not converge to a

value as in the case, α = 1. Asymptotically, the maximum safety benefit corresponds

to the case α = 1.
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CHAPTER III

DETERMINATION OF SAFETY PARAMETERS FROM THE EFFECTIVE

BRAKING PROBABILITY DISTRIBUTION OF FOLLOWING VEHICLES

Consider a platoon consisting of “n” vehicles as shown in figure 4:

n n-1 i 2 1

λ1λ2λ iλn-1λn

Fig. 4. A Platoon of “n” Vehicles

Consider a subplatoon or a substring, Sk, consisting of the last (n− k+1) vehicles in

the subplatoon. Let all vehicles take a value for their maximum deceleration capability

from a given set of “r” values, D1, D2, . . . , Dr. Recall that the probability that the

effective deceleration, λi, of the ith vehicle takes the valueDj is denoted by qi,j. Before

we proceed further, we make a definition of a violation in a string Sk as follows: we

define that Sk has a violation if there is some i lying between k and n − 1, both

inclusive, such that λi+1 < λi. Furthermore, we say that Sk has l violations if there

exist i1, i2, . . . , il such that k ≤ i1 < i2 < . . . < il < n and λij+1 < λij , j = 1, 2, . . . , l.

We make the assumption that the fewer the number of violations, the fewer are the

total number of collisions in a platoon. This assumption enables us to circumvent the

mechanics of collision; as such, the subsequent analysis must be considered as a first

approximation to the determination of the expected total number of collisions and

the expected relative velocity at impact. This approximation is better if vehicles are
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so closely packed that a collision will definitely occur if the effective deceleration of a

following vehicle is less than that of its predecessor.

Assuming that a collision occurs whenever λi+1 < λi, we define the probability

of “l” violations in the given string as

Pl(k, j) := prob{λk = Dj, Sk has l violations}. (3.1)

Consequently, we can write Pl(k − 1, j) as

Pl(k − 1, j) = prob{λk−1 = Dj, λk ≥ Dj, Sk has l violations}

+prob{λk−1 = Dj, λk < Dj, Sk has l − 1 violations}

= qk−1,j(Pl(k, j) + Pl(k, j + 1) + · · ·+ Pl(k, r))

+qk−1,j(Pl−1(k, 1) + · · ·+ Pl−1(k, j − 1)). (3.2)

Now, we can express the recursive relation in the following Markov chain form.




Pl(k − 1, 1)

Pl(k − 1, 2)

...

Pl(k − 1, j)

...

Pl(k − 1, r)




= A ·




Pl(k, 1)

Pl(k, 2)

...

Pl(k, j)

...

Pl(k, r)




+B ·




Pl−1(k, 1)

Pl−1(k, 2)

...

Pl−1(k, j)

...

Pl−1(k, r)




,
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where

A =




qk−1,1 qk−1,1 · · · qk−1,1 · · · qk−1,1

0 qk−1,2 · · · qk−1,2 · · · qk−1,2

... 0
. . .

...
...

...

0 0
. . . qk−1,j · · · qk−1,j

...
...

... 0
. . .

...

0 0 · · · · · · 0 qk−1,r




,

B =




0 0 · · · 0 · · · 0

qk−1,2 0 · · · 0 · · · 0

...
. . . . . .

...
...

...

qk−1,j · · · qk−1,j 0 · · · 0

...
...

...
. . . . . .

...

qk−1,r · · · qk−1,r · · · qk−1,r 0




.

It follows that the probability of “l” violations in the string, denoted by Pl, can be

obtained as

Pl =
r∑

j=1

Pl(1, j). (3.3)

We associate, with each subplatoon, Sk, an “r” dimensional state, Pl(k, j), j =

1, . . . , r. The state P0(k, j) is the probability that the deceleration, λk, is Dj and

the deceleration of following vehicles in the subplatoon, Sk, form a monotonically

increasing sequence; in other words, it is the probability of no collision in the subpla-

toon. Therefore, probability of no collision (zero violation) for the platoon, P0, can

be obtained as

P0 =
r∏

j=1

P0(1, j). (3.4)
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It is clear that P0(N − 1, j) = qn−1,j[qn,j + qn,j+1 + · · ·+ qn,r], j = 1, . . . , r. This end

point condition can be used to calculate the state for the platoon, S1. The probability

of a collision is, therefore, given by

Pcollision = 1− P0(1, 1)P0(1, 2) . . . P0(1, r). (3.5)

The expected number of violations (primary collisions) is given by

n−1∑
l=1

l · Pl. (3.6)

Since subsequent collisions, though possible, are not accounted for, in this calculation,

the above equation provides a lower bound on the expected number of collisions. In

other words, the expected number of total collisions in a platoon will be greater than

or equal to the expected number of primary collisions. We will now focus on the

problem of determining the expected relative velocity at impact, making the same

strong assumption for guaranteeing a collision. To compute this quantity, we define

a violation of order “m” as follows:

A substring, Sk, has a violation of order m, if there exists an index, i, lying

between k and n − 1, both inclusive, such that λi = Dj for some j > m and λi+1 =

Dj−m. In other words, the effective deceleration of the following vehicle is m notches

smaller than that of its predecessor. The method of computing expected relative

velocity is clear: we will first find the probability of the occurrence of a violation of

order m; we will compute the relative velocity at impact for this scenario and from

these two quantities, we will compute the expected relative velocity at impact.

As we have stated earlier, initially, all vehicles start with the same following

distance and velocity. Assuming that the following distance is reasonably small,

the expected relative velocity at impact, given that there is a violation of order m,

is proportional to
√
mδ, where the constant of proportionality involves the initial
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intervehicular separation; we will represent the constant of proportionality to be β.

If we define Pl,m(k, j) as the probability that there are “l” violations of order m

in the subplatoon, Sk, giving that λk = Dj, i.e.,

Pl,m(k, j) := prob{λk = Dj, Sk has l violations of order m}, (3.7)

Pl,m(k − 1, j) can be written as

Pl,m(k − 1, j) = prob{λk−1 = Dj, λk = Dj−m, Sk has l − 1 violations of

order m}

+prob{λk−1 = Dj, λk �= Dj−m, Sk has l violations of order m}

= qk−1,j[Pl−1,m(k, j −m) +
r∑

i=1,i�=j−m

Pl,m(k, i)]. (3.8)

Let µ(n,m) be the expected number of violations of order m for the given entire

string with the size of platoon n. Then

µ(n,m) =
n−1∑
l=1

r∑
j=1

l · Pl,m(1, j). (3.9)

Therefore, the expected relative velocity, ∆v, at impact is given by:

∆v =

∑r−1
m=1 µ(n,m) · β√mδ∑r−1

m=1 µ(n,m)
. (3.10)

In the above equation, β is the constant of proportionality discussed in the earlier

paragraph.
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A. The Uncoordinated Case

In this case, since λi = di, qi,j = pj the Markov chain form becomes




Pl(k, 1)

Pl(k, 2)

...

Pl(k, j)

...

Pl(k, r)




=




p1 p1 · · · p1 · · · p1

0 p2 · · · p2 · · · p2

... 0
. . .

...
...

...

0 0
. . . pj · · · pj

...
...

... 0
. . .

...

0 0 · · · · · · 0 pr




.




Pl(k + 1, 1)

Pl(k + 1, 2)

...

Pl(k + 1, j)

...

Pl(k + 1, r)




+




0 0 · · · 0 · · · 0

p2 0 · · · 0 · · · 0

...
. . . . . .

...
...

...

pj · · · pj 0 · · · 0

...
...

...
. . . . . .

...

pr · · · pr · · · pr 0




.




Pl−1(k + 1, 1)

Pl−1(k + 1, 2)

...

Pl−1(k + 1, j)

...

Pl−1(k + 1, r)




.

As mentioned earlier, the probability of a collision is given by equation (29). To

get the expression of P0(1, j), we first consider the relationship between P0(n− 2, j)

and P0(n− 1, j). Since we know that from the definition of P0(k, j), P0(n− 1, j) can

be written as:

P0(n− 1, j) = pj(pj + pj+1 + · · ·+ pr). (3.11)
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Therefore, P0(n− 2, j) is given by




P0(n− 2, 1)

P0(n− 2, 2)

...

P0(n− 2, j)

...

P0(n− 2, r)




=




p1 p1 · · · p1 · · · p1

0 p2 · · · p2 · · · p2

... 0
. . .

...
...

...

0 0
. . . pj · · · pj

...
...

... 0
. . .

...

0 0 · · · · · · 0 pr




.




P0(n− 1, 1)

P0(n− 1, 2)

...

P0(n− 1, j)

...

P0(n− 1, r)




,

or equivalently,




P0(n− 2, 1)

P0(n− 2, 2)

...

P0(n− 2, j)

...

P0(n− 2, r)




=




p1 p1 · · · p1 · · · p1

0 p2 · · · p2 · · · p2

... 0
. . .

...
...

...

0 0
. . . pj · · · pj

...
...

... 0
. . .

...

0 0 · · · · · · 0 pr




.




p1

p2(1− p1)

...

pj(1− p1 − · · · pj−1)

...

p2
r




.

Thus, we can obtain




P0(1, 1)

P0(1, 2)

...

P0(1, j)

...

P0(1, r)




= An−2 ·




p1

p2(1− p1)

...

pj(1− p1 − · · · pj−1)

...

p2
r




,
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where

A =




p1 p1 · · · p1 · · · p1

0 p2 · · · p2 · · · p2

... 0
. . .

...
...

...

0 0
. . . pj · · · pj

...
...

... 0
. . .

...

0 0 · · · · · · 0 pr




.

Since all the eigenvalues of A above lie between 0 and 1 it is clear that the

probability of zero violation in the string goes to zero as n→ ∞. Therefore, it follows

that the probability of a collision becomes 1 as n → ∞. The expected number of

primary collisions and the expected relative velocity at impact are given by equation

(30) and (34).

B. The Coordinated Cases I and II : α = 0 and α = 1

Using the probability distributions shown in equations (15) and (21), respectively,

we compute quantitatively the expected number of primary collisions and expected

relative velocity at impact with β = 2 and δ = 0.5 corresponding to these two cases

in the same manners as the uncoordinated case. We plot these two quantities as a

function of size of platoon.

As one expects, the expected number of primary collisions and the expected rel-

ative velocity at impact in coordinated braking cases are smaller than the ones in

uncoordinated case. In figure 6, the graph corresponding to a platoon of size 2 may

seem anomalous because the expected relative velocity at impact for the uncoordi-

nated case is smaller than its coordinated counterparts. Referring to figure 2, it is
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clear that if d1 = 9.75 m/s2, the probability that λ2 < 9.75 m/s2 is greater with a

coordinated braking as opposed to an uncoordinated braking scenario. This is be-

cause the probability distribution for effective braking of the second vehicle, i.e., for

λ2, skews to the left. Although the probability of a collision decreases for a coordi-

nated case, the probability of a high relative velocity at impact is much higher with

a coordinated control law for platoons of size 2.

This apparent anomaly, however, does not continue with platoons of larger sizes,

because the distribution of effective braking of following vehicles is better. For exam-

ple, the probability that the effective braking takes a value of 8.75, 9.25 or 9.75 m/s2

in coordinated case 1 is much smaller than the corresponding uncoordinated case, i.e.

the probability of a collision of high relative velocity at impact between two following

vehicles is significantly smaller.

The apparent anomaly for a platoon of size 2 may have a significant bearing on

mixed traffic safety where ACC vehicles mingle with manually controlled traffic.

It is natural to expect the relative velocity at impact to saturate as the size of

platoon increases and this is what we observe in figure 6. Similarly, one would expect

the expected number of collisions to increase monotonically for the uncoordinated as

well as coordinated case 1 and this is the case as well. However, one would expect the

total number of collisions with the coordinated case 2 to saturate as the size of the

platoon increases. The convergence in probability of the effective braking distribution

is very slow, as can be seen in figure 3. Hence, it looks in figure 5, as if the expected

number of collisions is also increasing linearly with the size. If one were to continue

the calculations, as we have done, the expected number of collisions saturates (for

platoons of size 500 approximately).
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CHAPTER IV

MONTE CARLO SIMULATIONS AND RESULTS

The Monte Carlo simulations enable us to compute the three variables of interest,

namely, the probability of a collision, the expected number of collisions and expected

relative velocity at impact.

A. The Necessity for Monte Carlo Simulations

For the purpose of illustration, we set the size of a platoon to be 10 vehicles following

one lead vehicle. Each vehicle has random maximum braking capability distribution

with the maximum deceleration of every vehicle capable of taking any of the 11 differ-

ent values. In reality, it takes an enormous amount of time to simulate all the possible

combinations, 1111 cases. Moreover, since we are seeking the variables of interest as a

function of 5 desired intervehicular distances and 7 coefficients of restitution, we need

35 more combinations, which results in 35 · 1111 cases. Therefore, as an alternative,

we use Monte Carlo simulation to illustrate the benefits of coordination.

B. Interpretation of Monte Carlo Simulations

Monte Carlo simulations aim to compute the expected values of a random variable,

say X, empirically. Let Xt be the true expected value of X, and let Xm be the

mean of “m” randomly drawn samples (obtained via Monte Carlo simulation) of X.

Then, an inequality due to Hoeffding [5], for random variables with bounded mean

and variance, indicates that

prob{|Xm −Xt| > ε} ≤ 2e−2mε2

. (4.1)
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This inequality indicates that the probability that the empirical mean of X obtained

after m iterations deviates from its true mean by ε or more is smaller than 2e−2mε2
.

It is in the sense that the empirical quantities of interest are taken in the subsequent

sections.

C. Empirical Evaluation of Quantities of Interest

The Monte Carlo simulation scenario is as follows: The initial velocity for all vehicles

is 30m/s and the initial acceleration is zero. After a second, the lead vehicle starts

to brake at its randomly assigned maximum braking capability. Then, the following

vehicles obey coordinated or uncoordinated braking laws depending upon the case

of study. We have conducted simulations with a combination of 5 different desired

intervehicular distances between 1m and 10m and with 7 different coefficients of

restitution ranging between 0 and 1 for 11 random maximum possible decelerations

assigned to each vehicle. Each iteration is done for 11 seconds, which ensures that all

the vehicles come to rest during that time. At the end of each simulation, we gather

the following data; (1) if there was any collision during simulation (2) if there were

any collisions in the platoon during simulation, we record the number of collisions

with relative velocity at impact in each of the specified ranges, 0 to 1, 1 to 2, 2 to 3,

3 to 4, 4 to 5, and over 5m/s.

To compute empirically, the quantities of interest, we gather the number of data

points with the relative velocity in each of the six intervals over all simulation runs.

We determine the average number of data points in each of the intervals over the

total number of simulations performed. We performed a minimum of 100 simulations;

after every following simulation, we check if the empirical average deviates from the

previously calculated value by less than 0.001 in each of the six ranges. If the empirical
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averages from successive simulation runs deviate by less than 0.001 in each of the six

ranges, we stop performing additional simulations; otherwise, we continue.

The algorithm for this simulation program is shown in figure 7. Let Ni,j be the

data points of the relative velocity at impact corresponding to within jth interval at

the ith iteration and σi,j be the average of Ni,j during i iterations where j = 1 · · · 6.
Then,

σi,j = [
i∑

k=1

Nk,j]/i. (4.2)

and the convergence criteria is given by

i ≥ 100 and |σi,j − σi−1,j| < 0.001, j = 1, . . . , 6. (4.3)

After we stop the simulations, we calculated the expected average relative velocity

at impact, Vavg, given by

Vavg = (
6∑

j=1

vj · σi,j)/
6∑

j=1

σi,j, (4.4)

where vj = j − 0.5.

The probability of a collision, Pcollision, of a platoon is given by assigning a binary

value 0 or 1 corresponding to no collisions or a collision respectively in each iteration.

Assuming that the simulation converges at the ith iteration and the total number of

the binary numbers is Ntotal during i iterations, then the expected probability of a

collision in platoon is given by

Pcollision = Ntotal · 100/i. (4.5)
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Fig. 7. Algorithm Diagram for the Monte Carlo Simulation
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D. Results and Discussion

From the Monte Carlo simulation, we get the trend of our quantities of interest as a

function of the desired intervehicular distance, L, and the coefficient of restitution, e,

for both uncoordinated and coordinated braking cases.

1. The Uncoordinated Case

As shown in figure 8, one can see clearly that the expected number of collisions

is inversely proportional to intervehicular distances for each value of the coefficient

of restitution. When the desired intervehicular distance ranges from 1m to 4m, the

expected number of collisions increases as the coefficient of restitution increases from 0

to 0.4 and decreases with the coefficient of restitution thereafter. As the intervehicular

distance increases, the expected number of collisions decreases significantly and is not

significantly affected by the coefficient of restitution. The minimum expected number

of collisions in all cases corresponds to the case when coefficient of restitution is zero.

The expected relative velocity at impact, increases with desired intervehicular

distance as shown in figure 11. Since there is a loss of kinetic energy for all cases

except for perfectly elastic collisions, the linear momentum is conserved during impact

in a platoon, and it follows that the expected average relative velocity at impact is

most significant in case of e = 1 for all intervehicular distances.

For most cases with 2 variables, intervehicular distance and coefficient of resti-

tution, the expected probability of a collision is over 99 percentage as shown in figure

14. In case of L = 10, probability drops slightly, since there is some space between

vehicles for vehicles to stop completely before colliding with their predecessors.
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2. The Coordinated Cases

As shown in figures 9, 12, and 15 for the first control scheme and in figures 10,

13, 16 for the second control scheme, we can see that all the quantities of interest,

the expected number of collisions, the expected relative velocity at impact, and the

expected probability of a collision have basically same trend with respect to uncoor-

dinated braking law case; however, they are significantly smaller for the coordinated

braking strategies.

3. Comparison on Monte Carlo Simulation Results with Analytical Approach

Results

As mentioned earlier, Monte Carlo simulations are conducted to demonstrate the

viability of our analytical approach to approximate the three metrics of safety con-

sidered here. To do so, we consider the proportion of metrics for the three braking

strategies corresponding to a platoon of size 10. From figures 5 and 6, the proportion

is 2.317 : 1.315 : 1.02 for expected number of collisions and 0.872 : 0.808 : 0.738

for the expected relative velocity at impact. The corresponding results obtained via

Monte Carlo simulations for the case e = 0.4 is 187.33 : 98.10 : 29.43 for expected

number of collisions, which corresponds to L = 1, and 5.006 : 4.489 : 3.773 for the

expected relative velocity at impact, which corresponds to L = 10. These results

agree reasonably well.
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Fig. 8. Expected Number of Collisions with the Uncoordinated Braking Control

Scheme
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Fig. 9. Expected Number of Collisions with the Coordinated Braking Scheme I
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Fig. 10. Expected Number of Collisions with the Coordinated Braking Scheme II
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Fig. 11. Expected Relative Velocity at Impact with the Uncoordinated Braking Con-

trol Scheme
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Fig. 12. Expected Relative Velocity at Impact with the Coordinated Braking Scheme

I

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
xp

ec
te

d
 R

el
at

iv
e 

V
el

o
ci

ty
 (

m
/s

)
at

 Im
p

ac
t

0 0.1 0.2 0.4 0.6 0.8 1

Coefficient of Restitution

L = 1m

L = 2m

L = 4m

L = 5m

L = 10m

Fig. 13. Expected Relative Velocity at Impact with the Coordinated Braking Scheme
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Fig. 14. Expected Probability of a Collision with the Uncoordinated Braking Control

Scheme
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Fig. 15. Expected Probability of a Collision with the Coordinated Braking Scheme I
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Fig. 16. Expected Probability of a Collision with the Coordinated Braking Scheme II
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this report, we have presented a methodology for assessing the benefits of

coordination amongst vehicles during emergency braking via the modeling of effec-

tive braking. The proposed work is the first step towards providing a systematic,

analytical procedure for assessing the benefits of coordination, namely, probability

of an intervehicular collision, the expected relative velocity at impact, and expected

number of collisions.

An important objective of the proposed analytical methodology for assessing

the safety benefits of coordination in a vehicle platoon is to circumvent the need for

extensive Monte Carlo simulations. However, to do so, one must validate the hypoth-

esis that the total number of collisions are monotonically increasing and continuous

function of the primary collisions. Work is underway to examine this hypothesis.

The proposed methodology is applied to constant spacing vehicle following con-

trol systems in this report. The extension to variable spacing vehicle following systems

is challenging and is of practical relevance; this is especially important since automo-

tive companies are currently developing adaptive cruise control systems that employ

variable spacing policies. We plan to undertake this challenge in the near future.
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