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The Graetz Problem 

John Newman 

Inorganic Materials Research Division, 
Lawrence Radiation Laboratory, and 
Department of Chemical Engineering, 
Uni versity of Californi?~_ Berkeley 

JanUary, 1959 

Abstract 

UCRL-18646 

Previous work is reviewed, a -new method is outlined for calculating 

the lower eigenvalues and coefficients for the Graetz series, and new asymptotic 

forms for large- eigenvalues are presented. Good agreement can now be obtained 

, A 

between the Graetz series and the Leveque series. The region where axial dif-

fusion is important is treated at high PEfclet numbers by the method of singular 

perturbations, thus providing a reasonably complete picture of the transfer 

process. 
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1. Introduction 

A classical, nontrivial example of convective heat or mass transfer is 
; 

the Graetz problem-transfer fr0ll!- the wall of a tube of radius R to a fluid in 

fully develop.ed, laminar flaw, with an insulating wall upstream of a pOint z = 0 

and a wall maintained at a constant temperature or concentration downstream of 

the point z = O. Phrased in terms of mass transfer, the partial differential 

equation is 

2. ~ [ ~. ~2 oc . 1 0 uc . a c.· 
2<v ~l - E-) ~ = D - "'\ (~). + _lJ 

z'\ R2 oz . r or or oz2 

with boundary conditions which may be stated as follows: 

c = c at r =R, z > 0; oc./or 
i 0 l 

oc .lor = 0 at r 
l 

In terms of the dimensionless variables 

o at r R, z < 0; 

o ; 

, 

t r 
S = R ' e 

c.-c 
l 0 

~-co 
, zD S = ----=-2 

2<v>R 
z 

the problem becomes 

, 

(2) 

, (3) 

(4 ) 



.6 

where Pe 

8 

-3-

2R<v >/D is the. Peclet nQmber, with the boundary conditions 
z 

o at ~ = 1, ~ > OJ 08/d~ = Oat ~ 1, ~ <- OJ 

08/0~ = 0 at ~ OJ 

8 -+ 1 as S -+ _OOj and 8 -+ 0 as ~ -++00 

6 
Graetz treated this problem by the method of separation of variables 

under the condition that the last term in equation 4 could be negle~ted. This 

term, representing axial diffusion, will be small when the Peclet number is 

large, which holds for mO$t practical applications. In this manner Graetz 

obtained a series solution involving functions of the radial distance, Rk(~)' 

which are defined by a Sturm-Liouville system where the separation parameter 

is restricted to discrete eigenvalues A,2
k

• Other workers have refined the 

Graetz solution. Results for eigenvalues and coefficients are summarized in 

table 1. 

Asymptotic forms of the eigenvalues and coefficients have been worked 

out for large eigenvalues, notably by Lauwerier
lO 

and by Sellars, Tribus, and 

24 
KLein. Numerical solutions of the partial differential equation of the Graetz 

problem, .with neglect of axial diffusion, have been given by Kays9 and by 

! '-' Lorigwell. 15 

Near z = 0, the transfer rate becomes infinite, and many terms in the 

Graetz series are required for an accurate solution in this region. Here it is 

, A 13· 
.. convenient to use a similarity solution developed by Leveque and extended by 

1 c' 

Nt'wlrJI::t.n.'· I 
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Table '1. Eigenvalues and coefficients for'the Graetz solution. Additional 
results arc given by Brinkman (1950), BrovTn (1960), Drew (1931), Lam-Terier 
(1950), and Singh (1958). 

Lee, 
Nelson, ' 
Cherry, 

* 
Schenk, 

Graetz Nusse1t Boelter Jakob - Dumore 
'(1883,1885) (1910) (1939) (1949 ) (1953) , - : 

A. Mk A. ~}k A. w.2M 
Mk A. M " .' 

k k k k k k k , 
2.7043 0. 81747 .2.705 0.749 2.704, 0.749 0.820 2.7043r

( 00819 

6.50 0.,0325 6.66 0·557 6.679 0·539 0.0972 6.6790 0.101 

10.3 0.2515 10.673 0.179 0.0135 10.6733 0.032 

14.671 14.6711 0.015 

Abramowitz Lipkis present work 
(1953) (1~56) 

~2M A. IA. M 
A.k Mk k Bkk k k 

2.7043644 0.74879 2.70436443 0.74877456 0.8190504 

6.679032 0·54424 6.67903145 0.54382796 0.0975269 

10.67338 0.46288 , 10.6733795 0.46286106 0.0325040 

14.67108 0.41518 14.6710'185 o. 4151t18!~5 0.0154402 

18.66987 -, 0.38237 18. 6698r(19 0.38291919 0.0087885 

* Jakob took his values from Nusse1t, but modified the values of ~. 

,.' i 

i-\ • 

.) 
u . . #' 
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The axial diffusion term, neglected in the work already mentioned, 

becomes important at high Peclet numbers only in a small region near z = 0 

and r = R, a region which becomes smaller as the Peclet number increases, as 

is typical of a singular-perturbation problem. With rieglect of axial diffusion, 

the originally elliptic problem becomes parabolic. This region near z = 0 is 

t'he only place where the elliptic nature of the problem persists; thus, it is 

a small elliptic region embedded in an otherwise:parabolic domain. Axial dif­

fusion has' been treated by Singh
26 

and will be treated in section 7 as a 

singular-perturbation problem. 

,20 
Schenk and Dumore have treated the effect of a nonzero transfer 

resistance of the tube wall, which serves to eliminate the infinite transfer 

rate at z = O. Problems involving a catalytic reaction at the tube wall have 

been treated by Katz
8 

and by Solomon and HUdson,27 and transfer to non-Newtonian 

21 
fluids has been treated by Schenk and Van Laar.· 

It seems appropriate at this point in time to review the Graetz problem, 

which has been treated extensively, and to show how the various phases of the 

problem are interrelated. This will be done in the order in which they have 

been introduced. The author was motivated by a desire to try a new method for 

solving eigenvalue problems and to prepare for presentation in class the 

complete solution of a classical problem, including the effect of axial diffu-

sion. Furthermore, in an earlier comparison of the Graetz series and the 

Lev~que series it became apparent that Lipkis I s values of the coefficients 

could not be accurate to the number of significant figures given. (The precise 

.4) results of Brown were not discovered until the present work had been completed. 

New results are presented for the first five eigenvalues and coefficients 

(corroborating the results of Brown), for the asymptotic forms for large eigen-

values, and for the region of axial diffusion. 
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2. The Graetz series 

With neglect of axial diffusion, the solution of equations 4 and 5 can 

be expressed as 

, (6) 

where Rk and A.k are eigenfunctions and eigenvalues of the Sturm-Liouville system 

R o at ~ o at ~ = 0, R - 1 at ~ o (8) 

Furthermbre,with neglect ofaxiai diffusion, the solution for S < 0 is simply 

e = 1. Consequently, the Graetz series must satisfy the initial condition 

e 1 at S = O. Because they come from the Sturm-Liouville systel!1 7 and 8, the 

2 
eigenfunctions are orthogonal with respect to a weighting function of ~(l-~ ). 

Thus, the coefficients of equation 6 can be obtained by setting S = 0, multiplying 

by ~(1 ... ~2)R (~), integrating from ~ = 0 to ~ = 1, and observing that only one 
n 

term from the ,infinite series, that for k = n, is nonzero. The result is 

1 1 

Cn = j' ~(1-.~2)Rn (~)d~/J' ~(1_~2)R~(~)d~ (9) 

0' o 

We should be interested in the total amount of material J transferred 

to the wall in a length L: 

J 

L 

J 
oc. 

-~lr=R 2TIRdz. 
o 

(10) 

.... r 

v • 

,. r 



This can be expressed as 

1 -
m 

J 
2 

7TR (cb-c )<v > o z 

2 
00 _A. S 
1:: ~e k 

k==l 
, (11) 

where Nu is the average Nusselt number based on the concentration difference at 

.1 

Mk == 4C
k
J ~(1-~2)Rk(~)d~ (12 ) 

o 

In equation 11, J is divided by the total amount of material which would be 

transferred in an infinite length of pipe. Equation 11 can also be·regarded 

as expressing the dimensionless, II "" II t t" e cup-mlxlng concen ra lon difference ~ 
m 

between the walland the fluid. The local Nusselt nQmber based on the concentra-

tion difference at the inlet is readily obtained from equation 11: 

Nu( s) 

Finally, in later calculations it will be convenient to have available 

two additional formulas. If the solution R of the Sturm-Liouville system 7 and 

8 is regarded as a function of the parameter A. as well as the variable ~, where 

R satisfies the conditions at ~ = 0 but not necessarily the one at ~ = 1, then 

·~v we obtain 

1 

dR(i!:==l A.=A. ) 
~ S, k -A.~ J'~(1-~2)Rkd~ , (14 ) 

o 

and 



Consequently we can write 

~>'~Mk = ~~~7~\ evaluated at ~ = 1 and A = >. 
k 

(15) 

(16 ) 

.. 
~ , 

-, ' ... 
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3. Calculation of eigenvalues and eigenfunctions 

Let us add to the Sturm-Liouville system 7 and 8 a second differential 

equation~ 

2 
Then if Rand;\. are regarded as the unknowns, we have a nonlinear system of 

I 

two coupled, ordinary differential equations with three boundary conditions at 

two values of~. It should now be possible to solve this problem by standard 

techniqUes.
16 

For initial guesses we used 

R = COS[(k':~)7T~] , 
(18) 

;\.2 2 (k_1:/7T2 
k = 1, 2, 3, ... . 2 

Here we know in advance that the solution is not unique, so we select an initial 

guess which is rough-iy similar to the Graetz functions. The calculation proce-

dure converged for the first five eigenfunctions and eigenvalues, all that were 

tried. Calculations were carried out for 100, 200, 400, and 800 mesh intervals, 

and the results, extrapolated to an infinite number of intervals, are given in 

table 1. Figure 1 shows the first three eigenfunctions. In table 1, the eigen-

:values of Abramowitz are. seen to be quite accurate, while the coefficients of 

Lipkis are in some cases in error in the fourth significant figure. Our values 

't ,-, are in good agreement with the more precise values of Brown. 4 



I.O~ 
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Figure 1. Graetz fun~tions. 
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4. Asymptotic forms for large· eigenvalues 

For large eigenvalues, the eigenvalues can be expressed a.s 

where 

A = 4k - 4/3, k = 1, 2, .•• , 
0 

Sl = 0.159152288, S3 = -0.224731440, 

(20 ) 

S2 = 0.01148 56354, S4 = -0.033772601 

Lauwerier
lO 

gave values for AO' Sl' and S2 (with an error in the sign of S2)' 
. .. 24 

and Sellars, Tribus, and IQein gave values for A ~ .. 
o 

Lauwerier showed that the Graetz function R(~,A) can be expressed in 

terms of the confluent hypergeometric function and then obtained the asymptotic 

form 

J3( 6 \1/3 (1 \J [( A l\rrJ . (2 2p 
R ( 1 , A) = 37T x: I r "3l1.c 0 s 1+ -- b J "" p:o ex, p x: ) 

31/3 r~2? ~ [( A 1)·] ". Q (5.)2
P

+4/
3

.} + r 1 3 cos '4 + b 7T L, I-' A • 
p=O p 

(21 ) 

By a.n extension of his method we can obtain (see also Lauwerier
ll

) 
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dR 2J3(A.)1/3 rl2\J.'[/A. ,1)' J' . 2 2p 
~I ~'=1 = 7f b "\Jll..cos \"4 + b J ~ y p(X) 

,p-O 

The coefficients have the values 

(1, 1, Yo 1, 
0 

(1,1 -0.01444444444, Yl ,0.03801587302, 

(1,2 0.009882467268, Y2 -0.01971517369, 

. ,0,3 -0.02131664753, Y
3 

0.03618529439, 

13
0 

= -0.07857142857, ° -0·3, 
0 

131 0.02887167277, °1 
0.02189502164, 

132 -0.04405535292, °2 ..,0.02140401420 

(22 ) 

(23 ) 

These equations contain divergent, asymptotic series which cannot be sum.rned to 

P - 00 - . However, since only a finite number of coefficients are given, this 

causes no problem. 

The eigenvalues are to be determined by setting R(l,A.) in equation 21 

equal t-o zero. The first approxima,tion A. to the eigenvalues is obtained by 
o 

setting .cos [(A. /4 - 1/6)7T] equal to zero, with the result given in equation o ' , 

20. If I,re define a correction 1.1 to this first approximation by 

A.=A. +1. 
o 1 

, 

then the eigenvalue equation becomes 

(24 ) _ ''t' 
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This can either be expanded to ·yield equation 19, or it can be solved directly 
. . I 

to obtain the correction "'1 to the eigenvalue. We favor the latter procedure 

since it allows full use of the coefficients 23 to be made, whereas equation 

19 would have to be carried to terms of order'" -7 to obtain comparable accuracy • 
. 0 

On the other hand, the equation 

(26 ) 

will do a fair.job. 

Eigenvalues have been calculated by solving equation 25. The first 

fi ve deviate from those reported in table 1 by amount's decreasing rapidly from 

0.15 percent for the first to one part in the tenth Significant figure for the 

. fifth. The next five eigenvalues are given in table 2. 
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The coefficients can be obtained by means of equation 16. Equation 

21 is differentiated with respect to A, and the result is put in the form 

Equation 22 bec6mes 

dR 
~1~==1 

k+l 2./3 .(A)1/\-I2 ~ rrr'\ 7f) 2)2P 
(-1) 7r b ~\- sin\T +- L: Y (-5;:" 

3 3 p==o p 

1 ffiffil 3 . (7f
A

1). 2 2P+2/3} 
+ -- r2 3 sJ.n\T L: 5 (X) . 

1/3 p=O p 
3 

Although we prefer to det.ermine the coeffiCients from equation 16 by direct 

evaluation of equations 27 and 28, one can obtain the following asymptotic 

form: 

.. where 

C == 1.012787288, 

Ll 0.144335160, 

L2 == 0.115555556, 

L3 == -0.21220305, 

L4 == -0.187130142, 

L5 == -0.0918850832 

(28) 



. :-

Finally, the formula 

gives good results. 

The term C/Al/ 3 in equation 

Klein,24 though expressed as C/Al/ 3. 
o 
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29 was obtained by Sellars, Tribus, and 

They used a singular-perturbation expan-

sion involving three regions--one near the center of the pipe, one near the 

wall, and one in between. We have extended their method to obtain the Sl term 

in equation 19 and the Ll term in equation 29. However, the method of Lauwerier 

yields the ~symptotic forms with less effort. 

The coefficients, evaluated from equations 16, 27, and 28, are given 

in table 2 for the sixth through tenth terms in the Graetz series. For the 

first five terms, the deviation from the values reported in table 1 varied 

from 0.21 percent to 6.10-7 percent in a manner similar to that found for the 

eigenvalues. The eigenva.lues and coefficients in table 2 are in excellent 

4 
agreement with the results .of Brown. 
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The Leveque series 

Near z = 0, the transfer rate becomes infinite, and many terms in the 

Graetz series are required for accurate results. In such cases it is frequent-

ly possible to make a:pproximations which permit a similarity solution valid 

near z = 0. Here the approximations follow from the fact that e differs from 

the inlet value only in a thin diffusion layer near the wall of the tube. 

This means that in this layer the velocity distribution can be approximated by 

v 
z 4<v > (l-r!RJ z 

, 

and the effect of the cylindrical geometry disappears in the sense that 

2 
1 de d e - "\«­
r ar dr2 

, A. 13 
With these approximations, Leveque obtained the solution 

11 

e r(t/3)j 
_x3 

= e dx , 
0 

in terms of the similarity va.riable 

It. ,A 17 
By taking into account the allproximations of Leveque, Newman extended this 

'--

solution so that the local Nusselt number can be expressed as 

(36 ) 

L 

• It, 
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6. , A 

Comparison of Graetz and Leveque series 

The local Nusselt number, proportional to the local transfer rate, is 

expressed by the Graetz series 13 or alternately by the Le~que series 36. 

Figure 2 shows the local Nusselt nQmber, divided by the first term of the 
, A 

Leveque series so that this ratio approaches 1 a~ S ... O. The dashed lines 

indicate how well the Lev~que series approximates the exact solution. The 

dimensionless cup-mixing concentration difference (see equation 11) is also 

shown. 

During the development of this work, a comparison of the Graetz series 

, A 

and the Leveque series served as a convenient check for errors and a measure 

of the significance of the various improvements in the Graetz series. This 

comparison was made with the quantity J, the total amount of material transfer-

red to the wall in a given length. If So denotes the value of S where the 

error in the Graetz series is roughly comparable t,o the error in the three-

term Lev~que series, then S = 0.006 when the Graetz series is based on 
o 

Abramowitz' s eig~nvalues, Lipkis' s coeffiCients, and the asYmptotic forms of 

Sellars, Tribus, and Klein. Refinement of the coefficients for the first five 

terms moves S down to 0.0017. Use of the modified asymptotic forms moves S 
o 0 

down to about 2.10- 5, and refinement of the first five eigenvalues moves it 

slightly further, to about 10- 5• Here the error is about 10-4 percent. The 

use of Brown's results leads to some further improvement. 
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Dimensionless cup-mixing conceQtration difference e and the local 
Nusselt number (divided by Leveque I s solutionl. Foljl comparison with 
the latter, the corresponding form of the Uveque series is shown for 
2 and 3 terms. 
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7. The region of axial diffusion 

6 
Graetz included axial diffusion in his treatment of plug flow in a 

26 
tube. Singh did the same thing for a parabolic velocity profile in a tube. 

However, both of these authors took e ::: I in .the cross section at the beginning 

of the transfer section, without apparently recognizing the physically absurd 

consquences of this condition. The condition 2 or 5, on the other hand, 

represents a reasonable situation corresponding to an insulated wall upstream 

of the transfer section. Ifaxial diffusion is important, then the fluid must 

become depleted, to some extent, upstream of the transfer section. It is only 

in the limit of an infinite P~c1et number that axial diffusion can be neglected 

and the condition e I applied in the cross section z ::: 0. Furthermore, to 

have a surface with e I immediately adjoining a surface with e ::: 0, here the 

tube wall for z > 0, will result in an infinite transfer rate near z ::: 0, a 

rate which cannot be integrated~ In other words, with the boundary condition 

used by Graetz and Singh, the total amount of material transferred in any non-

zero length z will be infinite. 

2 
Bodnarescu treated axial diffusion with an upstream wall maintained 

. 28 
at one temperature and a downstream wall at another temperature. Wllson used 

the same boundary conditions with plug flow. As Drew 5 has pOinted out, the 

. 22 
total transfer will again be infinite. Schnelder treated the same situation 

* as Wilson, but with the addition of a transfer resistance at the walL 

In practical applications, with the possible exception of heat transfer 

in liquid metals, the P~clet number will be large, and axial diffusion will be 

important only ina small region near z ::: ° and r ::: R. This region can be 

* Half of Schneider's solutions without axial conduction are wrong. 
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treated by the method of singularl perturbations. Stretched co6rdinates X and 

Y are introduced: _'~ 

Y (z/R) .JPe 
~. 

Substitution into equation 4 yields, in. the limit Pe - 00, the appropriate dif;.. 

ferential equation for the region of axial diffusion 

The approximations introduced have the same meaning as .in the case of the 

, A . 

Leveque solution':""near the wall the effects of curvature of the wall can be 

neglected and the velocity profile can be approximated by equation 32-but the 

stretching of the coordinates makes it apparent that in this region axial dif- ( 

fusion is just as important as convection and radial diffusion. 

For boundary conditions we have 

1. e = 0 at Y = 0, X > o. 

2. cS/CY = 0 at Y = 0, X < o. 

3. e - 1 as X - _00 :or as Y - oo~ 

4 A X - ' -::-.2i;:;\/-::-'X2 'should b 1· ·bl d t'h th ,. s 00, the .term a 'CI a ecome neg 19l, e compare to e 0 er 

terms in equation 38. 

The last of these conditions is somewhat unusual. It eXpresses the fact that 

this elliptic region where axial diffusion is important is embedded- in an other-
, 
• • 

wise parabolic domain. From this last condition and equation.38 one can derive' 

the asymptotic form 

11 

e - r(t/3)j 
_x3 

e dx as X- 00 
(39) , 

o 
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where 

(40 ) 

, A / 

In other words, El approaches the Leveque solution far downstream in the region 

of axial diffusion. However, since effects are transmitted downstream in the 

, A 

parabolic regions, a better phrasing would be to say that El in the Leveque or 

Graetz regions should approach the form given by equation 39 as S -+- O. In 

other words, the development leading to equation 39 is the proper justification 

, A 

for the validity of the Leveque solution. 

Here we ha,ve formulated a proper singular-perturbation problem, now 

independent of the explicit appearance of thePeclet number. The situation and 

mathematical treatment are very similar to those encountered in the calculation 

of rates of transfer to the rear of bluff objects in a free stream in slow, 

25 18 
laminar flow. ' 

The problem posed here was solved numerically by successive over-

relaxation in parabolic coordinates, coordinates selected so that the derivatives 

of El would be finite at the origin. In each direction, 120 mesh intervals were 

used. Difficulties were encountered away from the wall where convection becomes 

dominant. These were circumvented by using an over-relaxation factor which 

decreases as convect:t'on becomes more important and by setting El = 1 when' con-

vection becomes dominant. 

Figure 3 presents the dimensionless transfer rate in the region of 

axial diffusion. As X -+- 0, dEl/dY at Y = 0 approaches 0.52945/JX. Thus, if 

axial diffusion is taken into account, ,the transfer rate becomes infinite like 

1/z1/2 rather than 1/z113, as l)redicted by the Lev~que solution. As X -+- co, 
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The normal deriVative at the wall in the region of axial 
diffusion, with the L€v~que solutio'u for comparison. 
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the transfer rate approaches that given by the Lev~que solution. Figure 4 

shows'the dimensionless concentration distribution along the upstream, insulat-

ing wall and in the cross section at z = 0, the beginning of the transfer sec-

tion, and gives a quantitative indication of the extent of the region of axial 

diffusion. 

From a practical point of view, axial diffusion is not important for 

large Peclet nUInbers, although its proper mathematical treatment is of some 

interest. The Lev~que solution could be extendei7 to higher order terms in. S 

because those corrections did not involve axial diffusion but only curvature 

effects and the parabolic nature of the velocity profile. The correction of 

, A 

the Leveque solution for the effects of axial diffusion would require as a basis 

a uniformly valid approximation such as that presented here. In fact, the entire 

, A 

Leveque solution is included here in the solution for the region of axial dif-

fusion, and corrections to the Lev~que solution solely for the effects of axial 

diffusion are merely higher ,order terms in the asymptdtic solution of equation 

38 for large values of X. Thus 

(41 ) 

or 

-+ 2 (2 )1/3 ( 0.1548 -4 ) -+' 
NU(S) r(4/3) 9r 1 + 4/3 2 + O(Pe ) as Fe co and S 

S Fe 
-+ 0 . 

(42 ) 
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"'-
It might be asked whether any useful information about the role of . 

axial diffusion can be obtained from the solutions of Graetz and Singh or 

whether their method can be extended to yield useful results. The conclusion 

of Singh that the effect of axial diffusion becomes negligible for large Peclet 

numbers is certainly valid, but where axial diffusion is important, at low 

Peclet numbers, one cannot eliminate with any confidence the effect of the non-

integrable singularity in the transfer. rate at z = 0. The method of separation 

of variables used by Graetz and Singh will not be' useful if it becomes necessary 

to consider the upstream, insulated pipe. An artificial way to avoid the 

infinite total transfer while retaining the method of separat ion of variables 

would be to specify instead the flux at the cross section at z = 0, say by the 

condition 

2 
(l-~ )(8-1) 

Another artificial way would be to specify the concentration at S = ° not by 

8 = 1 but perhaps by means of figure 4 with some adjustment so that the total 

flux corresponds to the convective flow far upstream. For an idea of the dif-

2 
ficulties involved, it would be pertinent to consult the work_ of Bodnarescu, 

. 22.. 26 .' 28 
Schnelder,.· Slngh, and Wllson. 



8. Conclusions 

If the eigenvalue is regarded as an unknown variable, a Sturm-Liouville 

system can be solved numerically by standard techniques with quadratic conver-

gence characteristics. In the present case this involved only about four hours 

of programming, key punching, and debugging, which is regarded as a minimal 

amount of personnel effort. The, results confirm the more precise values of 

4 
Brown. 

Numerical results for the lower eigenvalues are complemented by asymp­

. 10 11 totic forms for large eigenvalues, developed along the lines of Lauwerler. ' 

With the new results, the Graetz series yields accurate results even for fairly 

small values of the axial distance. Thus, good agreement can now be obtained 

, A 
between the Graetz series and the extended solution of Leveque, a situation 

which did not prevail in 1955.
23 

It should, perhaps, be emphasized that asymptotic forms should not 

replace accurately ca'lculated values of the lower eigenvalues and coefficients. 

The first eigenvq,lue calculated 'even by Graetz is more accurate than the asymp-

totic form of Sellars, Tribus, and Klein. 

For high Peclet n1.Lrnbers, axial diffusion is important only in a small 

region near z = 0 and r = R and of spatial dimensions on the order of R/pe l /
2

• 

For an insulating wall upstream and a constant wall concentration downstream, 

the transfer rate becomes infinite near z = 0 like 1/zl/2, The Lev~que solution, 

which neglects axial diffusion,' predicts a behavior like 1/zl/3. 

It is felt that an insulating wall upstream of the transfer section 

represents t more relaistic boundary condition than either a specified 

" 
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concentration in the cross section z = O.or a specified upstream wall concentra-

tion, even if a nonzero resistance at the wall is considere~ in the last case. 
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Nomenclature 

cb - upstream concentration. 

c. - concentration of species i. 
1 

c - constant concentration at the downstream wall. o 

C - constant in asymptotic form for Mk• 

C - coefficients in Gra.etz series for 8. 
k 

D - diffusion coefficient (cm
2
/sec). 

J amount transferred in a given length of tube. 

coefficients in asympto~ic form for Mk• 

coefficients in Graetz series for 8 • 
m 

Nu - Nusselt nQmber. 

Pe - Peclet nUmber. 

r - radial di stance from axis of tube (cm). 

R - radius of tube (cm). 

Rk radial functions in Graetz series for 8. 

Si - coefficients in asymptotic form for "'k' 

v - fluid velocity in axial direction (cm/sec). z 

<v > - average value of v (cm/sec). 
z. z 

x - stretched axial distance in elliptic region. 

Y stretched distance from the wall in the elliptic region. 

z - axial distance from the beginning of the transfer section (cm). 

a,i3,Y,o - coefficients in asymptotic form for Rk and dR/d~. 

r - gamma function. 

S -dimensionless axial distance. 

~ - Lev~que' s similarity variable. 
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e dimensionless concentration. 

e 
m 

A. 
k 

dimensionless cup-mixing concentration. 

eigenvalues. 

A. 0 - first asymptotiG approximation to the eigenvalues. 

~ - dimensionless radial distance. 

'., 
" 
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tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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