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Abstract 

A proof by mathematical induction demonstrates that a 
general theorem is necessarily true for all natural numbers. It 
has been suggested that some theorems may also be proven 
by a ‘visual proof by induction’ (Brown, 2010), despite the 
fact that the image only displays particular cases of the 
general theorem. In this study we examine the nature of the 
conclusions drawn from a visual proof by induction. We find 
that, while most university-educated viewers demonstrate a 
willingness to generalize the statement to nearby cases not 
depicted in the image, only viewers who have been trained in 
formal proof strategies show significantly higher resistance to 
the suggestion of large-magnitude counterexamples to the 
theorem. We conclude that for most university-educated 
adults without proof-training the image serves as the basis of 
a standard inductive generalization and does not provide the 
degree of certainty required for mathematical proof.   

Keywords: mathematical reasoning; proof; mathematical 
induction; visual proof; induction; generalization 

Introduction 
Mathematics has been defined as “the science which draws 
necessary conclusions” (Peirce, 1881). To this end, proofs 
are indispensible to formal mathematics. A mathematical 
proof uses deductive logic to establish the truth of a general 
theorem – for instance, that a property holds for all 
triangles, or all natural numbers. Relative to the logical 
system being used, the conclusion of the proof is certain; if 
the premises are true, then the conclusion is necessarily true 
as well. The certainty of results obtained through formal, 
deductive proof is a defining feature of mathematics.  

Mathematical induction, despite what its name suggests, 
is a well-established deductive proof method that can be 
used to prove that a theorem holds for all natural numbers. It 
has been suggested that some general theorems that can be 
formally proved using mathematical induction may also be 
proved using specially designed images known as ‘visual 
proofs’ (Brown, 2010). The claim that a ‘visual proof by 
induction’ can prove a general theorem is an interesting one, 
since any image is necessarily finite and thus can only 
display a particular set of cases of the theorem. Case-based 
argumentation falls under the umbrella of inductive 
reasoning, which does not provide certain conclusions and 
is not accepted in formal mathematical justification. 
However, visual proofs contain additional structure that 
could be leveraged to demonstrate that a theorem 
necessarily holds in all cases, even those not depicted in the 
image. Thus, it is possible that a visual proof, despite 
displaying only a finite number of cases, could serve a 
proof-like function for some viewers.  

Although the status of visual proofs is at the center of a 
debate in the philosophy of mathematics (see, e.g., Brown, 
2010; Doyle,	
   Kutler,	
   Miller,	
   &	
   Schueller,	
   2014;	
   Folina,	
  
1999), they have been largely ignored within Cognitive 
Science and little is known about the nature of reasoning 
with these images. How do viewers reason with a visual 
proof by induction? Do they consider the conclusions to be 
certain, as in mathematical induction, or only likely, as in 
standard inductive reasoning?	
  

Induction in Mathematics,             
Mathematical Induction, and Visual Proofs 

The distinction between certain, necessary conclusions and 
probable or likely conclusions is of central concern in 
mathematics. Proofs – deductive arguments which provide 
certain conclusions – are exalted. The writing of proofs, 
however, comprises only a small part of mathematical 
practice, and it is widely acknowledged that inductive 
reasoning plays an important role in mathematics (see 
Polya, 1954 for an account of induction in mathematics). A 
commonly held view is that inductive reasoning is an 
essential part of mathematical discovery, while deduction is 
required for formal mathematical justification (i.e., proof).  

Consider the expressions in Figure 1(a). One might notice 
a pattern in these examples, namely, that when one adds 
consecutive odd numbers starting at 1, the resulting sum 
seems to be the square of the number of terms being added. 
We might guess that this pattern holds for other numbers; 
for example, we might predict that the sum of the first 8 odd 
numbers is 64. However, while these six examples allowed 
us to discover a possible relationship, the examples 
themselves do not prove that the general theorem is true for 
all natural numbers. Without a formal proof, any conjecture 
we have is uncertain and remains open to the possibility of 
counterexamples. A formal proof of our theorem using 
mathematical induction is given in Figure 1(b).  

Figure 1(c) shows a visual proof of the same theorem 
(from Brown, 1997). In the image, consecutive odd numbers 
of dots are arranged in layers, beginning with 1 in the lower 
left-hand corner. When the dots in the first n layers are 
considered together the resulting array forms a square, and 
so the total number of dots in the array is given by n2. While 
the image displays only the first six cases of the general 
theorem, a viewer might be inclined to guess that the pattern 
will continue to hold as more layers are added, and therefore 
be convinced that the general theorem is true. Indeed, 
images such as these have been described as “rapidly and 
deeply convincing” (Doyle et al., 2014). 
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Figure 1: Varying forms of evidence for a general theorem. (a) Specific cases suggest, but do not prove, the general theorem. 

(b) Formal proof of the general theorem by mathematical induction. (c) Visual proof (from Brown, 1997). 
 

It is unclear, however, the exact nature of the conclusions 
drawn from the visual proof. As many have pointed out, any 
image is necessarily finite and thus can only display 
particular cases of a general theorem (Doyle et al., 2014; 
Rips & Asmuth, 2007). This would suggest that the image 
in Figure 1(c), like the cases presented in 1(a), would serve 
as the basis for a standard inductive generalization – the 
image might convince the viewer that the theorem likely 
holds for all natural numbers, but cannot provide certainty. 
On the other hand, the image contains structure that is not 
available in the same cases presented numerically, and 
which could be exploited in order to demonstrate that the 
property would necessarily continue to hold for values not 
depicted in the image. Such an argument would need to 
demonstrate that the square shape is preserved if and only if 
the next layer contains the next consecutive odd number of 
dots. For example, if we start with an n x n square, the (n + 
1)st layer could be constructed by copying the nth layer and 
translating the copy up one unit and right one unit (Figure 
2a, b). This results in two vacant positions that must be 
filled in order to maintain the square shape (Figure 2c, d). 
Thus, every layer must contain exactly two more dots than 
its predecessor. Since the difference between any two 
consecutive odd numbers is 2, we can conclude that the new 
layer must contain the next consecutive odd number of dots.  

 

 
  (a)        (b) 

 
  (c)         (d) 
Figure 2: Rigorous image-based argument for the general 

theorem 
 

Though not a traditional deductive proof, it could be 
argued that an argument such as this does establish the truth  
of the general theorem for all natural numbers, and that this 
conclusion meets the level of certainty required for 
mathematical proof. It is unknown how accessible such 
arguments are to viewers, and, more generally, how closely 
the conclusions drawn from the visual proof resemble the 
conclusions drawn from a formal proof. In this study we 
seek to assess the extent to which a visual proof may serve a 
proof-like function. Specifically, we ask two key questions: 
(1) Given the visual proof, do viewers generalize the 
theorem to cases not depicted in the image? (2) If so, is that 
conclusion considered certain, as in mathematical induction, 
or only likely, as in standard inductive reasoning?  

Finally, to properly address these questions we consider 
who is viewing the image and in what context the image is 
viewed. In this study we compare two groups of viewers, 
one drawn from the general population of university 
students and one drawn from a group that has received 
university-level training in formal proofs, including 
mathematical induction. Additionally, to address the key 
theoretical difference in mathematics between discovery (in 
which inductive reasoning is acceptable) and justification 
(in which it is not), we manipulate the context in which the 
image is viewed by varying the amount of information 
provided to the viewer. 

Method 

Participants 
Two groups were drawn from distinct populations. The first 
group (n = 25) was recruited through the university subject 
pool. None of these participants had taken a university-level 
course on mathematical proofs, and so we refer to this group 
as “proof-untrained” (PU). The second group (n = 24) was 
recruited through the mathematics department and consisted 
of individuals who had received at least a B- in 
“Mathematical Reasoning”, a university-level mathematics 
course on formal proof strategies including mathematical 
induction. We refer to this group as “proof-trained” (PT). 
PT participants had taken significantly more university-level 
math classes than had PU participants (mean PT = 6.67, 

Theorem: The sum of the first n odd numbers is equal to n2. 
(a) Six cases 
 

1 = 12 
1 + 3 = 4 = 22 
1 + 3 + 5 = 9 = 32 
1 + 3 + 5 + 7 = 16 = 42 
1 + 3 + 5 + 7 + 9 = 25 = 52 
1 + 3 + 5 + 7 + 9 + 11 = 36 = 62 

 

(b) Proof by mathematical induction 
Theorem: 1 + 3 + … + (2n – 1) = n2 
Base case: n = 1 à 1 = 12 
Inductive step: Assume 1 + 3 + …+ (2k – 1) = k2, 
for some fixed number k. Adding the next odd 
number 2k + 1 to both sides of the equation, we 
have: 1 + 3 + … + (2k – 1) + (2k + 1) = k2 + (2k +1) 
Re-writing the last odd term and factoring the right 
side gives us:  

1 + 3 + …+ (2k – 1) + [2(k+1) – 1] = (k + 1)2, QED 

(c) Visual Proof  
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mean PU = 2.8, t = 6.58, df = 44.63, p < 0.001). No PU 
participants had taken the “Math Reasoning” course on 
proofs (but four of the 25 indicated familiarity with 
mathematical induction).    

Materials 
Each participant received one of three tasks. All three tasks 
included the visual proof in Figure 1(c), which was designed 
to prove the target statement “The sum of the first n odd 
numbers is equal to n2”, but varied in the amount of 
information that was provided to the reader.  
Condition A – Justification: The participant was given the 
full target statement and the visual proof. They were asked 
to explain how the picture shows that the statement is true.  
Condition B – Supported Discovery: The participant was 
given the visual proof and a fill-in-the-blank version of the 
target statement (“The sum of the first n odd numbers is 
equal to ______.”). They were asked to fill in the blank and 
explain how they got their answer.  
Condition C – Full Discovery: The participant was given the 
visual proof and told that a mathematician drew the picture 
while trying to prove a statement about the sum of odd 
numbers. They were asked to guess what the mathematician 
was trying to prove and explain their answer. 

Additionally, participants completed a background 
questionnaire in which they provided the number and names 
of university math courses they had taken and their level of 
familiarity with mathematical induction. 

Procedure 
Each participant received one of the three task sheets, and 
the researcher explained that their ultimate task was to 
create a short tutorial video in which they would explain 
their response as clearly as possible to potential third-party 
viewers.  A camera was set up directly above the 
participant’s workspace, recording their writing, speech, and 
manual gestures (Figure 3). Before filming their video each 
participant was given as much time as they needed to think 
and plan their response. During this time participants had 
access to pencils, highlighters, and blank paper, and were 
free to add any markings to the sheet that might be helpful 
in explaining their response. The participant indicated they 
 

  
 

Figure 3: Screenshot from video footage of a participant’s 
workspace 

were ready to start their tutorial video by placing a sign 
under the camera, and then filmed their explanation. The 
planning and filming were entirely self-paced and occurred 
without the researcher present.  

When the participant indicated that they had finished their 
tutorial video, the researcher returned to the room and 
conducted a semi-structured interview with the participant. 
To assess whether the participant had generalized the target 
statement to cases not depicted in the image, any participant 
who demonstrated understanding of the target statement was 
asked two questions: “Do you think the statement is true in 
all cases?” (Q1) and  “What would be the sum of the first 8 
odd numbers?” (Q2). If the participant indicated 
generalization to nearby cases (by answering “yes” and 
“64”, respectively), the researcher raised the possibility that 
large-magnitude counterexamples to the statement may exist 
and asked the participant what they thought about that 
suggestion. Any participant who resisted the suggestion of 
counterexamples was asked how they would argue against 
such a possibility. After the interview all participants 
completed the background questionnaire.  

Analysis 
Two coders scored each video for six distinct outcomes. The 
participant’s tutorial video received three scores: 
(a) Mathematical Statement: Rated whether the participant 
demonstrated understanding of the target statement.  
(b) Explanation Strategy:  Rated whether the participant 
gave a case-based explanation (using the image to show 
particular cases of the statement), or a pattern-based 
explanation (describing a general pattern in the image).  
(c) Relevant Features of Image: Reflected which features of 
the image the participant identified as relevant, including 
odd numbers in layers, square shape, possibility of pattern 
extension, and necessity of pattern extension.  

An additional three scores were given based on the 
interview portion of the study.  
(d) Generalization: Rated whether the participant 
demonstrated generalization of the target statement to 
nearby cases as assessed by questions Q1 and Q2.  
(e) Resistance to Counterexamples: Rated the participant’s 
resistance to the possibility of large-magnitude 
counterexamples, ranging from no resistance (0) to 
complete rejection (5).  
(f) Image-Based Argument: Rated whether the participant 
provided a rigorous image-based argument comparable to 
the argument represented in Figure 2. 

For nominal criteria (a)-(d) and (f), the two coders 
showed 96.2% agreement (Cohen’s Kappa=0.96). Criterion 
(e) was was scored on 1-5 scale and also showed high 
reliability between coders (Krippendorff’s alpha = 0.894). 

Results 
The two groups differed with respect to the ability to 
demonstrate understanding of the target statement across 
conditions. While proof-trained (PT) participants 
systematically demonstrated such understanding, proof-
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untrained (PU) participants’ ability to do so varied 
significantly across conditions (Fisher Exact test, p = 0.012; 
Figure 4). All PU participants showed understanding of the 
target statement when it was provided (Condition A), but 
only 6/8 participants provided the target response of n2 in 
Condition B, and 3/9 participants generated the complete 
target statement in Condition C. PT participants, on the 
other hand, did not significantly vary in their likelihood to 
demonstrate understanding of the target statement across 
conditions (Fisher Exact test, p = 0.3; Figure 4).  
 

 
 

Figure 4: Proportion of participants who demonstrated 
understanding of target statement.  

 
Of the 17 total PU participants across all conditions who 

demonstrated understanding of the target statement, 10 
(59%) used case-based explanations in their tutorial video 
(Figure 5); notably, none of these 10 participants referred to 
the square shape as a relevant feature of the image during 
their explanation. Explanation strategy varied significantly 
across conditions, with participants in Condition A showing 
a stronger preference for case-based strategies, while 
participants in Condition C were more likely to generate 
pattern-based explanations (Fisher Exact test, p = 0.026) and 
more likely to mention the square shape (p = 0.026). As we 
found no other significant effects of task context, in the 
following analysis we group participants across all 
conditions who demonstrated understanding of the target 
statement, keeping PU and PT groups separate.  

 

 
 

Figure 5: Explanation Strategy: PU participants were 
significantly more likely than PT participants to give case-

based (rather than pattern-based) explanations. 
 
Proof-Untrained (PU) Group In the interview, 16 of 
the 17 (94.1%) PU participants who demonstrated 
understanding of the target statement indicated a willingness 
to generalize the statement to nearby cases (Figure 6a). Only 
5 (31%) of these participants indicated a high degree of 

resistance to large-magnitude counterexamples 
(characterized by a resistance score of 4 or higher), and only 
one stated that counterexamples were impossible (Figure 
6b). Notably, questionnaire responses revealed that three of 
the five PU participants who showed high resistance were 
familiar with mathematical induction. When asked for an 
argument against counterexamples, only two PU 
participants were able to generate a rigorous argument based 
on the image. PU participants had taken significantly fewer 
university-level math courses than had PT participants; 
however, number of math courses was not significantly 
correlated to any study outcomes for the PU group.  
 
Proof-Trained (PT) Group Across all conditions there 
were 22 PT participants who demonstrated understanding of 
the target statement. These participants were significantly 
more likely than PU participants to provide pattern-based 
explanations  (Fisher Exact test, p = 0.026), with only 2/22 
(9%) relying on case-based strategies (Figure 5). PT 
participants were significantly more likely than PU 
participants to mention the square shape as a relevant 
feature of the image (21/22; Fisher Exact test p < 0.001). In 
the interview, all 22 PT participants who demonstrated 
understanding of the target statement indicated a willingness 
to generalize the statement to nearby cases not depicted in 
the image. The likelihood to generalize did not differ 
between PT and PU participants (Figure 6a); however, PT 
individuals were significantly more likely to indicate a high 
degree of resistance to the suggestion of large-magnitude 
counterexamples (17/22; Fisher Exact test, p = 0.008; Figure 
6b). When considering all participants who demonstrated 
understanding of the target statement, PT participants were 
significantly more likely to provide a rigorous image-based 
argument against counterexamples than PU participants 
(8/22; Fisher Exact test, p = 0.035).  
 

 
 

Figure 6: (a) Participants in both groups generalized the 
target statement to nearby cases. (b) However, PT 

participants showed significantly higher resistance to large-
magnitude counterexamples than did PU participants. 
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Discussion 
The present study explored the conditions in which a visual 
proof by induction may serve a proof-like function, 
characterized by generalization to all natural numbers and a 
belief that this conclusion is necessarily true. Our findings 
reveal significantly different outcomes for the proof-trained 
and proof-untrained participants. Specifically, while both 
groups demonstrated a willingness to generalize to nearby 
cases, the PU participants showed relatively low resistance 
to the suggestion that large-magnitude counterexamples 
may exist. This suggests that for these viewers the visual 
proof serves as the basis for a standard inductive 
generalization, and does not provide certainty. Further 
evidence for this analysis comes from the observation that 
PU participants were significantly more likely to provide 
case-based explanations, using the image to demonstrate 
one or more particular cases of the general theorem. PT 
participants, on the other hand, showed higher resistance to 
counterexamples and were more likely than PU participants 
to provide a rigorous argument using the image. Thus, it 
seems that the image can serve a proof-like function for 
viewers who have been trained in formal proof methods. 
The significant differences between the PT and PU groups 
contradict claims that visual proofs by induction are equally 
convincing to all viewers regardless of their knowledge of 
mathematical induction (Brown, 2010), or that interpreting 
the image as a proof requires only “basic secondary school 
knowledge of mathematics” (Jamnik, 2001).  

We were surprised to find that the PU participants – 
highly educated adults enrolled at a prestigious university – 
often overlooked key features of the visual proof. Less than 
60% of the PU participants who demonstrated 
understanding of the target statement mentioned the square 
shape as a relevant feature of the image. Furthermore, many 
participants who re-drew the image during their explanation 
did so in a way that violated the row-column structure of the 
square array (Figure 7), indicating that they were truly 
unaware of its importance. However, failure to notice the 
relevance of the square shape does not explain the PU 
group’s low resistance to counterexamples, as mentioning 
the square shape was not significantly related to high 
resistance (Fisher Exact test, p = 0.59) within this group. 
 

      

 
 
Figure 7: Work of PU participants who re-drew the image 

in a way that violated the row-column structure and square 
shape of the array 

 

There were 5 PU participants who expressed a high 
degree of resistance to the suggestion of large-magnitude 
counterexamples, two of whom were unfamiliar with 
mathematical induction.  We cannot conclude, however, that 
the image was serving a proof-like function for these 
viewers. Prior research has shown that adults do not reliably 
distinguish between inductive and deductive mathematical 
arguments and often accept case-based arguments as valid 
proofs of statements about infinite sets (Eliaser, 2000; 
Martin & Harel, 1989). Thus, even if the image functions as 
a basis for a standard inductive generalization, we would 
nonetheless expect to see a group of participants who find it 
highly convincing.  

PT participants were more likely than PU participants to 
show high resistance to counterexamples, and subsequently 
more likely to provide a rigorous image-based argument for 
the general theorem. What accounts for these differences? 
One possibility is that PT participants had been exposed to 
significantly more university-level mathematics than PU 
participants. However, the number of university math 
classes taken prior to participation in the study was not 
related to any outcome for either group. This suggests that 
the differences between the two groups cannot be explained 
simply based on differing amounts of exposure to general 
mathematics. Instead, it seems that training in proof-writing 
– a specific and highly technical mathematical practice – 
may make viewers more likely to draw certain conclusions 
from the image.  

Based on our data, exposure to proof-writing could make 
certain conclusions more likely in at least three ways (not 
mutually exclusive). First, it could be that some aspect of 
the task reminds PT participants of the specific proof-
method of mathematical induction (indeed, 75% of PT 
participants mentioned mathematical induction at least once 
during their video and/or interview). These viewers might 
then recognize that they could use mathematical induction 
to prove the target statement, and perhaps even complete the 
proof (as did 25% of our PT participants). Thus, knowledge 
of the formal proof could provide an alternate means of 
acquiring certainty about the conclusion; once achieving 
this certainty, participants may be more likely to attempt to 
generate an alternate argument based on the image. 
However, it cannot be the case that knowledge of 
mathematical induction is a necessary condition for such an 
argument, as we observed one participant who was not 
familiar with mathematical induction produce a rigorous 
image-based justification of the general theorem. 

Second, in addition to gaining familiarity with 
mathematical induction, training in proof-writing would 
also expose individuals to a set of general mathematical 
norms which may lead these participants to demonstrate a 
higher degree of certainty. All participants who 
demonstrated understanding of the target statement were 
asked if they believed the statement to be “true in all cases”; 
however, the two groups likely interpreted this question 
differently. For PT participants, “all” (when used in a 
mathematical context) is a technical term, which by 
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definition implies the impossibility of counterexamples. PU 
participants may have been operating with an everyday use 
of “all”, in which the term is considered synonymous to 
“generally” or “usually” (e.g.,  “All Californians love the 
beach.”). In this light, the two groups’ differing responses to 
the suggestion of counterexamples may be revealing of their 
different conceptualizations of the term “all”.  

 Finally, in the practice of writing proofs one learns 
standard ways of representing general mathematical objects, 
and these representations may be useful in interpreting 
visual proofs. We observed that PT participants often 
invoked the fact that odd numbers are of the form (2n + 1) 
to explain how they knew that the layers (symmetric legs 
extending from a single corner dot) would always contain 
an odd number of dots. Fewer PU participants offered this 
argument, perhaps because they were not familiar with 
algebraic representations of parity. Future studies are 
necessary to determine whether knowledge of algebraic 
representations of parity allow viewers to exploit structure 
available in an image. 

We also explored how conclusions drawn from the image 
differed between contexts of justification (Condition A) and 
discovery (Conditions B/C). We observed only three effects 
of task context. First, PU participants’ ability to demonstrate 
understanding of the target statement varied significantly 
between conditions. Specifically, PU participants – while 
perfectly capable of understanding the target statement 
when it was provided – were highly unlikely to “discover” 
the full target statement based only on the image (with only 
25% able to do so in Condition C). These results suggest 
that, even for most highly-educated viewers, the image must 
be accompanied by the statement it is intended to prove (or 
at least a substantial hint, as in Condition B). Next, we 
observed that PU participants in contexts of full discovery 
(Condition C) who generated the target statement were more 
likely to provide pattern-based justifications and more likely 
to mention the square shape than PU participants who were 
given the full target statement. This is not surprising, since 
the target statement was unknown to these participants at 
the outset of the task and was only discovered if the 
participant noticed a pattern in the image.  

We find it interesting that these three results were the only 
effects of task context for either group. All participants who 
demonstrated understanding of the target statement were 
likely to generalize it to nearby cases, regardless of the 
justification/discovery context in which they had seen the 
visual proof. Subsequent resistance to large-magnitude 
counterexamples – relatively low for PU participants, and 
high for PT participants – did not vary significantly between 
task contexts. This suggests that certainty of the conclusion 
has more to do with the viewer’s exposure to mathematical 
proof-writing than with the justification/discovery context in 
which the image is viewed. The lack of any effect of task 
context for PT participants suggests that the sharp 
distinction between justification and discovery, of such 
theoretical importance in mathematics, is less prevalent in 
advanced mathematical practice.  

Conclusion 
In this study we investigated the reasoning underlying a 
visual proof by induction and the nature of the conclusions 
drawn from the image. A visual proof by induction displays 
a particular set of cases of a general theorem, yet it also 
contains structure that could be used to construct a rigorous 
argument that the theorem is necessarily true for all natural 
numbers. We found that, while most viewers are willing to 
generalize the theorem to nearby cases not displayed in the 
image, viewers who have been exposed to formal proof 
methods (including mathematical induction) show 
significantly higher resistance to the suggestion that large-
magnitude counterexamples to the theorem are possible, and 
are significantly more likely to provide a rigorous image-
based argument against counterexamples. For participants 
without proof-training, conclusions drawn from a visual 
proof resemble a standard inductive generalization and do 
not display the level of certainty associated with 
mathematical proof. These results are consistent between 
contexts of justification and discovery, indicating that the 
certainty of conclusions drawn from a visual proof by 
induction are primarily dependent on the viewer’s exposure 
to proof-writing, rather than the viewing context. 
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