UC Irvine
ICS Technical Reports

Title
Natural generation of admissible heuristics

Permalink
https://escholarship.org/uc/item/1433blam

Author
Kibler, Dennis

Publication Date
1982-07-15

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1433b1qm
https://escholarship.org
http://www.cdlib.org/

Natural Generation of Admissible Heuristics
Dennis Kibler
University of California at Irvine
Information and Computer Science Department

TR-188

15 July 1982

This research was supported by the Naval Ocean Systems Center under
contract N00123-81-C-1165.

ok

Abstract

If a problem space can be represented by a relational production
system, then many useful heuristics can be generated by appealing to
appropriate abstraction spaces. ' Here we formalize the process by which
heuristics can be generated. We show that these heuristics are
admissible and monotonic. Finally we give several heuristics from the
literature which could have been formed by the process, as well as some

which cannot.

Index Terms: Heuristic generation, admissible heuristics, problem

transformation, quotient spaces, problem representation.

Intr io

* This pipor formalizes the following idea: an estimate of the
distance between the current state and the, goal state can be found by
mapping the current problem into an analogous, simpler problem, and
counting the number of steps ;n a solution of the anmalogous problem.
Moreover the analogous problem is defined in a natural way from the
original problem. Similar relaxation methods have been explored by
Pearl [10] and Valtorta [12] but they do not as precisely define the

problem representation nor as exactly define the problem

transformations.

Changing the representation of a problem may provide insights into
its ;olution. Amarel [1] shows how to transform the representation of a
generalized missionaries and cannibals problem. Korf [5] discusses the
heuristic search through a class of graphical representations. In both

papers a problem is transformed and a solution to the transformed

problem provides a solution to the original problem. In our work, the
transformed problem provides a means for gaining insight into the
original problem. This insight takes the form of an admissible

heuristic.

We begin by formally defining natural transformations, quotient
maps, and counting functions. We then apply the concepts to the
eight-tile puzzle, the cube slicing problem, the blocks world, and the
mutilated checkerboard problem. Lastly, we discuss the technique'’s

limitations.

atura n ns of Pr m es
In this section we formally define problem domains and natural
transformations. We alter slightly the concept of a relational
production system as defined by Vere [13]. This modification was

introduced by Morris [4] where its merits are more fully discussed.
i

A problem space or problem domain consists of an initial state,
which is a finite bag or multiset of assertions, and a finite collection
of relational productions or operators. In contrast to Vere, we use
multisets of assertions rather than sets of assertions. We define a
relational operator by specifying two multisets of conditions, one
called the preconditions and the other the postconditions. An operator
is applicable in a given state if each of its preconditions is satisfied
in the state. The preconditions of an operator are satisfied if there
exists a substitution for the variables such that the instantiated
preconditions are contained, as a multiset, in the state description.

One applies an applicable operator by deleting each of the instantiated

preconditions from the state and adding each of the instantiated

postconditions.

A problem is a list of goals to be satisfied. Note that a problem
may only partially specify a final state. A solution to a problem in a
domain is a sequence of productions which when applied to the initial
state, results in a state which satisfies each goal listed in the

problem.

A natural transformation T from one domain into another is a

mapping of states and operators of the source domain into the states and
operators of the image domain such that the following equation holds,
for all states and applicable operators:

apply(T(Op) ,T(S))=T(apply(0p,S)) (equation 1)

where apply(Op,S) is the new state arrived at by applying Op to the

/
state S. This is similar to the definition of a homomorphism given by
Banerji [2] for games. Given a source domain D with initial state I and

problem P and a natural transformation T into some image domain, we note

a number of interesting properties.

The solution of the problem in the source domain maps into a

solution of the image problem T(P) with initial state T(I).

The length of a solution in the image domain is not greater than

the length of a solution in the source domain.

The length of the minimum solution in the image domain is a lower
bound on the length of the solution in the source domain and

consequently provides an admissible heuristic.

Nilsson [7] defines an admissible search algorithm as one which is
guaranteed to find the optimal solution, whenever one exists. We say a
heuristic h is admissible if it underestimates the cost from the node to
the goal. Nilsson proves that the evaluation function f(n)=g(n)+h(n),
where g(n) is the current cost to the node n, and h is admissible,
defines an admissible algorithm. Pearl [8] analyzes the cost
effectiveness of A* in terms of the accuracy of the heuristic h. In a
further work, he and Kim [9] anaylze three extensions of A® which weaken
the assumption of admissibility. Valtorta [12] analyzes the cost of A*
where he includes the cost of computing the heuristic h assuming that h

is computed by blind search rather than some optimized procedure.

Ve have the following theorem:

Theorem 1: If T is a natural transformation from domain D
with initial state I and problem P, and h(S), for a state S of
D, is defined as the minimum number of operators required to go
from T(S) to T(P), then h/is admissible and monotonic.
The admissibility has ulready‘been demonstrated. Recall that
monotonicity is a form of the triangle inequality. To show monotonicity

consider the following diagrams:

n n'
§——————>8"' T(S)-—->T(S')
\ | \ |
34O |l j i\ B
X% Al
P T(P)

where n is the length of a path from S to S’, i is h(S), j is h(S'), and
i’, j', and n' are the minimum lengths between states in the image
domain. We must i‘ow that n+j>i. By definition i=i' and j=j'. Also
n'+j'2i’ by definition. Since n)n’, we have n+j)i, and momotonicity is

proven,

Monotonic heuristics eliminate the need for updating the g-values
of CLOSED nodes. Whenever the g-value of a node is updated, one must
check whether any descendant of the node requires updating. This is an

expensive operation within the A algorithm,

A simple useful class of natural transformations are guotient maps.
A quotient map simply forgets about some of the relations in the source
domain, for both operators and states. More precisely a quotient map Q

is defined by a set S of relations as follows:

Q(state)={n| member(n,state) and not member(n,S)}
Q(operator)=newop where
preconditions(newop)=Q(precondition(op)) and
postcondition(newop)=Q(postcondition(op)).

Such a map is easily shown to be a natural transformation. Notice that
if the operators and states can be described with n relations, then the

number of quotient maps is 27,

Another useful class of J;tural transformations are counting maps.
A counting map replaces a coliection of literals by the number of
instances of each type of literal. Intuitiiely. quotient maps forget
about some relations, while counting maps forget about the particular
objects. More precisely, if the domain is described by n relations, say
ry, ry, through r,, then the counting map will map each state into an
n-vector of integers, where the integer of the ith component corresponds
to the number of assertions of type r; in the state. Equation 1
determines the definition of the image of an operator. Again this map

is clearly a natural tranformation.

(For convenience we denote the multiplicity of a relation by

writing multiplicity®relation. Consequently when we write the

preconditions of a counting operators as n‘rl. m*r,, etc. we mean that
the operator deletes n assertions of type ry, m assertions of type 1y,

etc. Postconditions and states are denoted similarly.)

Notice that natural transformations have the effect of focusing
attention on some aspect of the problem. Focusing on the wrong aspect
of a problem leads to nmo insight. Focusing o; the right aspect can lead
to appropriate heuristics or a quick proof that the problem is

unsolvable.

Tile puzzle

This puzzle is analyzed by Nilsson [6] where he defines a number of
heuristics for its solution. This puzzle can be defined as a relational
production in the following way. Let the board size be 3X3 and label

the positions as in the diagram below.

{
position labels goal state
abe 123
de f 4 5
ghi 67 8

A state, such as the goal state depicted above, could be described as:

pos(a),pos(b),...,adj(a,b),adj(b,a),adj(a,d),...
on(a,1) ,on(b,2),0n(c,3) ,on(d,4) ,blank(e) ,on(£,6),
on(g,7),on(h,8).

where pos stands for position and adj stands for adjaceant. There is
only one relational operator, defined by
preconditions: adj(X,Y),pos(X),pos(Y),blank(Y),on(X,V)

postconditions: adj(X,Y),pos(X),pos(Y),blank(X),on(Y,V)
where adj stands for adjacent and pos stands for position.

A number of different quotient spaces can be constructed from this

problem. If we demand that the quotient space maintain the "on"”
relation, then there are seven (23-1) candidate quotient spaces. We
will look at three of them. Different quotients spaces sometimes lead

to the same heuristics.

If we forget about the requirement that a tile be blank, then we

get a new problem space with an operator such that

preconditions: pos(X),pos(Y),adj(X,Y),on(X,V)
postconditions: pos(X),pos(Y),adj(X,Y),on(Y,V).

This corresponds to a tile—puzzle where you are allowed to pile up
tiles. In this world it is easy to see that the distance (minimum
number of moves to change one configuration to another) is oxictly the
sum of the c}ty-block distances between each tile’s current position and

its destination. This is exactly heuristic P(n) [6].

If we forget about both the blank requirement and the adjacency
requirement we get a new probfzn space with an operator whose
preconditions are pos(V),pos(X),on(X,Y) and whose postconditions are
pos(X),pos(V) ,on(X,V). This corresponds to a tile-puzzle where you are
allowed to pick up any tile and move it to any desired position. In
this puzzle, the minimum distance between two states is the number of
tiles out of position. Hence the distance of the minimum solutiom for

this quotient problem defines the admissible heuristic W(n) [6].

If we forget about the adjacency requirements we get the new
operator with preconditions: blank(Y),on(X,V) and postconditions:
blank(X),on(Y,V). This corresponds to allowing a tile to be moved into
a blank position regardless of its position. The resulting heuristic is

closely related to W(mn).

Another heuristic, onme that reduces the search more than any of
those above, is defined to be P(n)+3*S(n) where S(n) measures the
"sequence score” of tile position [6]. This heuristic is not admissible

and so cannot be found by any natural transformation.

Cube Slicing

Since admissible heuristics provide lower bounds on the number of
operations required to fulfill a goal, they can be used to determine
that some problems have no solution. An instance of such a problem is
the question of whether a cube can be sliced into 27 equal cubelettes
with only five slices. By insight one sees that it is necessary to
slice each of the six faces of the inner cube, so the problem is

impossible. .

This conclusion can also be reached by applying natural
transformations. A detailed rplltional description of the original
problem would be tedious. 'ofgive only the image domain and the
corresponding operators. By applying quotient maps and counting
functions, ome reduces the problem to onme whose initial state is
{block<27>), where the 27 refers to the volume in terms of smaller
cubes. The goal state is {27*block<1>}. The slicing operations
generate a collection of relational operationms. Each relational
operator deletes a set of blocks and replaces each block of the subset
by two blocks, where the new blocks are of equal size or ome is twice as
large as the other. Some of the relational operators are:

opl: delete conditions: {block<(9)>,block<6>]
add conditions: ({3*block<3),block<6>}

op2: delete conditions: {block<9>,block<6>}
add conditions: {block<3),block<{6>,block<2>,block<{4>}

VWithout worrying about the entire search tree that would be generated,
but just following the division of the largest block, we get the

following chain:

block<27>->block<18>->block<9>->block<(6>->
~>block{3>->block<{2>->block<1).

This chain has six operations in it so the original problem requires at

least six operations.

Blocks World

We will only sketch the application of natural transformations to
the blocks world. Using any of the usual relational descriptions of the
blocks world [7], one can define a quotient map which forgets about all
folations but the "on"” relations. The admissible heuristic generated is
the -number of different "on” instances between the cnrro;t state.and the
goal state. Such a heuristic has the effect of making the search
somewhat similar to that gemerated by STRIPS [3], in that the search is
directed towards achieving th; "on” goals sequentially for each possible
ordering of the goals. However, the admissible heuristic approach
guarantees finding a solution. We note that goal ordering fails for
STRIPS [11] because the goals only partially specify the goal state.

If the goals had been "completed” or extended to give a full
specification of the final state, then goal ordering (from table

upwards) would allow STRIPS to solve all blocks worlds problems easily.

i ecker
The problem is: if a ohe#korboard has the white cormers removed,
can it be covered by a dominoes. We will use a natural transformation
to show that the problem is impossible. Below is an abbreviated

relational description of the initial state, the single operator, and

10

the goal state:

initial state: adj(a,b),....
white(a),...
red(b),...
free(a),free(b),...
operator: Pre: adj(X,Y),red(X),white(Y),free(X),free(Y).
Post: adj(X,Y),red(X),white(Y),covered(X),covered(Y).
goal: covered(a),covered(b),...

We define a natural tranformation into states described simply by
the number of free white (fw) and free red (fr) squares. Consequently we
have:

image initial state: 30*fw,32°%fr.

image operator: preconditions: fw,fr. {deleted relations}

postconditions: empty. {added relations}

image goal: empty. {i.e. (0*fw,0%fr)]}
It is easy to check that this mapping is a natural transformation,
although not one that is a combination of quotient or counting maps.
Moreover in the new space only one operator is applicable to any state,
so one quickly sees that there is mo way to reach the state {0%fw,0%fr}.

¥

Lim n

This approach always generates admissible heuristics, but not all
admissible heuristics are useful. ‘Applied to the tower—of-hanoi
problem, the approach yields no useful heuristic. The quotient map may
fail to help because it a) trivializes the problem or b) does not reduce

the difficulty sufficiently so that the calculation of the minimal

length solution is simple.
Conclusions

We have shown that by applying natural transformations to a
multiset representation of a problem, one can generate admissible and
monotonic heuristics. These heuristics can be used to guide the search

for a solution or to demonstrate the impossibility of finding a

11

solution. Moreover, two types of natural transformationms, quotient maps
and counting functions, were defined which are intrinsic to the original
problem, i.e. they do not require a "eureka” form of insight to
construct the appropriate image domain or transformation. Finally we
have used the technique to gemerate a number of standard heuristics as
well as providing a new demonstration of the impossibility of the cube

slicing problem.

e

12

REFERENCES
(1]
Amarel; S.
On the representations of problems of reasoning sbout actioms.
American Elsevier, 1968.
[2]
Banerji, R.B.
Artificial Intelligence: A Theoretical Approach.
Elsevier, 1980.
[3]
Fikes, R.E., and Nilsson, N.J.
STRIPS: A new approach to the application of theorem proving to
problem solving.
AI,1971.
[4]
Kibler, D.F, and Morris, P.H.
Plan Varisnts and a8 Plan Refinement Algorithm.
Technical Report 178a, Univeristy of Califormia, Irvine, 1982.
[5]
Korf, R.E.
Toward a Model of Representation Changes.
AI,1980.
[61, Y
Nilsson, N.J.
Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, 1971.
[7]1
Nilsson, N.J.
Principles of Artificial Intelligence.
Tioga, 1980.
[8]
Pearl, J.
Enowledge versus Search: A Quantitative Analysis Using A®.
Technical Report UCLA-ENG-CSL-8065, Univ. of California, Los
Angeles, 1981.
§)]
Pearl, J. and Kim, J.H.
Studies in Semi-Admissible Heuristics.
IEEE Transactions on Pattern Analysis and Machine
Intelligence,1982.
[10]
Pearl, J.)
On the Discovery and Gemeration of Certain Heuristics.
Technical Report UCLA-ENG-CSL-8234, Univ. of California, Los
Angeles, 1982.
[11]

Sacerdoti, E.D.
Planning in a hierarchy of abstraction spaces.
AI,1974.

&,

[12]

[13]

13

Valtorta, M.
Amunmgmmwummmm

for the A* Algorithm.
Technical Report, Univorsity of North Carolina, 1981.

Vere, S.A.
Relational Production Systems.
AI,1971. '

