UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Providing Natural Representations To Facilitate Novices' Understanding in a New Domain:
Forward and Backward Reasoning in Programming

Permalink
bttgs:géescholarshiQ.orggucéitem41419z9gg
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors
Trafton, J. Gregory
Reiser, Brian J.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1419z9qd
https://escholarship.org
http://www.cdlib.org/

Providing Natural Representations
To Facilitate Novices’ Understanding in a New Domain:
Forward and Backward Reasoning in Programming *

J. Gregory Trafton and Brian J. Reiser
trafton@clarity.princeton.edu
reiser@princeton.edu

Cognitive Science Laboratory
Princeton University

Abstract

In many domains, novices exhibit a bias in the di-
rection in which they reason about problems. Ear-
lier studies of LISP programmers using a graphi-
cal representation suggested that novice LISP pro-
grammers tend to reason forward, working from
initial input data toward the goal. We exam-
ined novice programmers learning LISP using the
GIL programming tutor and manipulated the di-
rection subjects were allowed to reason (forward,
backward, or free). Subjects who were required
to work backwards (from goal toward givens) ex-
hibited more difficulty solving the problems than
subjects working forward or subjects left free to
chose their direction. Backward subjects required
more time to solve problems, made more errors,
and required more time to plan each solution. We
suggest that these effects and preferences occur
because forward reasoning is more congruent with
the way novices reason about computer programs,
resulting in an increased working memory load for
subjects required to work backward.

Introduction

Novices reason in a different fashion from those who
have acquired more expertise in a domain. Experts are
better able to recognize the important structural fea-
tures of a problem and initiate an appropriate solution
procedure, while novices require more search to con-
struct a solution (e.g., Chi, Feltovich, & Glaser, 1981).
In some domains, this results in a noticeable contrast
in the direction of the reasoning steps taken. Larkin
and her colleagues have demonstrated that physics ex-
perts reason forward from given information, apply-
ing appropriate equations to infer new quantities until

*This research was supported in part by contract
MDA903-87-K-0652 from the Army Research Institute, by
research grants from the James S. McDonnell Foundation,
and the Xerox Corporation University Grant Program. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or im-
plied, of these institutions.

923

the goal is reached (Larkin, McDermott, Simon, & Si-
mon, 1980). In contrast, novices use means ends anal-
ysis, starting with a desired unknown and searching for
equations that include that variable, then generating
new subgoals to fill in terms unknown in that equa-
tion, and so on, thus reasoning backward from the goal
toward the given information.

In evaluating the source of this intriguing difference,
it 1s important to consider how novices reason in dif-
ferent domains. Rist (1989) found that novice Pascal
programmers tended to write their solutions in essen-
tially forward fashion, writing each section of the pro-
gram from the beginning of the block of code to the
end, rather than working backward from the goal of
the block to the initial statements. Anderson, Conrad,
and Corbett (1989) found that novice LISP program-
mers tend to construct their solutions “top-down, left-
to-right.” This corresponds essentially to backward
reasoning, constructing the final actions taken on the
input data before the initial actions.

What determines the direction in which novices rea-
son in a domain? It may be merely a preference due to
students’ naive judgments about how to construct so-
lutions. Alternatively, novices may reason in a particu-
lar direction because it simplifies the problem solving.
Thus, novices may reason backward in physics because
this is the simplest way they can select among possible
inferences, since they do not have the problem schemas
that enable forward inference (Chi et al., 1981).

Research on novice programmers provides an inter-
esting case of forward and backward reasoning. Reiser,
Kimberg, Lovett, and Ranney (1991) argued that the
graphical representation employed in GIL (Graphical
Instruction in LISP), an intelligent tutoring system
for LISP programming, provides a more natural ex-
ternal representation for novices to record their rea-
soning than the traditional text form of programs.
Rather than simply retrieving sequences of functions
to achieve particular programming goals, novices tend
to reason about the behavior of the relevant functions
on an example to construct a chain of operations that
achieves the desired result. Thus, GIL is designed so
that students build a program by constructing a graph


mailto:trafton@clarity.princeton.edu
mailto:reiser@princeton.edu

of program constructs and the data each manipulates.
Students specify the data input to each function in
their program and the data that results from it. A
complete program consists of a graph specifying how a
chain of functions transforms the input data to achieve
a particular type of output (sce Figure 1).

| Problem: roteter

(dabc)

I~

(defun rotater (lis)
(cons (first (last lis))
(reverse (rest (reverse lis)))))

Figure 1: A completed GIL graph and the correspond-
ing text form of the solution. The original GIL input
is the list (a b ¢ d) at the bottom of the screen; the
goal data is the list (d a b c) at the top. The modal
sequence of solution steps is indicated by the number
shown next to each function.

Students are free in GIL to reason at any step either
from the goal data toward the original inputs (a back-
ward step) or from the inputs toward the goal data (a
forward step). Reiser, Ranney, Lovett, and Kimberg
(1989) found that novices exhibited a strong bias for
forward reasoning (95% forward steps, 5% backward
steps). Reiser et al. argued that novices can reason
more easily about the behavior of programs by work-
ing forward from the input data rather than backward
from the goal. Interestingly, the order of reasoning ex-
hibited by GIL subjects is opposite that of the surface
form of the solution. For example, the first function en-

924

countered in the body of the text form (the “append”)
is in fact the last component of the solution assembled
by GIL subjects (sce figure 1). If students’ reliance on
forward steps in GIL accurately represents their rea-
soning, then novices do not appear to plan their so-
lution in the order in which the functions appear in
the text form of the solution. If students are led to
enter their code in an outside-in left-to-right sequence,
as students working with the text representation may
be, they may be led to construct a chain of functions
for each subgoal before entering it into their solution.
Reiser et al. argue that GIL’s scaffolding of forward
reasoning is one reason why students solve problems
more easily with GIL than standard text LISP.

The preference of the GIL students for working for-
ward in LISP appears to conflict with Anderson et al.’s
finding that their subjects tended to construct pro-
grams using backward reasoning. One possibility is
that subjects were not comfortable enough with the
editing freedom Anderson et al.’s tutor provided to
construct their code from the inside out, whereas GIL's
graphical representation is more neutral in biasing be-
tween forward and backward steps. Indeed, it seems
reasonable to expect that novices will feel compelled to
enter the components of their solutions in the “surface
order,” the order in which these components appear in
the final form of the solution. Such a concern with a
mismatch between natural ways of reasoning about a
problem and the format of a completed solution have
been the motivation for the graphical formats used in
a number of interactive learning environments (Ander-
son, Boyle, & Reiser, 1985; Collins & Brown, 1988).

If novices indeed reason more naturally in one di-
rection than another, then it should be possible to
facilitate their reasoning by providing a learning sit-
uation that supports that direction of reasoning. The
initial evidence in programming relies only on subjects’
preferences. The present study attempts to explicitly
evaluate whether the direction of reasoning affects the
difficulty of learning to solve programming problems.
We used the GIL tutoring system because it makes
it possible to restrict the direction in which subjects’
reason, and it allows fine-grained analyses of the time
course and errors in subjects’ reasoning.

Table 1 summarizes the three versions of our GIL
tutor used in this experiment.

Table 1: Versions of GIL

Forward | Only forward steps permitted.
From input data toward goal data.

Backward | Only forward steps permitted.
From goal data toward input data.

Free Forward or backward steps
allowed throughout.

The Free condition provides an opportunity to ob-
serve how novices choose to reason. The Forward and



Backward conditions enable us to examine whether
there is an additional load placed on problem solving
by requiring students to reason in the backward diree-
tion. We expect the Free and Forward conditions to be
similar, and problem solving to suffer in the Backward
condition.

Method

Subjects worked through two chapters of an introduc-
tory LISP programming textbook and solved problems
assisted by GIL.

Subjects: The subjects were 30 undergraduate paid
volunteers from Princeton University and other nearby
colleges. All had taken no more than one semester of
computer programming and had no knowledge of LISP.
Ten subjects were assigned to each of the Free, For-
ward, and Backward conditions, balancing program-
ming ability across conditions, using Math SAT as the
predictor of programming ability (Mayer et al., 1986).
Math SAT scores ranged from 420 to 760, with a me-
dian score of 625 and means of 624, 627, and 627 for
Free, Forward, and Backward respectively.

Instructional Maierials: The textbook explaining
data structures and LISP functions was used for all
conditions, with several slight wording changes to de-
scribe the process of chaining functions together. The
Free condition text was neutral, explaining how one
might chose to construct a chain either from the givens
toward the goal or the reverse, and the Backward and
Forward texts described the method for sequencing
functions appropriate to that condition. All subjects
solved the same fourteen problems, including one prob-
lem worked in conjunction with the Experimenter used
to demonstrate how to construct programs in GIL.

Learning Session: Each subject was given the first
of three sections of the text. After reading the first
section, subjects were led through a brief demonstra-
tion to familiarize them with the learning environ-
ment. The Forward condition subjects saw only for-
ward steps; the Backward condition subjects saw only
backward steps, and subjects in the Free condition saw
steps in both directions. After the demonstration, sub-
jects worked through the remaining text and problems
at their own pace.

Posttest: Subjects were given a posttest following
the learning session, consisting of three near transfer
coding problems. Subjects solved the problems on the
computer using the same graphical interface with some
additional editing features, but received no feedback.
The computer did not constrain the subjects’ direction
of work on the posttest.

Results

We expected subjects in the Free condition to work
primarily forward, so we used a planned comparison
to contrast performance in the Forward and Free con-
ditions with the Backward condition. In addition, we
performed a second set of analyses to examine whether

925

the performance in the learning conditions differed de-
pending on ability. Subjects below the median SAT
score (420-620) were classified as the “Low SAT” group
and those above the median (630-760) were classified
as the “High SAT” group. We performed an analysis
of variance with SAT level and learning condition as
independent variables.

We examined the number of forward and backward
steps in the Free subjects. As expected, these subjects
strongly preferred to work forward (1(9) = 14.7,p <
.001). Subjects worked 95% of their steps forward and
5% of their steps backward. This finding supports the
use of a planned comparison to contrast Forward and
Free with Backward subjects.

To examine whether the direction of reasoning af-
fected the difficulty of solving the assigned problems,
we first considered solution time. This was defined as
the total time required to solve the thirteen assigned
problems, not including the demonstration problem or
time spent reading the instructional text. Backward
subjects took longer to solve the assigned problems
than subjects working Forward or Free (47.6 min vs
31.5 and 33.4 min; F(1,26) = 9.08,p < .01). Figure 2
shows solution time partitioned into the time spent on
correct steps, error steps, initial planning, and can-
celled steps. Not surprisingly, Low SAT subjects took
longer than High SAT subjects (41.7 and 33.2 min,
respectively; F'(1,24) = 3.61,p < .10). There is a sug-
gestion that the effect of direction 1s stronger for the
lower ability subjects, although this is not statistically
reliable (F(2,24) = 2.23, p = .13 for the interaction).

20 -
B rorward

B Free

Total Time (min)

Correct Errors Setup Cancel

Figure 2: Distribution of learning session time. Time
shown is the total amount of time spent on each event
type across all 13 problems. Categories are: correct
steps, recovery from errors, setting up a plan, and can-
celled steps.

There are several possible reasons why subjects in
the Backward condition may have taken longer than
the other subjects. First, we examined their errors,
which can be costly to repair. When an error is made,

Backward



GIL prints an explanatory error message, and subjects
must read the message and try to fix the error. Indeed,
as Table 2 suggests, it appears that the Low SAT sub-
jects in the Backward condition made more errors than
either the Forward or Free subjects, while errors pro-
duced by the High SAT subjects were not affected by
the learning condition (F(2,24) = 2.89,p < .10 for the
interaction). Differences in solution time may also re-
sult from the time subjects spent repairing errors. Sub-
jects who have more difficultly constructing and imple-
menting a plan may spend more time on errors that
they do make. Indeed, Backward subjects took more
time to repair each error than did Forward and Free
subjects (115 vs. 68 and 75 sec; F(1,26) = 4.36,p <
.05). Furthermore, Backward subjects also spent more
time aborting steps (F(1,21) = 4.8, p < .05), support-
ing the hypothesis that these subjects found reasoning
more difficult.

Table 2: Mean number of errors in the learning session

Low SAT | High SAT

Forward 8.2 8.2
Free 8.0 9.2
Backward 17.6 6.0

Interestingly, subjects in the Backward condition
spent more time planning or setting up each problem
before they started working on it (F(1,26) = 7.01,p <
.05). Although the differences are small (mean plan-
ning time 37 sec vs. 26 and 28 sec), this suggests Back-
ward subjects found constructing an overall plan more
difficult than other subjects.

Finally, we examined subjects’ performance on the
posttest. Backward subjects spent more time on the
posttests than the Forward or Free subjects (19.7 vs.
14.9 and 16.3 min; F(1,25) = 4.78,p < .05). How-
ever, their scores on the posttest problems did not dif-
fer (F(2,22) = 1.06,n.s.). The posttest allowed all
subjects to work freely, so it was possible to examine
the direction subjects chose to work. Not surprisingly,
the Forward and Free conditions worked almost ex-
clusively forward as they did during the learning ses-
sion. However, the Backward subjects performed al-
most three times more forward than backward steps.
Although they were unaccustomed to working forward,
they chose to do so, and this may have resulted in their
longer solution times on the posttest.

Discussion

In the domain of LISP programming, subjects given
the choice of which direction to work prefer to work for-
ward. This preference is apparently motivated by the
difficulty in reasoning backward in this domain. Sub-
jects in the Backward condition took longer to solve
the problems than did subjects who worked forward.
This difference is primarily due to the number of er-

926

rors these subjects made and the difficulty they had in
repairing them. The effect appears to arise predomi-
nantly in the lower ability subjects; the higher ability
subjects are less hampered by requiring them to rea-
son backward. The Backward subjects also had more
difficulty in constructing and implementing a plan, as
evidenced by their increased initial planning times and
greater tendency to abort steps.

The preference for forward reasoning appears to be a
strong one. Even after working all the learning session
problems using backward steps, the Backward condi-
tion subjects still chose to perform a majority of their
steps on the posttest using forward reasoning. If this
strong preference holds in the more advanced parts of
the curriculum in this domain, then these subjects’
problem solving during the learning session (in which
they were forced to use backward reasoning) may not
have prepared them for future problem solving as well
as the instruction the Forward and Free groups re-
ceived. Indeed, the Backward condition subjects took
longer to solve the posttest problems, presumably be-
cause these subjects were relying on less practiced tech-
niques of forward reasoning.

Taken together, these results support the conclusion
that, unlike physics, in which novices tend to use back-
ward reasoning, in LISP programming, backward rea-
soning is more difficult than forward reasoning. Sub-
jects’ reliance on forward reasoning is not merely a
preference — subjects allowed to use this type of rea-
soning perform better than subjects who are required
to use backward reasoning, despite the fact that back-
ward reasoning better corresponds to the order of so-
lution components in the traditional form of LISP pro-
grams.

We consider three types of explanations for these
results.

Naive Causal Models: Novices tend to reason about
how programs behave as they try to construct a pro-
gram to achieve a particular goal. Functions have an
underlying directionality — they take in input data
and return output data. Novices can understand how
functions embed by viewing an embedded function call
as a causal chain, in which the output of one function
becomes input to another. This type of causal rea-
soning naturally starts with the first inputs, the initial
“cause,” and progresses toward the final result, rather
than reasoning backward from the desired output to
select a function and necessary input that yields that
result. The temporal directionality of operators may
have some effect on the direction people choose to rea-
son in other domains. For example, chess operators are
typically applied in a forward direction (e.g., castling
will develop the rook) rather than backward (e.g., to
develop the rook, castle), although both of these pro-
cesses may play some part in the reasoning process.

Constraint of the Problem Space: Because functions
are many-to-one mappings, the search of the problem
space is more constrained when reasoning forward than



when reasoning backward. That is, a function operat-
ing on an input has a unique output, but a function
could take many possible inputs that would produce a
desired output. Furthermore, there are a greater num-
ber of applicable functions when reasoning backward
than forward. Thus, students can select between fewer
potential choices when reasoning forward. This factor
may also explain why novices rely upon backward rea-
soning in physics. In physics, means-ends analysis is
profitable because ‘there is only one goal quantity (e.g.,
velocity), and there are fewer equations that contain
that quantity than the equations that could be used
to chain forward from all the given information. For
other domains, the direction of work with the fewer
applicable operators should be preferred.

Complezity of Planning: There are several reasons to
expect the planning to be simpler when reasoning for-
ward. First, the subgoals are more independent when
reasoning forward. Many problems involve combining
separately obtained objects. When reasoning back-
ward, it is necessary to know what form the inputs will
be to know how to combine the subgoals. This often
requires further look-ahead, because the form of the
inputs to the step will determine which function to use
to combine them. In contrast, when reasoning forward,
it is necessary only to determine that a particular sub-
goal is needed, and then one can reason to obtain that
data independently of whatever else will be needed to
combine with that subgoal. Students can then make
greater use of opportunistic reasoning. The student
may realize constraints on a subgoal of the program
when building a chain to achieve its sibling subgoal. In
contrast, when backward reasoning begins with com-
bining subgoals together, it is necessary to commit to
a particular combination of subgoals. Many domains
have operators that combine objects in a similar fash-
ion (e.g., SAS or ASA for geometry). This hypothesis
predicts that reasoning forward should be easier for
those domains that have these types of operators.

A related point concerns the ease of determining
whether a particular inference is profitable. GIL stu-
dents reason using a concrete example. Candidate for-
ward inferences can be evaluated by comparing the re-
sults and determining whether each would be useful
for obtaining the goal data, which typically entails de-
termining whether the candidate result is a component
of the goal. Backward reasoning requires determining
whether a particular input to a step can easily be ob-
tained from the original inputs. It is typically easier
to see whether a particular object is a component of
the goal than to determine whether an object is of the
form that can easily be obtained from the inputs.

We suggest that these factors together explain why
forward reasoning is simpler in this domain. The
greater look-ahead required, the larger number of alter-
natives to be considered, and the difficulty in mentally
simulating the execution of a program when reason-
ing backward all contribute to an increased working

927

memory load, which results in greater difficulty in con-
structing and carrying out a plan. It is also possible
that the Backward subjects are indeed reasoning for-
ward, but just entering their solutions in the backward
sequence as required by the tutor. This too would
result in an increased memory load, because subjects
would have to construct an entire chain of reasoning
before entering the outermost (first backward) step.

In future work, we plan to examine how features
of the domain can be used to explain the direction
that novices reason, and how problem solvers change
their direction of reasoning as they gain expertise in a
domain.

Acknowledgements: We are grateful to Michael Ran-
ney for many contributions to this research, and to
Adnan Hamid for programming assistance.

References

Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985).
Intelligent tutoring systems. Science, 228, 456-
462.

Anderson, J. R., Conrad, F. G., & Corbett, A. T.
(1989). Skill acquisition and the LISP tutor. Cog-
nitive Science, 13, 467-505.

Chi, M. T. H., Feltovich, P., & Glaser, R. (1981). Cate-
gorization and representation of physics problems
by experts and novices. Cognilive Science, 5, 121~
152.

Collins, A. & Brown, J. S. (1988). The computer as a
tool for learning through reflection. In H. Mandl &
A. Lesgold (Eds.), Learning issues for intelligent
tutoring systems. New York: Springer-Verlag.

Larkin, J. H., McDermott, J., Simon, D., & Simon,
H. A. (1980). Models of competence in solving
physics problems. Cognitive Science, 4, 317-345.

Mayer, R. E., Dyck,J. L., & Vilberg, W. (1986). Learn-
ing to program and learning to think: What’s the
connection? Communications of the ACM, 29,

605-610.

Reiser, B. J., Kimberg, D. Y., Lovett, M. C., & Ran-
ney, M. (1991). Knowledge representation and ex-
planation in GIL, an intelligent tutor for program-
ming. In J. H. Larkin & R. W. Chabay (Eds.),
Compuler assisted instruction and intelligent tu-
toring systems: Shared issues and complementary
approaches. Hillsdale, NJ: Erlbaum.

Reiser, B. J., Ranney, M., Lovett, M. C., & Kimberg,
D. Y. (1989). Facilitating students’ reasoning with
causal explanations and visual representations. In
D. Bierman, J. Breuker, & J. Sandberg (Eds.),
Proceedings of the Fourth Internaiional Confer-
ence on Artificial Intelligence and Education (pp.
228-235). Springfield, VA: I0S.

Rist, R. S. (1989). Schema creation in programming.
Cognitive Science, 13, 389-414.



	cogsci_1991_923-927



