UC Irvine
UC Irvine Previously Published Works

Title
Diffusive processes in the cross-field flow of intense plasma beams

Permalink
https://escholarship.org/uc/item/140011fw

Journal
Journal of Applied Physics, 65(5)

ISSN
00218979

Authors

Newberger, B.
Rostoker, N.

Publication Date
1989

DOI
10.1063/1.342922

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/140011fw
https://escholarship.org
http://www.cdlib.org/

Diffusive processes in the cross-field flow of intense plasma beams

B. Newberger and N. Rostoker®

Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

(Received 23 September 1988; accepted for pubiication 2 November 1988)

We consider magnetic field diffusion in the presence of strongly magnetized electrons

(©..7.0 > 1) as a mechanism for the rapid penetration cbserved in cross-field flows of high-#
plasma beams. The diffusion has been investigated in severai cases which are amenable to
analytic solution. The flux penetration times are found to be insensitive {o the particuiar
configuration. Comparison with two experiments is made. Agreement within the limits of the
experiments is found. Both require an anomalous collision rate which is consistent with
observed fluctuations in one case but apparentiy not the other.

L INTROBUCTION

Active injections of intense beams of neutral plasmas
(sometimes alternatively called plasmoids or plasma jets)
into the near earth space environment are of interest in the
simulation of phenomena associated with naturally occur-
ring events. These events inciude auroras, magnetospheric
substorms, and comets, and the phenomena include wave
generation and emission, particle precipitations associated
with these' and the interaction of the solar wind with come-
tary bodies.” In order to interpret these active injection ex-
periments, the dynamics of the flow of the jet across the
geomagnetic field must be understood. To this end, laborato-
ry experiments investigating the cross-field flow of plasma
beams are also being conducted.>*

Of particular interest, both in space and the laboratory,
are jets of sufficient intensity that the ram kinetic energy, pu/°
exceeds the magnetic pressure B ?/4s of the ambient field;
this is called the high-£ regime. In this case, the convention-
al picture holds that the external field will be exciuded from
the interior of the jet and the jet propagates by plowing the
ambient field aside. A significant finding in both the space
based and laboratory experiments is an anomalousiy rapid
penetration of the ambient field into the plasma beam. The
penetration rates considerably exceed those based on z clas-
sical collision frequency. Some evidence exists for enhanced
levels of turbuience in some of the active injection experi-
ments,” and mechanisms for an anomalous coliision fre-
quency have been suggested.” Recent laboratory experi-
ments* also have observed field fiuctuations although their
interpretations are not yet complete. An anomalous resistiv-
ity could give an enhanced field diffusion. However, it has
been noted by Rostoker and co-workers that even with an
anomalous collision frequency v which could be expected
based on observed fluctuations, the electrons are magne-
tized, ), /v% > 1.

In this paper, we obtain estimates of the diffusion times
to be expected, based on the anomalous resistivity in the
presence of magnetized electrons. These estimates are ob-
tained from analytic solutions of the magnetic diffusion
equation in several cases. In general, the electron magnetiza-
tion makes the diffusion equation noniinear. We have ob-
tained an approximate solution in the slab limit, By compar-
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ing the diffusion times from this solution with those obtained
hy imposing linearity on the diffusion equation in both the
slab and cylindrical limits, we can independently get some
measure of influence of geometry and nonlinearity. It is
found that both increase the diffusion time over the linear
theory in the stab. The differences are measurable in princi-
ple but probably not within experimental uncertainties in
practice. In considering some particular experimental situa-
tion, it is likely to be reasonably safe to use the simple linear
slab estimates. The differences are expected to be compara-

ie to the factors of 1.5-2.5 found here. We have aiso evalu-
ated tire absolute diffusion times for several cases of interest
to space and laboratory experiments. The diffusion times are
consistent with observations. We will now describe the mod-
¢! and present our solutions.

it DIFFUSION MODEL

The transport in the beam is taken to be standard Bra-
ginskii,” with coliision times reduced by turbulence from the
Coulomb value. The transport model neglects the effect of
inertia and this imposes a constraint on the solution whickh,
because we are not considering time-harmonic phenomena,
takes the form 2,7, > 1, where £, is the electron gyrofre-
quency and 7, is the diffusion time. Diffusion times based on
Coulomb coliisions alone are too fast to satisfy this condi-
tion, and the mode] breaks down. With an anomalous colli-
sion rate, the inequality can be satisfied. The jet is taken fo be
homogeneous s¢ the VP term does not appear and thermo-
electric terms are neglected. In this case, the currents in the
beam are related to the electric fields by

J= 0’1}’:-1 -+ UHE'XE,

where

E'=E+BXB, B=v/ct (1)
is the jet velocity and taken to be along the z axis,

o, =o/[1+(9,7%)%], (2)
the Pedersen conductivity,®

Ty =750, (3)

the Hall conductivity, where
Oy = w,, 7% /47, (4}

We further define £, = f,\ + E,Zand wesee J; =0,
it is observed in the experiments that the moiion of the
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beam particles are essentially force free in the beam frame.

This implies £, = — f X B and therefore E_ is parallel to
the z axis. Ampere's law in cylindrical geometry gives
1)
4‘??";,-'*"_"’ :U; (5)
a1
JE,
ddy + a; =0, (6)
4, an,
i B R 7)
¢ P er r a6

The z component of displacement current has been ne-
glected relative to the conduction current. This constrains
the solution and must be checked @ posteriori. In the rand &
component equations, the terms in the spatial derivatives of
B vanish identically by virtue of the symmetry. The current
responsible for the diamagnetism is a Pedersen current® driv-
en by the electric field induced by the penetrating flux. The
self-consistency is obtained from Faraday's iaw which closes
the system. After some straightforward algebra a pair of cou-
pled nonlinear diffusion eguations for the r, # components of

B are obtained:
3?}, 1 [ ( 1 &b, )
_ i+ ab— -2
or p 96 Zltia 7 i p 06 j
(8)
b, [ ( 1 8b, )
=—3 (1 4+ kb2 } — ——(pb 9
ar (1+ K (p 6 P ] (9)

where dimenmonless varlables have been 1'1tr0duced by the
definitions

p=r/a, T=t/1p, b=B/B,

Tp=4mat0y /% k= (Q,,7%)%
and

£, = eBy/mec,

Here B, is the magnitude of the applied magnetic field far
from the beam where B = B _; the initial condition is then

b=(1—1/p>cos@® | . (10)
by = — (1 — 1/p%)sin ai‘” (11)

The boundary condition at p = 1 is found by matching to a
vacuum sclution for p > I which satisfies for all time

b, —cos & } (12)
by —sin@fF %" (13)

In the slab limit, Egs. (8) and (9) reduce to asingle equation
for b,

a
ox

(1+ 2 b ) b,

Ix or

subject to the boundary condition b, = latx = + landthe
initial condition b, =0, — J <x <{.

We will now consider the solution of the cylindrical sys-
tem in the linear approximation and the selution of the non-
linear slab model.

) (14)

§if, LINEAR SOLUTION IN CYLINDHICAL GECMETRY

The solution of the problem in cylindrical geometry can
be more readily obtained by introducing a scalar function y

1875 J. Appl. Phys., Vol. 65, No, 5, 1 March 1988

through the definition
b=2-Vy. (15)

(y is essentially the z component of the vector potential. ) In
terms of ¥, Eqs. (8) and (9) become

a J a2
{(I+KV;{ V,Y)[-—-——-( r) %-——%’-”

Lp 8)\ do ag
_ 3 .
dp I
x d 5,1’) 33,1(”
14+ 4Vy V) i—— 2
p 08 {{ TR X}[p (?p(&p p pé’
8 dy
= \ 17
pé'f) ar (5

These equations can each be integrated once. Because the
integrated equations resulting from Eqs. (16) and (17) are
the same and y must satisfy given boundary conditions, the
arbitrary functions, otherwise resulting from the integra-
tion, vanish, Thus y satisfies the nonlinear diffusion equa-
tion

L/ 4 (14 &Vy V) Viy.
ar

The boundary conditicn at p = 1 is obtained from a solution
in the vacuum region of Laplace’s equation,

(18}

Vy =0, (19}
which satisfies
y— —psinfd as p—eo. (20)

That is, our boundary condition is imposed by the essentially
Cartesian nature of our magnetic field system. Hence, this
problem is different from the standard mixed problem
solved in the textbooks. Thus the solution is only obtained by
solving simultaneousiy Eq. (18) for p <1 and Eq. (19) for
p> 1 and matching the solutions at p = 1. We do not know
how to do this in general but will obtain the solution in the
linear approximation where Eq. (18) is replaced by

.E?.A_l. == }'{'sz,

ar
A=l 4=k,
since typicaily
&> 1. (21)

In the outer region (g > 1), a selution of Laplace’s equation
satisfying the condition (20) is

x= —psinb + ¥ a(r)p'snlb, 7 =«r. (22)
]
(The cos /8 terms turn out {o be unnecessary. )
In the interior (p < 1), the solution is found by taking

the Laplace transform of Eq. (21). The solution is
x(s,80) =3 ¢, (s)sin 16, (Jsp), (23)
i

where /; is the modified Besse! function of the first kind, and
the transform variable is 5. Taking the Laplace transform of
Eq. (22) givesforp> 1

y(5,0.6) :P_M+ za,(S)p""sin 0. (24)
5

B. Newberger and N. Rostoker 1875



Now matching dy/dp, dy/36 from Eqgs. (23) and (24) at
p = 1 gives [ pairs of equations for the @,,c, which are satis-
fied by

g =c¢=0 for i>1
and
¢y(s) = — 2/-‘5\":5'-10{\4"—-‘1:),
[7.(55) —VsTi(s) ]
531' 2 I(} ( \{' .S: )
where in @, the prime denctes differentiation with respect to
the argument of the Bessel function.
These can be substituted back into their respective equa-

tions for y and the standard Bromwich inversions of the
Laplace transforms done. The solutions are then, forp < 1,

X:("p+4z.f_.‘__‘l_(_{_z_9f!i_)_)sin8,

(25)

a(s) = — (26)

(27)
alzjn"iaﬂn
== ‘ziz}n'r'
o
b,:(—1+izf—2£ﬂ)mﬂ, (28)
g5 apdilay)

. ( R S ol @aup) = V/oupd) (onp) })
¢ l H auu‘;l(ann )

Xsin 6, (29)

where ay; is the jth zero of J; and the Bessel function nota-
tion is standard.
Forp>1,

o
i ?

e’ sin &

, (30)

x= —psing—43% e -
h O

e % cos
b, =cosf +4% — ey (31)
n (2 P
.
b= —sin6 +43 &S00 (32)

2
aﬂn p
We will use these to obtain numerical estimates of diffusion
times following our discussion of the nonlinear diffusion in
the slab.

iV. NONLINEAR DIFFUSION IN A SLAB

In this case, the evolution of the field inside the beam is
given by Eq. (14):

d .. db ab
—1 i14-xb- —-—-):——‘
ox ¢ )é‘x ar

Nonlinear diffusion equations of this kind are known to pro-
duce solutions with frontlike behavior. Because typical cases
of interest have «> 1, we neglect the constant term relative to
«b ? in the diffusion coefficient. This is not quite correct just
at the front but the effect is the elimination of a small foot
{~1/ \!:\;) right at its leading edge. The finite thickness of the
jet means self-similar solutions deo not exist for our problem.
However, until the fronts from the two edges meet, neither
edge can know about the other and the problem is the same
as the semi-infinite one. Thus we use the self-similar form of
thesolution b = [1 — x/8(+)1'/?, where 8(7) will be deter-
mined by impoesing an integral constraint on the solution; the
method of moments.” The resuiting consirain{ equation is an

(14)
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ordinary differential equation in time for (7). It will be
found to be proportional to 7'/? which is consistent with self-
similarity. Putting v = w7 and integrating Eq. (14) inx over
(0,6} we have
o _ .3
ar dx

where

szfbdx.
[§]

With b(x,7) = by[ 1 — x/5(7') }*'%, this becomes

2(7) 362
a5 e (34)
dar 2
The boundary condition at x = 0=>5h, = 1, at the solution,

15

&

L]
o

(33)

8(r') = J3r'1? (35)

and
b(x,r') = (1 — Zr'x)'?, O0<x<1/2. (36)

This solution breaks down when the fronts meet in the center
of the slab at x = J. This occurs at a time 7, = }. After this
time, the sclution is no longer self-similar. We will again use
the moment method to obtain an approximate solution in the
case T ST,

It is convenient in this case to shift the coordinate axis by
half a unit and place the origin in the center of the slab. The
solution is symmetric about the origin. It is aiso convenient
to rescale so that the boundary conditions are again at
x = + 1. Toreturn to the original system, x ~2x — 1 in the
solution. We also shift the time origin by 7, and scale by a
factor of 4, to have, for 7=47> 0,

éé.:_?_(bzﬁ)_ (a7
gr  Ox ax
We look for a solution of the form

b= [B,(T) + B,(F)x*]" (38)

This is the simplest solution with the appropriate synimetry
about x = 0, the required smoothaess at x = 0, and which
will let us impose the necessary physical constraints. One
consiraint is the moment integral. This will give a differen-
tial equation in time for either B,(7) or §,(7). The other is
determined from the boundary condition

bx=+1)=1,
which impiies

Bo(T) +B(7) =1 (39)
Furthermore, at 7 =0, 8(x = 0) = (0. That is, just as the
diffusion fronts meet, the field at the slab center is zero. This
implies £,(0) = 1. The second constraint is a condition on
Jdk /ox at the slab edges at 7= 0. This is essentially a con-
straint on the “fiux” (actually edge current density) which

does not instantly change when the diffusion fronts meet.
This will fix the value of @ as we now show. From Eqg. {38),

for all 7>0.

9 0B xBF) + B (P!
Ox
= —2af3,(0)

at 7=0, x= — L (40)
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From the similarity solution, written in the present coordi-
nate system, for — 1<x<0,

b(x,7=0) = (~x)'"? (41)
b —1/21
e = — i — ks = —1  (42)
= OX fx~ -1 he o b«
Therefore,
—2a8,(0) = -4 =a=1/4 (43)

In fact, with o = }, the second derivatives at the edges also
match. Thus we have

b(x7) = [1 =B (P (1 —x*) "4 (44)
The moment integral gives
i ' s
flj- bdz=5298|" _ BT} (45)
ar Jo gz io 2
Now
1 1
fbdz.:f[1+B,<?)(xh1n”“dx. (46)
(4] 7]

This does not have a closed-form expression. However, we
know that for 7>0, 8, <1, and also clearly for x€(0,1),
I — x* < 1, so we will approximate the integrand by the first
two significant terms in its Taylor expansion. The differen-
tial equation which results is

_1dB_B B _B_,
10 d7 2

This can be solved by quadratures and a transcendental
equation for £;(7) resulis:

Biexp (B, — 1) | = exp( - 37).

(47)

(48)

To solve this, we again expand to G(f,)? and find, on solv-
ing the resulting quadratic,

Bi(7) =i{ — 1+ [1+ 15exp(— 371"} (49}

This solution has the following appropriate limiting values:
For7 =0,
Bi(0) = [ — 1 + (16)?] =1,

and as 7— 0, £, —0. The fuli solution is then, in the original
system of vnits with 0 <x < 1

For 0 <7< 1/6k,

b(x,r) = [t — (r)'%x]"% 0<x<i {50a)

=[1— (Gxr)? (1 —x)1"3 i<x<1, (50b)
k<,
b(ng) — {1 _i[ sl (l g 156 12x(r — l/ﬁu’)}UE}
) o O | s (50c)

These solutions are sketched in Fig. 1 as a function of x
for several values of 7. In the next section, we discuss nu-
merical estimates of diffusion times from the modeis consid-
ered. We will also compare these with a sclution of the slab
model in the linear limit.'°

1877 J. Appl. Phys., Vol. 65, No. 5, 1 March 1989
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FIG. 1. Mormalized magnetic field as a function of position for several val-
ues of 7. The field is symmetric about x = 0.5,

V. NUMERICAL RESULYS

Here we will use our results of the previous sections to
obtain some estimates of the penetration times of the field.
First, we will make some relative estimates simply tc have
some measure of the effect of the different physics we have
been considering. We will then use parameter values appro-
priate for the iaboratory experiments of Ref. 4 and space
experiment of Ref. 5 to obtain some absolute diffusion times.

in the following experiments, the penetration of the field
is determined by the decay of the diamagnetic signal and a
concurrent rise of the pelarization field as measured on ficat-
ing Langmuir probes.? The experiments in space generally
observe the field within the jet by means of satellite-borne
instruments.'” As a basis of comparison, both with experi-
ment and the different theoretical solutions, we adopt the
central field 90% return time [the time at which
b(x = 1) = 0.9] as a measure of the diffusion time. There is
no particular justification for this. Given the experimental
uncertainties (finiie beam rise times, approximate geome-
tries, eic. ) and the refative insensitivity of the diffusion times
to the central field fractional value if it is sufficiently near to
one, this seems to be as reasonable measure as any. From Eq.
(2) of Ref. 10, for example, for the slab in the linear approxi-
mation and Eq. {49) in the nonlinear case, we find

Thao = 0.26
Tooa = 0.30

The closeness of these values is striking considering the dif-
ference in the diffusion profiles at early times. [Compare
Fig. 1 with Fig. 8 of Ref. 10, for example. This aiso shows
that the evolution of the linear problem at late times and the
nonlinear sclution, Eq. (50}, at late times have very similar
profiles.] In the cylindrical case, Egs. (28) and (29} give

T(r‘_g{} - 0.48.
The diffusion in this case is significantly slower, by about a
factor of 2, than that in the linear case. (This is a conse-

quence of the planar geometry in the large p limit. If a dipo-
lar field were composed at the edge of a cylindrical plasma

{linear),

{ncnlinear).
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jet, the diffusion times would be much closer to the slab
values.) In view of the slab results, it seems reasonable to
expect that, even in the cylindrical case, the nonlinear diffu-
sion times will not differ substantialiy from the linear case.
Numerical solutions of the nonlinear diffusion have proved
to be frustrating and difficelt in that paraboiic solvers iypi-
cally are based on an iterative application of elliptic integra-
tars. The frontlike solutions of the nonlinear diffusion are a
proeblem for these methods.

We now return to the dimensional form of the diffusion
times by reintroducing the scaling 7' — &t /7, and evaluating
these for the UC Irvine experiments,™* and the AMPTE arti-
ficial comet experiment. The diffusion model is not applica-
ble to the Porcupine experiments in that the Pedersen cur-
rent does not dominate the displacement current in that
case, even with an anomalous coliision frequency.

In the experiments at the University of California-Irvine
(UC-I), a nentralized ion beam of several hundred keV ener-
gy and density #~3 X 10"' em ™ was injected across a mag-
netic field whose value was varied from several tens to sever-
al hundreds of gauss. The details of these experiments have
been reported elsewhere.®'"""* For the plasma parameters
there, the classical collision frequency v,, =~ 10%/s and the
displacement currents are not negligible compared to the
conduction currents in the model. If diffusive processes are
to be responsible, an anomalous transport must be taking
place and evidence of electrostatic turbulent fuctuations has
been observed in the experiments.'""? The fiuctuations are
higher frequency than would be expected of the lower hy-
brid; they are more in the ion acoustic range. The role of
these turbulent fluctuations has not yet been investigated in
detail experimentally. However, turbulence of the ion acous-
tic type could be expected to produce an anomalous collision
frequency v¥% ~«,; which is," for the parameters of the UC-
I experiments, somewhat larger than the anomalous colli-
sion frequency of Ref. 6. If we use this value of v%, with
B, =200, @ = 10 cm, we find

o= 1.5%10" 7,
K =24,
Ih.a0 ~3mns.

This diffusion is very fast but is within the condition imposed
by the negiect of the z component of the displacement cur-
rent. This result is gualifatively consistent with the experi-
mental observation in which fast diffusion was seen relative
to the 0.5 us duration of the beam.

We now consider the AMPTE artificial comet experi-
ment.” Here a rapid penetration of the interplanetary mag-
netic fieid was observed as well. If a diffusive process is to be
responsible, some turbulent enhancement of electron-ion
collisions is also required here, too. Hf we again look to an
ion-acoustic enhanced resistivity, reasonable agreement
with the experimental return time is obtained. The param-
eters'® are n = 1.2X 10" em ™™, B, = 1.3X10* G, a =80
km, and a plasina composed of B! (4 = 137). If we take

Vi ~@,;, then
K= 3.5,
{00 =305,

1878 J. Appl. Phys,, Voi, 65, No. 5, 1 March 1288

compared to an experimental field return time of 17 s. The
value of x only marginally satisfies our requirement x> 1.
But, as the anomalous collision frequency is only an order of
magnitude estimate in any case, the values derived there
must be considered in the same way. Nevertheless, it would
appear on the face of it that diffusive transport of the field
would be a plausible mechanism for the observed rapid field
penetration. Unfortunately the real puzzie (and problem)
for the model lies in the observation of fluctuations in the
jon-acoustic range with amplitudes too small to be expected
to lead to anomalous resistivity. This has led to the sugges-
tion that hydromagnetic mechanisms may be responsibie.’®
However, it seems that these should be subject to inter-
change instabilities which have been found to be able to grow
even in the case of unmagnetized ions. Indeed, an inter-
change instability of this general kind is now believed to be
responsible for the fast field penetration in numerical simu-
tations'® done by our celleagues of high-@ plasma beams
crossing a magnetic field in vacuum. In these simulations,
the plasma temperature was sufficiently high (ion masses
were artificially low, a standard technique in simulations)
that ion acoustic instabiiity was not expected and no evi-
dence of it was found.

Vi SUMMARY AND CONCLUSIONS

In this work, we have considered the diffusive transport
of magnetic fields in the limit in which the electrons are
strongly magnetized and applied the results to the problem
of field penetration into high-# plasma beams. Because the
magnetization of electrons makes the diffusion coefficient
nonlinear, the solution of the problem is nontrivial and nu-
merical methods can have difficulties even in simple geome-

ry.'” We have constructed analytic solutions under different
approximations and have shown that while there are differ-
ences in the details of the soiutions, the gross measures ob-
tained are guite similar. In particular, measures of the diffu-
sion times are the same to within any reasonably expected
experimental determination and are about 50% of the values
simple scaling arguments would give. We have applied these
to two experimental cases of plasma beams in a transverse
field. The diffusion times in the laboratory experiment gual-
itatively agrees with the observations which essentially es-
tablish an upper bound to the field penetration time. There is
reasonably good quantitative agreement with the space ex-
periment (AMPTE) penetration time. Both require the ex-
istence of an anomalous collision frequency. Given the
strong diamagnetic currents which must flow to shield the
field, it is not unreasonable to expect such. This is consistent
with the laboratory observations but not the experiment in
space. The fluctuations in the laboratory experiments need
to be investigated in more detail in order to come to quantita-
¢ive conclusions. These could be supported with some nu-
merical simulations as well. The space experiment remains a
puzzle. We anticipate that some simulations extending the
work of Ref. 16 will provide some insight into this problem.
In general, the microscopic dynamics in the boundary layer
between the plasma beam and field is likely to be where the
action is. The physics of this region is complex and needs
considerably more work. Interestingly, this was an area of
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interest early in the magnetic confinement fusion program
and is again becoming the focus of increased attention.

ACKNOWLEDGMENTS

We wish to thank Dr. Frank Wessel for many discus-
sions of his experimental results. One of us (B.N.) would
like to thank Dr. W. R. Shanahan for several helpful discus-
sions and the results of his unpublished research. This work
was supporied by the U.8. Department of Energy Contract
No. DE-FGO05-80ET-53088, the Air Force Office of Scien-
tific Research, and WASA Grant No. NASW-846.

'G. Haerendel and R. Z. Sagdeev, Adv. Space Res. 1, 29 (1981).

2A. Valenzuela, G. Haerendel, H. Foppl, F. Melzner, H. Neuss, E. Rieger,
J. Stocker, G. Bauer, H. Hofner, and J. Loidi, Nature 320, 700 {1986).
*F. J. Wessel, R. Hong, J. Song, A. Fisher, and M. Rostoker, Proc. SPIE-
Int. Soc. Opt. Eng. 828, paper 38 (1988).

*R.Hong, F. J. Wessel, J. Song, A. Fisher, and N. Rostoker, J. Appl. Phys.
64, 73 (1988).

SB. Hausler, R. A. Treumann, O. H. Bauver, G. Haerendel, R. Bush, C. W.
Carlson, B. Theile, M. C. Kelley, V. 8. Dokukin, Yu. Ya. Ruzhin, .
Geophys. Res. 91, 287 (1986).

1879 J. Appl. Phys., Vol 65, No. 5, 1 March 198¢

SE. V. Mishin, R. A. Treumann, and V. Ya. Kapitanov, J. Geophys. Res.
91, 10183 (1986).

78. I. Braginskil, in Reviews in Plasma Physics, edited by M. A. Leontovich
{ Consuitants Bureau, Mew York, 1985), Vol. 1, Chap. 3, pp. 205-311.
*B. Rossi and 8. Olbert, fntroduction to the Physics of Space { McGraw-Hill,

New York, 1970), Chap. 13, p. 394.

W. F. Ames, Nonlinear Partial Differential Equations in Engineering
(Academic, Mew York, 1965), pp. 249-256.

YH. S. Carslaw and J. C. Jaeger, Conduction of Heat in Seoiids (Oxford,
Londos, 1947), Chap. 3, p. 83.

'3, Song, F. J. Wessel, A. Fisher, and N. Rostcker, Conference Record,
1988 IEEE Iniernational Conference on Plasma Science, Seattle, WA,
1988, (IEEE, New York, 1988), p. 107.

2F, J. Wessel, B, Hong, §. Song, A. Fisher, N. Rostoker, R. Li, and R. Y.
Fan, Phys. Fluids 31, 3778 (1988).

YE. j. Wessel, A. Fisher, N. Rostoker, and J. Seng, Proceedings of the 7th
International Conference on High-Power Particie Beams, Karlsruhe,
1988 (to be published).

A, A. Galeev and R. Z. Sagdeev, in Handbook of Plasma Physics—Basic
Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland,
Amsterdam, 1984), Vol. 2, Chap. 6.1, pp. 271-303.

5G. Haerendel, G. Paschmann, W, Baumichann, and C. W. Carlson, Na-
ture (Paris) 320, 720 (1986).

T, Tajima, J. Koga, and T. Fujinami, 68, 1400 (1987) Trans. Am.
Geophys. Union; J. Koga, M. A. thesis, University of Texas, Austin, 1984,

YR, D. Rickimyer and K. W. Morton, Difference Methods for Initial-Value
Problems, 2nd ed. (Interscience, Wew York, 1967}, pp. 201-206.

B. Newberger and N. Rostoker 1879





