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Abstract

Language Support for Loosely Consistent Distributed Programming

by

Neil Robert George Conway

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

Driven by the widespread adoption of both cloud computing and mobile devices, distributed
computing is increasingly commonplace. As a result, a growing proportion of developers must
tackle the complexity of distributed programming—that is, they must ensure correct application
behavior in the face of asynchrony, concurrency, and partial failure.

To help address these difficulties, developers have traditionally relied upon system infrastructure
that provides strong consistency guarantees (e.g., consensus protocols and distributed transactions).
These mechanisms hide much of the complexity of distributed computing—for example, by allowing
programmers to assume that all nodes observe the same set of events in the same order. Unfortunately,
providing such strong guarantees becomes increasingly expensive as the scale of the system grows,
resulting in availability and latency costs that are unacceptable for many modern applications.

Hence, many developers have explored building applications that only require loose consistency
guarantees—for example, storage systems that only guarantee that all replicas eventually converge
to the same state, meaning that a replica might exhibit an arbitrary state at any particular time.
Adopting loose consistency involves making a well-known tradeoff: developers can avoid paying
the latency and availability costs incurred by mechanisms for achieving strong consistency, but in
exchange they must deal with the full complexity of distributed computing. As a result, achieving
correct application behavior in this environment is very difficult.

This thesis explores how to aid developers of loosely consistent applications by providing
programming language support for the difficulties they face. The language level is a natural place to
tackle this problem: because developers that use loose consistency have fewer system facilities that
they can depend on, consistency concerns are naturally pushed into application logic. In part, our
goal has been to recognize, formalize, and automate application-level consistency patterns.

We describe three language variants that each tackle a different challenge in distributed program-
ming. Each variant is a modification of Bloom, a declarative language for distributed programming
we have developed at UC Berkeley. The first variant of Bloom, BloomL, enables deterministic
distributed programming without the need for distributed coordination. Second, Edelweiss allows
distributed storage reclamation protocols to be generated in a safe and automatic fashion. Finally,
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BloomPO adds sophisticated ordering constraints that we use to develop a declarative, high-level
implementation of concurrent editing, a particularly difficult class of loosely consistent programs.
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Chapter 1

Introduction

In recent years, distributed programming has moved from the sidelines of computing into the main-
stream. Driven by the ubiquity of both cloud computing and mobile devices, the vast majority of new,
non-trivial programs in the future will involve communication and distributed computation. Hence,
the vast majority of programmers will need to face the challenges of distributed programming.

Building reliable distributed programs is not fundamentally different from building reliable
centralized programs: in both cases, the programmer must ensure that the application behaves
correctly (e.g., satisfies its correctness invariants) for all possible inputs [7]. However, programming
in a distributed environment raises additional challenges: due to the presence of asynchrony,
concurrency, and partial failures, the programmer must ensure that their program behaves correctly
for all possible schedules of network messages and node failures. This significantly raises the level
of difficulty, particularly for programmers who are not experts in distributed computing.

To simplify the development of distributed systems, programmers have traditionally relied upon
storage and messaging infrastructure that provides strong consistency guarantees. A variety of
mechanisms have been proposed for achieving different flavors of strong consistency, including
atomic broadcast [51], consensus [97], distributed ACID transactions [68], group communication
systems [29], and distributed locking services [36, 140]; many of these proposals have been widely
used in practice. These mechanisms simplify the development of distributed systems because they
present useful, high-level abstractions that hide much of the inherent complexity of distributed
programming. For example, serializability [121] and linearizability [83] are two strong consistency
guarantees that have seen widespread adoption: by ensuring that all replicas in a system observe
the same events in the same order, systems that provide one of these properties make it easier for
programmers to build reliable applications.

The Costs of Strong Consistency. Despite the historical success and rich theory underpinning
systems infrastructure for strong consistency, an increasing number of practitioners have chosen to
reduce or avoid relying on strong consistent in many situations [28, 50, 78, 79]. The core problem
is that providing strong consistency guarantees becomes increasingly difficult as the scale of the
system grows. Applications that rely upon strong consistency guarantees must pay three different
costs: availability in the presence of network partitions, latency, and operational complexity.
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The difficulty of providing strong consistency guarantees in the presence of network failures
(e.g., partitions) has been known since at least the early 1980s [48, 49], but the relationship
between consistency and availability only received widespread attention with the publication of
Brewer’s well-known CAP Theorem [30, 31, 65]. The CAP Theorem states that a distributed
system cannot simultaneously provide consistency (i.e., linearizability), availability, and partition
tolerance. For most applications, sacrificing partition tolerance is not an option [1, 31, 73], thereby
forcing developers to choose between availability and strong consistency. For many recent systems,
even brief periods of downtime cause severe financial repercussions [39, 50, 149]. As a result,
many modern system designers are reluctant to accept decreased availability in exchange for the
programming conveniences of strong consistency.

Mechanisms for strong consistency also increase response latency: to prevent conflicts between
concurrent updates to different replicas, each update must contact at least one other site [1]. Al-
though the latency of communication within a single data center is typically small, many modern
distributed systems are geo-replicated: they consist of nodes at multiple geographically dispersed
data centers [21, 43, 45, 91, 103, 141]. Communication between data centers is usually expensive
(e.g., hundreds of milliseconds) [91]. For many applications, waiting for even a single round-trip
between data centers before applying an update incurs an unacceptable latency cost: indeed, one of
the primary reasons for adopting geo-replication in the first place is to allow client operations to be
handled entirely by a single data center that is geographically close to the client’s location [104].1

Some practitioners have also observed that traditional mechanisms for providing strong con-
sistency make data center operations more fragile and error-prone. Because strong consistency
techniques require blocking (e.g., to wait for a commit/abort decision or for a distributed lock
manager to grant a lock request) and increase the degree of coupling between operations, they
increase system fragility and can lead to “convoy effects”, “self-synchronization”, and “chaotic load
fluctuations” [28]. As a result, James Hamilton has argued [28]:

The first principle of successful scalability is to batter the consistency mechanisms
down to a minimum, move them off the critical path, hide them in a rarely visited corner
of the system, and then make it as hard as possible for application developers to get
permission to use them.

The Challenges of Loose Consistency. In response to these concerns, many system designers have
chosen to reduce or entirely avoid the use of strongly consistent systems infrastructure. Instead, many
modern designs rely on only weak guarantees from distributed storage—for example, application
logic might only assume that all the replicas of an object eventually converge to the same state (often
called “eventual consistency”) [19, 147, 152]. Amazon’s Dynamo is among the most influential of
these designs [50], although many similar systems have been built (e.g., [23, 94, 126]).

These systems avoid the availability and latency costs of strong consistency by allowing con-
flicting updates to be accepted by different replicas at the same time. Since the conflicting updates

1Note that mechanisms for providing strong consistency do not necessarily decrease throughput. If the application
can be structured such that operations are batched together or many independent operations can be issued in parallel,
high rates of throughput can still be achieved [21, 45, 74].
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might occur on different sides of a network partition, avoiding the conflict (as in strong consistency)
would require waiting for the network partition to heal—sacrificing availability in the mean time.
Instead, eventually consistent systems accept both updates; changes are replicated between sites
asynchronously, and a conflict resolution procedure is used to allow replicas that have accepted
conflicting updates to converge to the same state. Some systems use a fixed rule to decide which
update should be preferred (e.g., last-writer wins [88]), whereas others allow a user-defined merge
procedure to be employed [50, 147]. Such merge procedures can exploit application semantics to
allow most conflicts to be resolved harmoniously; for example, if the updates represent additions to
a user’s shopping cart, application semantics might allow the set union of all concurrent updates to
be accepted. When conflicts cannot be automatically resolved (e.g., two edits to a document that
make conflicting changes to the same text), systems often save aside both versions of the document
for manual resolution by a user or administrator [89].

Write-write conflicts are a special case of a more general class of problems that must be handled
by applications that rely on eventually consistent storage. Recall that eventual consistency only
guarantees that all replicas of an object will “eventually” converge to the same state; no guarantee is
made about when that convergence will occur, or what particular state the object will converge to.2

In the mean time, applications might read arbitrarily old versions of an object. For example, suppose
an application issues two read operations against the same distributed object, one after another.
There is no guarantee that the second read will return a “newer” object version than the first read; in
fact, the two reads could return versions that reflect completely disjoint sets of write operations. The
problem is exacerbated if the application then issues its own write operations that use values derived
from the reads: while the storage will guarantee that all values eventually converge, ensuring that
the system converges to a set of values that respect the application’s correctness properties is beyond
the scope of the guarantees provided by the storage system [7, 42].

Design Patterns for Application-Level Consistency. Eschewing strong consistency can potentially
improve latency and availability, but it makes the task of the application developer much more
difficult. To ensure that an application meets its correctness requirements, the developer must reason
about many possible combinations of message reorderings and partial failures. For each piece of
distributed state, the developer must consider which correctness properties need to be maintained,
how those properties might be violated by asynchrony, and how application logic can be written to
ensure the violation is either tolerated, compensated for, or prevented from occurring. As a result,
ensuring consistency is no longer primarily the province of systems infrastructure; rather, it becomes
an application-level responsibility [7].

Moving the locus of responsibility for ensuring consistency from systems infrastructure to
application developers risks makes it significantly harder to write correct applications; indeed, strong
consistency mechanisms have seen widespread adoption in large part because they present a simple
abstraction that makes reliable distributed programming simpler. To aid developers tasked with
achieving application-level consistency on top of loosely consistent infrastructure, several authors
have identified design patterns and “rules of thumb” that have proven useful in practice [31, 46,

2For example, using “last-writer wins” as a merge procedure results in the system dropping conflicting writes with
earlier timestamps, in many cases without user notification.
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57, 59, 77, 78, 79, 80, 111, 112, 114, 118, 125]. For example, the “ACID 2.0” pattern suggests that
application-level operations should be made Associative, Commutative, and Idempotent whenever
possible [125]. These properties help to ensure that application behavior will be robust in the face
of batching, reordering, and duplication of network messages. Another notable design pattern is
eschewing mutable shared state whenever possible [46, 59, 77, 111]: if each node only accumulates
and exchanges immutable messages, many traditional concerns about distributed consistency can be
sidestepped.

However, informal patterns such as these are far from a complete solution to the difficulties raised
by loose consistency. Because they are described informally, design patterns cannot be verified
by a compiler, integrated with debugging tools, or encoded into systems infrastructure that can be
reused by multiple applications. Without integration into programming languages or frameworks,
developers need to understand the patterns and decide how best to apply them, which requires
experience and expertise. Underlying these practical concerns are some fundamental questions
that design patterns leave unanswered. For example, are there inherent limitations on the kinds of
application logic that can be expressed using commutative, associative, and idempotent operations?
That is, are there certain kinds of application logic that require inter-site coordination and strong
consistency, or are both families of techniques equally expressive?

In summary, design patterns are a useful tool but further work is needed to simplify the develop-
ment of loosely consistent distributed programs.

A Language-Centric Approach. The difficulty of programming against eventually consistent
systems infrastructure has been widely recognized. The research community has responded by
proposing a variety of consistency protocols that preserve availability in the face of network
partitions but offer stronger guarantees than eventual consistency, such as causal consistency [4],
highly available transactions [17], and red-blue consistency [98]. Researchers have also built
prototype systems that implement different variations of these guarantees, such as COPS [103],
Eiger [104], and Gemini [98].

While defining new consistency guarantees and realizing those guarantees in systems infras-
tructure is certainly useful, it leaves important questions unanswered: for example, how should
application semantics be matched to the semantics offered by the distributed storage layer? Can
application logic achieve its correctness requirements with eventual consistency, or is a stronger
level of consistency required? If so, which of the many guarantees should be adopted? If one
operation requires a particular consistency level, what happens if the operation interacts with data
produced by another operation, which might be content with a lower level of consistency?

In short, programming with loose consistency requires understanding how application semantics
is influenced by asynchronous network communication and partial failure. To answer these questions,
new systems infrastructure is not sufficient by itself—as argued above, programming with loose
consistency implies that consistency concerns are no longer primarily the responsibility of systems
infrastructure [7]. Rather, mechanisms for dealing with loose consistency are found throughout
the software stack, and often intimately depend on application semantics. These semantics are
typically encoded in the application logic itself, which is written in an application-level programming
language. Thus, we choose to focus on language support: that is, we show how novel programming
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language features can be introduced to address widely recognized challenges in loosely consistent
programming.

Language Support for Loose Consistency. In this thesis, we explore a variety of techniques that
simplify the development of loosely consistent distributed programs. In particular, this thesis draws
upon earlier work at UC Berkeley on declarative networking, which used deductive database
languages such as Datalog to build network protocols and distributed algorithms. As part of this
thesis, we designed a new declarative language for distributed computing called Bloom; Chapter 2
summarizes this language and the history of its development.

In the subsequent chapters of this thesis, we develop three variants of Bloom that address
different challenges raised by loosely consistent distributed programming. In many cases, these
extensions draw upon widely observed design patterns, which we have then formalized and built into
programming languages. In particular, Chapter 3 introduces BloomL, an extension to Bloom that
supports deterministic distributed programming through the use of join semilattices and monotone
functions. This formalizes the “ACID 2.0” design pattern of employing associative, commutative, and
idempotent operations. In Chapter 4, we introduce Edelweiss, a sublanguage of Bloom designed for
programs that accumulate sets of immutable messages. We show how Edelweiss allows distributed
garbage collection schemes for such programs to be generated automatically. Finally, Chapter 5
turns to a particularly challenging case study of loosely consistent programming: concurrent editing,
in which users at different sites edit a shared document, and their edits are later reconciled. We
introduce a Bloom extension called BloomPO, which allows partial order constraints (such as causal
order) to be specified in the program text and respected by the language runtime. We then use
BloomPO to build DiCE, a simple and declarative solution to the concurrent editing problem.
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Chapter 2

Background: Bloom

Bloom is a declarative language for distributed computing that we have designed at UC Berkeley. In
this chapter, we summarize our motivations and goals when designing Bloom, and then review the
basic elements of the language. In the remainder of this thesis, we introduce several extensions to
Bloom.

2.1 History
Our work on Bloom began in the context of the Declarative Networking project, which ran from
2003–2009 at UC Berkeley [105]. The goal of that project was to investigate how declarative
languages could be used to implement a variety of network protocols and applications, such
as distributed crawlers [44, 107], routing protocols [108], overlay networks such as the Chord
distributed hash table [106], and sensor networks [38]. This work also resulted in the design of
several Datalog variants for expressing distributed programs, including NDLog [105], Overlog [40],
and SNLog [38].

Our work on Bloom was initially motivated by two goals. First, we wanted to shift our focus
from network protocols in the narrow to a broader class of distributed systems. Second, we wanted
to design a new language that could make declarative distributed programming an attractive option
for the general practitioner audience. We felt that the time was ripe for a new programming language
focused on distributed computing: the widespread adoption of cloud computing meant that many
developers were writing distributed systems, and yet traditional languages were a poor fit for the
challenges encountered building such designs.

Although our eventual goal was to design a new programming language, we decided to begin by
using an existing declarative language to build several relatively complicated distributed programs,
and then to use that experience to guide our subsequent language design efforts. Hence, we used
Overlog to build a Hadoop-compatible distributed file system and MapReduce job scheduler [8].
As part of this work, we also implemented two-phase commit and the Paxos consensus protocol in
Overlog [9].

Our experience using Overlog to build these systems was generally positive: for example, the
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distributed file system we built achieved performance within 20% of HDFS but was implemented
with an order of magnitude fewer lines of code. We were also able to rapidly evolve our initial
design, adding complex features such as high availability and horizontal partitioning with relatively
minor revisions to the code. Nevertheless, we also ran into several challenges that informed our
later work on Bloom:

Semantics of mutation: Many of our bugs were caused by confusion about exactly when state
update rules would “fire,” and when the consequences of the state update would be made visible to
other rules. Indeed, the semantics of updates in Overlog was never formalized, which meant that
the “correct” program semantics was essentially defined by the behavior of the Overlog runtime.
Naturally, this was problematic: understanding the semantics of state update in Overlog required
the programmer to have a mental model of how the Overlog runtime was implemented. Moreover,
improvements to the implementation of the Overlog runtime caused the behavior of our programs
to change in unpredictable ways. On reflection, it is not surprising that state update was a common
source of problems: traditionally, Datalog is defined over a static database and hence cannot model
an evolving database.

Resolution: To ensure that state update in Bloom had a clear semantics, we began by designing
Dedalus [6, 13], a “precursor” language to Bloom in which all facts are given explicit timestamps,
and each rule specifies the temporal relationship between body atoms and the rule head. In this
way, the precise time at which a data value is introduced, replaced, or removed is made explicit.
This change resolved the semantic ambiguities that plagued earlier languages like Overlog. Dedalus
provides three temporal operators: a rule can describe what is true at the current timestamp, what is
true or no-longer-true at the immediately following timestamp, or what will become true at some
non-deterministic future timestamp. These alternatives model local deduction, state update, and
asynchronous communication, respectively. In Section 2.2, we will review these ideas in the context
of Bloom, which borrows the same set of temporal operators used in Dedalus.

Avoidance of implicit communication: In Overlog, the body of a rule can reference data values
located at multiple nodes. The Overlog runtime is responsible for doing the communication necessary
to send values between nodes to perform the distributed join. When building systems infrastructure
in Overlog, we carefully avoided using such rules because we found it difficult to reason about
their behavior in the presence of system failures and network partitions—a crucial concern when
designing distributed file systems and consensus protocols. For example, if a rule implies that data
should be sent from host Y to host X but X has not received the expected data, X has a relatively
straightforward set of error handling strategies (e.g., after a timeout, X can either ask Y to resend
the message or declare Y failed and then take the appropriate recovery actions. Whereas if X
receives the output of a join between n nodes, the space of possible error handling strategies is much
more complicated, and indeed may depend on the particular join evaluation strategy chosen by the
Overlog runtime.

This Overlog feature grew out of the conceit that an Overlog program conceptually manages a
single “global” database, which happens to be partitioned among a set of nodes. Reasoning about
global database state is appropriate (and convenient!) in certain domains: for example, users of
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large-scale analytic database systems write SQL queries against a global schema, and the DBMS
automatically moves data and computation around as needed to evaluate the query; node and network
failures are handled transparently and automatically [16]. In contrast, when writing distributed
infrastructure, the programmer typically wants to carefully control where a particular data value
is stored and to write custom logic for detecting and responding to failure events. For example,
we envisioned using Bloom to write programs such as a distributed DBMS with parallel query
execution and fault tolerance; hence, managing communication and dealing with failure should be
the responsibility of the application programmer, not the language runtime.1 In some ways, this
decision echoes the well-known advice of Waldo et al., who argued that attempting to present the
same interface for both local and remote operations is often unwise [153].

Resolution: We restricted both Dedalus and Bloom to require that each rule body only accesses data
that is located at a single node. Note that the location of the rule body and the rule head might differ;
if that is the case, the rule describes asynchronous communication between the body location and the
head location. Such “communication rules” are explicitly identified in the syntax of both Dedalus
and Bloom, which allows programmers to easily spot the sources of asynchrony in their programs.
Because of this restriction, each Bloom node only does local query evaluation: it evaluates its rule
set over its local database content, optionally sending some of the resulting derived values to other
nodes. As suggested above, in some sense this means that Bloom is “lower level” than Overlog or a
parallel dialect of SQL, in which communication and data movement is implicit. Because of our
focus on building systems infrastructure, we felt that programmers needed precise control over this
aspect of their programs.

Cryptic syntax: Overlog uses the traditional Datalog rule syntax, in which joins are expressed
via unification. We found that this was a frequent obstacle when presenting Overlog programs to
practitioners and most academics. Moreover, we observed that relatively few of our programs used
recursion or many-way joins (for which the Datalog syntax is convenient). Most of the distributed
programs we studied involve relatively simple operations over data sets. For example, a typical
server program might join a set of inbound messages with local state and use projection to produce
a set of outbound response messages. Another problematic aspect of Overlog was the fact that it
defined its own type system. This required additional work by the programmer to convert values to
and from the host language’s type system.

Resolution: Bloom eschews the traditional Datalog rule syntax in favor of a syntax designed
to be more familiar to imperative and functional programmers. We also decided to implement
Bloom as a domain-specific language (DSL) embedded inside a host language; this had several
benefits. First, it allowed us to reuse the host language’s type system—avoiding the need to build
a type system ourselves, and easing integration with other host language code. Second, most

1Our initial goal with Bloom was to move from targeting network protocols to a broader class of distributed systems.
On reflection, our focus remained somewhat narrow: most of our example programs involved distributed storage
systems, coordination protocols, and other kinds of systems infrastructure. Our decision to eschew the global database
abstraction reflects this focus: attempting to mask node failures and introduce location transparency would be ill-advised
when building systems infrastructure, whereas a language focused on application-level distributed programming might
choose to present a higher-level abstraction that hides these concerns.



CHAPTER 2. BACKGROUND: BLOOM 9

modern languages include good support for manipulating collections (e.g., map, filter, and fold
operations). Reusing this syntax for Bloom rules made the resulting programs more familiar to
programmers with prior knowledge of the host language. We built Bloom prototypes that used
several different host languages, including Erlang, Javascript, and Scala, but most of our engineering
effort was devoted to the Ruby-based variant of Bloom, which we call Bud.

2.2 Language Constructs
Bloom programs are bundles of declarative statements (rules) about collections of facts (tuples). An
instance of a Bloom program performs computation by evaluating its statements over the contents
of its local collections. Instances communicate via asynchronous message passing.

An instance of a Bloom program proceeds through a series of timesteps, each containing three
phases.2 In the first phase, inbound events (e.g., network messages) are received and represented as
facts in collections. In the second phase, the program’s statements are evaluated to compute all the
additional facts that can be derived from the instance’s local collections. In some cases (described
below), a derived fact is intended to achieve a “side effect,” such as modifying local state or sending
a network message. These effects are deferred during the second phase of the timestep; the third
phase is devoted to carrying them out.

In the remainder of this thesis, we show Bloom code written for Bud, the Ruby-based Bloom
implementation. Listing 2.1 shows a Bloom program represented as an annotated Ruby class. A
small amount of Ruby code is needed to instantiate the Bloom program and begin executing it, for
example:

# Create a new instance of the shortest paths Bloom program (standard Ruby instanciation syntax).
sp = ShortestPaths.new
# Cause that instance to begin executing asynchronously (sending and receiving network messages).
sp.run_bg

Data Model

In Bloom, a collection is an unordered set of facts, akin to a relation in Datalog. The Bud prototype
adopts the Ruby type system rather than inventing its own; hence, a fact in Bud is just an array
of immutable Ruby objects. Each collection has a schema, which declares the structure (column
names) of the facts in the collection. A subset of the columns in a collection form its key: as in the
relational model, the key columns functionally determine the remaining columns. The collections
used by a Bloom program are declared in a state block. For example, line 5 of Listing 2.1 declares
a collection named link with three columns, two of which form the collection’s key. Ruby is a
dynamically typed language, so keys and values in Bud can hold arbitrary Ruby objects.

2There is a declarative semantics for Bloom [6, 13], but for the sake of exposition we describe the language
operationally here.
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1 class ShortestPaths
2 include Bud

4 state do
5 table :link, [:from, :to] => [:cost]
6 scratch :path, [:from, :to, :next_hop, :cost]
7 scratch :min_cost, [:from, :to] => [:cost]
8 end

10 bloom do
11 path <= link {|l| [l.from, l.to, l.to, l.cost]}
12 path <= (link * path).pairs(:to => :from) {|l,p| [l.from, p.to, l.to, l.cost + p.cost]}
13 min_cost <= path.group([:from, :to], min(:cost))
14 end
15 end

Listing 2.1: All-pairs shortest paths in Bloom.

Name Behavior

table Persistent storage.
scratch Transient storage.
channel Asynchronous communication.

A fact derived into a channel
appears in the database of a re-
mote Bloom instance at a non-
deterministic future time.

periodic Interface to the system clock.
interface Defines the inputs and outputs

of a Bloom module.

Table 2.1: Bloom collection types.

Bloom provides several collection types to rep-
resent different kinds of state (Table 2.1). A table
stores persistent data: if a fact appears in a table, it
remains in the table in future timesteps (unless it is
explicitly removed). A scratch contains transient
data—conceptually, the content of each scratch
collection is emptied at the start of each timestep.3

Scratches are similar to views in SQL: they are
often useful as a way to name intermediate results
or as a “macro” construct to enable code reuse. A
channel allows communication between Bloom
instances. The schema of a channel has a distin-
guished location specifier column (prefixed with
“@”). When a fact is derived for a channel collec-
tion, it is sent to the remote Bloom instance at the
address given by the location specifier.

The periodic collection type allows a Bloom program to access the system clock. A periodic
collection is declared with time interval (e.g., “1 second”); the Bloom runtime arranges (in a
best-effort manner) for a new tuple to be inserted into the collection whenever the specified
amount of wall-clock time has elapsed. In distributed programming, periodic collections are
often used to implement timeouts. Finally, Bloom provides a simple module system which allows
data encapsulation and thin interfaces between components. An abstract interface consists of a set
of “input” and “output” collections, which are denoted by using the interface collection type.
An implementation of an interface is a set of statements that read data from the module’s input

3Note that the language runtime may choose to avoid emptying and recomputing scratch collections for every
timestep, an optimization known as view materialization [70, 71]. The current version of Bud implements a simple
version of this technique, which we found to be important for good performance.
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collections and derive data into the module’s output collections.

Statements

Each Bloom statement has one or more input collections and a single output collection. A statement
takes the form:

<collection-identifier> <op> <collection-expression>

The left-hand side (lhs) is the name of the output collection and the right-hand side (rhs) is an
expression that produces a collection. A statement defines how the input collections are transformed
before being included (via set union) in the output collection. Bloom allows the usual relational
operators to be used on the rhs (selection, projection, join, grouping, aggregation, and negation),
although it adopts a syntax intended to be more familiar to imperative programmers. In Listing 2.1,
line 11 demonstrates projection, line 12 performs a join between link and path using the join
predicate link.to = path.from followed by a projection to four attributes, and line 13 shows
grouping and aggregation. Bloom statements appear in one or more bloom blocks, which group
together semantically related statements to aid readability.

Op Name Meaning

<= merge lhs includes the content of
rhs in the current timestep.

<+ deferred
merge

lhs will include the content
of rhs in the next timestep.

<- deferred
delete

lhs will not include the
content of rhs in the next
timestep.

<~ async
merge

(Remote) lhs will include
the content of the rhs at
some non-deterministic fu-
ture timestep.

Table 2.2: Bloom operators.

Bloom provides several operators that deter-
mine when the rhs will be merged into the lhs
(Table 2.2). The <= operator performs standard
logical deduction: that is, the lhs and rhs are
true at the same timestep. The <+ and <- op-
erators indicate that facts will be added to or
removed from the lhs collection at the beginning
of the next timestep. The <~ operator specifies
that the rhs will be merged into the lhs collection
at some non-deterministic future time. The lhs of
a statement that uses <~ must be a channel; the
<~ operator captures asynchronous messaging.

Bloom allows statements to be recursive—
that is, the rhs of a statement can reference the
lhs collection, either directly or indirectly. As
in Datalog, care must be taken when combining
negation and recursion: if the language allows
negation and recursion to be used freely, it is possible to write programs that do not have a reasonable
interpretation—for example, because they imply a contradiction such as “p iff ¬p” [27]. To avoid
this problem, many different restrictions on the use of negation have been proposed in the literature
(e.g., [63, 132, 133, 134, 150]). Bloom adopts a simple but conservative rule: we require that
deductive statements (<= operator) must be syntactically stratified [15]: cycles through negation
or aggregation are not allowed [13]. Interestingly, two of the Bloom variants we discuss in this
thesis relax this restriction: BloomL (Chapter 3) expands the space of monotonic programs, while
BloomPO (Chapter 5) allows programs with cycles through negation if the program also contains a
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constraint that ensures such cycles will never be satisfied.

Conclusion
Bloom was designed as a general-purpose distributed programming language, albeit with a focus
on building systems and data processing infrastructure. We believe Bloom is an attractive option
for building a wide range of distributed systems, but in the remainder of this thesis we focus on
a narrower problem: exploring the ways in which Bloom can be used to deal with the challenges
encountered building applications on top of loose consistency guarantees.
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Chapter 3

BloomL: Distributed Programming with
Join Semilattices

As discussed in Chapter 1, a signature problem in loosely consistent distributed programming is
the fact that different replicas might observe updates in different orders, and hence might reach
different conclusions. The replicas may be unable to agree on a consistent global order for all
updates because the replicas may not be able to communicate (e.g., due to a network partition) [65].
In a strongly consistent system, this problem is avoided by preventing some nodes from accepting
updates until communication has been restored (e.g., by using a consensus protocol to ensure that a
“quorum” of nodes agree to accept an update before it is applied [97]). However, this amounts to
giving up system availability during network partitions, which users of loosely consistent systems
are typically unwilling to do [31].

Hence, loosely consistent systems must behave correctly even when different replicas observe
updates in different orders. A common approach to handling this situation is to ensure that concurrent
updates are commutative—this ensures that different replicas will reach the same outcome if they
apply the same set of operations, even if the order in which those updates are applied is not the same.
However, it is very difficult for application developers to verify that their operations commute for all
possible update sequences, and so recent research has attempted to build tools to aid programmers
in this task. In particular, two different approaches have received significant attention: Convergent
Modules and Monotonic Logic.

Convergent Modules: In this approach, a programmer writes encapsulated modules whose public
methods provide certain guarantees regarding message reordering and retry. For example, Statebox
is an open-source library that merges conflicting updates to data items in a key-value store; the
user of the library need only register “merge functions” that are commutative, associative, and
idempotent [85]. This approach has roots in database and systems research [55, 62, 79, 118, 147]
as well as groupware [54, 145]. Shapiro et al. proposed a formalism for these approaches called
Convergent Replicated Data Types (CvRDTs), which casts these ideas into the algebraic framework
of semilattices [35, 138, 139].

CvRDTs present two main problems: (a) the programmer bears responsibility for ensuring
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lattice properties for their methods (commutativity, associativity, idempotence), and (b) CvRDTs
only provide guarantees for individual values, not for application logic in general. As an example of
this second point, consider the following:

Example 1 A replicated, fault-tolerant courseware application assigns students into study teams.
It uses two set CvRDTs: one for Students and another for Teams. The application reads a version of
Students and inserts the derived element <Alice,Bob> into Teams. Concurrently, Bob is removed
from Students by another application replica. The use of CvRDTs ensures that all replicas will
eventually agree that Bob is absent from Students, but this is not enough: application-level state is
inconsistent unless the derived values in Teams are updated consistently to reflect Bob’s removal.
This is outside the scope of CvRDT guarantees.

Taken together, the problems with Convergent Modules present a scope dilemma: a small
module (e.g., a set) makes lattice properties easy to inspect and test, but provides only simple
semantic guarantees. Large CvRDTs (e.g., an eventually consistent shopping cart) provide higher-
level application guarantees but require the programmer to ensure lattice properties hold for a
complex module, resulting in software that is difficult to test, maintain, and trust.

Monotonic Logic: In recent work, we observed that the database theory literature on monotonic
logic provides a powerful lens for reasoning about distributed consistency. Intuitively, a monotonic
program makes forward progress over time: it never “retracts” an earlier conclusion in the face of new
information. We proposed the CALM theorem, which established that all monotonic programs are
confluent (invariant to message reordering and retry) and hence eventually consistent [14, 81, 110].
Monotonicity of a Datalog program is straightforward to determine conservatively from syntax, so
the CALM theorem provides the basis for a simple static analysis of the consistency of distributed
programs: if a Bloom statement applies a non-monotonic operator to a collection that is derived from
an asynchronously computed collection, the output of the operator may be non-deterministic [11].
If different replicas produce different non-deterministic outcomes for the same set of events, the
system is not eventually consistent.

The original formulation of CALM and Bloom only verified the consistency of programs that
compute sets of facts that grow over time (“set monotonicity”); that is, “forward progress” was
defined according to set containment. As a practical matter, this is overly conservative: it precludes
the use of common monotonically increasing constructs such as timestamps and sequence numbers.

Example 2 In a quorum voting service, a coordinator counts the number of votes received from
participant nodes; quorum is reached once the number of votes exceeds a threshold. This is clearly
monotonic: the vote counter increases monotonically, as does the threshold test (count(votes) > k)
which “grows” from False to True. But both of these constructs (upward-moving mutable variables
and aggregates) are labeled non-monotonic by the original CALM analysis.

The CALM theorem obviates any scoping concerns for convergent monotonic logic, but it
presents a type dilemma. Sets are the only data type amenable to CALM analysis, but the pro-
grammer may have a more natural representation of a monotonically growing phenomenon. For
example, a monotonic counter is more naturally represented as a growing integer than a growing set.
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This dilemma leads either to false negatives in CALM analysis and over-use of coordination, or to
idiosyncratic set-based implementations that can be hard to read and maintain.

BloomL: Logic And Lattices
We address the two dilemmas above with BloomL, an extension to Bloom that incorporates a
semilattice construct similar to CvRDTs. We present this construct in detail below, but the intuition
is that BloomL programs can be defined over arbitrary types—not just sets—as long as they have
commutative, associative, and idempotent merge functions (“least upper bound”) for pairs of items.
Such a merge function defines a partial order for its type. This generalizes Bloom (and traditional
Datalog), which assumes a fixed merge function (set union) and partial order (set containment).

BloomL provides three main improvements in the state of the art of both Bloom and CvRDTs:

1. BloomL solves the type dilemma of logic programming: CALM analysis in BloomL can assess
monotonicity for arbitrary lattices, making it significantly more liberal in its ability to test
for confluence. BloomL can validate the coordination-free use of common constructs like
timestamps and sequence numbers.

2. BloomL solves the scope dilemma of CvRDTs by providing monotonicity-preserving map-
pings between lattices via morphisms and monotone functions. Using these mappings, the
per-component monotonicity guarantees offered by CvRDTs can be extended across multiple
items of lattice type. This capability is key to the CALM analysis described above. It is also
useful for proving the monotonicity of sub-programs even when the whole program is not
designed to be monotonic.

3. For efficient incremental execution, we extend the standard Datalog semi-naive evaluation
scheme [22] to support lattices. We also describe how to extend an existing Datalog runtime
to support lattices with relatively minor changes.

Outline
The remainder of the chapter proceeds as follows. Section 3.1 provides background on confluence,
monotonicity, and the CALM Theorem. In Section 3.2 we introduce BloomL and show how Datalog-
style logic programming can be extended to support join semilattices, cross-lattice morphisms,
and monotone functions. We detail BloomL’s built-in lattice types and show how developers can
define new lattices. We also describe how the CALM analysis extends to BloomL. In Section 3.3,
we describe how we modified the Bloom runtime to support BloomL.

We then present two case studies demonstrating how BloomL can be used to build distributed
programs. In Section 3.4, we use BloomL to implement a distributed key-value store that supports
eventual consistency, object versioning using vector clocks, and quorum replication. In Section 3.5,
we revisit the simple e-commerce scenario presented by Alvaro et al. in which clients interact with
a replicated shopping cart service [11]. We show how BloomL can be used to make the “checkout”
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operation monotonic and confluent, despite the fact that it requires aggregation over a distributed
data set.1

3.1 Background: CALM Analysis
Work on deductive databases has long drawn a distinction between monotonic and non-monotonic
logic programs. Intuitively, a monotonic program only computes more information over time—it
never “retracts” a previous conclusion in the face of new information. In Bloom (and Datalog), a
simple conservative test for monotonicity is based on program syntax: selection, projection, and
join are monotonic, while aggregation, negation, and deletion are not.

The CALM theorem connects the theory of monotonic logic with the practical problem of
distributed consistency [11, 81]. Monotonic programs are confluent: for any given input, all program
executions result in the same final state regardless of network non-determinism. Confluence is a
strictly stronger property than eventual consistency: that is, all confluent programs are eventually
consistent [14, 110].2 Hence, monotonic logic is a useful building block for loosely consistent
distributed programming.

According to the CALM theorem, distributed inconsistency may only occur at a point of order:
a program location where an asynchronously derived value is consumed by a non-monotonic
operator [11]. This is because asynchronous messaging results in non-deterministic arrival order,
and non-monotonic operators may produce different conclusions when evaluated over different
subsets of their inputs. For example, consider a Bloom program consisting of a pair of collections
A and B (both fed by asynchronous channels) and a statement that sends a message whenever an
element of A arrives that is not in B. This program is non-monotonic and exhibits non-confluent
behavior: the messages sent by the program will depend on the order in which the elements of A
and B arrive.

We have implemented a conservative static program analysis in Bloom that follows directly
from the CALM theorem. Programs that are free from non-monotonic constructs are “blessed” as
confluent: producing the same output on different runs or converging to the same state on multiple
distributed replicas. Otherwise, programs are flagged as potentially inconsistent. To achieve consis-
tency, the programmer either needs to rewrite their program to avoid the use of non-monotonicity or
introduce a coordination protocol to ensure that a consistent ordering is agreed upon at each of the
program’s points of order. As discussed in Chapter 1, coordination protocols increase latency and
reduce availability in the event of network partitions, so in this chapter we focus on deterministic
coordination-free designs.

1An abbreviated version of the material in this chapter appeared in the Proceedings of the ACM Symposium on
Cloud Computing [42].

2Note that the converse is not true: some eventually consistent programs are not confluent. For example, if a replica
uses a “last writer wins” policy to resolve conflicting updates, the “last writer” is determined by network arrival order.
If the system ensures that all replicas agree on the “last write”, this system would be eventually consistent but non-
deterministic, because the “winning” write is not determined strictly from the input. We have explored non-deterministic
but eventually consistent programs in recent work [10]; in this chapter we focus on deterministic (confluent) programs.
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1 QUORUM_SIZE = 5
2 RESULT_ADDR = "example.org"

4 class QuorumVote
5 include Bud

7 state do
8 channel :vote_chn, [:@addr, :voter_id]
9 channel :result_chn, [:@addr]
10 table :votes, [:voter_id]
11 scratch :cnt, [] => [:cnt]
12 end

14 bloom do
15 votes <= vote_chn {|v| [v.voter_id]}
16 cnt <= votes.group(nil, count(:voter_id))
17 result_chn <~ cnt {|c| [RESULT_ADDR] if c >= QUORUM_SIZE}
18 end
19 end

Listing 3.1: A non-monotonic Bloom program that waits for a quorum of votes to be received.

Limitations Of Set Monotonicity

The original formulation of the CALM theorem considered only programs that compute more facts
over time—that is, programs whose sets grow monotonically. Many distributed protocols make
progress over time but their notion of “progress” is often difficult to represent as a growing set of
facts. For example, consider the Bloom program in Listing 3.1. This program receives votes from
one or more clients (not shown) via the vote_chn channel. Once at least QUORUM_SIZE votes have
been received, a message is sent to a remote node to indicate that quorum has been reached (line 17).
This program resembles a “quorum vote” subroutine that might be used by an implementation of
Paxos [97] or quorum replication [64].

Intuitively, this program makes progress in a semantically monotonic fashion: the set of received
votes grows and the size of the votes collection can only increase, so once a quorum has been
reached it will never be retracted. Unfortunately, the current CALM analysis would regard this
program as non-monotonic because it contains a point of order: the grouping operation on line 16.

To solve this problem, we need to introduce a notion of program values that “grow” according to
a partial order other than set containment. We do this by extending Bloom to operate over arbitrary
lattices rather than just the set lattice.

3.2 Language Constructs
This section introduces BloomL, an extension to Bloom that allows monotonic programs to be
written using arbitrary lattices. We begin by reviewing the algebraic properties of lattices, monotone
functions, and morphisms. We then introduce the basic concepts of BloomL and detail the built-in
lattices provided by the language. We also show how users can define their own lattice types.
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When designing BloomL, we decided to extend Bloom to include support for lattices rather than
building a new language from scratch. Hence, BloomL is backward compatible with Bloom and
was implemented with relatively minor changes to the Bud runtime. We describe how code written
using lattices can interoperate with traditional Bloom collections in Section 3.2.

Definitions
A bounded join semilattice is a triple 〈S ,t,⊥〉, where S is a set, t is a binary operator (called “join”
or “least upper bound”), and ⊥ is an element of S (called “bottom”). The t operator is associative,
commutative, and idempotent. The t operator induces a partial order ≤S on the elements of S :
x ≤S y if x t y = y. Note that although ≤S is only a partial order, the least upper bound is defined
for all elements x, y ∈ S . The distinguished element ⊥ is the smallest element in S : x t ⊥ = x for
every x ∈ S . For brevity, we use the term “lattice” to mean “bounded join semilattice” in the rest of
this chapter. We use the informal term “merge function” to mean “least upper bound.”

A monotone function is a function f : S → T such that S ,T are partially ordered sets (posets)
and ∀a, b ∈ S : a ≤S b⇒ f (a) ≤T f (b). That is, f maps elements of S to elements of T in a manner
that respects the partial orders of both posets.3

A morphism from lattice 〈X,tX,⊥X〉 to lattice 〈Y,tY ,⊥Y〉 is a function g : X → Y such that
g(⊥X) = ⊥Y and ∀a, b ∈ X : g(a tX b) = g(a) tY g(b). Intuitively, g maps elements of X to elements
of Y in a way that preserves the lattice properties. Note that morphisms are monotone functions but
the converse is not true in general.

Language Constructs
BloomL allows both lattices and collections to represent state. A lattice is analogous to a collection
type in Bloom, while a lattice element corresponds to a particular collection. For example, the lset
lattice is similar to the table collection type provided by Bloom; an element of the lset lattice is
a particular set. In the terminology of object-oriented programming, a lattice is a class that obeys
a certain interface and an element of a lattice is an instance of that class. Listing 3.2 contains an
example BloomL program.

As with collections, the lattices used by a BloomL program are declared in a state block. More
precisely, a state block declaration introduces an identifier that is associated with a lattice element;
over time, the binding between identifiers and lattice elements is updated to reflect state changes
in the program. For example, line 10 of Listing 3.2 declares an identifier votes that is mapped
to an element of the lset lattice. As more votes are received, the lattice element associated with
the votes identifier changes (it moves “upward” in the lset lattice). When a lattice identifier is
declared, it is initially bound to ⊥, the smallest element in the lattice. For example, an lset lattice
initially contains the empty set.

3To simplify the presentation, these definitions assume that monotone functions and morphisms are unary. BloomL

supports monotone functions and morphisms with any number of arguments.
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1 QUORUM_SIZE = 5
2 RESULT_ADDR = "example.org"

4 class QuorumVoteL
5 include Bud

7 state do
8 channel :vote_chn, [:@addr, :voter_id]
9 channel :result_chn, [:@addr]
10 lset :votes
11 lmax :cnt
12 lbool :quorum_done
13 end

15 bloom do
16 votes <= vote_chn {|v| v.voter_id}
17 cnt <= votes.size
18 quorum_done <= cnt.gt_eq(QUORUM_SIZE)
19 result_chn <~ quorum_done.when_true { [RESULT_ADDR] }
20 end
21 end

Listing 3.2: A monotonic BloomL program that waits for a quorum of votes to be received.

Statements

Statements take the same form in both Bloom and BloomL:
<identifier> <op> <expression>

The identifier on the lhs can refer to either a set-oriented collection or a lattice element. The
expression on the rhs can contain both traditional relational operators (applied to Bloom collections)
and methods invoked on lattices. Lattice methods are similar to methods in an object-oriented
language and are invoked using the standard Ruby method invocation syntax. For example, line 17
of Listing 3.2 invokes the size method on an element of the lset lattice.

If the lhs is a lattice, the statement’s operator must be either <= or <+ (instantaneous or deferred
deduction, respectively). The meaning of these operators is that, at either the current or the following
timestep, the lhs identifier will take on the result of applying the lattice’s least upper bound to the
lhs and rhs lattice elements. The intuition remains the same as in Bloom: the rhs value is “merged
into” the lhs lattice, except that the semantics of the merge operation are defined by the lattice’s
least upper bound operator. We require that the lhs and rhs refer to a lattice of the same type.

BloomL does not support deletion (<- operator) for lattices. Lattices do not directly support
asynchronous communication (via the <~ operator) but lattice elements can be embedded into facts
that appear in channels (Section 3.2).

Lattice Methods

BloomL statements compute values over lattices by invoking methods on lattice elements. Just as
a subset of the relational algebra is monotonic, some lattice methods are monotone functions (as
defined in Section 3.2). A monotone lattice method guarantees that, if the lattice on which the
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Name Description Least
Element

Merge(a, b) Morphisms Monotone
Functions

lbool Boolean
(false→ true)

false a ∨ b when_true(&blk)→ v

lmax Max over an
ordered domain

−∞ max(a, b) gt(n)→ lbool
gt_eq(n)→ lbool
+(n)→ lmax
−(n)→ lmax

lmin Min over an
ordered domain

∞ min(a, b) lt(n)→ lbool
lt_eq(n)→ lbool
+(n)→ lmin
−(n)→ lmin

lset Set of values empty set a ∪ b intersect(lset)→ lset
project(&blk)→ lset
product(lset)→ lset
contains?(v)→ lbool

size()→ lmax

lpset Set of non-
negative num-
bers

empty set a ∪ b intersect(lpset)→ lpset
project(&blk)→ lpset
product(lpset)→ lpset
contains?(v)→ lbool

size()→ lmax
sum()→ lmax

lbag Multiset of
values

empty
multiset

a ∪ b intersect(lbag)→ lbag
project(&blk)→ lbag
multiplicity(v)→ lmax
contains?(v)→ lbool
+(lbag)→ lbag

size()→ lmax

lmap Map from keys
to lattice values

empty
map

see text intersect(lmap)→ lmap
project(&blk)→ lmap
key_set()→ lset
at(v)→ any-lattice
key?(v)→ lbool

size()→ lmax

Table 3.1: Built-in lattices provided by BloomL. Note that v denotes a Ruby value, n denotes a
number, and blk indicates a Ruby code block (anonymous function).

method is invoked grows (according to the lattice’s partial order), the value returned by the method
will grow (according to the return value’s lattice type). For example, the size method provided
by the lset lattice is monotone because as more elements are added to the set, the size of the set
increases. Intuitively, a lattice’s monotone methods constitute a “safe” interface of operations that
can be invoked in a distributed setting without risk of inconsistency.

A lattice method’s signature indicates its monotonicity properties. BloomL distinguishes between
methods that are monotone and a subset of monotone methods that are morphisms. Section 3.2
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defines the properties that a morphism must satisfy, but the intuition is that a morphism on lattice T
can be distributed over T ’s least upper bound. For example, the size method of the lset lattice
is not a morphism. To see why, consider two elements of the lset lattice, {1, 2} and {2, 3}. The
size method is not a morphism because size({1, 2} tlset {2, 3}) , size({1, 2}) tlmax size({2, 3}).
Morphisms can be evaluated more efficiently than monotone methods, as we discuss in Section 3.3.

Lattices can also define non-monotonic methods. Using a non-monotonic lattice method is
analogous to using a non-monotonic relational operator in Bloom: the Bud interpreter stratifies the
program to ensure that the input value is computed to completion before allowing the non-monotonic
method to be invoked. BloomL encourages developers to minimize the use of non-monotonic
constructs: as the CALM analysis suggests, non-monotonic reasoning may need to be augmented
with coordination to ensure consistent results.

Every lattice defines a non-monotonic reveal method that returns a representation of the lattice
element as a plain Ruby value. For example, the reveal method on an lmax lattice returns a Ruby
integer. This method is non-monotonic because once the underlying Ruby value has been extracted
from the lattice, BloomL cannot ensure that subsequent code uses the value in a monotonic fashion.

Built-in Lattices
Table 3.1 lists the lattices included with BloomL. The built-in lattices provide support for several
common notions of “progress”: a predicate that moves from false to true (lbool), a numeric value
that strictly increases or strictly decreases (lmax and lmin, respectively), and various kinds of
collections that grow over time (lset, lpset, lbag, and lmap). The behavior of most of the lattice
methods should be unsurprising, so we do not describe every method in this section.

The lbool lattice represents conditions that, once satisfied, remain satisfied. For example, the
gt morphism on the lmax lattice takes a numeric argument n and returns an lbool; once the lmax
exceeds n, it will remain > n. The when_true morphism takes a Ruby block; if the lbool element
has the value true, when_true returns the result of evaluating the block. For example, see line 19
in Listing 3.2. when_true is similar to an “if” statement.4

The collection-like lattices support familiar operations such as union, intersection, and testing
for the presence of an element in the collection. The project morphism takes a code block and
forms a new collection by applying the code block to each element of the input collection. Elements
for which the code block returns nil are omitted from the output collection, which allows project
to be used as a filter.

The lbag lattice demonstrates how BloomL can support multisets. Note that the lbag merge
function takes the maximum of the multiplicities of an element that appears in both input lattices.
Although this is the standard definition of multiset union, some applications might find summing
the element multiplicities to be more useful. However, this behavior would not be a valid least upper
bound (because it is not idempotent). Instead, applications that need to compute the multiset sum
can use the + morphism.

4An “else” clause would test for an upper bound on the final lattice value, which is a non-monotonic property.
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1 class Bud::SetLattice < Bud::Lattice
2 wrapper_name :lset

4 def initialize(x=[])
5 @v = x.uniq # Remove duplicates from input
6 end

8 def merge(i)
9 self.class.new(@v | i.reveal)
10 end

12 morph :intersect do |i|
13 self.class.new(@v & i.reveal)
14 end

16 morph :contains? do |i|
17 Bud::BoolLattice.new(@v.member? i)
18 end

20 monotone :size do
21 Bud::MaxLattice.new(@v.size)
22 end
23 end

Listing 3.3: Example set lattice implementation in Ruby.

The lpset lattice is an example of how BloomL can be used to encode domain-specific knowl-
edge about an application. If the developer knows that a set will only contain non-negative numbers,
the sum of those numbers increases monotonically as the set grows. Hence, sum is a monotone
function of lpset; in contrast, taking the sum of the elements of an lset is non-monotonic in
general.

The lmap lattice associates keys with values. Keys are immutable Ruby objects and values are
lattice elements. For example, a web application could use an lmap to associate session IDs with
an lset containing the pages visited by that session. The lmap merge function takes the union
of the key sets of its input maps. If a key occurs in both inputs, the two corresponding values are
merged using the appropriate lattice merge function. Note that the at(v) morphism returns the
lattice element associated with key v (or ⊥ if the lmap does not contain v).

User-defined Lattices
The built-in lattices are sufficient to express many programs. However, BloomL also allows develop-
ers to create custom lattices to capture domain-specific behavior. To define a new lattice, a developer
creates a Ruby class that meets a certain API contract. Listing 3.3 shows a simple implementation
of the lset lattice using a Ruby array for storage.5

5In Listing 3.3, we present a slightly simplified lset implementation: we omit a few methods for the sake of
exposition and use an array to store the contents of the set. The actual lset implementation in BloomL uses a hash-based
set data type, which yields better performance (e.g., duplicate elimination is more efficient).
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A lattice class must inherit from the built-in Bud::Lattice class and must also define two
methods:
• initialize(i): given a Ruby object i, this method constructs a new lattice element that

“wraps” i (this is the standard Ruby syntax for defining a constructor). If i is nil (the null
reference), this method returns ⊥.
• merge(e): given a lattice element e, this method returns the least upper bound of e and self.

The programmer must ensure that this method satisfies the algebraic properties of least upper
bound—in particular, it must be commutative, associative, and idempotent (Section 3.2). Note
that e and self must be instances of the same class.

Lattices can also define any number of monotone functions, morphisms, and non-monotonic
methods. The syntax for declaring morphisms and monotone functions can be seen in lines 12–14
and 20–22 of Listing 3.3, respectively. Note that lattice elements are immutable—that is, lattice
methods (including merge methods) must return new values, rather than modifying any of their
inputs.

Because lattice methods contain arbitrary Ruby code, the author of a lattice collection should
be careful to ensure that lattice methods satisfy the appropriate algebraic properties. For example,
implementing a lattice method might require examining the underlying Ruby value contained in
another lattice element. This can be done using the reveal method (e.g., line 13 in Listing 3.3).
Since reveal is not monotonic, developers should use it carefully when implementing monotonic
lattice methods. We discuss some ideas for how to assist developers in writing correct lattice
implementations in Section 3.7.

A lattice definition must specify a keyword that can be used in BloomL state blocks. This
is done using the wrapper_name class method. For example, line 2 of Listing 3.3 means that
“lset :foo” in a state block will introduce an identifier foo that is associated with an instance of
Bud::SetLattice.

Integration With Set-Oriented Logic
BloomL provides two features to ease integration of lattice-based code with Bloom rules that use
set-oriented collections.

Converting Collections Into Lattices

This feature enables an intuitive syntax for merging the contents of a set-oriented collection into a
lattice. If a statement has a Bloom collection on the rhs and a lattice on the lhs, the collection is
converted into a lattice element by “folding” the lattice’s merge function over the collection. That is,
each element of the collection is converted to a lattice element (by invoking the lattice constructor)
and then the resulting lattice elements are merged together via repeated application of the lattice’s
merge method. In our experience, this is usually the behavior intended by the user.

For example, line 16 of Listing 3.2 contains a Bloom collection on the rhs and an lset lattice
on the lhs. This statement is evaluated by constructing a singleton lset for each fact in the rhs
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collection and then merging the sets together. The resulting lset is then merged with the votes
lattice referenced by the lhs.

Embedding Lattice Values In Collections

BloomL allows lattice elements to be used as column values of facts in Bloom collections. This
feature allows BloomL programs to use a mixture of Bloom-style relational operators and lattice
method invocations, depending on which is more convenient. Bloom also provides several collection
types with special semantics (e.g., network communication, durable storage); allowing lattice
elements to be embedded into collections avoids the need to create a redundant set of facilities for
lattices.

Consider a BloomL rule that derives facts with an embedded lattice element as a column:

t1 <= t2 {|t| [t.x, cnt]}

where t1 and t2 are collections, cnt is a lattice, and the key of t1 is its first column. Note that cnt
might change over the course of a single timestep (specifically, cnt can increase according to the
lattice’s partial order). This might result in deriving multiple t1 facts that differ only in the second
column, which would violate t1’s key.

To resolve this situation, BloomL allows multiple facts to be derived that differ only in their
embedded lattice values; those facts are merged into a single fact using the lattice’s merge function.
This is similar to specifying a procedure for how to resolve key constraint violations, a feature
supported by some databases [119, 142]. For similar reasons, lattice elements cannot be used as
keys in Bloom collections.

CALM Analysis For Lattices
As discussed in Section 3.1, CALM-based program analysis determines whether a program is
order-sensitive by looking for “points of order”—locations where an asynchronously computed
value is consumed by a non-monotonic operator. BloomL simply expands the set of monotonic
operations that a program can contain; hence, we did not need to make any fundamental changes to
our program analysis. Instead, we simply replaced the hard-coded list of monotonic operations with
a list of the monotonic methods defined by the lattices used by the current program. In Sections 3.4
and 3.5, we show how CALM analysis can be applied to several BloomL programs.

CALM analysis is grounded in a model-theoretic characterization of confluence [110]. This
work was done in the context of Dedalus, the formal language on which Bloom is based [13]. These
results apply directly to Bloom, whose semantics are grounded in those of Dedalus. Monotonicity
analysis in BloomL is a natural extension of the work on Bloom, but the development of a formal
model-theoretic semantics for BloomL remains a topic for future work.
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3.3 Program Evaluation
In this section, we describe how to evaluate BloomL programs. First, we generalize semi-naive
evaluation to support lattices. We validate that our implementation of semi-naive evaluation results in
significant performance gains and is competitive with the traditional set-only semi-naive evaluation
scheme in Bud. We also describe how we extended Bud to support BloomL with relatively few
changes.

Evaluation Strategy
Naive evaluation is a simple but inefficient approach to evaluating recursive Datalog programs.
Evaluation proceeds in rounds. In each round, every rule in the program is evaluated over the entire
database, including all derivations made in previous rounds. This process stops when a round makes
no new derivations. Naive evaluation is inefficient because it makes many redundant derivations:
once a fact has been derived in round i, it is rederived in every round > i.

Semi-naive evaluation improves upon naive evaluation by making fewer redundant deriva-
tions [22]. Let ∆0 represent the initial database state. In the first round, all the rules are evaluated
over ∆0; let ∆1 represent the new facts derived in this round. In the second round, we only need to
compute derivations that depend on ∆1 because everything that can be derived purely from ∆0 has
already been computed.

A similar evaluation strategy works for BloomL statements that use lattice morphisms. For a
given lattice identifier l, let ∆0

l represent the lattice element associated with l at the start of the
current timestep. Let ∆r

l represent the new derivations for l that have been made in evaluation round
r. During round one, the program’s statements are evaluated and l is mapped to ∆0

l ; this computes
∆1

l . In round two, l is now mapped to ∆1
l and evaluating the program’s statements yields ∆2

l . This
process continues until ∆i

l = ∆i+1
l for all identifiers l. The final value for l is given by

⊔i
l: j=0 ∆

j
l .

This optimization cannot be used for monotone functions that are not morphisms. This is because
semi-naive evaluation requires that we apply functions to the partial results derived in each round
k into ∆k

l , and later combine them using the lattice’s merge operation—effectively distributing
the function across the merge. For example, consider computing the lset lattice’s size method,
which returns an lmax lattice. The semi-naive strategy would compute

⊔i
lmax: j=0 size(∆ j

lset
)—the

maximum of the sizes of the incremental results produced in each round. Thus it produces a different
result than naive evaluation, which evaluates the size function against the complete database state
in each round.

Implementing semi-naive style evaluation for lattices was straightforward. For each lattice
identifier l, we record two values: a “total” value (the least upper bound of the derivations made for
l in all previous rounds) and a “delta” value (the least upper bound of the derivations made for l
in the last round). We implemented a program rewrite that examines each BloomL statement. If a
statement only applies morphisms to lattice elements, the rewrite adjusts the statement to use the
lattice’s delta value rather than its total value.
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Figure 3.1: Performance of three different methods for computing the transitive closure of a graph.

Performance Validation
To validate the effectiveness of semi-naive evaluation for BloomL programs, we wrote two versions
of a program to compute the transitive closure of a directed acyclic graph. One version was written
in Bloom and used Bloom collections. The other version was written in BloomL using morphisms
over the lset lattice. For the BloomL version, we ran the program both with and without semi-naive
evaluation enabled. As input, we generated synthetic graphs of various sizes—in a graph with n
nodes, each node had roughly log2 n outgoing edges. We ran the experiment using a 2.13 GHz Intel
Core 2 Duo processor and 4GB of RAM, running Mac OS X 10.7.4 and Ruby 1.9.3-p194. We ran
each program variant five times on each graph and report the mean elapsed wall-clock time.

Figure 3.1 shows how the runtime of each program varied with the size of the graph. Note that
we only report results for the naive BloomL strategy on small input sizes because this variant ran very
slowly as the graph size increased. The poor performance of naive evaluation is not surprising: after
deriving all paths of length n, naive evaluation will then rederive all those paths at every subsequent
round of the fixpoint computation. In contrast, after computing length n paths, a semi-naive strategy
will only generate length n + 1 paths in the next round. Bloom and semi-naive BloomL achieve
similar results. We instrumented Bud to count the number of derivations made by the Bloom and
semi-naive lattice variants—as expected, both programs made a similar number of derivations.
These results suggest that our implementation of semi-naive evaluation for BloomL is effective and
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performs comparably with a traditional implementation of semi-naive evaluation for sets.
For large inputs, Bloom began to outperform the semi-naive lattice variant. We suspect this is

because the lattice implementation copies more data than Bloom does for this benchmark. Lattice
elements are immutable, so the lset merge function allocates a new object to hold the result of the
merge. In contrast, Bloom collections are modified in-place. We plan to improve the lattice runtime
to avoid copies when it can determine that in-place updates are safe.

Discussion
When designing BloomL, we chose to extend the original Bloom language rather than inventing a
new language from scratch. This design philosophy also applied to our language implementation:
we found we were able to extend Bud to support BloomL with relatively minor changes.

Bud initially had about 7300 lines of Ruby source code (LOC). Adding support for BloomL

required less than 1000 lines of new or modified code; moreover, most of these changes were
cleanly separated from the core Bud code. For example, the built-in lattice types constituted 300
LOC and support for lattice-based query plan elements required 250 LOC. In contrast, we had to
make no changes to Bud’s core fixpoint loop and extending CALM analysis to support lattices
required modifying only 10 LOC. This experience suggests that support for lattices can be added to
an existing Datalog engine in a relatively straightforward manner.

3.4 Case Study: Key-Value Store
The next two sections contain case studies that show how BloomL can be used to build practical
distributed programs.6 In the first case study, we show that a distributed, eventually consistent
key-value store can be composed via a series of monotonic mappings between simple lattices. This
example shows how BloomL overcomes the “scope dilemma” of CvRDTs: by composing a complex
program from simple lattices (mostly BloomL built-ins), we can feel confident that individual lattices
are correct, while CALM analysis finishes the job of verifying whole-program consistency.

System Architecture
A key-value store (KVS) provides a lookup service that allows client applications to store and
retrieve the value associated with a given key. Key-value pairs are typically replicated on multiple
storage nodes for redundancy and the key space is partitioned to improve aggregate storage and
throughput. As discussed in Chapter 1, eventual consistency is a common correctness criterion: after
all client updates have reached all storage nodes, all the replicas of a key-value pair will eventually
converge to the same final state [147, 152].

Listing 3.4 shows a simple KVS interface in BloomL. Client applications initiate get(key) and
put(key, val) operations by inserting facts into the kvget and kvput channels, respectively; server
replicas return responses via the kvget_resp and kvput_resp channels.

6Complete code listings for these case studies can be found in Appendix A.
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1 module KvsProtocol
2 state do
3 channel :kvput, [:reqid, :@addr] => [:key, :val, :client_addr]
4 channel :kvput_resp, [:reqid] => [:@addr, :replica_addr]
5 channel :kvget, [:reqid, :@addr] => [:key, :client_addr]
6 channel :kvget_resp, [:reqid] => [:@addr, :val, :replica_addr]
7 end
8 end

Listing 3.4: KVS interface in BloomL.

1 class KvsReplica
2 include Bud
3 include KvsProtocol

5 state do
6 lmap :kv_store
7 end

9 bloom do
10 kv_store <= kvput {|c| {c.key => c.val}}
11 kvput_resp <~ kvput {|c| [c.reqid, c.client_addr, ip_port]}
12 kvget_resp <~ kvget {|c| [c.reqid, c.client_addr, kv_store.at(c.key), ip_port]}
13 end
14 end

Listing 3.5: KVS implementation in BloomL.

Listing 3.5 contains the BloomL code for a KVS server replica. An lmap lattice is used to
maintain the mapping between keys and values (line 6). Since the values in an lmap lattice must
themselves be lattice elements, for now we assume that clients only want to store and retrieve
monotonically increasing lattice values; we discuss how to lift this restriction in Section 3.4. To
handle a put(key, val) request, a new key→ val lmap is created and merged into kv_store (line 10).
If kv_store already contains a value for the given key, the two values will be merged together
using the value lattice’s merge function (see Section 3.2 for details). Observe that we use the BloomL

features described in Section 3.2 to allow traditional Bloom collections (e.g., channels) and lattices
(e.g., the kv_store lattice) to be used by the same program. Note also that ip_port is a built-in
function that returns the IP address and port number of the current Bud instance.

The state of two replicas can be synchronized by simply exchanging their kv_store maps;
the lmap merge function automatically resolves conflicting updates made to the same key. This
property allows considerable flexibility in how replicas propagate updates.

Object Versioning
The basic KVS design is sufficient for applications that want to store monotonically increasing
values such as session logs or increasing counters. To allow storage of values that change in arbitrary
ways, we now consider how to support object versions. This is a classic technique for recognizing
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Figure 3.2: Lattice structure of a KVS with object versioning. Rectangles are lattices and ovals are
atomic values.

and resolving mutual inconsistency between members of a distributed system [122]. Our design is
similar to that used by Amazon Dynamo [50].

Each replica associates keys with sets of 〈vector-clock, value〉 pairs. The vector clock captures
the causal relationship between different versions of a record [56, 113]. Clients store and retrieve
〈vector-clock, value〉 pairs. When a client updates a value it has previously read, the client increments
its own position in the vector clock and includes the updated vector clock VU with its put operation.
Upon receiving an update, the server compares VU with the set of vector clocks associated with the
updated key. For each such vector clock VS , the server considers three cases:

1. VU > VS : the client’s update happens-after VS , so VS is replaced with VU .

2. VU < VS : the client’s update happens-before VS , so VS is retained.7

3. VU and VS are incomparable: the two versions are concurrent, so both VU and VS are retained.

By applying these rules, each replica retains a set of mutually concurrent versions for each key. To
handle a get operation, the server returns a single 〈vector-clock, value〉 pair by merging together the

7This situation might arise due to duplication and reordering of messages by the network.
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vector clocks and using a user-supplied reconciliation function to merge together the conflicting
values, as described below. We call the set of incomparable version-value pairs a dominating set.

From a BloomL perspective, each replica still stores a monotonically increasing value—the only
difference is that in this scheme, the version stored by a replica increases over time, rather than the
associated value. Hence, we now consider how to support vector clocks and dominating sets using
BloomL.

Vector Clocks

A vector clock is a map from node identifiers to logical clocks [56, 113]. Let Ve denote the vector
clock for event e; let Ve(n) denote the logical clock associated with node n in Ve. If Ve < Ve′ , e
causally precedes e′, where

Ve < Ve′ ≡ ∀x[Ve(x) ≤ Ve′(x)] ∧ ∃y[Ve(y) < Ve′(y)]

In BloomL, a vector clock can be represented as an lmap that maps node identifiers to lmax values.
Each lmax represents the logical clock of a single node; this is appropriate because the logical
clock value associated with a given node will only increase over time. The merge function provided
by lmap provides the desired semantics—that is, the built-in least upper bound for an lmap that
contains lmax values is consistent with the partial order given above.8

Dominating Sets

We use a custom lattice type ldom to represent a dominating set. As discussed above, a dominating
set is a set of 〈version, value〉 pairs; both elements of the pair are themselves represented as lattice
values. In the KVS, the version lattice is a vector clock (that is, an lmap containing lmax values);
the value lattice is whatever value the user wants to store in the KVS.9

The discussion above suggests a natural merge function for ldom: given two input ldom elements
e and e′, the merge function omits all “dominated” pairs. For example, a 〈version, value〉 pair in e is
included in the result of the merge unless there is a pair in e′ whose version is strictly greater, where
“strictly greater” is defined by the semantics of the version lattice type.

The ldom lattice provides two functions, version and value, that return the least upper bound
of the concurrent versions or values, respectively. In the KVS, the value function corresponds
to reconciling conflicting updates, whereas version returns the vector clock associated with the
reconciled value. Note that while the version of a given ldom increases over time (as new versions
are observed), the value does not; hence, version is a monotone function but value is not. Since
the goal of object versioning is to allow values to change in non-monotonic ways, this is the expected
behavior.

8The observation that vector time has a lattice structure was made by Mattern [113].
9If the user stores a value that does not have a natural merge function, similar systems typically provide a default

merge function that collects conflicting updates into a set for eventual manual resolution by the user. Such a strategy
corresponds to using lset as the value lattice in BloomL.
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Discussion

Fig. 3.2 shows the lattices used in a KVS with object versioning. Surprisingly, adding support for
object versioning did not require any changes to the KVS replica code. Instead, clients simply store
ldom values containing a single 〈vector-clock, value〉 pair, incrementing their position in the vector
clock as described above. The KVS replica merges these ldom values into an lmap as usual; the
ldommerge function handles conflict resolution in the appropriate manner. Moreover, by composing
the KVS from a collection of simple lattices, we found it easy to reason about the behavior of the
system. For example, convincing ourselves that KVS replicas will eventually converge only required
checking that the individual ldom, lmap, and lmax lattices satisfy the lattice properties, rather than
analyzing the behavior of the system as a whole.

Our design compares favorably to traditional implementations of object versioning and vector
clocks. For example, the implementation of vector clocks alone in the Voldemort KVS requires 216
lines of Java, not including whitespace or comments [101]. In BloomL, vector clocks follow directly
from the composition of the lmap and lmax lattices, and the entire KVS requires less than 100 lines
of Ruby and BloomL code, including the client library. The ldom lattice requires an additional 50
lines of Ruby but is completely generic, and could be included as a built-in lattice.

Quorum Reads and Writes
To further demonstrate the flexibility of our implementation, we add an additional feature to our
KVS: the ability to submit reads and writes to a configurable number of nodes. If a client reads
from R nodes and writes to W nodes in a KVS with N replicas, the user can set R + W > N to
achieve behavior equivalent to a quorum replication system [64], or use smaller values of R and W
if eventual consistency is sufficient. This scheme allows users to vary R and W on a per-operation
basis, depending on their consistency, durability, and latency requirements.

To support this feature, we can use the BloomL quorum voting pattern introduced in Listing 3.2.
After sending a write to W systems, the KVS client accumulates kvput_resp messages into an
lset. Testing for quorum can be done in a monotonic fashion by mapping the lset to an lmax
(using the size method) and then performing a threshold test using gt_eq on lmax. As expected,
this is monotonic: once quorum has been reached, it will never be retracted.

Quorum reads work similarly except that the client must also merge together the R versions of
the record it receives. This follows naturally from the discussion in Section 3.4: the client simply
takes the least upper bound of the values it receives, which produces the expected behavior. The
client can optionally write the merged value back to the KVS (so-called “read repair” [50]); note
that the ldom merge method also updates the record’s vector clock appropriately.

3.5 Case Study: Shopping Carts
In the previous section, we showed how a complete, consistent distributed program can be composed
via monotonic mappings between simple lattice types. In this section, we describe how BloomL

overcomes the “type dilemma” of Bloom. In prior work, we introduced a case study in Bloom that
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Figure 3.3: Shopping cart system architecture.

seemed to require coordination because of the use of distributed aggregation [11]. By using custom
lattice types, the BloomL CALM analysis can verify that our revised design is eventually consistent
without need for coordination.

Figure 3.3 depicts a simple e-commerce system in which clients interact with a shopping cart
service by adding and removing items over the course of a shopping session. The cart service is
replicated to improve fault tolerance; client requests can be routed to any server replica. Eventually,
a client submits a “checkout” operation, at which point the cumulative effect of their shopping
session should be summarized and returned to the client. In a practical system, the result of the
checkout operation might be presented to the client for confirmation or submitted to a payment
processor to complete the e-commerce transaction. This case study is based on the cart system from
Alvaro et al. [11], which was in turn inspired by the discussion of replicated shopping carts in the
Dynamo paper [50].

Monotonic Checkout
Alvaro et al. argue that processing a checkout request is non-monotonic because it requires ag-
gregation over an asynchronously computed data set—in general, coordination might be required
to ensure that all inputs have been received before the checkout response can be returned to the
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1 module CartProtocol
2 state do
3 channel :action_msg, [:@server, :session, :op_id] => [:item, :cnt]
4 channel :checkout_msg, [:@server, :session, :op_id] => [:lbound, :addr]
5 channel :response_msg, [:@client, :session] => [:summary]
6 end
7 end

9 module MonotoneReplica
10 include CartProtocol

12 state do
13 lmap :sessions
14 end

16 bloom do
17 sessions <= action_msg do |m|
18 c = LCart.new({m.op_id => [ACTION, m.item, m.cnt]})
19 { m.session => c }
20 end
21 sessions <= checkout_msg do |m|
22 c = LCart.new({m.op_id => [CHECKOUT, m.lbound, m.addr]})
23 { m.session => c }
24 end

26 response_msg <~ sessions do |session, cart|
27 cart.is_complete.when_true {
28 [cart.checkout_addr, session, cart.summary]
29 }
30 end
31 end
32 end

Listing 3.6: Cart replica in BloomL that supports monotonic (coordination-free) checkout operations.

client. However, observe that the client knows exactly which add and remove operations should
be reflected in the result of the checkout. If that information can be propagated to the cart service,
any server replica can decide if it has enough information to safely process the checkout operation
without needing additional coordination. This design is monotonic: once a checkout response is
produced, it will never change or be retracted. Our goal is to translate this design into a monotonic
BloomL program.

Listing 3.6 contains the server code for this design (we omit the client code for the sake of
brevity). Communication with the client occurs via the channels declared in the CartProtocol
module. Each server replica stores an lmap lattice that associates session IDs with lcart lattice
elements. An lcart is a custom lattice that represents the state of a single shopping cart. An lcart
contains a set of client operations. Each operation has a unique ID; operation IDs are assigned by
the client in increasing numeric order without gaps. An lcart contains two kinds of operations,
actions and checkouts. An action describes the addition or removal of k copies of an item from
the cart. An lcart contains at most one checkout operation—the checkout specifies the smallest
operation ID that must be reflected in the result of the checkout, along with the address where the
checkout response should be sent. The lcart merge function takes the union of the operations
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in both input carts (operation IDs ensure idempotence). In Listing 3.6, lines 18 and 22 construct
lcart elements that contain a single action or checkout operation, respectively. These singleton
carts are then merged with the previous lcart associated with the client’s session, if any.

An lcart is complete if it contains a checkout operation as well as all the actions in the ID range
identified by the checkout. Hence, testing whether an lcart is complete is a monotone function:
it is similar to testing whether an accumulating set has crossed a threshold. Hence, if any server
replica determines that it has a complete cart, it can send a response to the client without risking
inconsistency. Because this program contains only monotonic operations, CALM analysis can verify
that this design is consistent without requiring additional coordination.

Note that the statement that produces a response to the client (lines 26–30) is contingent on
having a complete cart. The monotone summary method returns a summary of the actions in the
cart—an exception is raised if summary is called on an incomplete cart. Similarly, attempting to
construct an “illegal” lcart instance (e.g., an lcart that contains multiple checkout operations or
actions that are outside the ID range specified by the checkout) also produces an exception, since
this likely indicates a logic error in the program.

Discussion
This design is possible because a single client has complete knowledge of the shopping actions in
its associated session. Hence, there is no need for additional distributed coordination—the server
replicas accumulate knowledge but do not contribute new information themselves. If multiple clients
could operate on a single shopping cart, some form of coordination between clients would be needed
to ensure a consistent checkout result.

Note that the threshold test for completeness is a crucial part of this design. Until a cart is
complete, its content changes in a “non-monotonic” fashion as items are added and removed.
However, these non-monotonic changes are hidden inside the lcart type and are not directly
visible to clients. Clients can only observe the cart’s state once the cart is complete; at that point,
the cart state is immutable and hence will not change in a non-monotonic fashion. BloomL enables
lcart to expose a limited “safe” interface and to hide transient non-monotonic changes from direct
visibility.

One shortcoming of this design is that server replicas may send multiple responses to the client:
once a server replica determines that its local state contains a “complete” cart, it can send a response
to the client. The client may therefore receive many different (identical) responses—this does not
harm correctness but it is clearly not an efficient use of resources. Intuitively, once a copy of the cart
has been successfully received by the client, no further copies need to be sent. Unfortunately, adding
a rule to implement this logic (e.g., by suppressing checkout responses once an acknowledgment
has been received) would be non-monotonic, because it would require either negation or deletion. In
Chapter 4, we introduce an automatic program rewrite that solves this problem—Edelweiss would
add an acknowledgment protocol to this program and then ensure that acknowledged messages are
not retransmitted.
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3.6 Related Work
BloomL is related to work on concurrency control, distributed storage, parallel programming, and
non-monotonic logic.

Semantics-based concurrency control: The traditional correctness criterion for concurrency con-
trol schemes is serializability [121]. However, ensuring serializability can be prohibitively expensive,
for instance when transactions are long-running or the nodes of a distributed database are connected
via an unreliable network. Thus, many methods have been proposed to allow non-serializable
schedules that preserve some semantic notion of correctness. In particular, several schemes allow
users to specify that certain operations can be commuted with other operations; this enlarges the
space of legal schedules, increasing the potential for concurrency [55, 62, 155].

O’Neil describes a method for supporting “escrow” transactions, which allow operations that
are only commutative when a certain limited resource is available [118]. For example, credits and
debits to a bank account might only commute if the bank account balance can be guaranteed to be
non-negative. We are currently exploring how to add support for escrow operations to BloomL.

To support concurrent editing of shared documents, the groupware community has studied a
family of algorithms known as Operational Transformation (OT) [54, 145]. OT exploit document
semantics to rewrite operations so that, although different sites might observe edits in different
orders, each site converges to the same final state. In Chapter 5, we explore the concurrent editing
problem in more depth.

Commutativity in distributed systems: Many distributed systems allow users to specify that
certain operations are commutative, associative, or idempotent. Helland and Campbell observe that
using commutative, associative and idempotent operations is particularly valuable as systems scale
and guaranteeing global serializability becomes burdensome [79]. Many distributed storage systems
allow users to provide “merge functions” that are used to resolve write-write conflicts between
replicas, allowing the system to eventually reach a consistent state (e.g., [85, 103, 129, 147]). Such
merge functions typically require knowledge of application semantics to determine when and how
concurrent updates can safely be commuted.

Writing a correct merge function is difficult, because the programmer must reason about all
possible interleavings of read and write operations. Furthermore, developers must also ensure
that application logic respects the loose consistency provided by the storage system. For example,
suppose an application reads a value from distributed storage, and then computes and stores a
derived value. If a concurrent update is made to the value that was originally read, the merge
function will ensure that all replicas of the value will converge, but unless the application logic
also recomputes the derived value, overall application state may still be inconsistent. By analyzing
application logic in concert with the behavior of the storage layer, BloomL and the CALM analysis
ensures that replicated values are only used in a “safe” (monotonic) fashion.

Principled eventual consistency: Shapiro et al. recently proposed Conflict-free Replicated Data
Types (CRDTs), a framework for designing eventually consistent data values [35, 138, 139]. There
are two kinds of CRDTs: “operation-based” types (called CmRDTs) and “state-based” types (called
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CvRDTs). BloomL is more closely related to CvRDTs (a CvRDT must be a semilattice), although the
two CRDT variants are equivalently expressive. CRDTs and BloomL lattice types often use similar
design patterns to achieve coordination-free convergence. Unlike BloomL, the CRDT approach
considers the correctness of replicated values in isolation. This allows CRDTs to be more easily
adapted into standalone libraries (e.g., Statebox [85]). However, the narrow focus of CRDTs means
that, even if a CRDT is correct, application state may remain inconsistent (Example 1).

Burckhardt et al. advocate using revision diagrams to simplify the design of eventually consistent
distributed programs [33]. A revision represents a logical replica of system state; revisions can be
forked and joined, which represents creating new (logical) replicas and merging replicas together,
respectively. Revision a can only be joined to revision b if b is a descendant of the revision that
forked a; this constraint ensures that revision graphs are semilattices. Note that this use of lattices
differs from BloomL: whereas we constrain how data values can change, Burckhardt et al. constrain
how replicas can synchronize their states. Another difference is that Burckhardt et al. allow non-
deterministic outcomes, whereas we focus on confluence. In subsequent work, Burckhardt et al.
have also proposed using abstract data types to encapsulate distributed state [34], although it is
unclear whether their language allows user-defined types.

Parallel programming: Lattices have also been applied to languages for parallel programming
with shared memory. Kuper and Newton proposed λpar, a deterministic parallel variant of the
untyped λ-calculus [92]. Their approach guarantees deterministic program outcomes in the face of
concurrent reads and writes to shared state by restricting reads and allowing only monotonically
increasing writes to shared variables. Restricted reads in λpar are expressed by supplying a query
set of lattice elements; a read either blocks or returns a unique element from the query set that is
smaller than or equal to the current value of the shared variable (according to the lattice’s partial
order). This approach to restricting reads is somewhat similar to the use of threshold tests in BloomL.

Extending monotonicity in deductive databases: Adding non-monotonic operators to Datalog
increases the expressiveness of the language but introduces significant complexities: unrestricted use
of non-monotonicity would allow programs that imply logical contradictions (e.g., “p iff ¬p”) [27].
A simple solution is to disallow recursion through aggregation or negation, which admits only the
class of “stratified programs” [15]. Many attempts have been made to assign a semantics to larger
classes of programs (e.g., [63, 132, 133, 150]).

In addition to assigning a semantics to programs containing non-monotonic operators, there has
also been research on expanding the class of operators considered to be monotone. The prior work
most in the spirit of BloomL is by Ross and Sagiv on monotonic aggregation [134]. Their framework
is broader than the term “aggregation” would suggest. They actually look generally at monotone
functions between partially ordered domains, which conceptually includes our lattice least upper
bounds, monotone functions and morphisms (though they do not make those distinctions). They
extend the notion of monotone programs to include “growth” by substituting a larger element in
an atom for a smaller one. As we do, they require the lattice-valued columns to be functionally
dependent on the other attributes in a predicate. One of their main results is that if the target domain
of a monotone function is a complete lattice, then a program that uses such a function has a unique
least fixpoint. While BloomL has much in common with Ross and Sagiv, there are several differences.
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They want to expand the collection of monotone programs but do not consider confluent distributed
programming. In particular, they do not exploit the idempotence of least upper bound (since their
source domain need not be a lattice), which is important to us, since it gives confluence with
“at-least-once” message delivery. Also, they do not single out monotone functions that are actually
morphisms. Hence they do not realize the evaluation flexibility we get from such functions. Finally,
they do not propose a practical programming language or a framework that allows user-defined
lattices to be composed safely.

Köstler et al. investigate deduction in the presence of a partial ordering of ground atoms, as might
be induced by a lattice ordering on predicate columns [90]. They focus on reduced interpretations
and models, where any atom dominated by another atom is discarded (unless it belongs to an
unbounded maximal chain). One difference between their approach and ours is that reduced models
need not satisfy the key dependencies we employ, because a pair of atoms that agree on a key need
not have a common least upper bound. Köstler et al. construct a complete lattice over equivalence
classes of reduced interpretations. However, the least upper bound of a set of models in this lattice
may be infinite, even if each of those models is finite. We suspect our approach and theirs may be
isomorphic when the monotone ordering on atoms is induced by lattice-valued columns, where the
lattices have no infinite chains.

The approach of Zaniolo and Wang [160] to aggregates in LDL++ is quite distinct from that of
Ross and Sagiv, and, hence, from ours. Zaniolo and Wang do not use a lattice as the target domain
for an aggregate or other kind of merge function. Rather, they achieve a kind of monotonicity by
having an aggregate compute a series of partial results, rather than a single final result. With their
formulation, a program computing an average would be judged monotone, where it would not for
us. There are several reasons their treatment is not suitable for our purposes. For one, they point
out that their programs are not monotone with the inclusion of a predicate for a final result. They
do show examples where the partials alone suffice, for example, where the result of an increasing
aggregate, such as sum, is compared to an upper bound. However, we see no machinery that would
automatically distinguish such a use from an unsafe one, say with average. Further, their use of the
choice() construct to assign an order to a set so an aggregate function can iterate over it poses two
problems for us. One is that they allow different orders to yield different aggregate results; this does
not fit with our goal of confluence. More problematic is that in a distributed computation, choice()
would require communication to obtain a consistent order at different nodes, which goes against our
desire for different sites to arrive at the same answer without coordination.

3.7 Discussion and Future Work
A key aspect of BloomL is that it enables the composition of consistent components. Rather than
reasoning about the consistency of an entire application, the programmer can instead ensure that
individual lattice methods satisfy local correctness properties (e.g., commutativity, associativity,
and idempotence). Ensuring that these properties hold for simple lattice types is much simpler than
reasoning about the end-to-end behavior of a distributed system. CALM analysis verifies that when
these modules are composed to form an application, the complete program satisfies the desired
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consistency properties.
Nevertheless, designing a correct lattice type can still be difficult. When developing new lattice

types (e.g., the ldom lattice described in Section 3.4), we found it useful to write a simple randomized
testing framework. Our tool generates a set of random ldom values containing a single version-value
pair, and then explores all interleavings of merges between these values. Note that violations of
the commutativity, associativity, and idempotence properties can be observed without needing
domain knowledge about the semantics of the lattice type under test, making our testing tool fairly
general-purpose. Nevertheless, considerably more work could be invested to develop a principled
test data generation framework for BloomL programs, perhaps drawing upon recent work on test
generation for Bloom [12]. Another avenue for verifying lattice correctness would be to introduce a
restricted DSL for lattice implementations. Such a DSL would likely not need to be Turing complete,
which would make formal verification of correctness an easier task.

In this chapter, we have focused on programming with monotonically increasing values. In fact,
many distributed programs feature values that increase monotonically for a period but then become
immutable. For example, the lcart lattice described in Section 3.5 accumulates updates but then
eventually becomes “complete” and stops changing. Once a value is immutable, any function can
safely be applied to it (whether monotone or not) without risking inconsistency. The lcart (and
lbool) lattices demonstrate that BloomL can represent such “monotonic-then-immutable” values,
but we suspect that supporting immutability more directly might be useful. For example, a compiler
analysis proving that a value is immutable in a certain situation would allow non-monotonic
functions to safely be applied to it. Some immutable values can also be represented more efficiently:
for example, a complete lcart need only store the “summarized” cart state, not the log of client
operations.

The ability to commute operations is not always important—commutativity is useful primarily
because it allows replicas to safely disagree on the ordering of two operations. This is valuable when
agreeing on the order of operations is expensive and new conflicting operations might be introduced
concurrently—that is, in the period just after an operation has been initiated in a distributed system.
However, after a certain period of time, it is likely that knowledge of the operation has been
communicated to all nodes, and hence the position of that operation in a global event order can be
agreed upon relatively cheaply: by this point, retaining the metadata needed to allow commutativity
is often not useful. An analogy with financial systems is instructive: during the course of a single
day, different sites might accept operations (e.g., account debits and credits) which might conflict
or violate correctness invariants. During this period, operations might be marked tentative or the
system might need to invoke “compensation” logic to recover from conflicts. However, at some
point (e.g., the end of the day or the end of the quarter), this uncertainty will be resolved and
the “final” state of the system can easily be determined, at which point no future compensation
or operation reordering is necessary [79]. The lcart lattice is a simple example of this kind of
behavior. In the following chapter, we explore automatic program rewrites that exploit a similar
pattern: situations in which information is monotonically accumulated for a certain period, but can
eventually be safely discarded.
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3.8 Conclusion
In this chapter, we proposed BloomL, a distributed variant of Datalog that extends logic programming
with join semilattices. In so doing, BloomL captures and formalizes the common “ACID 2.0” design
pattern for writing application logic on top of loosely consistent distributed storage, which makes
BloomL a useful tool for coordination-free, consistent distributed programming. Like CvRDTs,
BloomL allows application-specific notions of “progress” to be represented as lattices and goes
further by enabling safe mappings between lattices. BloomL improves upon our own earlier work by
expanding the space of recognizably monotonic programs, allowing more programs to be verified as
eventually consistent via CALM analysis. In addition to providing richer semantic guarantees than
previous approaches, in our experience BloomL provides a natural and straightforward language for
building distributed systems.
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Chapter 4

Edelweiss: Automatic Distributed Storage
Reclamation

“Blossom of snow may you bloom and grow,
bloom and grow forever.”
—Oscar Hammerstein, “Edelweiss”

When building loosely consistent distributed systems, a common pattern is to use immutable
state whenever possible [46, 59, 77, 111, 112]. This technique avoids the use of mutable shared
state, which is widely seen as a common source of problems in distributed programming. Rather
than directly modifying shared state, processes instead accumulate and exchange immutable logs
of messages or events, a model we call Event Log Exchange (ELE): state mutation operations are
transformed into an operation (or “event”) log. Previously learned information is never replaced
or deleted, but can simply be masked by recording new log entries to indicate that the previous
information should be ignored.

By using event logs, ELE designs achieve a variety of familiar benefits from database research.
For example, rather than determining a conservative global order for modifications to shared state,
ELE can allow operations to be applied in different orders at different replicas and reconciled later,
reducing the need for coordination and increasing concurrency and availability. ELE allows simple
mechanisms for fault tolerance and recovery via log replay, and provides a natural basis for system
debugging and failure analysis.

ELE is an attractive approach to simplifying distributed programming, but it introduces its own
complexities. If each process accumulates knowledge over time, the required storage will grow
without bound. To avoid this, ELE designs typically include a background “garbage collection” or
“checkpointing” protocol that reclaims information that is no longer useful. This pattern of logging
and background reclamation is widespread in the distributed storage and data management literature,
having been applied to many core techniques including reliable broadcast and update propaga-
tion [52, 53, 75, 86, 109, 123, 135, 159], group communication [66], key-value storage [5, 58, 159],
distributed file systems [72, 102, 127], causal consistency [24, 93, 103], quorum consensus [82],
transaction management [3, 37], and multi-version concurrency control [26, 128, 136, 154].
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Despite the similarity of these example systems, each design typically includes a storage
reclamation scheme that has been developed from scratch and implemented by hand. Such schemes
can be subtle and hard to get right: reclaiming garbage too eagerly is unsafe (because live data is
incorrectly discarded), whereas an overly conservative scheme can result in hard-to-find resource
leaks. Moreover, the conditions under which stored values can be reclaimed depend on program
semantics; hence, a hand-crafted garbage collection procedure must be updated as the program is
evolved, making software maintenance more difficult.

It would seem that ELE simply trades the difficulties of consistency for a different set of
difficulties in space reclamation. In this chapter, we make ELE significantly more attractive by
removing the burden of space reclamation from the programmer. We present a collection of program
analyses that allow background storage reclamation to be automatically generated from program
source code.

We introduce Edelweiss, a Bloom sublanguage that omits primitives for mutating or deleting
data. Instead, Edelweiss programs describe how local knowledge contributes to the distributed com-
putation. The system computes the complementary garbage collection logic: that is, it automatically
and safely discards data that will never be useful in the future.

We validate our work by demonstrating a wide variety of communication and storage protocols
implemented as Edelweiss programs with efficient, automatically generated reclamation logic. In
this chapter, our demonstrations of Edelweiss include reliable unicast, reliable broadcast, a replicated
key-value store, causal consistency, and atomic read/write registers. The garbage collection schemes
generated by Edelweiss are often similar to hand-written schemes proposed in the literature for
each design. Moreover, removing the need for hand-crafted garbage collection schemes simplifies
program design—the resulting programs are more declarative, and the programmer can focus on
solving their domain problem rather than worrying about storage.1

4.1 Language Definition
Edelweiss is a sublanguage of Bloom that imposes the following restrictions on programs:

1. Deletion rules cannot be used (<- operator).
2. Channel messages are stored persistently. That is, the lhs of a rule that reads messages from a

channel must be persistent.
3. Channels are derived from persistent collections. That is, if a channel appears on the lhs of a

rule, the rule’s rhs must consist of monotone operators over persistent collections.
These conditions ensure that nodes accumulate knowledge over time. Furthermore, once a node
decides to send message m to node n, it never “retracts” that decision. Finally, once a node n has
received message m, n remembers that message in every subsequent timestep.

These restrictions are natural when building ELE systems that accumulate and exchange im-
mutable values. Nevertheless, Edelweiss would seem to preclude efficient evaluation because nodes
only accumulate facts over time. In the remainder of this chapter, we introduce a collection of

1An abbreviated version of the material in this chapter appeared in the Proceedings of the VLDB Endowment [41].
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Technique Goal Requirements Mechanism Description

Avoidance of
Redundant Messages
(ARM)

Avoid sending
duplicate mes-
sages

Downstream (receiver)
logic ignores duplicates

Add logic to send
acks; avoid send-
ing ack’ed mes-
sages

§4.2

Positive Difference
Reclamation (DR+)

Reclaim stor-
age for X in
X.notin(Y)

X, Y are persistent; logic
downstream of X is
reclaim-safe

Reclaim from X
upon match in Y

§4.2

Negative Difference
Reclamation (DR−)

Reclaim storage
for X and Y in
X.notin(Y)

X, Y are persistent; logic
downstream of X and Y
is reclaim-safe; notin
quals cover X’s keys

Create range
collection for X’s
keys; reclaim
from X and Y
upon match

§4.4

Range Compression Store gap-free
sequences
efficiently

Column values contain
one or more gap-free
sequences; no non-key
columns

range collection §4.2, §4.3

Punctuations [148] Reduce storage
needed for join
input collections

Join appears as input
to notin; punctuation
matches join predicate

sealed collec-
tion, supplied
by user, or in-
ferred from rule
semantics

§4.3, §4.3, §4.5

Table 4.1: Summary of mechanisms and analysis techniques in this chapter.

mechanisms (Table 4.1) that enable Edelweiss programs to be automatically and safely rewritten
into equivalent Bloom programs that use storage efficiently.

4.2 Reliable Unicast
As described in Chapter 2, channels provide asynchronous messaging. Although asynchronous
communication matches the capabilities of the physical network, many applications find it conve-
nient to use reliable unicast, in which a sender repeatedly transmits a message until it has been
acknowledged by the recipient.

Listing 4.1 shows a naive reliable unicast program. Each message contains a unique ID, destina-
tion address, and payload. The sbuf collection is the sender-side buffer; communication is expressed
by copying sbuf into the chn channel (line 11); the recipient persists delivered messages in rbuf
(line 12). Note that because sbuf is persistent (as declared on line 6), Bloom’s semantics [13]
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1 class Unicast
2 include Bud

4 state do
5 channel :chn, [:id] => [:@addr, :val]
6 table :sbuf, [:id] => [:addr, :val]
7 table :rbuf, sbuf.schema
8 end

10 bloom do
11 chn <~ sbuf
12 rbuf <= chn
13 end
14 end

Listing 4.1: Naive reliable unicast in Edelweiss.

dictate that a new chn message will be sent for every timestep at the sender.
Although it is concise and declarative, the naive reliable unicast program has two obvious

shortcomings. First, an unbounded number of chnmessages are derived. Although inefficient, this is
not incorrect: Bloom collections have set semantics and the receiver-side logic is idempotent, which
means that delivering the same message more than once has no effect. Second, the sender-side buffer
sbuf grows without bound. This is unnecessary in practice: once a message has been successfully
delivered to the recipient, it need not be retained by the sender.

We could address both problems by making the program more complex—for example, by
arranging for receivers to emit acks and for senders to delete acknowledged messages. However,
these modifications would not change the user-visible behavior of the program! Acks and storage
reclamation are not necessary for correctness—rather, they are only needed to help ensure that
resources are used efficiently. We would like the best of both worlds: a concise, declarative program
that has an efficient implementation. In the remainder of this section, we introduce a series of
techniques that achieve this goal by allowing acks and storage reclamation to be introduced by safe,
automatic program transformations from Edelweiss to an equivalent Bloom program.

Avoidance of Redundant Messages (ARM)
We begin by detailing ARM, an automatic program rewrite that avoids redundant communication
between nodes. This requires identifying when delivering a message multiple times is redundant,
and then rewriting the program to avoid duplicate transmissions.

In Edelweiss, detecting when duplicate channel deliveries are redundant is simple: the restrictions
in Section 4.1 imply that once any message has been delivered, the receiver will persist it and
subsequent attempts to send that message can safely be suppressed. Therefore, we can rewrite every
Edelweiss rule that inserts messages into a channel to avoid inserting duplicates. For the program
in Listing 4.1, avoiding duplicates would be easy if the sender could directly access the receiver’s
buffer:
chn <~ sbuf.notin(rbuf)
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1 class UnicastAckRewrite
2 include Bud

4 state do
5 channel :chn, [:id] => [:@addr, :val]
6 table :sbuf, chn.schema
7 table :rbuf, chn.schema
8 table :chn_approx, [:id]
9 channel :chn_ack, [:@sender, :id]
10 end

12 bloom do
13 chn <~ sbuf.notin(chn_approx, :id => :id)
14 rbuf <= chn
15 chn_ack <~ chn {|c| [c.source_addr, c.id]}
16 chn_approx <= chn_ack.payloads
17 end
18 end

Listing 4.2: Reliable unicast with acknowledgments; ARM-generated code is italicized.

This approach is not possible because Edelweiss nodes can only communicate via message passing.
However, a simple variant is possible: receivers can inform senders about messages that have been
successfully delivered. Because such communication is asynchronous, the sender will only have a
lower bound on the receiver’s state—but since the receiver ignores duplicate messages anyway, this
does not harm correctness.

There are many ways in which senders can learn a conservative estimate of the receiver’s state,
such as cumulative, timer-based acks (as in TCP) or “piggybacking” acks onto normal message
traffic. For programs involving multiple senders and receivers, even more strategies are possible,
such as epidemic gossip [52] or tree-based multicast. Any of these schemes could be used by ARM,
since they all accomplish the same purpose of allowing senders to lower-bound the receiver’s state.
For unicast delivery, a simple scheme suffices: a receiver sends an ack whenever they receive a
message.

The result of applying ARM to the naive unicast program is shown in Listing 4.2. ARM
automatically introduces a new channel (line 9), which is used to send acks upon successful receipt
of a chn message (line 15). Senders persist acks (line 16). Finally, ARM rewrites the rule that sends
chn messages to avoid sending acknowledged messages (line 13). Note that ARM automatically
infers that acks only need to contain message IDs (line 15), not the entire message. This is possible
because id is the key of chn (line 5), which means that a given ID is associated with exactly one
message.

Positive Difference Reclamation (DR+)
The ARM rewrite allows the simple unicast program in Listing 4.1 to avoid sending an unbounded
number of messages, but the rewritten program in Listing 4.2 still does not reclaim acknowledged
messages from sbuf. In fact, the program’s storage consumption has grown because the sender
also persists the chn_approx collection. In this section, we introduce DR+, a program rewrite that
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automatically and safely reclaims storage, and show how it can be applied to sbuf; we address
chn_approx in the following section.

DR+ exploits the semantics of set difference, which is expressed in Bloom using the notin
operator. Consider X.notin(Y), where X and Y are persistent. Recall that X and Y are the “positive”
and “negative” inputs to the notin, respectively: as new tuples arrive in Y, any matching tuples in X
will no longer appear in the output of the notin. Moreover, because Y is persistent, any X tuple that
has a match in Y will never appear in the output of the notin again. For the purposes of this rule, X
tuples with matches in Y will never contribute to program outcomes and no longer need to be stored.

To reclaim from X, Edelweiss needs to prove that doing so will not change the output of any
other rule that references X. In many cases, this is easy to do: for example, if X appears on the
rhs of a projection or selection rule with a persistent collection on its lhs, we can reclaim from X
(intuitively, the rule makes a persistent “copy” of the X tuple). When X appears in more than one
set difference rule, we can reclaim X tuples when the conjunction of the reclamation conditions of
the rules are satisfied; we give an example in Section 4.4. Finally, reclaiming from collections that
appear in joins is more complicated; we discuss this scenario in Section 4.5.

Returning to the reliable unicast example, we observe that sbuf is only referenced by a single
rule, where it is used as the positive input to a notin operator (line 13 in Listing 4.2). Because
chn_approx is persistent, DR+ will reclaim sbuf tuples that have matches in chn_approx. This
is done by adding this rule to the program:
sbuf <- (sbuf * chn_approx).lefts(:id => :id)

The rhs computes the equijoin of sbuf and chn_approx on id and returns the left join input
(tuples from sbuf); the <- operator removes the resulting sbuf tuples. This rule corresponds to our
intuition that once the recipient has acknowledged successful delivery of a message, the message
can safely be discarded by the sender.

Note that ARM and DR+ are independent program rewrites, but they work together profitably:
ARM introduces set difference operations and DR+ exploits the semantics of set difference to safely
and automatically reclaim storage.

Range Compression
Lastly, we need to address the storage used by the chn_approx collection. Unfortunately, DR+ is
not useful because chn_approx does not appear as the positive input to a notin operator. Moreover,
reclaiming tuples from chn_approx is problematic in principle: if we deleted such tuples, we would
have no information at the sender to prevent redelivering acknowledged sbuf messages in the
future.

Rather than reclaiming from chn_approx, can we instead represent the entire collection using
a small amount of storage? Fortunately, this is feasible: recall that chn_approx only contains a
single column, the message ID. Since IDs are assigned by a single sender, the sender can choose
IDs from a gap-free, totally ordered sequence such as the natural numbers starting at some constant
k. Because we expect all messages to eventually be delivered, chn_approx will eventually contain



CHAPTER 4. EDELWEISS: AUTOMATIC DISTRIBUTED STORAGE RECLAMATION 46

all the IDs from k to n. Hence, our task is much easier: we need to represent {k, . . . , n}, which we
can do by storing the smallest and largest elements of the set.

However, some elements of the set {k, . . . , n} might be missing from chn_approx at any given
time. Hence, rather than a single pair [k, n], we use a set of pairs {[k0, k1], . . . , [km, kn]}; each pair
efficiently represents a gap-free range of numbers, while missing IDs are represented by gaps
between the “high” element of one pair and the “low” element of the next. This data structure is a
1-dimensional range tree [25]; we call the compression technique it allows range compression.

Range compression can be viewed as a generalization of the “low water mark” used by reliable
delivery schemes such as TCP, in which senders assign sequence numbers to packets and receivers
send acks to indicate the prefix of the sequence they have received. Rather than requiring program-
mers to manipulate sequence numbers and use integer inequality, range compression achieves a
similar degree of efficiency while allowing the program to deal with an unordered set of events. This
has two benefits: first, range compression automatically handles situations in which IDs are omitted
or delivered out-of-order, without requiring the programmer to explicitly track a “low water mark.”
Second, set-oriented programs are convenient to develop, particularly in set-oriented languages
such as Bloom.

In the current Edelweiss prototype, developers explicitly enable range compression by using
a new collection type, range. For example, “range :chn_approx, [:id]” would replace line 8 in
Listing 4.2. In addition, the Edelweiss runtime automatically applies range compression to outbound
channel messages when profitable—this allows a single acknowledgment to describe the successful
delivery of many chn messages. It would be possible to apply range compression to all collections
by default, but we haven’t found the need to implement this yet.

4.3 Reliable Broadcast
In the previous section, we showed how a declarative Edelweiss program for reliable unicast can be
implemented efficiently. In the following sections, we show how the same techniques can be applied
to a series of more complicated Edelweiss programs. We begin by generalizing reliable unicast to
reliable broadcast and then in Section 4.4 we use reliable broadcast to build a replicated key-value
store. In Section 4.5, we then extend the key-value store to provide causal consistency guarantees.
Finally, Section 4.6 discusses how to implement atomic read/write registers. Importantly, all of
these programs can be written in Edelweiss and implemented efficiently via extended versions of
the techniques introduced in Section 4.2.

Fixed Membership
Listing 4.3 shows a naive reliable broadcast program. Any node can send a message by inserting
into the log collection. The messages in the log are sent to every node in the group (line 11).2

When a node receives a message, it adds the message to its log (line 12); that node will re-broadcast
2Note that + concatenates tuples. Broadcast is expressed as Cartesian product—i.e., a join between node and log

with no join predicate.
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1 class Broadcast
2 include Bud

4 state do
5 sealed :node, [:addr]
6 table :log, [:id] => [:val]
7 channel :chn, [:@addr, :id] => [:val]
8 end

10 bloom do
11 chn <~ (node * log).pairs {|n,l| n + l}
12 log <= chn.payloads
13 end
14 end

Listing 4.3: Reliable broadcast to a fixed set of nodes.

the message in the future. Each message has a unique ID. To assign unique IDs without global
coordination, a common technique is to use 〈node-id, seqnum〉 pairs, where seqnum is a node-local
sequence number.3 We assume the broadcast group contains a fixed set of nodes; we relax this
assumption in Section 4.3.

The program in Listing 4.3 is simple—indeed, it closely resembles the pseudocode for the
textbook reliable broadcast algorithm [116]—but as with naive reliable unicast (Listing 4.1), it
suffers from unbounded messaging and storage.

Bounded Messaging

As with reliable unicast (Section 4.2), the ARM rewrite automatically avoids unbounded messaging
by inserting an acknowledgment protocol. We omit the rewritten program for space reasons, but the
same acking scheme can be used. To avoid sending acknowledged messages, line 11 is rewritten to:
chn <~ (node * log).pairs {|n,l| n + l}.notin(chn_approx, 0 => :addr, 1 => :id)

The notin predicate checks for an equality match between the first two columns of the join result
against the addr and id fields of chn_approx. Note that unlike with reliable unicast, acks include
node addresses as well as message IDs. This is necessary because a message might be delivered
successfully to some nodes but not others; moreover, ARM deduces this automatically because the
key of chn contains both fields (line 7).

Acknowledgments and Logical Clocks

After applying ARM, each node persists two collections that grow over time: log, the set of
messages, and chn_approx, which holds each node’s knowledge about the messages that have
been received by the other nodes. The storage required for chn_approx can be reduced via

3We implemented 〈node-id, seqnum〉 pairs as a single 64-bit integer consisting of a 32-bit node ID prepended to a
32-bit sequence number. This is compatible with range compression, since multiple IDs generated by the same node
will form a gap-free sequence.
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range compression, as described in Section 4.2. Recall that for reliable unicast, chn_approx will
eventually be range-compressed to a single value, effectively yielding a logical clock. With broadcast,
chn_approx will contain a single “clock” value for each node in the broadcast group and hence
behaves similarly to a vector clock [113]. That is, the combination of ARM and range compression
essentially “discovers” the relationship between event histories [137] and logical clocks! Edelweiss
allows programmers to simply manipulate sets of immutable events; it then automatically produces
the corresponding “clock” management code.

Punctuations

To reclaim messages from log, we can use the DR+ rewrite introduced in Section 4.2. However,
reclaiming broadcast messages is more complicated than reclaiming unicast messages—intuitively,
a unicast message can be reclaimed as soon as it has been successfully delivered to the recipient,
whereas a broadcast message can only be reclaimed once it has been delivered to every node in the
group. This difference is manifest in the program:
chn <~ (node * log).pairs {|n,l| n + l}.notin(chn_approx, 0 => :addr, 1 => :id)

As chn_approx grows, it matches tuples in the output of the join between node and log; our goal
is to use tuples in chn_approx to reclaim from the join’s input collections. To do so, Edelweiss
must reason about how the join’s inputs can grow over time. For example, to reclaim a tuple t from
log, Edelweiss must ensure that all future join outputs that depend on t have already been produced
and that all such output tuples have a match in chn_approx.

This can be done by adapting the concept of punctuations, which were first introduced for
processing queries over unbounded data streams [148]. A punctuation is a guarantee that no more
tuples matching a predicate will appear in a collection. For now, we consider a simple class
of punctuations: the assertion that no more tuples will ever appear in a collection. Given (X *
Y).notin(Z), suppose we want to reclaim a tuple y ∈ Y . A punctuation asserting that no more X
tuples will arrive implies that we know about all the X tuples that will ever match y. Hence, once we
have seen a match in Z for all the current join results that depend on y, y can safely be reclaimed. Of
course, the symmetry of the join operator means that a similar argument allows reclamation from X
given a punctuation on Y.

Returning to reliable broadcast, Edelweiss can reclaim tuples from log given a punctuation that
no new node tuples will appear. At the beginning of this section, we assumed that the broadcast
group is fixed—hence, the necessary punctuation can safely be produced. As a syntactic convenience,
Edelweiss defines a new collection type called sealed to hold a collection whose contents are fixed
after the system has been initialized. Declaring that node is sealed (line 5 in Listing 4.3) allows the
Edelweiss runtime to automatically emit a punctuation for the collection. The rewritten program
produced by Edelweiss can be found in Listing A.5, but we give the main idea here: punctuations
are represented by tuples in “seal tables” that are defined automatically by Edelweiss. The rules
generated by DR+ join against the seal table for node and thereby wait for a punctuation on node
before reclaiming any tuples from log. Hence, by exploiting the fact that node is sealed, DR+

confirms our intuition that messages can safely be reclaimed once they have been successfully
delivered to all nodes.
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Dynamic Membership
Assuming a fixed broadcast group simplifies deciding when a log entry can be reclaimed. If we relax
this assumption (by declaring that node is a table in line 5 of Listing 4.3), DR+ can no longer
reclaim tuples from log. Indeed, reclaiming from log would be unsafe: if a new tuple appeared in
node, the join between node and log (line 11) implies that all log messages should be delivered to
the newly joined node. Hence, reclaiming from log would change user-visible program behavior.

To allow both dynamic membership and safe reclamation from the log table, we need to change
the program to identify situations in which logmessages should not be delivered to new nodes; such
messages can then be reclaimed. We can achieve this using epochs: each epoch has a fixed set of
members and each message identifies the epoch to which it belongs. To change the membership of
the broadcast group, the system moves to a new epoch with a different set of members. Hence, once
the membership of an epoch has been fixed and a message has been delivered to all the members of
that epoch, that message can safely be reclaimed.

Listing 4.4 contains an Edelweiss program implementing this design; the corresponding code
produced by the Edelweiss compiler can be found in Listing A.6. Note that this program is nearly
identical to reliable broadcast with fixed membership, except that the Cartesian product between
node and log (line 11 in Listing 4.3) has been replaced with an equijoin on epoch (line 11 in
Listing 4.4). DR+ automatically exploits the equijoin predicate to enable reclamation using finer-
grained punctuations: given (X * Y).pairs(:k1 => :k2).notin(Z) and a punctuation that
asserts that no more Y tuples will arrive with k2 = c, all X tuples with k1 = c are now eligible
for reclamation. In general, DR+ can exploit punctuations that match the join predicate; since
a Cartesian product is essentially a join with no predicate, DR+ can only use whole-relation
punctuations for such operators.

Applying DR+ to the epoch-based broadcast program produces the expected results: given a
punctuation asserting that no more node facts will be observed for epoch k, the rules produced by
DR+ automatically reclaim any message in epoch k that has been delivered to all the members
of that epoch. The procedure for deciding to move to a new epoch is orthogonal to this program;
a common approach is to use a separate (and more expensive) protocol based on distributed
consensus [29, 117]. After a new epoch has been decided on, the consensus mechanism would then
broadcast a corresponding punctuation, allowing Edelweiss to reclaim messages.

DR+ also allows reclamation from node using punctuations on log: if we can guarantee that
no more log facts will arrive for a given epoch, then once every log fact in that epoch has been
delivered to some node n, n can be reclaimed from node. This follows from the symmetry of the
join predicate on line 11.
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1 class BroadcastEpoch
2 include Bud

4 state do
5 table :node, [:addr, :epoch]
6 table :log, [:id] => [:epoch, :val]
7 channel :chn, [:@addr, :id] => [:epoch, :val]
8 end

10 bloom do
11 chn <~ (node * log).pairs(:epoch => :epoch) {|n,l| [n.addr] + l}
12 log <= chn.payloads
13 end
14 end

Listing 4.4: Reliable broadcast with epoch-based membership

1 class KvsReplica
2 include Bud

4 state do
5 sealed :node, [:addr]
6 channel :ins_chn, [:@addr, :id] => [:key, :val]
7 channel :del_chn, [:@addr, :id] => [:del_id]
8 table :ins_log, [:id] => [:key, :val]
9 table :del_log, [:id] => [:del_id]
10 scratch :view, ins_log.schema
11 end

13 bloom do
14 ins_chn <~ (node * ins_log).pairs {|n,l| n + l}
15 del_chn <~ (node * del_log).pairs {|n,l| n + l}
16 ins_log <= ins_chn.payloads
17 del_log <= del_chn.payloads
18 view <= ins_log.notin(del_log, :id => :del_id)
19 end
20 end

Listing 4.5: Key-value store based on reliable broadcast.

4.4 Key-Value Store
In this section, we use reliable broadcast to build a replicated key-value store (KVS).4 We show that
Edelweiss automatically produces a safe, effective storage reclamation scheme for this program.

Using reliable broadcast to build a KVS is a well-known technique [58, 86, 159]. The store
contains a set of keys and associated values. Clients submit insert and delete operations; replicas
apply these operations to maintain their local view. Each insert operation has a unique ID and a

4The KVS design presented in this section is significantly different from the lattice-based KVS discussed in
Section 3.4. The KVS in Section 3.4 maps a key to a single lattice value and does not directly support deletions; whereas
the KVS we discuss in this section accumulates a log of both insert and delete operations, allows multiple values with
the same key, and computes the current set of “live” key-value pairs dynamically.



CHAPTER 4. EDELWEISS: AUTOMATIC DISTRIBUTED STORAGE RECLAMATION 51

delete operation contains the ID of its corresponding insertion. Following prior work [159], we
allow multiple insertions of the same key with different IDs; all such key-value pairs are included in
the view. Hence, if a key appears multiple times, a given deletion applies to only one of the IDs
associated with that key. The KVS is fully replicated. Building this design using reliable broadcast
is straightforward: a log of insert and delete operations is broadcast to all nodes, and the set of
live keys at any given replica consists of every insertion that has no matching deletion. Listing 4.5
contains a simple Edelweiss program that implements this scheme.

A natural question is how to bound the storage required for operation logs. In prior work [58,
75, 109, 159], researchers proposed hand-crafted protocols that allow safe reclamation by tracking
each node’s knowledge of the state of the other nodes. We show how a similar scheme can safely
and automatically be produced by Edelweiss from the simple, declarative program in Listing 4.5.

Reclaiming Insertions
Because insert and delete operations are used differently, we need to employ two different reclama-
tion strategies. Inserts are used in two places: the broadcast rule (line 14) and the rule to compute
the current view (line 18). Applying ARM to the broadcast rule, we get:
ins_chn <~ (node * ins_log).pairs {|n,l| n + l}.notin(ins_chn_approx, 0 => :addr, 1 => :id)

Observe that ins_log only appears as the positive input to two notin operators, which makes it
a candidate for the DR+ rewrite. As discussed in Section 4.2, we can reclaim from a collection
when the absence of a tuple from the collection would not change user-visible program behavior.
In this case, an ins_log tuple can be discarded when it has a match in both ins_chn_approx
and del_log—since both of those collections are persistent, we know that such an ins_log tuple
will never contribute to the results of either notin ever again. Hence, Edelweiss will safely and
automatically reclaim an insertion once (a) it has been delivered to every node, and (b) it has been
deleted.

Reclaiming Deletions
DR+ cannot reclaim tuples from del_log because it appears as the negative input to a notin
operator (line 18). We encountered a similar situation with the chn_approx collection in reliable
unicast (Section 4.2). In that case, range compression was used to store chn_approx efficiently,
because chn_approx will eventually contain the complete set of message IDs and senders can
choose IDs from a gap-free, ordered sequence. Unfortunately, the set of deleted IDs is likely to
contain many gaps, rendering range compression ineffective. Hence, a new program transformation
is needed to reclaim from del_log. We first consider the conditions that must be satisfied to allow
deletions to be reclaimed, and then generalize this reasoning into an automatic program rewrite.

In the program in Listing 4.5, Edelweiss can determine that each deletion matches at most one
insert operation; this is implied because the notin matches ins_log.id with del_log.del_id
(line 18) and id is a key of ins_log (line 8). Hence, once a del_log entry d has been matched to
an insertion i, we know that no other insertion will ever match d. Hence, we might be tempted to
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conclude that both d and i can be discarded, but that would be mistaken: if another copy of i appears
in ins_log (e.g., because the network delivers a duplicate message), d will have been reclaimed
from del_log and hence i will incorrectly be included in the replica’s view.

Thus, when a replica observes an insertion i that matches a deletion d, both i and d can be
reclaimed if we can guarantee that i will never appear in ins_log again. Fortunately, this can
be done relatively cheaply: id is a key of ins_log and we have already explained how range
compression can be used to represent the set of all message IDs efficiently (Section 4.2). Edelweiss
exploits this fact to store the set of all insertion IDs witnessed by a replica separately, and then only
add new insertions to ins_log if the insert’s ID has not been observed before. In effect, Edelweiss
automatically rewrites the program to split ins_log into two pieces: the set of insert IDs, which is
range-compressed, and the rest of the data associated with each insertion, which is reclaimed when
a matching deletion is observed.

Edelweiss extends these ideas into an automatic program rewrite called Negative Difference
Reclamation (DR−). The rewrite can be applied to expressions of the form X.notin(Y, :A => :B),
where X and Y are persistent and A is a key of X. The program is rewritten as follows:

1. A new range collection is added, X_keys; this stores all the key values that have ever been
observed for X.

2. A rule is added to update X_keys as new tuples appear in X.
3. Every rule that adds new tuples to X is rewritten to include a negation against X_keys; that is,

prospective X tuples whose keys are found in X_keys are ignored.
4. Rules are added to reclaim matching tuples from X and Y. Note that we do not reclaim from
X_keys.

DR+ and DR- are complementary, in that DR+ is effective when the negative input to the notin
can be range compressed, whereas DR− requires that the keys of the positive input be suitable for
range compression. As a heuristic, we use the collection type of the negative notin input to decide
whether to apply DR+ or DR− (that is, DR− is not applied if the inner input is a range collection).

4.5 Causal Consistency
The key-value store presented in Section 4.4 ensures replica convergence but does not provide any
guarantees about the consistency of the view presented by a replica at any time. Many consistency
guarantees have been proposed; recently, several researchers have argued that causal consistency is
a good fit for scalable distributed storage [20, 24, 93, 103, 123]. In this section, we use Edelweiss to
implement a causally consistent KVS and show how the metadata required for causal consistency is
automatically and safely reclaimed.

Background
A causally consistent system respects the causal relationships between operations. Causality is
represented as a partial order over operations: a “happens before” b (written a{ b) if operation
a could have “caused” or influenced operation b [95]. For example, if a client reads a version of
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key x that was produced by write wx and then submits write wy to key y, wx { wy. In a causally
consistent system, a replica’s view will only include wy if it also includes wx.

A common approach to implementing causal consistency is to annotate each operation with
the operations upon which it depends (e.g., wy depends on wx in the example above). Before
a write can be applied to a replica’s view, the replica must first have applied all of the write’s
dependencies; similarly, a replica can only respond to a read operation when the replica’s view
reflects all of the read’s dependencies. In some systems, dependencies between operations are
tracked automatically (e.g., by a client-side library) [103], whereas in other designs, users specify
dependencies explicitly [20, 93]. We assume each operation is provided along with its dependencies,
which is compatible with either scheme.

An operation is safe at a replica if the replica contains all of the operation’s (transitive) depen-
dencies. A write operation w to key k is dominated if there is a safe write operation w′ for key k
such that w { w′. That is, w is dominated if there is another write w′ to the same key that has
w as a dependency, either directly or transitively. Each replica’s view should reflect all the safe,
undominated writes it has observed. If there are two writes to the same key and neither dominates
the other, the writes are concurrent. Some systems handle this situation by invoking a commutative
merge function [103, 123]. We include both versions of the key in the view; a client can then read
both versions and resolve the conflict by issuing a new write that dominates both previous versions
of the key.

Write Operations
To extend the key-value store presented in Section 4.4 to support causal consistency, we begin by
considering how to support write operations. As in the simple KVS, each replica broadcasts its log
of write operations to the other replicas. However, replicas may need to buffer writes they receive
until the dependencies of those writes have been satisfied. Listing 4.6 shows an Edelweiss program
fragment that implements this scheme in lines 14–18. Each log entry has a set of dependencies
(represented as a nested array in the deps column), and log entries are moved from log to safe
when their dependencies are met. The flat_map method (line 15) is used to “unnest” the array in
the deps column.

A replica’s view should contain all the safe, undominated writes it has observed, so next we need
to determine which writes in safe have been dominated. Our initial implementation looked for paths
in the transitive closure of the dependency graph—that is, w dominates w′ if w.key = w′.key and
there is a “path” of transitive dependencies from w that eventually reaches w′. While this design was
correct, it prevented dominated writes from being reclaimed by Edelweiss. On closer examination,
we realized that in this scheme, reclaiming dominated writes is not permissible because a dominated
write to key k might be needed to compute the transitive dependencies of another write k′ on a
different key. Hence, Edelweiss taught us something surprising about our own program!

In recent work [103], Lloyd et al. avoid the need to retain the complete dependency graph by
requiring that a write to key k must include a dependency on a previous write to k (if any exists). We
make the same assumption in Listing 4.6; hence, we can identify dominated writes by looking for
another write to the same key that includes the dominated write as a direct dependency (lines 20–22).
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1 state do
2 table :log, [:id] => [:key, :val, :deps]
3 table :safe, [:id] => [:key, :val]
4 table :dep, [:id, :target]
5 range :safe_keys, [:id]
6 table :safe_dep, [:target, :src_key]
7 table :dom, [:id]
8 scratch :pending, log.schema
9 scratch :missing_dep, dep.schema
10 scratch :view, safe.schema
11 end

13 bloom do
14 pending <= log.notin(safe_keys, :id => :id)
15 dep <= log.flat_map {|l| l.deps.map {|d| [l.id, d]}}
16 missing_dep <= dep.notin(safe_keys, :target => :id)
17 safe <+ pending.notin(missing_dep, 0 => :id) .map {|p| [p.id, p.key, p.val]}
18 safe_keys <= safe {|s| [s.id]}

20 safe_dep <= (dep * safe).pairs(:id => :id) {|d,s| [d.target, s.key]}
21 dom <+ (safe_dep * safe).lefts(:target => :id, :src_key => :key)
22 {|d| [d.target]}.notin(dom, 0 => :id)
23 view <= safe.notin(dom, :id => :id)
24 end

Listing 4.6: Causal consistency for write operations.

Edelweiss generates an effective reclamation scheme for this program. As expected, log entries
are reclaimed once they have been delivered to all replicas and their dependencies have been met at
the local replica. Tuples in dep can be reclaimed once their associated log entry is safe. Interestingly,
safe_dep and dom facts can be reclaimed as soon as they are produced: while logically the set of
dominated writes grows over time, Edelweiss observes that a dominated write is only needed to
remove tuples from safe. Hence dom and safe_dep facts can be immediately reclaimed.

Facts in safe can be reclaimed once they have been dominated. Note that safe appears in
two joins (lines 20 and 21); Edelweiss must determine that reclaiming from safe will not change
the results of either join. In general, this might require punctuations on the other join input, but
Edelweiss supports several special cases that avoid the need for user-supplied punctuations for this
program. On line 20, dep is produced by a flat_map operation involving the key of log; hence,
Edelweiss can infer punctuations on the first column of dep. This matches our intuition that no
new dependencies will be observed for a given write. Similarly, the join on line 21 matches the key
column of safe with the key columns of safe_dep; hence, once a safe tuple s has a match in
safe_dep, Edelweiss knows that no other join results will depend on s.

Read Operations
The KVS in Section 4.4 does not explicitly support read operations: each replica uses the operation
log to compute the view collection, and clients read by (implicitly) examining the replica’s current
view. To implement causal consistency for reads, we first need to represent read operations explicitly.
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1 state do
2 table :read_buf, [:id] => [:key, :deps, :src_addr]
3 scratch :read_pending, read_buf.schema
4 scratch :read_dep, [:id, :target]
5 scratch :missing_read_dep, read_dep.schema
6 scratch :safe_read, read_buf.schema
7 table :read_resp, resp_chn.schema
8 end

10 bloom do
11 read_buf <= req_chn {|r| [r.id, r.key, r.deps, r.source_addr]}
12 read_pending <= read_buf.notin(read_resp, :id => :id)
13 read_dep <= read_pending.flat_map {|r| r.deps.map {|d| [r.id, d]}}
14 missing_read_dep <= read_dep.notin(safe_keys, :target => :id)
15 safe_read <+ read_pending.notin(missing_read_dep, 0 => :id)
16 read_resp <= (safe_read * view).pairs(:key => :key) do |r,v|
17 [r.src_addr, r.id, r.key, v.val]
18 end
19 resp_chn <~ read_resp
20 end

Listing 4.7: Causal consistency for read operations.

In Listing 4.7, a client initiates a read request by sending a message over the req_chn channel;
when the read’s dependencies have been satisfied, the replica responds via the resp_chn channel.
If a read request is unsafe (i.e., if it specifies dependencies that are not satisfied by the local replica),
the replica buffers the request until its dependencies have been met.

Edelweiss provides several features that simplify this program. First, ARM prevents unbounded
resp_chn messages by inserting client-side acknowledgment logic (we omit the client code for
brevity). Second, DR+ reclaims read_buf messages when the read’s dependencies have been
satisfied. Finally, DR− reclaims read_resp tuples when the client’s acknowledgment is received.
Perhaps more importantly, Edelweiss automatically handles the interactions between the reclamation
conditions of all these rules and the safety and dominance rules in Listing 4.6, allowing the developer
to focus on implementing correct application-level behavior.

4.6 Read/Write Registers
In this section, we use Edelweiss to implement atomic read/write registers [96], a common building
block for distributed algorithms. An atomic register allows a single writer to interact with multiple
concurrent reader processes and guarantees that the values returned by reads are consistent with a
serial ordering of operations. Reading an atomic register reflects the latest value written (in contrast
to the KVS presented in Section 4.4, in which each insertion for a given key adds to its list of
values).

While traditional designs utilize mutable storage, we show how a mutable register interface
can be implemented via an Edelweiss program that accumulates an immutable event log. We then
extend the program to support atomic writes to multiple registers and multi-register reads that
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1 class AtomicRegister
2 include Bud

4 state do
5 table :write, [:wid] => [:name, :val]
6 table :write_log, [:wid] => [:name, :val, :prev_wid]
7 table :dom, [:wid]
8 scratch :write_event, write.schema
9 scratch :live, write_log.schema
10 end

12 bloom do
13 write_event <= write.notin(write_log, :wid => :wid)
14 write_log <+ (write_event * live).outer(:name => :name) do |e,l|
15 e + [l.wid.nil? ? 0 : l.wid]
16 end
17 dom <= write_log {|l| [l.prev_wid]}
18 live <= write_log.notin(dom, :wid => :wid)
19 end
20 end

Listing 4.8: Atomic read/write registers.

reflect a consistent snapshot. For all of these programs, Edelweiss enables automatic and safe
garbage collection, generating space-efficient implementations that are semantically equivalent to
the original programs.

Single-register Writes
Listing 4.8 contains an implementation of atomic registers in Edelweiss. As in the KVS program
(Section 4.4), the current register values are computed as a view over an append-only event log.

The collection write_log records the history of writes to a set of registers. The atomic register
model assumes a single writer per register [96], so each entry in write_log for a particular register
has exactly one predecessor—the previously written value—which it supersedes. The dom table
contains those write IDs that are dominated by a “more recent” entry in write_log (line 17)—i.e.,
those IDs that are the predecessor (or prev_wid) of another record. Line 18 defines the view live
as the subset of records in write_log that are not dominated by a more recent record. The single
writer assumption implies that live contains exactly one record at any time for a given register.

To write to a register, a client inserts into the write collection. If the write has not yet been
applied to the write log, this generates a write_event (line 13). We then insert a new record into
write_log containing the new value along with the ID of the previous write to that register, or 0 if
this is the first write (lines 14–16).

The program has three persistent collections: write, write_log, and dom. Edelweiss uses
DR+ to reclaim records from write as soon as they are reflected in write_log. DR- can be
used to reclaim from both write_log and dom. As discussed in Section 4.4, DR- exploits the fact
that the notin predicate on line 18 only uses the key column of write_log. Hence, Edelweiss
knows that once a write_log entry has been dominated, both the write_log and dom facts can



CHAPTER 4. EDELWEISS: AUTOMATIC DISTRIBUTED STORAGE RECLAMATION 57

1 class AtomicBatchWrites
2 include Bud

4 state do
5 table :write, [:wid] => [:batch, :name, :val]
6 table :write_log, [:wid] => [:batch, :name, :val, :prev_wid]
7 table :commit, [:batch]
8 table :dom, [:wid]
9 scratch :live, write_log.schema
10 scratch :commit_event, write.schema
11 end

13 bloom do
14 commit_event <= (write * commit).lefts(:batch => :batch)
15 .notin(write_log, 0 => :wid)
16 write_log <+ (commit_event * live).outer(:name => :name) do |e,l|
17 e + [l.wid.nil? ? 0 : l.wid]
18 end
19 dom <= write_log {|l| [l.prev_wid]}
20 live <= write_log.notin(dom, :wid => :wid)
21 end
22 end

Listing 4.9: Atomic registers supporting multi-register writes.

be reclaimed—as long as we can prevent any duplicate write_log tuples from appearing. To
enable this, Edelweiss automatically creates a range collection that stores all the write IDs ever
observed—fortunately, this set can be effectively range compressed.

Multi-register Writes
Next, we show how to support atomic updates to multiple keys (Listing 4.9). That is, we allow writes
to be supplied for multiple keys and then eventually committed, at which point all the associated
writes are applied atomically.

Clients insert values into write as before, but these values are not applied to write_log until
a commit record exists for their batch (lines 14–15). As in the atomic register program, we assume
that at most one value for every register exists in commit_event at any time. For each such register,
a fact is inserted into write_log reflecting the last effective write for that register (live.wid) as
its prev_wid (lines 16–18).

Edelweiss utilizes the DR+ rewrite and client-supplied punctuations to synthesize garbage
collection logic for this program. Lines 14–15 join write with commit, but the lefts operator
preserves only records from write into the notin operator. Hence, DR+ recognizes that it can
“push up” the notin operator into the join and reclaim redundant records from write as soon as
they are reflected in write_log. In order to reclaim records from commit, however, we need to
rule out the possibility of a write record appearing after its corresponding commit record has been
deleted. If the client seals write.batch as part of batch commit—a promise to produce no future
writes within that batch—DR+ uses this additional information to generate rules that safely reclaim
from commit.
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1 class AtomicReads
2 include Bud

4 state do
5 table :read, [:batch]
6 range :read_commit, [:batch]
7 table :snapshot, [:effective, :wid, :batch, :name, :val, :prev_wid]
8 range :snapshot_exists, [:batch]
9 scratch :read_begin, read.schema
10 scratch :read_view, snapshot.schema
11 end

13 bloom do
14 snapshot_exists <= snapshot {|r| [r.effective]}
15 read_begin <= read.notin(snapshot_exists, :batch => :batch)
16 snapshot <+ (read_begin * live).pairs {|r,l| r + l}
17 read_view <= snapshot.notin(read_commit, :effective => :batch)
18 end
19 end

Listing 4.10: Atomic registers supporting snapshot reads.

Snapshot Reads
Ensuring that all writes within a batch become visible atomically is not sufficient to guarantee
consistent reads of multiple registers. Consider the following history in which batch T2 commits
after T1:

T1 : W(x = 1), W(y = 1)
T2 : W(x = 2), W(y = 2)

Without any synchronization, a multi-register read (R1) could view a state not produced by a serial
ordering of write batches:

R1: R(x = 1), R(y = 2)

We could rule out this anomaly by forcing multi-register reads to participate in a concurrency
control scheme with write batches and commit according to a serializable ordering. In a workload
in which reads are common or long-running, however, such a scheme can have undesirable effects,
interfering with write batches by causing them to wait or abort. An alternative approach is to use a
multiversioning scheme in which read batches do not interact with writes, but nevertheless perceive
a snapshot of the store consistent with a serial ordering of writes [128, 136, 154]. This requirement
implies that it is not necessarily safe to reclaim entries in the log as soon as they are dominated by
a more recent write—these entries must persist in some form until we are certain that no active
multi-register reads will reference them.

Listing 4.10 shows a simple extension of the implementation shown in Listing 4.9 that supports
snapshot reads. Clients initiate a read transaction by inserting a unique batch identifier into read,
and retrieve register values for that batch via the view read_view. When the read-only batch is
complete, clients insert into read_commit.
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To simplify the presentation, we provide an intuitive but inefficient snapshotting algorithm.
When a read occurs for a batch for which no corresponding snapshot exists (line 15), a copy of
live (the view containing the current value for each register) is copied into snapshot (line 16).
Subsequent reads within the batch are then served from this snapshot, allowing concurrent writes to
proceed without interference. At any time, the output view read_view contains the active set of
snapshots: those referenced by read-only batches that have not yet committed.

Edelweiss needs to determine when facts from read and snapshot can safely be reclaimed. In
both cases, a straightforward application of DR+ automatically generates deletion logic. Records in
read can be reclaimed as soon as their batch is reflected in the range relation snapshot_exists.
A record in snapshot is only necessary to derive a record in read_view while its read batch is
active; as soon as its batch appears in read_commit, it too can be reclaimed.

4.7 Evaluation
In this section, we evaluate two aspects of Edelweiss. First, we verify that the storage reclamation
logic produced by Edelweiss works effectively. Second, we evaluate the quantitative and qualitative
benefits of programming in Edelweiss. We show that Edelweiss enables significant reductions in
code size and complexity.

Storage Reclamation
To validate that Edelweiss is effective at safely and automatically reclaiming storage, we study
how the causal KVS (Section 4.5) behaves in two scenarios. First, we show that Edelweiss auto-
matically discards dominated writes. Second, we report the behavior of the causal KVS during
a network partition, confirming the expected behavior that partitions prevent storage from being
reclaimed [103].

Dominated Writes

As discussed in Section 4.5, Edelweiss automatically infers that a write operation in the causal KVS
can be discarded when (a) the write has been replicated to all nodes, and (b) the write has been
dominated by another write, because dominated writes no longer contribute to the replica’s current
view. To verify this behavior, we created a single-site KVS and measured the storage requirements
of the system over time. We submitted write operations at a constant rate (50 writes per second), but
varied the percentage of writes that updated a previously written key. As the fraction of updates
increases, the number of undominated writes in the replica’s view decreases, and hence we expect
the program to require less storage.

Figure 4.1 reports the results of this experiment for several update percentages. As the fraction
of updates in the workload increases, more dominated writes are observed and hence Edelweiss
automatically reclaims more stored tuples.
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Figure 4.1: Storage consumed by a causal KVS replica for different update percentages.

Network Partitions

Next, we consider how the reclamation protocol generated by Edelweiss behaves during network
partitions. When the network is partitioned, write operations cannot be replicated to all replicas;
hence, those operations must be retained until the partition heals, temporarily increasing storage
requirements.

To study this behavior, we created a simple causal KVS cluster with two replicas, A and B. A
single client continuously submits writes to replica A. Every write is a dominating update, so when
the network is connected we expect the storage required at each replica to remain constant over time.
We then simulated two network partitions by dropping all channel messages sent between A and B.

Figure 4.2 reports the storage required by replica A for this experiment. The network is connected
for the first 30 seconds of the experiment; as expected, the replica’s storage requirements do not
increase. Starting at 30 seconds and continuing for the next 50 seconds, we simulated a network
partition. The reclamation logic generated by Edelweiss does not allow write operations to be
discarded until they have been successfully replicated, and hence the number of tuples retained by
replica A grows.

After 80 seconds, the partition is healed. Replica A promptly sends its backlog of write operations
to B, and the ARM-generated acknowledgment logic at B informs A that the writes have been
delivered successfully. Edelweiss can then safely discard those write operations, leading to an
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Figure 4.2: Storage consumed by a causal KVS replica. Network partitions are simulated at 30 and
140 seconds.

immediate drop in storage. As the experiment continues, a similar pattern of behavior can be
observed: storage remains stable as new writes arrive while the network is connected, then grows
during the partition that begins at 140 seconds, and finally shrinks again once the partition is healed.

Program Size and Complexity
Next, we consider the code size and qualitative complexity for several common distributed al-
gorithms implemented using Edelweiss. In Table 4.2, the “Input” column shows the number of
rules in each Edelweiss program, while the “Rewritten” column shows the number of rules in the
corresponding Bloom program that is produced automatically by the Edelweiss compiler. That is, the
rewritten programs include mechanisms for knowledge propagation and storage reclamation that are
inferred automatically by Edelweiss. In some cases, the rewritten programs contain a small number
of redundant rules that could be avoided by a careful Bloom developer. Similarly, a developer
might choose to ignore reclamation conditions that are supported by our rewrites—for example, if
punctuations for a certain collection will never be supplied, reclamation rules that depend on those
punctuations can be omitted. Nevertheless, when examining the rewritten programs by hand, we
found they had a similar structure to hand-crafted acknowledgment and reclamation mechanisms
we have written in the past.
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# of Rules

Description Input Rewritten

Reliable unicast (§4.2) 2 5
Reliable broadcast, fixed (§4.3) 2 8
Reliable broadcast, epoch-based (§4.3) 2 12
Causal broadcast (§A.2) 6 14
Request-response pattern (§A.2) 7 16
Key-value store (§4.4) 5 23
Key-value store with causal consistency (§4.5) 19 62
Atomic registers (§4.6) 4 11
Atomic registers, multi-key writes (§4.6) 4 17
Atomic registers, snapshot reads (§4.6) 8 23

Table 4.2: Code size comparison.

All of the programs in Table 4.2 are concise, particularly in comparison to implementations using
traditional imperative languages: for example, a recent causally consistent key-value store prototype
required about 13,000 lines of C++ code [103]. Nevertheless, the Edelweiss programs are smaller
than their Bloom counterparts by a factor of two or more. Perhaps more importantly, Edelweiss
relieves programmers of the need to reason about when storage can safely be deallocated. Instead,
the programmer specifies when information remains useful to their application and Edelweiss
produces a reclamation scheme that is consistent with those requirements. For example, in the KVS
(Section 4.4), the Edelweiss program specifies when (logically) deleted keys should be omitted
from the view—the programmer does not need to consider when the associated insert and delete
operations should be physically reclaimed.

This also means that if the program’s semantics do not allow safe reclamation, the result is a
storage leak rather than data loss. We observed this first-hand: in the initial version of the key-value
store, we arranged for delete operations to specify a key to be removed, rather than an insertion ID.
As a result, Edelweiss was unable to reclaim delete operations. While we were initially puzzled,
we eventually realized that reclaiming deletions in this program would be unsafe in principle: the
program allows multiple insertions with the same key (and different IDs), so reclaiming deletions
would change the behavior of the program. As described in Section 4.5, Edelweiss helped us identify
a similar logic error in our initial implementation of dominated writes in the causal KVS.

4.8 Implementation
The bulk of the Edelweiss implementation is a source-to-source compiler: given a program written in
the Edelweiss sublanguage, it produces a Bloom program with the same behavior that also contains
logic for transmitting and storing acknowledgments (ARM), reclaiming facts that are no longer
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useful (DR+, DR-), and generating certain kinds of punctuations automatically.5 Acknowledgments
and punctuations are represented as facts in Bloom collections, rather than adopting a special-
purpose data format. In principle, this source-to-source translation phase could be implemented
entirely outside the Bloom compiler, but because the translator relies on parsing and semantic
analysis of the input Edelweiss program, we found it convenient to implement the translator as a
preprocessing phase in a modified version of the Bloom compiler.

Implementing Edelweiss as a source-to-source compiler had several advantages. First, because
the semantics of an Edelweiss program are exactly those of the generated Bloom code, we avoided
the need to define a separate semantics for Edelweiss. This also meant that the behavior of an
Edelweiss program can be determined by examining relatively high-level Bloom code, rather than,
say, a lower-level intermediate language or query plan format. We exploited this capability while
developing Edelweiss: we often found it convenient to write out or modify the generated Bloom
code by hand, in some cases before we had even begun implementing Edelweiss itself. For example,
we started the reliable unicast case study (Section 4.2) by building a simple acknowledgment
protocol by hand and then reasoning about the program analysis techniques that would be required
to generate such a protocol automatically. Finally, using a source-to-source compiler encouraged
loose coupling between the different Edelweiss transformations: for example, DR+ and DR- can
be applied to a broad class of Edelweiss programs that contain negation—including both negation
constructs that have been written manually by developers and those generated automatically by
the ARM mechanism. Another benefit is that Edelweiss programmers can make use of the same
facilities employed by the generated Bloom code, such as range collections and punctuations.

Implementing the source-to-source compiler required about 2200 lines of Ruby. The analysis
itself is fairly straightforward: the primary challenge was the low-level representation of Bloom
programs used by Bud. This implied that our analysis code was forced to manipulate Ruby abstract
syntax trees, rather than a higher-level representation, which made the engineering somewhat labor-
intensive. We also implemented a simple rule optimizer to eliminate obvious redundancies in the
generated rules: for example, if the rules generated by Edelweiss produce an intermediate collection
that appears on the lhs of exactly one rule and the rhs of exactly one rule, the collection can be
eliminated and its definition “inlined” into the rule where it appeared on the rhs. We implemented
the optimizer in part to make the LOC figures reported in Table 4.2 more representative, although
the rewrites it performs also likely improve the runtime performance of the generated code.

In addition to the Edelweiss translator, the implementation of the range and sealed collection
types required about 300 lines of Ruby code.

4.9 Discussion
We began the initial work that resulted in Edelweiss because of frustrations we encountered building
purely monotone programs in Bloom and BloomL. For example, consider the quorum vote program
in Listing 3.2. If a quorum of messages is received, the coordinator sends a message on the

5Edelweiss automatically generates punctuations for sealed collections (Section 4.3) and for situations in which
functional dependencies imply that a subset of a collection will henceforth be sealed (Section 4.5).
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result_chn channel. However, because the program is monotonic, once a condition occurs that
causes the program to send a message (e.g., the threshold test on line 19 of Listing 3.2 is satisfied),
that condition will always remain true in the future. Hence, the monotonic coordinator program will
send an unbounded number of messages on result_chn, one for each timestep. Similar behavior
can also be observed for the monotone checkout program in Section 3.5; the reliable unicast program
presented earlier in this chapter is the simplest form of this pattern.

In each case, unbounded messaging could have been avoided by introducing an acknowledgment
protocol; alternatively, we could have modified the Bloom runtime to perform such acknowledg-
ments automatically. However, neither option seemed attractive: adding explicit acknowledgments
would have made our programs syntactically non-monotonic (because of the need for negation to
suppress duplicate messages), which would have defeated CALM analysis. Modifying the language
runtime would have added more “hidden” semantics to the language, making it more difficult to
reason about the communication pattern a given program would result in. Edelweiss strikes a middle
path between these approaches: it avoids forcing developers to add explicit acknowledgments to
their programs, and because it produces a vanilla Bloom program as its output, the semantics of that
program can be inspected. Thus, Edelweiss expands the space of monotonic programs that have
efficient implementations.

We designed Edelweiss to be a Bloom sublanguage—any valid Edelweiss program is a valid
Bloom program with the same user-observable behavior. However, a more aggressive approach
would be to build a new language around the design patterns observed in Edelweiss. Most languages
for distributed programming view network messages as transient “events”: they are delivered to
the recipient once and then cease to be. This is the approach taken by Overlog and Bloom, as
well as other languages like Erlang. Edelweiss demonstrates that transient events need not be part
of the programming abstraction: efficient implementations are still possible even if the language
conceptually persists all network messages. Using this insight to build a complete programming
language would be an interesting topic for future work. A first step in this direction would be to
revise the channel collection type to be persistent, rather than a type of scratch collection. This
would eliminate some boilerplate code from Edelweiss programs by avoiding the need to copy from
a persistent collection into a channel at the sender-side, and from the channel back into a persistent
collection at the receiver.

Another connection between Edelweiss and language design relates to the use of scratch
collections. In Edelweiss, scratch collections play a limited role: all “base” data appears in persistent
(table) collections, and scratches are only used as a way to name intermediate query results over
those tables. In comparison, scratches play a more prominent role in Bloom: the transient behavior
of scratches can be used as a way to “smuggle” deletions into programs, e.g., by ensuring that event
data is “processed” once and then discarded. Edelweiss shows that using scratch collections in this
manner is not necessary; such a restriction could be incorporated into a future language design.
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4.10 Related and Future Work
Our work on Edelweiss is related to prior work by several research communities. As noted at the
beginning of this chapter, the pattern of operation logging with periodic background reclamation
appears frequently in distributed storage and data management. Proposed designs typically differ
along a few dimensions, such as how “common knowledge” about the state of other nodes is
represented, how this knowledge is communicated (e.g., bundled with log messages [58, 159] or
sent via a separate mechanism [24, 109]), and the criteria for determining that an operation is
“stable” and can be discarded (e.g., some systems use wall-clock time, waiting a period of time in
which replica synchronization is likely to have occurred [52]; in others, the system explicitly tracks
the logical clocks of all nodes, which requires all nodes to be available to allow log entries to be
reclaimed [159]).

Garbage collection has been extensively studied by the programming language community for
both single-site [87] and distributed [2] programs. Traditional garbage collection is applied to a
reference graph: subgraphs that are not reachable from one or more “root” vertices can safely be
reclaimed. This relies on the property that such objects will never be reachable in the future, which
is a special-case of the kind of “henceforth no longer useful” properties exploited by Edelweiss. It
would be interesting to see how naturally Edelweiss could be enhanced to synthesize traditional GC
schemes.

Multi-version concurrency control (MVCC) is a notable example of the ELE pattern: updates
generate new row versions, and readers have a “snapshot” that defines which versions they can
legally observe [26, 128]. When a row version has been updated and the old version no longer
appears in the snapshot of any active reader, it can safely be reclaimed.6 This scheme bears a
close resemblance to the atomic register design presented in Section 4.6. However, real-world
MVCC implementations contain many details we have omitted, such as allowing multiple read/write
operations per transaction, dealing with page-level storage, and optimizations to reduce the storage
requirements for MVCC metadata and to cache the results of row visibility checks. Building a
correct MVCC implementation is extremely difficult in practice, in part because two disparate code
paths must be kept in careful alignment—the rules that define which row versions are visible to a
transaction, and the garbage collection logic that determines when a row version can be reclaimed.
Edelweiss suggests that this redundancy can be eliminated: given a declarative specification of
the reader snapshot logic, the garbage collection code might be inferred automatically. Extending
Edelweiss to support this scenario is an exciting avenue for future work.

In this chapter, we have focused on systems in which knowledge can eventually be discarded;
there is a related design pattern in which nodes accumulate knowledge and then periodically
summarize or reorganize it, e.g., in the form of a “checkpoint.” Examples include write-ahead
logging in database systems [115], log-structured file systems [131], and rollback-based recovery in

6In order to ensure this property, the system must guarantee that no future reader will be able to observe the old row
version. This can be done by ensuring that snapshots are monotonically increasing with respect to row versions: that
is, the snapshot of a new reader is at least as “recent” as that of the previous reader. Most MVCC systems satisfy this
property, although it does prevent arbitrary “time travel” to prior versions of the database [143].
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distributed systems [144]. We believe that Edelweiss could be extended to support the checkpointing
pattern, although this remains a subject for future work.

Our work on Edelweiss also relates to efforts to provide principled foundations for eventually
consistent systems. In Chapter 3, we reviewed the CALM Theorem, which shows that monotonic
logic programs are deterministic (“confluent”) and hence eventually consistent. This shares sim-
ilarities to Edelweiss and the way in which the ELE model sidesteps consistency concerns. The
base collections in an Edelweiss program (e.g., the event logs that are replicated to every node) are
sets that grow monotonically over time; the CALM Theorem implies that each replica of such a
collection will eventually converge to the same state, once all event log messages have been deliv-
ered. However, most of the programs in this chapter apply non-monotonic operators (particularly
negation) to those base collections, typically to determine which of the log entries are currently
“live.” For example, in the KVS presented in Section 4.4, the set of insertion and deletion log entries
grows monotonically but the set of “live” key-value pairs does not. Hence, the program as a whole
is not confluent. Extending CALM consistency analysis to support the ELE pattern in Edelweiss is
an interesting topic for future work.

In this chapter, we focused on programs that accumulate knowledge as a set of facts that grows
over time. As described in Chapter 3, this notion of “growing over time” can be generalized from
sets to join semilattices. Lattices often require a form of periodic garbage collection to restore
efficiency [138]; extending Edelweiss to lattices is a natural direction for future work.

Our development of reclamation techniques for Edelweiss has been somewhat ad hoc and
driven by the practical programs we have studied. Given a program for which the current Edelweiss
prototype does not reclaim storage, it is often unclear whether the problem lies in the program
or in the Edelweiss implementation—that is, could a more sophisticated analysis successfully
reclaim storage for the program or is the program “un-reclaimable” in principle? Both theoretical
and practical developments would be useful here. To the former, a first step would be to formal
characterize the class of Edelweiss programs that can be evaluated with bounded storage. To the
latter, Edelweiss could be enhanced to provide feedback to developers about how program semantics
influence storage requirements. For example, Edelweiss could describe the circumstances under
which a given fact can be reclaimed or generate an execution trace in which prematurely reclaiming
a fact leads to incorrect program behavior.

Edelweiss’s support for automatically avoiding redundant network messages (ARM) bears a
resemblance to semi-naive evaluation [22]. As discussed in Section 3.3, semi-naive evaluation works
by avoiding redundant derivations in the evaluation of a recursive logic program. Program evaluation
proceeds through a series of rounds, where each subsequent round only considers the consequences
of “new” conclusions reached in the previous round. The acknowledgment rewrite has a similar
flavor: senders only send “new” (unacknowledged) messages, because the consequences of “old”
(acknowledged) messages have already been derived. ARM can be viewed as “network-oriented
semi-naive evaluation”: that is, ARM is necessary because the Bloom runtime employs semi-naive
evaluation for local rule evaluation but not for communication between nodes.
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4.11 Conclusion
Edelweiss demonstrates for the first time that the benefits of the ELE pattern for distributed
programming do not require custom state reclamation code. The fact that this result arose from a
basis in Bloom is not coincidental. Rewrites like Difference Reclamation were inspired directly
from the use of a declarative, set-oriented language. Moreover, the clear data dependencies in a
declarative language made our analysis code easy to write. It is an open question whether our
techniques can be transferred to (immutable versions of) more popular imperative languages, which
could be quite useful in practice. Meanwhile, it is our experience that distributed programming
design patterns like ELE are quite well-served by declarative distributed languages, and we believe
that the design and analysis of such languages is a fruitful direction for further exploration.
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Chapter 5

DiCE: Declarative Concurrent Editing

In the previous two chapters, we examined two design patterns that are used in a variety of loosely
consistent distributed systems. We showed how programming language support can help developers
apply these patterns more effectively. In this chapter, we instead turn to a particularly challenging
class of loosely consistent programs, concurrent editing systems.

In a concurrent editing system, users at different sites manipulate a shared document (e.g., a text
file) [54]. To ensure a responsive user interface and allow disconnected operation, each user’s edits
are immediately applied to their local site and then propagated to the other sites asynchronously.
This introduces a familiar consistency concern: different sites might receive editing operations in
different orders, but the system must ensure that every site nevertheless observes correct behavior
(e.g., all sites should eventually agree on the content of the document).

Despite being among the first examples of loose consistency in the literature, concurrent editing
systems are notoriously difficult to implement correctly; in fact, many published designs have
been shown to be incorrect [84]. Typical concurrent editors employ a system of string-oriented
transformation rules that describe how remote operations should be integrated into each site’s
local state, but reasoning about the behavior of these rules is very difficult. In this chapter, we
explore whether declarative programming languages such as Bloom can simplify the design and
implementation of concurrent editing systems.

We begin by reviewing the concurrent editing problem and showing how it can be formulated
over an abstract graph representing the relationships between edits (Section 5.1). We describe a
set of high-level, declarative rules over the graph structure that define how concurrent edits should
be merged together (Section 5.2). Unlike the programs presented in Chapter 3, these rules are not
syntactically monotonic—in fact, they cannot even be evaluated by a traditional Datalog interpreter.
To resolve this problem, we develop an extension to Bloom called BloomPO, which allows our
concurrent editing design to be evaluated (Section 5.3). We then show how BloomPO allows a
simple, declarative implementation of concurrent editing (Section 5.4).
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5.1 Problem Definition
In a concurrent editing system, users submit insert and delete operations to add and remove content
from a shared document. Each user’s edits are applied to their local site immediately and propagated
to other sites asynchronously. Hence, different sites might receive editing operations in different
orders; the challenge is to ensure that despite this possibility, users observe reasonable behavior.

Sun et al. propose that concurrent editing systems should satisfy the “CCI” correctness crite-
ria [146]:

1. Convergence: Given the same set of editing operations (perhaps delivered in different orders),
every site reaches the same state.

2. Causality: Each site applies editing operations in an order that is consistent with the happens-
before relation; that is, causal relationships between editing operations are respected.

3. Intention Preservation: When an operation is applied to a remote site, the effect of applying
the operation preserves the user’s intention when the operation was generated.

As explained below, DiCE satisfies all three criteria.

Representing Edit Operations
In DiCE, the document consists of a set of immutable atoms; an atom represents a word, sentence,
or other document fragment, depending on the application. Each atom has a globally unique ID;
such IDs can easily be created using 〈site-id, local-id〉 pairs, where local-id is a site-local unique
identifier.1 Each atom ID is mapped to the document fragment associated with that atom; because
the content associated with an atom plays no role in DiCE, in the following we simply treat atoms
as unique IDs.

DiCE supports two editing operations:

1. insert(b, a, c) adds atom b to the document, placing it somewhere after atom a and somewhere
before atom c. Any given atom b will be inserted at most once.

2. delete(x) removes atom x from the document.

Note that insert(b, a, c) does not imply that a, b, and c are adjacent in the document—while that
will typically be the case when an insert operation is initially generated, it will often cease to be true
as more insertions are made. Hence, each insert operation specifies a partial order: insert(b, a, c) is
equivalent to a ≺ b ≺ c. The set of all insertions must be acyclic. To denote the beginning and end
of a document, DiCE uses two “sentinel” atoms, denoted BEGIN and END respectively.

Deletions are supported in a straightforward and monotonic manner: each site accumulates the
set of deletions it has seen and simply omits deleted atoms from the view of the document shown to

1Note that we use scalar atom IDs in this chapter for the sake of simplicity. As described in Section 4.3 of Chapter 4,
a 〈site-id, local-id〉 pair can easily be mapped to a single scalar ID.
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the user (i.e., deletions are “tombstone” records). Because deletions form a set that strictly grows
over time, it is easy to see that eventually all sites will agree on the set of deleted atoms [11].2

Hence, we do not further discuss support for deletion in the remainder of this chapter.

Representing The Solution
A set of insert operations implies a partial order over atoms; the task of a concurrent editing system
is to compute a monotone linearization of that partial order. That is, we want to find a total order
<F over atoms such that, if a <F b holds for any set S of editing operations, a <F b remains true
for any superset of S . Intuitively, such a linearization technique could be used to build an effective
concurrent editor: each site can order the atoms that they have received and present the resulting
document to the user, safe in the knowledge that any editing operations presently unknown will not
contradict the site’s local ordering. Moreover, because F is a monotone function from a set of edit
operations to a set of orderings, prior work has shown that all sites will converge to the same final
state once all editing operations have been delivered [11].

Note that finding a monotone linearization of a growing set of partial orders is not possible
in general. For example, given a ≺ b and a ≺ c, two linearizations are possible: a < b < c and
a < c < b. If the set of partial orders can grow in an arbitrary (acyclic) manner, neither linearization
can safely be chosen: the system might later discover either b ≺ c or c ≺ b, which might contradict
whichever linearization was selected. Fortunately, the constraints in Section 5.1 prevent this scenario.
Partial orderings are only produced by insertions and each atom is only inserted once; hence, new
partial orders will be of the form a ≺ bnew ≺ c, where bnew is a previously unknown atom ID. Hence,
new partial orders reflect how a new atom is ordered with respect to the existing atoms, rather than
altering the ordering between two previously known atoms.

Graphs: Explicit Order and Causality
To visualize the information implied by a sequence of insert operations, two graph structures are
useful. Consider the following set of edits:

insert(A, BEGIN, END)
insert(B, BEGIN, END)
insert(C, B, END)
insert(D, A, C)
insert(E, C, END)

Figure 5.1 shows the corresponding explicit order graph: there is a vertex for each atom and an
edge from x to y if the set of operations contains either insert(x, _, y) or insert(y, x, _). That is, the

2DiCE does not currently support garbage collection for deletions; because deleted atom IDs are still referenced
by other insertions, removing all traces of a deleted atom would require the equivalent of an atomic commit protocol
between all sites [124, 138]. Moreover, garbage collection would preclude supporting features like viewing prior
versions of the document and “undoing” the effects of previous edits [157].
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Figure 5.1: An example explicit order graph.

explicit order graph represents the constraints on the ordering of atoms in the document that are
implied by the insert operations.

Figure 5.2 depicts the causal graph associated with this example: there is an edge from x to
y if the set of operations contains either insert(y, x, _) or insert(y, _, x).3 The graph depicts the
causal relationships between edits: that is, it represents a “happens-before” relation. This differs
from Lamport’s happens-before relation [95], which conservatively identifies all the potential causal
predecessors of an event. In DiCE, each insertion operation explicitly identifies the other atoms
upon which the newly inserted atom depends. Hence, we can use these dependencies to define a
more precise notion of causality, sometimes called explicit causality [93].

Using explicit causality has two benefits. First, no additional logical clocks or metadata are
needed to record causal dependencies. Second, because these explicit causal relationships are a
subset of potential causality, more operations can be applied at remote sites without needing to wait
for spurious dependencies [18]. For example, either D or E might be regarded as a dependency of
the other under potential causality (depending on message timing). Using explicit causality, we can
observe that both D and E can be correctly ordered without knowledge of the other atom and hence
need not be causally related.

The ancestors of an atom are the atom’s transitive causal dependencies: x is an ancestor of y
iff there is a path from x to y in the causal graph. For example, the ancestors of E in Figure 5.2 are
{BEGIN, B, C, END}. If x is an ancestor of y, we write x{ y (“x happens-before y”).

5.2 Initial Solution: Abstract DiCE
In this section, we describe how to solve the concurrent editing problem introduced in Section 5.1.
We begin by showing how DiCE satisfies the causality and intention preservation properties (as
defined in Section 5.1). We then show how DiCE finds a monotone linearization of the user’s edit
sequence by combining three partial orders: the explicit order (≺e), the tiebreak order (≺t), and the
implied-by-ancestor order (≺i). Finally, we sketch how these orders can be combined to yield a
monotone linearization of the user’s editing operations. However, the resulting algorithm is not yet

3Note that we chose to have END precede BEGIN in the causal order; this ordering is arbitrary.
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Figure 5.2: An example causal graph.

practical: as we will explain in Section 5.3, the design cannot be evaluated by a traditional Bloom
(or Datalog) runtime.

Causality and Intention Preservation
To ensure that the set of delivered atoms at each site respects causal order, DiCE can simply buffer
remote edit operations until all of the causal ancestors of that edit operation have been delivered.
The transitive structure of the ancestor graph implies that we can implement this constraint by
only checking the immediate dependencies of each edit. That is, each site maintains a buffer B
of delivered edits and a set S of “safe” edits whose dependencies have been satisfied. S initially
contains the sentinel atoms, {BEGIN, END}. An element 〈a ≺ b ≺ c〉 ∈ B is added to S iff S contains
b’s immediate dependencies (a and c). Because all the elements in S have their dependencies
satisfied, this ensures the entire ancestry of b has been observed at the local site.

DiCE preserves user intentions because it treats user-generated operations as immutable values.
Since each site applies exactly the same set of operations and each operation is unchanged from its
originating site, the intention of each operation is preserved [120]. This contrasts with traditional
concurrent editing systems based on operational transformations: because some operations are
modified before they can be applied, the system must ensure that these modifications preserve the
user’s original editing goals. Sun et al. discuss several subtle situations in which this problem can
arise [145]. The immutability of operations in DiCE avoids these concerns.

Explicit Orders
In the remainder of this section, we describe how DiCE ensures convergence by constructing a
monotone linearization from several partial orders. The explicit order ≺e is the most fundamental of
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Figure 5.3: A scenario in which applying tiebreaks in different orders is problematic.

these: it contains all the ordering constraints implied by the user-generated editing operations, either
directly or transitively. That is, x ≺e y iff there is a path from x to y in the explicit order graph.

Tiebreak Orders
When edits are generated by multiple sites concurrently, the resulting partial order will contain
atoms that are mutually incomparable. To decide how to order these edits, DiCE uses a tiebreak
order, <t, an arbitrary total order over atoms. For example, if atom IDs are represented as pairs
of the form 〈site-id, local-id〉, the tiebreak order can use numeric inequality: a <t b iff a.site-id <
b.site-id ∨ (a.site-id = b.site-id ∧ a.local-id < b.local-id).

The tiebreak order is likely inconsistent with the explicit order given by user-generated editing
operations. Naturally, the ordering constraints that result from editing operations should be preferred,
so DiCE only uses the tiebreak order for pairs of atoms that are incomparable under ≺e. That is,
tiebreaks are only used to order concurrent edits. To represent this fact, DiCE actually uses ≺t, a
partial order that is a subset of <t: x ≺t y iff x <t y and neither x ≺e y nor y ≺e y is true.
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Figure 5.4: Candidate tiebreak orders (dashed edges) for the scenario in Figure 5.3.

Implied-By-Ancestor Orders
However, using the tiebreak order for every pair of concurrent edits is not adequate. Consider the
scenario in Figure 5.3, which corresponds to the following operations:

insert(X, BEGIN, END)
insert(Y, BEGIN, END)
insert(Z, BEGIN, X)

(Note that for the sake of clarity, we omit some transitively redundant edges from both graphs.)
Atom Y is concurrent with both X and Z. Suppose the tiebreak order is the standard dictionary order
over characters; hence X <t Y <t Z. If we use the tiebreak between X and Y , we find that Y comes
after X, whereas the tiebreak between Y and Z indicates that Z follows Y . However, we also have
the user-provided constraint that Z comes before X. Combining all three orders results in a cycle in
the order graph (Figure 5.4), and hence an invalid linearization.

To avoid introducing such inconsistencies, DiCE must consider the transitive consequences of
each tiebreak ordering that it adopts. For example, in the scenario above, the system should use
either X ≺t Y or Y ≺t Z; once either tiebreak has been applied, the other tiebreak need not (and
cannot) be used.

This raises the question: which tiebreak order should be used? To ensure convergent results, all
sites should make the same decision about which tiebreaks to employ, despite the fact that they
might receive editing operations in different orders. The solution relies on the fact that all sites apply
edit operations in causal order. Hence, although different sites might contain different sets of edits,
any site attempting to determine the ordering between atoms a and b must contain all the ancestors
of both a and b. To ensure convergence, DiCE guarantees that the order between any two atoms is a
function of only the causal ancestors of a and b.

In the scenario above, X is a causal ancestor of Z; this implies that a site might need to determine
the order between X and Y without knowledge of Z. Therefore, the tiebreak X ≺T Y must be used;
once this tiebreak has been adopted, this implies that Z must also precede Y . We call the fact that
Z must precede Y an implied-by-ancestor order, because the ordering of Z’s causal ancestor (X)
implies something about Z’s order in the document.
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The situations in which implied-by-ancestor orders should be used are defined by the following
rules:

Definition 1 Let x, y, z be atoms such that y { x (y is an ancestor of x). There is an implied-by-
ancestor order between x and z iff either:

1. x ≺e y and y ≺t z implies x ≺i z.

2. y ≺e x and z ≺t y implies z ≺i x.

Combining Partial Orders
DiCE works by computing the partial orders described above (≺e, ≺t, and ≺i), and then combining
these orders to produce the desired monotone linearization (<F). Computing ≺e is straightforward
(it is the transitive closure of the constraints implied by the user’s edit operations), but determining
≺t and ≺i is more involved. This is because there is a dependency between these orders: we only
want to use the tiebreak order a ≺t b if there is no ordering between a and b in either ≺e or ≺i, but ≺i

itself depends on ≺t. This has two implications. First, we cannot compute ≺i and ≺t independently;
the computation of the two partial orders must be interleaved. Second, care must be taken to ensure
that these orders are computed in the correct manner: otherwise a subsequent computation might
invalidate the result of a previous computation. That is, in order to safely conclude a ≺t b, we need
to ensure that b ≺i a does not hold, and furthermore that it will never hold in the future.

To see how such dependency problems can be avoided, observe that we can unambiguously
determine the order between two edits that have no causal ancestors. That is, suppose A and B are
inserted into an empty document at different sites concurrently. Clearly, A and B are incomparable
under ≺e; moreover, because neither edit has any causal ancestors, A and B will also be incomparable
under ≺i, so ≺t can safely be used. This idea can be extended to more complex documents, so
long as an invariant is maintained: before using the tiebreak order between A and B, all possible
implied-by-ancestor orders involving A and B must have first been considered. Maintaining this
invariant is possible because the set of causal ancestors of an edit is finite; moreover, due to the
causality requirement, all the causal ancestors of an edit E must be known at a replica before that
replica attempts to determine where E appears in the document.

We extend this sketch to a complete algorithm in Section 5.4, but first we consider the language
and runtime support required to implement such a program in Bloom.

5.3 BloomPO

Although the DiCE ordering algorithm is not complicated, it cannot easily be evaluated by Bloom
(or by any other traditional Datalog implementation). In this section, we describe why the classical
Datalog stratification algorithm cannot support DiCE. We review universal constraint stratification,
a generalization of traditional stratification that is a good fit for our requirements. We then propose
BloomPO, an extension to Bloom that supports constraint stratification, and describe how we
extended the Bloom runtime to evaluate BloomPO programs.
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Stratified Negation
The use of negation in Datalog programs must be restricted, to ensure that all legal programs have
a reasonable semantic interpretation (traditionally, a unique minimal model). Traditional Datalog
implementations rely on stratified negation: the relations in the program are divided into a series
of strata, such that each use of negation in a rule refers to a relation in a lower stratum [69]. Each
stratum can then be evaluated in order (i.e., the rules in that stratum are computed to fixpoint). This
guarantees that the input to a negation operator is completely determined before the operator is
evaluated, which ensures that the output of the negation operator will never “shrink” or need to be
retracted. Stratified negation can be viewed as rewriting a non-monotonic input program into a fixed
number of semi-positive programs arranged in a sequence—the IDB of one stratum becomes the
EDB of the next higher stratum [69].

Stratified negation disallows programs that have “cycles through negation”: if relation R depends
on relation S , S cannot depend on the negation of R (either directly or transitively). Unfortunately,
precisely such a cycle through negation can be observed in the DiCE algorithm described in
Section 5.2 because of the mutual dependency between the ≺t and ≺i partial orders. Suppose that we
represent each partial order with a relation—e.g., tiebreak(A,B) is true iff A ≺t B, and similarly
for implied_anc and ≺i. The problem arises because of the following dependencies:

• We want to use the tiebreak order for A and B if there is not an implied-by-ancestor or explicit
ordering between A and B.

• We want to use the implied-by-ancestor order for A and B if there is a tiebreak order between
A and C and an explicit order between B and C (Definition 1).

Choosing to represent tiebreak and implied_anc as separate relations is not fundamental—for
example, the problem would remain if we used a single relation to represent both orders. Regardless
of how orderings are represented, stratified negation requires that the program’s relations be divided
into a fixed number of strata, and that all the relations in a stratum are computed to fixpoint before
proceeding to the next stratum. This is not powerful enough to express DiCE, because the manner
in which the computation of ≺t and ≺i should be interleaved depends on the input data, rather than
the syntax of the program.

Constraint Stratification
Intuitively, DiCE can be evaluated by starting with the “oldest” edits in the causal graph and moving
“forward.” Given two edits a and b, if no implied order is found by considering the ancestors of
these edits, the tiebreak order can safely be used.4 This is a kind of stratification condition: once
all the ancestors of a and b have been explored, no further implied orders between a and b will
be discovered, and hence we can safely take the negation of implied_anc(a,b). Note that it is
important to observe that the negation is applied “backward” in the causal graph, and that the causal
graph is acyclic; hence, no tuples can actually participate in a cycle through negation, because that

4As discussed in Section 5.2, this relies on the fact that the set of ancestors of an edit is fixed.
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would imply a cycle in the causal graph. Hence, whereas stratified negation assigns the program’s
relations into a fixed number of strata, we would like a scheme that divides the program’s data into
strata based on the “happens-before” partial order ({) between edits.

A suitable technique known as universal constraint stratification (UCS) was proposed by
Ross [133]. UCS expands the space of stratifiable program by exploiting database integrity
constraints. Monotonicity constraints are particularly useful: a monotonicity constraint (MC)
F : X ≺mc Y over a relation R(X,Y) asserts that, for every tuple r ∈ R, r.X is less than r.Y ac-
cording to the partial order ≺mc [32]. Note that ≺mc is not fixed or encoded in the program’s schema,
but instead is a constraint on the content of the database. For example, suppose we represent the
causal graph associated with a set of operations as a relation, causal_hist(From, To); a tuple
causal_hist(A, B) means that edit A is a causal ancestor of edit B. This relation satisfies the
MC A ≺mc B under the happens-before partial order ({); this also implies that the causal graph is
acyclic.

UCS allows programs that contain cycles through negation provided that any tuples that traverse
the cycle would necessarily violate a database integrity constraint. Since we are only interested in
executions that satisfy the constraints, the apparent cyclic dependency will never be satisfied, and
hence the program need not be rejected. Intuitively, UCS allows programs that apply negation only
to “smaller” facts in the database. If the implementation ensures that all “smaller” facts have been
computed before their successors (according to the relevant monotonicity constraint), the input to a
negation operator will be fixed, and hence the output of the negation will not shrink.

Implementation
BloomPO is an extension to Bloom that supports constraint stratified programs. To achieve this,
BloomPO allows users to define collections that satisfy monotonicity constraints. The BloomPO

runtime stores these collections in a custom data structure and treats them differently during query
evaluation: as suggested by Section 5.3, UCS requires that the order in which facts are produced
during query evaluation respects the monotonicity constraints.

Ross shows that UCS is a syntactic property, and hence “safe” cycles through negation can
be discovered by automatic analysis [133]. However, the current version of BloomPO does not
automatically stratify the program or check that cycles through negation imply a contradiction
of the monotonicity constraints; instead, the user provides a manual assignment of the program’s
rules into strata. Although we found this process to be fairly straightforward, automatic constraint
stratification could be supported by a future version of BloomPO.

Collection Types

BloomPO defines two new collection types, po_table and po_scratch. These are similar to the
table and scratch collections in Bloom, except that they also carry an associated monotonicity
constraint: both po_table and po_scratch must have exactly two columns, where the second
column is smaller than the first column according to some partial order.
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Listing 5.1 shows an example BloomPO program (originally presented by Ross [133]). The task
is to determine whether a complex mechanism is functional. The mechanism consists of parts;
each part consists of zero or more sub-parts. A part cannot be a sub-part of itself, either directly
or transitively (i.e., the part graph is acyclic). A part is working if it has been directly tested, or
if it has at least one child component and all of its child components are working. In BloomPO,
the hierarchical nature of the part collection is represented using the po_table collection type
(line 5).

The program in Listing 5.1 contains a cycle through negation between working, part, and
has_suspect_part. However, the negative dependency between working and has_suspect_part
(line 16) checks the functionality of a “smaller” part in the hierarchy, and hence is safe as long as the
part hierarchy is acyclic [133]. As noted above, the current version of BloomPO requires programs
with cycles through negation to be manually stratified, as dictated by the stratum declarations on
lines 11, 15, and 19.

Intuitively, the part hierarchy problem can be solved by first considering leaf parts (those with
no children). A part with no sub-parts can only be working if it appears in tested (line 12 of
Listing 5.1). Hence, if a leaf part has not been directly tested, it must be faulty.5 Next, the parts that
contain only leaf parts as children can be considered: consider P, a part that has not been directly
tested and that has leaf part L as one of its sub-parts. If L does not appear in working, we can
safely conclude that P is faulty (via the rules on lines 16 and 20); we know that because L is a leaf
part, it will never appear in working in the future. In this manner, we can move from the leaves
of the hierarchy toward the root, only considering a part once the faultiness of all of its sub-parts
has been determined. The monotonicity constraint on part ensures that at least one leaf part exists
(in a non-empty hierarchy), and that enumerating the graph in this manner will terminate without
revisiting a previously visited node (i.e., the part graph is acyclic). In the next section, we show how
the BloomPO runtime automatically ensures that the graph is traversed in this order.

Stratified Enumeration

To evaluate a constraint stratified program, BloomPO must ensure that the tuples in po_table
and po_scratch collections are examined in an order that is consistent with their monotonicity
constraints. To enable this, we can use monotonicity constraints to divide a collection into a sequence
of disjoint sets S 0, . . . , S n, which we call the poset strata of the collection. Poset strata are easiest
to visualize using a graph diagram: Fig. 5.5 depicts the poset strata diagram for the causal graph
in Fig. 5.2. For the sake of exposition, we assume the collection has two columns, x and y; a tuple
t(x0, y0) is represented by an edge from x0 to y0 in the diagram. First, we assign graph vertices to
poset strata: a vertex y appears in poset stratum i iff i is the smallest integer such that i ≥ 0 and, for
all of y’s incoming edges t(x, y), i is greater than the poset strata of x. Next, we can assign edges
(and therefore tuples in the associated collection) into strata: the strata of edge t(x, y) is the poset

5Note that a leaf part appears only in the child column of the part tuples for its immediate parent parts. Therefore,
the rule on line 20 of Listing 5.1 does not apply to leaf parts.
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1 class PartHierarchy
2 include Bud

4 state do
5 po_table :part, [:id, :child]
6 table :tested, [:id]
7 scratch :working, [:id]
8 scratch :has_suspect_part, [:id]
9 end

11 stratum 0 do
12 working <= tested
13 end

15 stratum 1 do
16 has_suspect_part <= part.notin(working, :child => :id).map {|p| [p.id]}
17 end

19 stratum 2 do
20 working <= part {|p| [p.id]}.notin(has_suspect_part)
21 end
22 end

Listing 5.1: Ross’s part hierarchy program [133] in BloomPO.

strata of y.6

Rather than enumerating the entire content of each relation in an arbitrary order (as in a
Datalog implementation based on stratified negation), in BloomPO we want to enumerate one poset
stratum of each collection at a time, proceeding from the first stratum to the last. We call this
stratified enumeration. To perform stratified enumeration efficiently, BloomPO stores po_table and
po_scratch collections in a custom data structure called a stratified graph. In a stratified graph,
each node contains a list of parent nodes, as well as the length of the longest path from that node to
a leaf—this length defines the poset stratum in which the node belongs.

Listing 5.2 contains a stratified graph implementation in Ruby.7 The insert(x,y) method
adds a new edge x → y to the graph, creating nodes for x and y if necessary (the new edge is
assumed to preserve the acyclicity of the graph). An instance of StratifiedGraph supports a
single stratified enumeration; the state of that enumeration is captured by the current_stratum
and frontier instance variables. The each method invokes a function on each edge in the current
poset stratum, advance_stratum advances the enumerator to the next stratum (returning true
unless that stratum is empty), and reset returns the enumerator to the first (lowest) stratum. Note
that each and advance_stratum take care to account for edges that “jump” to higher strata, such
as END→ E; although E is reachable from END in a single hop, it must not be returned by each until
all of the ancestors of E have appeared in earlier strata. This is done via the @frontier instance

6Poset strata are related to the notion of consistent cuts in distributed systems [113]. The union of a poset stratum
with all of its predecessor strata is a consistent cut: that is, for all 0 ≤ j ≤ n,

⋃ j
0 S j is a consistent cut. However, the

inverse does not hold: there are consistent cuts that cannot be written as a union of poset strata.
7We present a slightly simplified version of the data structure for the sake of clarity; for example, we omit the

details of how the data structure integrates with Bud’s delta-based dataflow runtime.
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Figure 5.5: Poset strata for the causal graph in Figure 5.2.

variable: if an element of the frontier has a parent that belongs to some future stratum, the frontier
element is preserved until that future stratum has been reached (lines 41–43). To avoid returning
such preserved frontier elements, each skips elements of the current frontier that belong to earlier
strata (line 30).

The insert method requires O(n) time: in the worst-case, each insertion creates a new leaf that
requires updating the path_len values of every other node in the graph. Fortunately, the practical
performance of the data structure is much better for the programs we present in Section 5.4—
stratified graphs are used to represent causal histories, which typically grow by extending a previous
root node rather than adding new leaves or interior nodes. For example, adding the edges C → D
and C→ E to the graph in Figure 5.5 does not require updating the path_len values of any other
nodes, and hence requires only constant time.
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Data-Dependent Fixpoint Loop

Stratified enumeration ensures that the content of each po_table and po_scratch collection is
produced in an order that is consistent with the monotonicity constraints. In addition, BloomPO

must ensure that all the consequences of one poset stratum have been computed before proceeding
to the next poset stratum. This is very similar to how fixpoint computation works in a traditional
Datalog implementation based on stratified negation: for each syntactic stratum in the program, the
implementation runs the rules in that stratum to fixpoint (i.e., until no more new derivations will be
made). Hence, BloomPO extends this concept to include a second kind of stratification: we want to
loop over each poset stratum and syntactic stratum in the program, evaluating to fixpoint at every
step.

Listing 5.3 contains an implementation of this idea in Ruby. The simple_fixpoint method
(invoked on line 26) takes the fixpoint of a set of rules, i.e., it evaluates the rules until no more new
results are produced.8 If the program does not use any poset-valued collections, BloomPO takes the
fixpoint of each syntactic stratum in turn, as in a traditional implementation of stratified negation
(lines 24–30). For each po_table or po_scratch collection, BloomPO performs a stratified enu-
meration of that collection; for every poset stratum of every po_table or po_scratch collection,
we take a traditional syntactic fixpoint (line 15). That is, BloomPO evaluates a set of nested loops,
with one loop for each po_table or po_scratch collection in the program. Note that the order in
which these loops are nested is not significant.

BloomPO requires one further change to the fixpoint procedure. In a Datalog system based on
stratified negation, the stratum of any rule where relation R appears on the right-hand side must be
greater than or equal to the stratum of every rule where R appears on the left-hand side; i.e., no rule
that accesses R appears in a lower stratum than that of any rule that computes R. In a constraint
stratified program, this cannot always be guaranteed: for example, in Listing 5.1, working is
accessed in stratum 1 but computed in stratum 2. This is a natural consequence of the fact that there
is a cycle through negation in this program. Unfortunately, it means that after taking the fixpoint of
each syntactic stratum in the program, more facts might be derivable: evaluating a rule in stratum i
might produce a new tuple that will be accessed by a rule in strata < i. BloomPO identifies all rules
that might produce this behavior; we call the associated dataflow edges the backward edges of the
program. Whenever a new tuple is derived via a backward edge, the syntactic fixpoint is re-run
(line 28 of Listing 5.3).

5.4 DiCE in BloomPO

Having developed the language constructs and runtime support needed to support constraint stratified
programs in BloomPO, we now turn to how to use BloomPO to implement DiCE. We present the
concurrent editing program in Section 5.4, but begin by describing how to solve a simplified version
of the problem.

8This is typically done using semi-naive evaluation [22] to improve performance, but the details are not relevant to
this discussion.
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List Append
Appending to a linked list in a concurrent manner is quite similar to concurrent editing. In concurrent
editing, an insert(b, a, c) operation specifies that atom b appears between atoms a and c (i.e.,
a ≺e b ≺e c), whereas in the list append problem, append(b, a) adds an atom b after atom a (i.e.,
a ≺e b). As in concurrent editing, this also implies an explicit causal relationship between operations:
a { b. Note that, unlike in concurrent editing, ≺e and { are equivalent; hence the associated
explicit order and causal graphs are the same. As in concurrent editing, we assume that list elements
have globally unique IDs and we ignore the actual content associated with each ID; we also assume
the existence of a sentinel element LIST_START that represents the beginning of a list.

Listing 5.4 contains a solution to the list append problem in BloomPO. The program com-
putes three partial orders: the transitive closure of the “explicit” constraints derived directly from
the append operations (explicit_tc), the tiebreak orders used to determine the placement of
concurrent appends (tiebreak), and the orders over child nodes implied by their causal ances-
tors (implied_anc). The program combines these three partial orders into the ord collection
(lines 44–46), which represents the output monotone linearization order.

List append operations arrive in the collection input_buf but are not processed until their
explicit causal dependencies have been satisfied (line 20). Note that the rule on line 20 does not
ensure that a set of edits are processed in causal order: rather, given a set of edits, it admits all those
edits whose dependencies are satisfied by the node’s local state. To ensure that subsequent rule
evaluation respects the{ partial order, we copy the transitive closure of the user’s edits into the
causal_ord collection, which is declared as a po_scratch (line 8).

To compute the implied_anc collection, we use a second poset collection, cursor. The idea
here is that the causal_ord collection produces tuples in poset strata according to{; for each
such batch, we want to start with the causally oldest edits and proceed down the graph in causal
order, checking each pair of edits for implied_anc orders as we go (lines 33–37). Hence, we need
two poset collections because we are essentially doing a nested loop over the causal graph; the
to_check collection holds the Cartesian product of the tuples in the “frontiers” of the two loops.
Pairs of tuples for which no implied ordering is found can safely be tiebroken (lines 41–43).

The abstract definition of implied-by-ancestor rules for concurrent editing (Definition 1 in
Section 5.2) can easily be adapted to the list append problem:

Definition 2 Let x, y, z be list elements such that y { x (y is an ancestor of x). Then z ≺i x iff
z ≺t y.

Interestingly, the rule that computes implied_anc orders (lines 33–37) is essentially a translation
of this definition into Bloom syntax.

Concurrent Editing
Listing 5.5 contains a solution to the concurrent editing problem in BloomPO. As we have discussed,
list append and concurrent editing are closely related; this similarity can observed in their respective
BloomPO programs. In both programs, two poset collections are used: one to ensure that operations
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are considered in causal order and the other to ensure that before two edits are tiebroken, any
relevant orders implied by their ancestors have been considered.

The primary difference between the two problems is that each concurrent editing atom has
two causal ancestors, while each list append operation only has one. As a result, in concurrent
editing the causal graph and the explicit order graph are not the same—i.e., given a ≺e b, either
a{ b or b{ a might be true. Hence, the causal and explicit orders must be computed separately
(lines 22–25 and 31–34, respectively), and the rest of the program must employ one order or the
other, as needed.

Similarly, the rules for computing implied ancestor orders are more complex, because each
ancestor has two explicit order constraints that need to be considered (lines 36–41 and 42–47,
respectively). This follows from the fact that Definition 1 has two subclauses, whereas Definition 2
only has one. This correspondence confirms that our BloomPO program closely resembles the
abstract solution to the concurrent editing problem.

5.5 Discussion
When we embarked upon this project, we expected that implementing a concurrent editing system
in BloomL would be relatively straightforward and similar in spirit to other monotonic programs
discussed in this thesis: a concurrent editor computes a set of orderings that grows over time, which
seemed to be a natural fit for the monotonic, lattice-oriented programming style encouraged by
BloomL (Chapter 3). After completing a successful implementation, we were pleased with the
brevity of the resulting program and the correspondence between the specification and the BloomPO

program text, but the program was nevertheless quite tricky to develop. In part, this may be because
the algorithm is fundamentally order-sensitive: a correct solution must be careful to examine edits
in causal order.

Stratification is the traditional tool for handling such order dependencies in logic programs;
hence, it is not surprising that we found the need to employ more sophisticated stratification
techniques than simple stratified negation. Encoding BloomPO order dependencies using collection
types (i.e., po_scratch and po_table) allows concise programs whose rules are identical to
classical Bloom rules. On reflection, BloomPO might actually be too concise, in that the semantics
of the poset collection types is crucial to interpreting the meaning of a program: unlike in classical
Bloom, iterating over a poset-valued collection implies doing a stratified enumeration. Exposing the
order that this enumeration follows in the rule syntax (or in a debugging tool) might help make the
semantics of BloomPO programs more obvious to a casual reader.

By forcing us to carefully analyze the ordering dependencies in our design, using BloomPO to
implement DiCE provides a straightforward opportunity for parallel evaluation. Poset strata define
synchronization points: within a given poset stratum, parallel evaluation can be used to improve
performance without changing program behavior. Automatic parallelization of monotonic Datalog
programs has been well-studied [61, 158, 161]. In contrast, parallelizing a traditional concurrent
editing system would be very difficult—we are not aware of any existing systems that support
parallel execution.
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The BloomPO programs for both the list append and concurrent editing problems represent the
output linearization as a set of 〈b, a〉 tuples, where each tuple represents the fact that a precedes
b. Although this representation is elegant and abstract, it is expensive to compute and to store:
a document with n atoms requires O(n2) space, which implies a lower bound of O(n2) time for
any program that represents the output in this format. Moreover, it contains many redundant facts:
because the output linearization must satisfy transitivity, it should be possible to only store the
transitive reduction of the total order (e.g., given 〈b, a〉 and 〈c, b〉, it should be possible to omit
computing or storing 〈c, a〉).

One way to represent the transitive reduction would be to use a tree-like data structure: the
hierarchy of the tree implicitly represents the fact that, if x is a child of y, all the children of x are
descendants of y. Although we spent some timing exploring this idea, we found it difficult to preserve
the declarative, abstract character of our programs but still compute a tree-like data structure. An
interesting idea would be to build a compiler that can recognize the equivalence between a Datalog
program that computes all O(n2) facts and a tree-based program that avoids redundancy, and then
to rewrite the program from the declarative but inefficient format to a more efficient variant based
on tree manipulation. The result might resemble a relational query planner, albeit one specialized
to accept a certain class of programs and emit “plans” that target a non-traditional (tree-oriented)
query executor.

5.6 Related Work
Concurrent editing was first studied by Ellis and Gibbs [54], but has since been investigated by many
researchers. A popular approach to building concurrent editing systems is known as Operational
Transformation (OT) [145]. OT-based systems work by defining rewrite rules which describe how
remote operations should be transformed before they are applied to the local site. The intent of these
rules is to modify an operation o to account for the effects of operations that were not known by
the remote site that generated o. For example, suppose that a document initially contains the text
“abc”. Site n0 deletes the first character, while site n1 deletes the second character; these operations
are represented as op0 = Delete(0) and op1 = Delete(1), respectively. If these operations are
applied by a remote site without transformation, several problems occur. First, op0 and op1 are
not commutative and hence the final state of a site depends on the order in which the operations
are applied: op0op1 yields “b”, while op1op0 yields “c”. Second, the final state might not reflect
user intentions—e.g., the user at n1 intended to delete “b”, but in the op0op1 execution trace, their
deletion was applied to “c” instead. To correct these problems, OT-based systems ensure that each
site applies edit operations in the same order (e.g., op0op1), and then transforms each operation o
to account for other operations that precede o in the chosen order but were not known to the site
that generated o. For example, if the chosen execution order is op0op1, op1 might be rewritten to
Delete(0) to reflect the fact that op0 has already been applied.

Many OT-based concurrent editing systems have been proposed (e.g., [99, 100, 130, 145,
151]), including commercial products such as Google Wave [67]. However, OT-based systems
are notoriously difficult to implement correctly, in part because it is difficult to reason about the
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behavior and correctness of string-oriented rewrite rules. Indeed, many published OT algorithms
have been shown to be incorrect [84], including the original dOPT algorithm proposed by Ellis and
Gibbs [145].

In Chapter 3, we reviewed prior work on using Convergent and Commutative Replicated Data
Types (CRDTs) [138] to ensure that replicas of a loosely consistent system eventually converge.
Several CRDT designs for concurrent editing have been proposed, including WOOT [120], Lo-
goot [156], Logoot-Undo [157], and Treedoc [124]. WOOT and DiCE share many similarities: both
adopt an abstract, graph-theoretic approach to the concurrent editing problem, use explicit causality
rather than potential causality, and use causal order to decide how tiebreaks between concurrent
operations should be applied. WOOT and DiCE differ in that WOOT encodes the algorithm in
an imperative manner, whereas DiCE uses a declarative language; this allows a close correspon-
dence between the high-level algorithm description (Section 5.2) and the BloomPO program text
(Section 5.4).

Searching [76] and sorting [47] of partial orders has been the subject of recent work in the
theory community. The work of Heeringa et al. has some similarities to the graph data structure
BloomPO uses to support stratified enumeration of posets (Section 5.3), but our setting differs from
Heeringa et al. in several respects. First, we need to support insertion and stratified enumeration but
not the deletion or predecessor operations supported by Heeringa et al. Second, we need to support
arbitrary dynamic partial orders, whereas Heeringa et al. assume the input is a “tree-like” partial
order described by a Hasse diagram.

5.7 Conclusion
Concurrent editors are notoriously difficult to implement correctly. In this chapter, we recounted our
efforts to use a distributed logic language to simplify the development of concurrent editing systems.
The results show promise: the resulting programs are concise and declarative. This brevity goes
beyond avoiding the need for low-level boilerplate code; more importantly, our programs exhibit
a close correspondence between abstract specification and executable source code. However, our
experience confirmed that implementing a correct concurrent editor requires carefully controlling
the order in which different atoms are compared, which is an awkward requirement for traditional
declarative programming languages. By adapting Ross’s work on universal constraint stratification,
we showed how such ordering constraints can be incorporated into logic programs in a relatively
seamless way. Nevertheless, implementing and debugging DiCE took more effort than we had hoped
would be required.

We observe that, in contrast with concurrent editing, the domains where declarative programming
has had the most success tend to be those where programs can be written in a largely order-
insensitive manner and still achieve correct results. Several open questions remain: is concurrent
editing fundamentally order-sensitive? If so, is our approach of introducing order constraints into
logic programs the best one—or alternatively, would another language paradigm be a better fit for
expressing such order-sensitive programs? A promising direction might be to retain the declarative
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nature of BloomPO, but to find a syntax (and provide developer tools) that make the ordering
dependencies of the program more clear.
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1 class StratifiedGraph
2 Node = Struct.new(:id, :parents, :path_len)

4 def initialize
5 @nodes = {}
6 reset
7 end

9 def reset
10 @frontier = @nodes.values.select {|n| n.path_len == 0}.to_set
11 @current_stratum = 0
12 end

14 def insert(x, y)
15 @nodes[x] ||= Node.new(x, [].to_set, 0)
16 @nodes[y] ||= Node.new(y, [].to_set, 0)
17 @nodes[y].parents << @nodes[x]
18 update_path_len(@nodes[x], @nodes[y].path_len + 1)
19 end

21 def update_path_len(n, new_len)
22 return if n.path_len >= new_len
23 n.path_len = new_len
24 n.parents.each {|p| update_path_len(p, new_len + 1)}
25 end

27 def each(&blk)
28 @frontier.each do |n|
29 n.parents.each do |p|
30 blk.call(n, p) if p.path_len == @current_stratum + 1
31 end
32 end
33 end

35 def advance_stratum
36 @current_stratum += 1
37 @frontier = @frontier.flat_map do |n|
38 n.parents.map do |p|
39 if p.path_len == @current_stratum
40 p
41 elsif p.path_len > @current_stratum
42 n
43 end
44 end.compact
45 end.to_set

47 return @frontier.all? {|n| n.parents.empty?}
48 end
49 end

Listing 5.2: Stratified graph implementation in Ruby.
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1 def fixpoint
2 if @posets.empty?
3 syntactic_fixpoint
4 else
5 poset_fixpoint(0)
6 end
7 end

9 def poset_fixpoint(idx)
10 curr_poset = @posets[idx]
11 curr_poset.reset

13 while true
14 if curr_poset == @posets.last
15 syntactic_fixpoint
16 else
17 poset_fixpoint(idx + 1)
18 end

20 break unless curr_poset.advance_stratum
21 end
22 end

24 def syntactic_fixpoint
25 while true
26 @syntactic_strata.each {|s| simple_fixpoint(s)}

28 break unless @backward_edges.any? {|e| e.saw_delta?}
29 end
30 end

Listing 5.3: The fixpoint loop in BloomPO.
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1 class ListAppend
2 include Bud

4 state do
5 table :input_buf, [:id] => [:pred]
6 table :explicit, [:id, :pred]
7 table :explicit_tc, explicit.schema
8 po_scratch :causal_ord, explicit.schema
9 po_scratch :cursor, explicit.schema
10 scratch :to_check, [:x, :y]

12 scratch :check_tie, explicit.schema
13 table :tiebreak, explicit.schema
14 table :implied_anc, explicit.schema
15 table :ord, explicit.schema
16 end

18 stratum 0 do
19 # Buffer inputs until their predecessor has been received
20 explicit <= (input_buf * explicit).lefts(:pred => :id)

22 # Compute the transitive closure of the explicit constraints
23 explicit_tc <= explicit
24 explicit_tc <= (explicit * explicit_tc).pairs(:pred => :id)
25 {|e,t| [e.id, t.pred] unless t == LIST_START}

27 causal_ord <= explicit_tc
28 cursor <= explicit_tc

30 to_check <= (cursor * causal_ord).pairs {|c,s| [c.id, s.id] if c.id != s.id}
31 to_check <= (cursor * causal_ord).pairs {|c,s| [s.id, c.id] if c.id != s.id}

33 implied_anc <= (to_check * explicit_tc * tiebreak).combos(to_check.x => explicit_tc.id,
34 to_check.y => tiebreak.pred,
35 explicit_tc.pred => tiebreak.id) do |_,e,t|
36 [e.id, t.pred]
37 end
38 end

40 stratum 1 do
41 check_tie <= to_check {|c| [[c.x, c.y].max, [c.x, c.y].min]}
42 tiebreak <= check_tie.notin(explicit_tc, :id=>:pred, :pred=>:id)
43 .notin(implied_anc, :id=>:pred, :pred=>:id)
44 ord <= explicit_tc
45 ord <= tiebreak
46 ord <= implied_anc
47 end
48 end

Listing 5.4: Concurrent list append in BloomPO.
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1 class ConcurrentEditor
2 include Bud

4 state do
5 table :input_buf, [:id] => [:pre, :post]
6 scratch :input_has_pre, input_buf.schema
7 table :safe, input_buf.schema
8 po_table :causal_ord, [:to, :from]
9 po_scratch :cursor, causal_ord.schema
10 scratch :to_check, [:x, :y]
11 table :explicit, [:id, :pred]
12 table :explicit_tc, explicit.schema
13 scratch :check_tie, explicit.schema
14 table :tiebreak, explicit.schema
15 table :implied_anc, explicit.schema
16 table :ord, explicit.schema
17 end

19 stratum 0 do
20 input_has_pre <= (input_buf * safe).lefts(:pre => :id)
21 safe <= (input_has_pre * safe).lefts(:post => :id)
22 causal_ord <= safe {|s| [s.id, s.pre] unless s.pre.nil?}
23 causal_ord <= safe {|s| [s.id, s.post] unless s.post.nil?}
24 causal_ord <= (safe * causal_ord).pairs(:pre => :to) {|s,r| [s.id, r.from]}
25 causal_ord <= (safe * causal_ord).pairs(:post => :to) {|s,r| [s.id, r.from]}
26 cursor <= causal_ord

28 to_check <= (cursor * causal_ord).pairs {|c,s| [c.to, s.to] if c.to != s.to}
29 to_check <= (cursor * causal_ord).pairs {|c,s| [s.to, c.to] if c.to != s.to}

31 explicit <= safe {|s| [s.id, s.pre] unless s.pre.nil?}
32 explicit <= safe {|s| [s.post, s.id] unless s.post.nil?}
33 explicit_tc <= explicit
34 explicit_tc <= (explicit * explicit_tc).pairs(:pred => :id) {|e,t| [e.id, t.pred]}

36 implied_anc <= (to_check * causal_ord * tiebreak * explicit_tc).combos(
37 to_check.x => causal_ord.to, to_check.y => tiebreak.id,
38 causal_ord.from => tiebreak.pred, causal_ord.to => explicit_tc.pred,
39 causal_ord.from => explicit_tc.id) do |tc,c,t,e|
40 [t.id, c.to]
41 end
42 implied_anc <= (to_check * causal_ord * tiebreak * explicit_tc).combos(
43 to_check.x => causal_ord.to, to_check.y => tiebreak.pred,
44 causal_ord.from => tiebreak.id, causal_ord.to => explicit_tc.id,
45 causal_ord.from => explicit_tc.pred) do |tc,c,t,e|
46 [c.to, t.pred]
47 end
48 end

50 stratum 1 do
51 check_tie <= to_check {|c| [[c.x, c.y].max, [c.x, c.y].min]}
52 tiebreak <= check_tie.notin(implied_anc, :id => :pred, :pred => :id)
53 .notin(explicit_tc, :id => :pred, :pred => :id)
54 ord <= explicit_tc
55 ord <= implied_anc
56 ord <= tiebreak
57 end
58 end

Listing 5.5: Concurrent editing (DiCE) in BloomPO.
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Chapter 6

Concluding Remarks

To simplify distributed programming on top of loosely consistent storage infrastructure, we need
to help programmers reason about the ways in which asynchrony, concurrency, and partial failure
affect the correctness of their designs. This requires answering questions about both individual
modules—e.g., whether a single component behaves correctly for all possible combinations of
message reorderings and node failures—as well as about the entire system—for example, how does
composing individual modules together affect the end-to-end consistency of the entire system? In
this thesis, we explored how both questions can be addressed by introducing new language features.
In many cases, our work draws inspiration from informal design patterns already employed by
practitioners to tackle these challenges.

We found that all three of the language variants explored in this thesis made the development of
correct distributed programs significantly easier. The resulting programs were typically very concise
but remained readable. Perhaps more importantly, adopting a language-centric approach made it
easy to analyze end-to-end behaviors of entire systems: for example, to reason about how lattices in
BloomL are composed, and to ensure that the garbage collection schemes produced by Edelweiss
account for the semantics of all the rules in the program.

Although developing new language variants can produce impressive results, it also increases
the effort required to apply these results to mainstream systems built with traditional programming
languages. We were aware of this concern when we began the project and tried to ameliorate it by
making Bloom an “internal” domain-specific language (DSL) [60], reusing the Ruby syntax and
type system. On reflection, this strategy was not entirely successful, perhaps because the semantics
of Bloom are sufficiently different from those of Ruby that syntax-level integration does not change
the fact that Bloom is fundamentally a language and not a library. In some cases, our work could
have been packaged as a library instead: for example, rather than delivering BloomL as a language,
we could have instead provided a library of lattice types and functions for composing them together.
This approach merits further investigation—although it does seem to be less powerful than designing
a new language, and not all language features might be conveniently encoded as libraries.

This work was initially motivated by the belief that traditional programming languages do not
provide effective support for the challenges raised by modern distributed computing. Our work in
this thesis has only confirmed this conviction. While the “right” language for distributed computing
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remains an open question, we strongly believe that further innovation in language design is needed
to enable mainstream developers to fully exploit the opportunities presented by pervasive distributed
computing.
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Appendix A

Additional Program Listings

This appendix contains the complete source code for several of the programs described in this thesis.

A.1 BloomL

Lattice-Based KVS
Dominating Set Lattice Type

class DomLattice < Bud::Lattice
wrapper_name :ldom

def initialize(i=nil)
unless i.nil?
reject_input(i) unless i.kind_of? Hash
reject_input(i) unless i.keys.all? {|k| k.kind_of? Bud::Lattice}
reject_input(i) unless i.values.all? {|v| v.kind_of? Bud::Lattice}
end
@v = i
end

def merge(i)
i_val = i.reveal
return i if @v.nil?
return self if i_val.nil?

rv = {}
preserve_dominants(@v, i_val, rv)
preserve_dominants(i_val, @v, rv)
wrap_unsafe(rv)
end

morph :version do
compute_reconcile
@reconcile.first unless @reconcile.nil?
end

def value
compute_reconcile
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@reconcile.last unless @reconcile.nil?
end

private
def preserve_dominants(target, other, rv)
target.each_pair do |k1, val|
# A key/value pair is included in the result UNLESS there is another key
# in the other input that dominates it. Note that there can be at most one
# such dominating key in either of the inputs.
next if other.keys.any? {|k2| k2.merge(k1) == k2 && k1 != k2}
rv[k1] = val
end
end

private
def compute_reconcile
return if @v.nil? or @reconcile
@reconcile = [@v.keys.reduce(:merge), @v.values.reduce(:merge)]
end
end

Listing A.1: The ldom lattice type used in the BloomL KVS case study (Section 3.4).

Lattice-based KVS

module KvsProtocol
state do
channel :kvput, [:reqid, :@addr] => [:key, :val, :client_addr]
channel :kvput_response, [:reqid] => [:@addr, :replica_addr]
# If the key does not exist in the KVS, we return a "bottom" value. Since
# there is not a single bottom value shared across all lattice types (and
# since we don’t have type parameters), we require that the user specify the
# class to use to construct the bottom value (if needed).
channel :kvget, [:reqid, :@addr] => [:key, :val_class, :client_addr]
channel :kvget_response, [:reqid] => [:@addr, :val, :replica_addr]

# Initiate an async operation to replicate the contents of this replica to
# the replica at the given address.
channel :kvrepl, [:@addr, :target_addr]
end
end

# Simple KVS replica in which we just merge together all the proposed values for
# a given key. This is reasonable when the intent is to store a monotonically
# increasing lmap of keys.
class KvsReplica
include Bud
include KvsProtocol

state do
lmap :kv_store
end

bloom do
kv_store <= kvput {|c| {c.key => c.val}}
kvput_response <~ kvput {|c| [c.reqid, c.client_addr, ip_port]}
kvget_response <~ kvget {|c| [c.reqid, c.client_addr,

kv_store.at(c.key, c.val_class), ip_port]}
end
end
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class ReplicatedKvsReplica < KvsReplica
state do
channel :repl_propagate, [:@addr] => [:kv_store]
end

bloom do
repl_propagate <~ kvrepl {|r| [r.target_addr, kv_store]}
kv_store <= repl_propagate {|r| r.kv_store}
end
end

# Simple KVS client that issues put and get operations against a single KVS
# replica. KVS replica address is currently fixed on instantiation. This class
# is not thread-safe.
class KvsClient
include Bud
include KvsProtocol

def initialize(addr, val_class)
@reqid = 0
@addr = addr
@val_class = val_class
super()
end

def read(key)
reqid = make_reqid
r = sync_callback(:kvget, [[reqid, @addr, key, @val_class, ip_port]], :kvget_response)
r.each {|t| return t.val if t.reqid == reqid}
raise
end

def write(key, val)
reqid = make_reqid
r = sync_callback(:kvput, [[reqid, @addr, key, val, ip_port]], :kvput_response)
r.each {|t| return if t.reqid == reqid}
raise
end

# NB: To make it easier to provide a synchronous API, we assume that "to" is
# local (i.e., we’re passed the _instance_ of Bud we want to replicate to, not
# just its address).
def cause_repl(to)
q = Queue.new
cb = to.register_callback(:repl_propagate) do |t|
q.push true
end
sync_do { kvrepl <~ [[@addr, to.ip_port]] }

q.pop
to.unregister_callback(cb)
end

private
def make_reqid
@reqid += 1
"#{ip_port}_#{@reqid}"
end
end
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# More sophisticated KVS client that supports quorum-style operations over a set
# of KVS replicas. Currently, put/get replica sets are fixed on instantiation,
# and we wait for acks from all replicas in the set.
class QuorumKvsClient
include Bud
include KvsProtocol

state do
table :put_reqs, [:reqid] => [:acks]
table :get_reqs, [:reqid] => [:acks, :val]
scratch :w_quorum, [:reqid]
scratch :r_quorum, [:reqid] => [:val]
end

bloom do
put_reqs <= kvput_response {|r| [r.reqid, Bud::SetLattice.new([r.replica_addr])]}
w_quorum <= put_reqs do |r|
r.acks.size.gt_eq(@w_quorum_size).when_true { [r.reqid] }
end

get_reqs <= kvget_response {|r| [r.reqid, Bud::SetLattice.new([r.replica_addr]), r.val]}
r_quorum <= get_reqs do |r|
r.acks.size.gt_eq(@r_quorum_size).when_true { [r.reqid, r.val] }
end
end

def initialize(put_list, get_list, val_class)
@reqid = 0
@put_addrs = put_list
@get_addrs = get_list
@r_quorum_size = get_list.size
@w_quorum_size = put_list.size
@val_class = val_class
super()
end

def read(key)
reqid = make_reqid
get_reqs = @get_addrs.map {|a| [reqid, a, key, @val_class, ip_port]}
r = sync_callback(:kvget, get_reqs, :r_quorum)
r.each {|t| return t.val if t.reqid == reqid}
raise
end

def write(key, val)
reqid = make_reqid
put_reqs = @put_addrs.map {|a| [reqid, a, key, val, ip_port]}
r = sync_callback(:kvput, put_reqs, :w_quorum)
r.each {|t| return if t.reqid == reqid}
raise
end

private
def make_reqid
@reqid += 1
"#{ip_port}_#{@reqid}"
end
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end

Listing A.2: Server replica and two client implementations for the lattice-based KVS.

Lattice-Based Shopping Cart
Cart Lattice

ACTION_OP = 0
CHECKOUT_OP = 1

# The CartLattice represents the state of an in-progress or checked-out shopping
# cart. The cart can hold two kinds of items: add/remove operations, and
# checkout operations. Both kinds of operations are identified with a unique ID;
# internally, the set of items is represented as a map from ID to value. Each
# value in the map is an array, where the first element is either ACTION_OP or
# CHECKOUT_OP.
#
# For ACTION_OPs, the rest of the array contains "item_id" and "mult", where
# mult is the incremental change to the number of item_id’s in the cart
# (positive or negative).
#
# For CHECKOUT_OPs, the rest of the array contains "lbound" and "checkout_addr".
# lbound identifies the smallest ID number that must be in the cart for it to be
# complete; we also assume that carts are intended to be "dense" -- that is,
# that a complete cart includes exactly the operations with IDs from lbound to
# the CHECKOUT_OP’s ID. checkout_addr is the address we want to contact with the
# completed cart state (we stash it here for convenience). A given cart can have
# at most one CHECKOUT_OP.
#
# Upon an attempt to construct a cart with illegal action messages (e.g.,
# messages with IDs before the lbound or after the checkout message’s ID), we
# raise an error. We could instead ignore/drop such messages; this would still
# yield a convergent result. We also raise an error if multiple checkout
# messages are merged into a single cart; this is naturally a non-confluent
# situation, so we need to raise an error.
#
# Why bother with a custom lattice to represent the cart state? The point is
# that checkout becomes a monotonic operation, because each replica of the cart
# can decide when it is "complete" independently (and consistently!).
class CartLattice < Bud::Lattice
wrapper_name :lcart

def initialize(i={})
# Sanity check the set of operations in the cart
i.each do |k,v|
reject_input(i) unless (v.class <= Enumerable && v.size == 3)
reject_input(i) unless [ACTION_OP, CHECKOUT_OP].include? v.first
end

checkout = get_checkout(i)
if checkout
ubound, _, lbound, _ = checkout.flatten

# All the IDs in the cart should be between the lbound ID and the ID of
# the checkout message (inclusive).
i.each {|k,_| reject_input(i) unless (k >= lbound && k <= ubound) }
end
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@v = i
@is_complete = nil # computed lazily below
end

def merge(i)
rv = @v.merge(i.reveal) do |k, lhs_v, rhs_v|
raise Bud::Error unless lhs_v == rhs_v
lhs_v
end
return CartLattice.new(rv)
end

monotone :is_complete do
@is_complete = compute_is_complete if @is_complete.nil?
Bud::BoolLattice.new(@is_complete)
end

monotone :summary do
@is_complete = compute_is_complete if @is_complete.nil?
raise Bud::Error unless @is_complete

actions = @v.values.select {|v| v.first == ACTION_OP}
summary = {}
actions.each do |a|
_, item_id, mult = a
summary[item_id] ||= 0
summary[item_id] += mult
end

# Drop deleted cart items and return an array of pairs
summary.select {|_,v| v > 0}.to_a.sort
end

monotone :checkout_addr do
checkout = get_checkout(@v)
raise Bud::Error unless checkout
checkout.flatten.last
end

private
def get_checkout(i)
lst = i.select {|_, v| v.first == CHECKOUT_OP}
reject_input(i) unless lst.size <= 1
lst.first # Return checkout action or nil
end

def compute_is_complete
checkout = get_checkout(@v)
return false unless checkout

ubound, _, lbound, _ = checkout.flatten
(lbound..ubound).each do |n|
return false unless @v.has_key? n
end

return true
end
end

Listing A.3: The lcart lattice type used in the BloomL shopping cart case study (Section 3.5).
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Cart Server Replica

module MonotoneCartProtocol
state do
channel :action_msg, [:@server, :session, :op_id] => [:item, :cnt]
channel :checkout_msg, [:@server, :session, :op_id] => [:lbound, :addr]
channel :response_msg, [:@client, :session] => [:items]
end
end

module MonotoneReplica
include MonotoneCartProtocol

state do
lmap :sessions
end

bloom do
sessions <= action_msg do |m|
c = CartLattice.new({m.op_id => [ACTION_OP, m.item, m.cnt]})
{ m.session => c }
end

sessions <= checkout_msg do |m|
c = CartLattice.new({m.op_id => [CHECKOUT_OP, m.lbound, m.addr]})
{ m.session => c }
end

# Note that we will send an unbounded number of response messages for each complete cart.
response_msg <~ sessions.to_collection do |session, cart|
cart.is_complete.when_true {
[cart.checkout_addr, session, cart.summary]
}
end
end
end

module MonotoneClient
include MonotoneCartProtocol

state do
table :serv, [] => [:addr]
scratch :do_action, [:session, :op_id] => [:item, :cnt]
scratch :do_checkout, [:session, :op_id] => [:lbound]
end

bloom do
action_msg <~ (do_action * serv).pairs do |a,s|
[s.addr, a.session, a.op_id, a.item, a.cnt]
end
checkout_msg <~ (do_checkout * serv).pairs do |c,s|
[s.addr, c.session, c.op_id, c.lbound, ip_port]
end
end
end

Listing A.4: A cart server replica that supports monotone checkout (Section 3.5).
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A.2 Edelweiss

Fixed Reliable Broadcast

class BroadcastAll_Rewrite
include Bud

state do
channel :chn, [:@addr, :id] => [:val]
channel :chn_ack, [:@rce_sender, :addr, :id]
range :chn_approx, [:addr, :id]
table :log, [:id] => [:val]
sealed :node, [:addr]
scratch :r0_node_log_joinbuf, [:node_addr, :log_id, :log_val]
scratch :r0_node_log_missing, [:node_addr, :log_id, :log_val]
range :seal_log, [:ignored]
range :seal_node, [:ignored]
end

bloom do
chn <~ (node * log).pairs { |n, l| (n + l) }.notin(chn_approx, 0 => :addr, 1 => :id)
log <- (log * seal_node).lefts.notin(r0_node_log_missing, :id => :log_id, :val => :log_val)
node <- (node * seal_log).lefts.notin(r0_node_log_missing, :addr => :node_addr)
chn_ack <~ chn {|c| [c.source_addr, c.addr, c.id]}
chn_approx <= chn_ack.payloads
log <= chn.payloads
r0_node_log_joinbuf <= (node * log * chn_approx).combos(chn_approx.addr => node.addr,

chn_approx.id => log.id) {|x,y,z| x + y}
r0_node_log_missing <= (node * log).pairs {|x,y| x + y}.notin(r0_node_log_joinbuf)
end
end

Listing A.5: Rewritten code produced by Edelweiss for the reliable broadcast program (Listing 4.3).

Epoch-Based Reliable Broadcast

class BroadcastEpoch_Rewrite
include Bud

state do
channel :chn, [:@addr, :id] => [:epoch, :val]
channel :chn_ack, [:@rce_sender, :addr, :id]
range :chn_approx, [:addr, :id]
scratch :del_log_r0, [:id] => [:epoch, :val]
scratch :del_node_r0, [:addr, :epoch]
table :log, [:id] => [:epoch, :val]
table :node, [:addr, :epoch]
scratch :r0_node_log_joinbuf, [:node_addr, :node_epoch, :log_id, :log_epoch, :log_val]
scratch :r0_node_log_missing, [:node_addr, :node_epoch, :log_id, :log_epoch, :log_val]
range :seal_log, [:ignored]
range :seal_log_epoch, [:epoch]
range :seal_node, [:ignored]
range :seal_node_epoch, [:epoch]
end

bloom do
chn <~ (node * log).pairs(:epoch => :epoch) { |n, l| ([n.addr] + l) }.notin(chn_approx,

0 => :addr, 1 => :id)
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log <- del_log_r0
node <- del_node_r0
chn_ack <~ chn {|c| [c.source_addr, c.addr, c.id]}
chn_approx <= chn_ack.payloads
del_log_r0 <= (log * seal_node).lefts.notin(r0_node_log_missing,

:id => :log_id, :epoch => :log_epoch, :val => :log_val)
del_log_r0 <= (log * seal_node_epoch).lefts(:epoch => :epoch).notin(r0_node_log_missing,

:id => :log_id,
:epoch => :log_epoch,
:val => :log_val)

del_node_r0 <= (node * seal_log).lefts.notin(r0_node_log_missing,
:addr => :node_addr, :epoch => :node_epoch)

del_node_r0 <= (node * seal_log_epoch).lefts(:epoch => :epoch).notin(r0_node_log_missing,
:addr => :node_addr,
:epoch => :node_epoch)

log <= chn.payloads
r0_node_log_joinbuf <= (node * log * chn_approx).combos(node.epoch => log.epoch,

chn_approx.addr => node.addr,
chn_approx.id => log.id) {|x,y,z| x + y}

r0_node_log_missing <= (node * log).pairs(node.epoch => log.epoch) {|x,y| x + y}
.notin(r0_node_log_joinbuf)

end
end

Listing A.6: Rewritten code produced by Edelweiss for epoch-based reliable broadcast (Listing 4.4).

Causal Broadcast
class BroadcastCausal
include Bud

state do
sealed :node, [:addr]
table :log, [:id] => [:val, :deps]
channel :chn, [:@addr, :id] => [:val, :deps]

table :safe_log, log.schema

scratch :pending, log.schema
scratch :flat_dep, [:id, :dep]
scratch :missing_dep, flat_dep.schema
end

bloom do
chn <~ (node * log).pairs {|n,l| n + l}
log <= chn.payloads
pending <= log.notin(safe_log, :id => :id)
flat_dep <= pending.flat_map {|l| l.deps.map {|d| [l.id, d]}}
missing_dep <= flat_dep.notin(safe_log, :dep => :id)
safe_log <+ pending.notin(missing_dep, :id => :id)
end
end

Listing A.7: Causal broadcast in Edelweiss.

Request-Response
class RequestResponse
include Bud
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state do
channel :req_chn, [:@addr, :client, :id] => [:key]
channel :resp_chn, [:@addr, :id] => [:key, :val]

table :req_log, [:client, :id] => [:key]
table :resp_log, [:client, :id] => [:key, :val]
table :did_resp, req_log.key_cols
table :state

scratch :need_resp, req_log.schema

# Client-side state
table :read_req, req_chn.schema
table :read_resp, resp_chn.schema
end

bloom do
req_log <= req_chn.payloads
resp_chn <~ resp_log

need_resp <= req_log.notin(did_resp, :client => :client, :id => :id)
resp_log <= (need_resp * state).outer(:key => :key) do |r,s|
r + [s.val || "MISSING"]
end
did_resp <+ resp_log {|r| [r.client, r.id]}
end

bloom :client do
req_chn <~ read_req
read_resp <= resp_chn
end
end

Listing A.8: Request-response pattern in Edelweiss.
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