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Bowling ball representations of braid groups

Stephen J. Bigelow

May 26, 2018

Abstract

In a remark in his seminal 1987 paper, Jones describes a way to define
the Burau matrix of a positive braid using a metaphor of bowling a ball
down a bowling alley with braided lanes. We extend this definition to
allow multiple bowling balls to be bowled simultaneously. We obtain
representations of the Iwahori-Hecke algebra and a cabled version of the
Temperley-Lieb representation.

1 Introduction

The positive braid monoid B+
n is the monoid generated by σ1, . . . , σn−1 modulo

the following relations.

• Far commutativity: σiσj = σjσi if |i− j| > 1.

• The braid relation: σiσjσi = σjσiσj if |i− j| = 1.

Alternatively, B+
n is the set of n-strand geometric braids that involve only pos-

itive crossings.
In a remark in [3], Jones describes a definition of the (non-reduced) Burau

representation of the positive braid monoid using a “bowling ball” metaphor.
Here is the relevant passage (except we change “t” to “1− q” and (i, j) to (j, i),
to match our conventions).

For positive braids there is also a mechanical interpretation of the
Burau matrix: Lay the braid out flat and make it into a bowling alley
with n lanes, the lanes going over each other according to the braid.
If a ball traveling along a lane has probability 1− q of falling off the
top lane (and continuing in the lane below) at every crossing then
the (j, i) entry of the (non-reduced) Burau matrix is the probability
that a ball bowled in the ith lane will end up in the jth.

This idea was generalized to string links in [5]. Subsequent papers, for ex-
ample [4], [8], and [1], have pursued the related idea of random walks on braids
and knot diagrams. Our goal is to generalize the bowling ball definition to al-
low several balls to be bowled simultaneously. We obtain representations of the
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Iwahori-Hecke algebra and a cabled version of the Temperley-Lieb representa-
tion. I will not propose any specific applications, but I hope this definition gives
a useful new way to think about these important representations.

Throughout the paper, we work over an arbitrary field containing an element
q. The probability metaphor only makes literal sense when q is a real number in
the range [0, 1]. However the results are true for any value of q, and even over
a ring. If q is invertible then the representations extend from the braid monoid
to the braid group.

2 Definition of the representation

In this section, we give a rule for the behavior of bowling balls, and prove that
it gives a representation of the braid monoid. We will describe another rule in
Section 4.

Fix N ≥ 1. Let β be an n-strand positive braid, thought of as a bowling
alley with n lanes. Simultaneously bowl balls into the lanes so that each lane
receives at most N balls.

At each crossing, some balls may fall, according to the following rule. Sup-
pose a balls arrive on the top lane of a crossing, and b arrive on a bottom. If
a ≤ b then no balls will fall. If a > b then, with probability 1− q, exactly a− b
balls will fall from the top lane to join the b balls on the lane below. The result
is that the same numbers of balls are in the exiting lanes as in the entering
lanes, except possibly for a permutation.

Use this to define a matrix ρ(β) whose rows and columns are indexed by
n-tuples u = (u1, . . . , un) of integers such that 0 ≤ ui ≤ N . The (v,u) entry
of ρ(β) is the probability that, if ui balls are bowled into the ith lane for all i,
then vj balls end up in the jth lane for all j.

Theorem 2.1. ρ is a well-defined (N + 1)n-dimensional representation of B+
n .

Proof. The definition of ρ clearly respects multiplication, and the far commuta-
tivity relation. It remains to check the braid relation. This only involves three
lanes, so it suffices to treat the case n = 3. Let

β = σ1σ2σ1 = σ2σ1σ2.

Call the three lanes the top, middle, and bottom. The top lane crosses over
both other lanes, and the bottom lane crosses under both other lanes.

We will compute the entries of the matrix ρ(β) in a way that does not depend
on the specific word used to represent β. This will show that ρ(β) is well-defined.

Case 0: No balls.
If no balls are bowled in to β then no balls will emerge.
Case 1: One ball.
Suppose one ball is bowled into β. If it is bowled into one of the lower two

lanes then the top lane plays no role, so we can simply use the probabilities for
a single crossing between the lower two lanes.
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Now suppose the ball is bowled into the top lane. The probability that it
will end up in the top lane is q2, since it must pass over two empty lanes. The
probability that it will end up among the top two lanes is q, since it must pass
over the bottom lane exactly once, regardless of whether or not it falls to the
middle lane. By subtraction, the probability that it will end up in the middle
lane is q− q2, and the probability that it will end up in the bottom lane is 1− q.

Case 2: Two balls.
Suppose two balls are bowled into β. If they are bowled into the same lane

then they behave as a single ball, which was covered in the Case 1. If one of
them is bowled into the bottom lane then the bottom lane plays no role, so
we can simply use the probabilities for a single crossing between the upper two
lanes.

Now suppose the two balls are bowled into the top and the middle lanes.
The probability that the bottom lane ends up empty is q2, since the two balls
must pass over the bottom lane. The probability that one of the lower two lanes
ends up empty (that is, that the ball remains in the top lane) is q, since the top
ball must pass over the empty lane. By subtraction, the probability that the
middle lane will end up empty is q − q2, and the probability that the top lane
will end up empty is 1− q.

Case 3: Three balls.
Suppose three balls are bowled into β. If they are bowled into the same

lane then they behave as a single ball, which was covered in Case 1. If they are
bowled one into each lane then no balls will fall.

Now suppose one ball is bowled into one lane and two balls are bowled into
another. We use a triple (x, y, z) to denote the outcome where x balls emerge
from the left (lowest) lane, y from the middle, and z from the right (highest).
We will compute the probabilities of all six possible outcomes in the following
order:

(0, 1, 2), (0, 2, 1), (1, 2, 0), (2, 1, 0), (2, 0, 1), (1, 0, 2).

First we compute the probability of the outcome (0, 1, 2). If two balls were
bowled into the top lane and one into the middle, then the probability of (0, 1, 2)
is q3, because there are three crossings at which a larger number of balls must
pass over a smaller number without falling. For any other input, the probability
of (0, 1, 2) is 0, since balls cannot fall up.

Next we compute the probability that the outcome is either (0, 1, 2) or
(0, 2, 1). To do this, ignore the distinction between having one or two balls
in a lane, and proceed as if two balls had been bowled in to each of two lanes.
In other words, for a given input of a total of three balls into two lanes, the
probability that the outcome will have the form (0, y, z) is the same as the
probability of an outcome (0, 1, 1) from a modified input of a total of two balls
into the same two lanes. This probability was computed in Case 2. Take the
probability of (0, y, z) minus the probability of (0, 1, 2) to obtain the probability
of (0, 2, 1).

Next we compute the probability that the outcome is either (0, 2, 1) or
(1, 2, 0). To do this, ignore the distinction between having zero or one ball
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in a lane and proceed as if only one ball had been bowled in. In other words,
for a given input of two balls into a lane and one into another, the probability
of an outcome of the form (x, 2, z) is the same as the probability of an outcome
(0, 1, 0) from a modified input of one ball where originally there was two, and
no ball where originally there was one. This probability was computed in Case
1. Take the probability of (x, 2, z) minus the probability of (0, 2, 1) to obtain
the probability of (1, 2, 0).

Continue in a similar fashion. Compute the probability that the outcome
has the form (x, y, 0) similarly to (0, y, z) above, and then subtract the outcome
(1, 2, 0) to get (2, 1, 0). Compute the probability that the outcome has the form
(2, y, z) similarly to (x, 2, z) above, and subtract the outcome (2, 1, 0) to get
(2, 0, 1). Finally, compute the probability of (x, 0, z) and subtract (2, 0, 1) to get
(1, 0, 2).

In the end, for any given input, we have computed the probabilities of all
six outputs, independently of which of the two bowling lane configurations was
used for β.

Case 4: The general case.
Suppose a, b and c balls are bowled into the lanes. The only thing that

matters about the numbers a, b and c is which equalities and inequalities hold
between them. Thus we can reduce to one of the cases we have already covered.

In every case, for any given input we can compute the probability of any
given output. The computation is the same for σ1σ2σ1 and σ2σ1σ2, so these
have the same matrix.

3 The Iwahori-Hecke algebra

Let ρ be the representation of B+
n defined in the previous section. The Iwahori-

Hecke algebra Hn(q) is the monoid algebra of formal linear combinations of
positive braids modulo the two-sided ideal generated by the quadratics

(q + σi)(1− σi).

Theorem 3.1. ρ factors through Hn(q).

Proof. Only two lanes are involved, so it suffices to treat the case n = 2. Let v
be the vector corresponding a balls in the left lane and b in the right. We must
show that v is in the kernel of

(q + ρ(σ1))(1− ρ(σ1)).

If a = b then v is fixed by ρ(σ1), and we are done.
If a 6= b then the only thing that matters is which of a and b is larger. Thus

we can reduce to the case they are equal to 0 and 1. The action of ρ(σ1) is then
the same as the Burau representation. It is well known, and easily checked, that
this satisfies the required quadratic relation.
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Note that if q is invertible then the σi are invertible in Hn(q), with

σ−1i = q−1(σi + q − 1).

In this case, ρ is a representation of the braid group Bn and not just B+
n .

There is another important element of the kernel of ρ in the case n = N + 2.
Suppose w is a permutation of {1, . . . , N + 2}. Let (−1)w = ±1 denote the sign
of the permutation. Let βw denote the unique positive braid with a minimal
number of crossings such that the lane at position i goes to position w(i) for all
i = 1, . . . , N + 2. Let x be the following element of Hn(q).

x =
∑
w

(−1)wβw.

A generalization of x appears in the definition of the Specht modules in [2].
For every i = 1, . . . , N + 1, we have

x =

 ∑
w(i)<w(i+1)

(−1)wβw

 (1− σi), (1)

and thus
xσi = −qx. (2)

Theorem 3.2. For n = N + 2, ρ(x) = 0.

Proof. Consider a basis vector v corresponding to bowling vi balls into the ith
lane, where

0 ≤ v1 ≤ · · · ≤ vN+2 ≤ N.

Then vi = vi+1 for some i. The action of σi then fixes v, so by Equation (1),
ρ(x)v = 0.

Now consider an arbitrary basis vector v′ corresponding to bowling v′i balls
into the ith lane. Let v1, . . . , vN+2 be the numbers v′i arranged into increasing
order. Then v′i = vw(i) for some permutation w. If we bowl vi balls into the ith
lane of βw for all i then no balls will fall, since a smaller number passes over a
larger number at every crossing. Thus

v′ = ρ(βw)v.

By repeatedly applying Equation (2), xβw is a scalar multiple of x. Thus

ρ(x)v′ = ρ(xβw)v = 0,

so every basis vector is in the kernel of the action of x.

For n ≥ N + 2 and 1 ≤ k ≤ n − N − 1, let xk ∈ Hn(q) be the result of
placing k− 1 straight lanes on the left of x and n− k−N − 1 straight lanes on
the right. Obviously xk is also in the kernel of ρ.
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If N = 1, and our field is C, and q 6= 0, then the quotient of Hn(q) by the
two-sided ideal generated by the elements xk is isomorphic to the Temperley-
Lieb algebra. See [6, Theorem 5.29], although the conventions there are slightly
different. Thus, in this case, the representation ρ factors through the Temperley-
Lieb algebra.

Remark 3.3. I have not been able to find any reference in the literature to
the quotient of Hn(q) by the two-sided ideal generated by the elements xk when
N > 1. I suspect it is related to the action of Hn(q) on the nth tensor power of
the standard representation of Uq(slN+1), as analyzed in [7].

4 A cabling of the Temperley-Lieb algebra

Fix K ≥ 1. Let β be a positive braid, thought of as a bowling alley with n lanes.
Create a cabling of β by replacing every lane with K parallel lanes. Suppose
a = (a1, . . . , an) is an n-tuple of integers such that 0 ≤ ai ≤ K. Bowl balls into
the lanes so that each lane gets at most one ball and, for all i, ai balls go into
the ith collection of K parallel lanes. Whenever a ball passes over an empty
lane, it falls with probability 1− q.

Use this to define a matrix ρK(β) whose rows and columns are indexed by
n-tuples (a1, . . . , an) of integers such that 0 ≤ ai ≤ K. The (b,a) entry of
ρK(β) is the probability that, if ai balls are bowled into the ith set of K parallel
lanes for all i, then bi balls end up in the ith set of K parallel lanes for all i.

Theorem 4.1. ρK is a well-defined representation of B+
n .

Proof. Our definition only keeps track of the number of balls in each collection
of K parallel lanes. We must check that it is not necessary to know precisely
which lanes they are in.

Consider the cabling of a single positive crossing. Suppose we bowl a balls
into the upper K lanes of a cabled crossing, and b into the lower K lanes. The
empty lanes in the upper lanes will remain empty, and the balls in the lower
lanes will remain in their lane. The probability that exactly c balls will fall
depends only on the number a of occupied upper lanes and the number K − b
of empty lower lanes.

The representation ρK clearly respects multiplication. It therefore assigns
a well-defined matrix to any positive braid β that is written as a product of
crossings. By Theorem 2.1, the probability of any specific outcome is invariant
under applying braid relations to the cabling of β. Therefore our matrix ρK(β)
is also invariant under braid relations.

A trace function of ρK can be used to compute the colored Jones polynomial
of a knot. Other apparently similar approaches to the colored Jones polynomial
have appeared in [8] and [1]. It would be interesting to know something about
the limiting behavior of ρK if we set q = e2iπ/K and let K go to infinity. This
may have some connection to the Kashaev conjecture.
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For all 0 ≤ c ≤ a ≤ N and 0 ≤ b ≤ N , let fab (c) denote the probability,
when a balls enter the top lane of a crossing and b balls enter the bottom, that
c balls fall from the upper lane to the lower lane. We will compute a formula
for fab (c). First we define some notation.

If k is a non-negative integer, we define the quantum integer

[k] =
1− qk

1− q
.

Note that we are using the definition that involves only positive exponents of q,
not the definition that is symmetric under mapping q to q−1.

The q-factorial is [k]! = [k][k− 1] . . . [1]. If 0 ≤ r ≤ k, the Gaussian binomial
is (

k

r

)
q

=
[k]!

[r]![k − r]!
.

These have a combinatorial interpretation as follows.
An inversion of a permutation w of {1, . . . , k} is a pair i < j such that

w(i) > w(j). The quantum factorial [k]! is the sum over w of q to the power of
the number of inversions of w.

An inversion of a sequence (ε1, . . . , εk) of ones and zeros is a pair i < j such
that εi = 1 and εj = 0. The Gaussian binomial

(
k
r

)
q

is the sum, taken over all

such sequences that have r ones, of q to the power of the number of inversions.
We now give a formula for fab (c).

Theorem 4.2. If a, b, c are integers and 0 ≤ c ≤ a then

fab (c) = q(a−c)(K−b−c)
(
a

c

)
q

(
K − b
c

)
q

(1− q)c[c]!

Proof. Consider a crossing where K parallel lanes pass over K parallel lanes.
Now bowl a balls into the upper collection of lanes and b into the lower. We
must compute the probability that exactly c balls will fall.

Fix a choice of c of the upper a balls, a choice of c of the lower K − b
initially empty lanes, and a bijection w from these balls to these empty lanes.
We compute the probability that our chosen balls fall into our chosen lanes
according to w, and then sum over w and these choices to obtain fab (c).

Some terminology will help us to stay organized. The K upper lanes consist
of our chosen c briefly-full lanes, a − c always-full lanes, and K − a irrelevant
lanes. The K lower lanes consist of our chosen c briefly-empty lanes, K − b− c
always-empty lanes, and b irrelevant lanes. The irrelevant lanes are either upper
lanes that start and remain empty, or lower lanes that start and remain full.
These have no effect on the probability.

Consider the crossings where an always-full lane passes over an always-empty
lane. At each such crossing, a ball will pass over an empty lane, contributing a
factor of q. Taken together, these crossings contribute the term

q(a−c)(K−b−c).
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Consider the crossings where an always-full lane passes over a briefly-empty
lane. Such a crossing will contribute a factor of q if and only if the briefly-empty
lane is still empty, having not yet met its corresponding briefly-full lane. The
number of times this happens is the number of pairs of upper lanes consisting
of a briefly-full lane to the left of an always-full lane. This is independent of
w and of the choice of c briefly-empty lower lanes. Ranging over the choice
of c briefly-full upper lanes contributes the powers of q in the combinatorial
definition of (

a

c

)
q

.

Consider the crossings where a briefly-full lane passes over an always-empty
lane. Such a crossing will contribute a factor of q if and only if the briefly-full
lane is still full, having not yet met its corresponding briefly-empty lane. The
number of times this happens is the number of pairs of lower lanes consisting
of an always-empty lane to the left of a briefly-empty lane. This is independent
of w and of the choice of c briefly-full upper lanes. Ranging over the choice
of c briefly-empty lower lanes contributes the powers of q in the combinatorial
definition of (

K − b
c

)
q

.

Consider the crossings where a ball falls from a briefly-full lane to a briefly-
empty lane. Each such crossing contributes a factor of (1− q). Taken together,
these contribute the term

(1− q)c.
Finally, consider the crossings where a briefly-full lane passes over a briefly-

empty lane but no ball falls there. This will contribute a factor of q if and only
if the briefly-full lane is still full and the briefly-empty lane is still empty. The
number of times this happens is the number of pairs of briefly-full upper lanes
i and j such that i is to the left of j and w(i) is to the left of w(j). This is
independent of the choices of c briefly-empty lower lanes and of c briefly-full
upper lanes. Ranging over the choice of w contributes the powers of q in the
combinatorial definition of

[c]!

Multiply the above contributions to get the desired formula for fab (c).
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