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Abstract
Previous work is reviewed, a -new method is outlined for calculating
the lower eigenvalues and coefficiénts for the Graetz series, and new asymptotic
forms for large eigenvalues are presented. Good agreement can now be obtained
between the CGraetz series and the Lév@Que series. The region where éxial dif~
fusion is important is treéted at high Péclet'npmbers by the method of singulaf
perturbations, thus providing a feasonably complete picfure'of the tranéfer

process.
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‘lf 'Introdﬁétion
A claséicai, ndntrivial examplé of convective heat or mass transfer is -
fhe'Graetz problem—-trahsfer from the wall of-a tube of radius R to a fluid in
fully deVe10p¢d,»laminar flb&, withvan insulafing wall upstreém of a point z = Q i
and a‘ﬁall maintained at a constant température or concentration downstream of

the point z = O.  Phrased in terms of mass transfer, the partial differential

equation is

" de, ‘ ac ) ac 8 c, :
v ~—Lr = o<y - E_ 1‘ o ' . (1)
z Oz z 5 T or 5 ? ' .
with boundary conditions which may be stated as. follows:
c, = co'at r =R, z > 0; aci/ar =0atr=R, z< 0;

Bci/ar =0at r=0; ' -?‘ (2)

c, "’c.b as z = -%; and.ci"’cé as z —r+w ,

In terms of the dimensionless variables

e =% o =22, (= 22— (3)
RZ %% T o 2<V>R2- ’
: _ zZ - ,®
the problem becomes v
(16218 - 1 9 a®>+_;__2@ o R oy
55 ST -t S S S
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where Pe = 2R<vz>/D is theaPéclet number, wifh»the boundary conditions
@=0at t=1,6>0;0/¢t=0at t=1,(<0; )

30/3t = 0 at £ =0; | | )

@=+1as {2>-2 gnd ® >0 as C'f‘+°° .

Graetz6 treated this problem by the method of separation of variables
under fhe coﬁdition that the last term in equation k4 could'be negleéted. This
term, representing axial diffusion, will be small when'the Péelet ﬁumber is
large, which holdé for most-pfacfical applicétions. -In this manner Graetz
obtained a seriéé golution involving functions éf the radial distanée, Rk(ﬁ),
which are definedbby a Sturm-Liouvillé system where the separation ﬁarameter
is restricted to discrete eigenvalues‘Xek. Othér workers have refined the
Graetz solution. Results for eigenvalues'and éoefficients are summarized in
table 1.

Asymptotic forms of the eigenvalues and coefficients have been worked

. 10 .
- out for large eigenvalues, notably by Lauwerier = and by Sellars, Tribus, and

2 : .
KZLein.'br Numerical solutions of the partial'differential equation of the Graetz-
problem, with neglect of axial diffusion, have been-givéﬁ by Kays9 énd by
Longwell. ”

Near z = O, the transfer rate becomes infinite, and many terms in the

Graetz series are required for an accurate solution in this region. Here it is

" convenient to.use a similarity solution developed by Lévgque13 and extended by

17
Newman. !
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Table 1.

Eigenvalues and coefficients for the Graetz solutiOn

Additional

results are given by Brinkman (1950), Brown (1960), Drew (1931), Lauverier
(1950), ard Singh (1958). |

Gréetz
- (1883,1885)
A M

AbramoWitz
(1953)
Y

Tk
2. 70436k,
_6 679032
10. 67338 ‘
14.67108

 18.66987

k
0.817h7

- 0,0325

" 0.38237

Lée;
Nelson,
Cherry,
Nusselt Boelter.
- (910) - (1939)
. 1 S
[;-kk EAiMk M
- 2,705 0.749 ©  2.704-
666 0.557  6.679
10.3  0.2515 10.673
- - 671
Lipkis
(1356)
M A
O kk Tk
0. 74879 2.70436443
0. 54k2 6.67903145
0.41518 . 14.6710785

18.6693719

0.179

iéugw)
™M %
0.749  0.820
0.0972
0.0135 1

- -1

- present wor

1,2,
B

0. 74877L56

0. 54382796

0.46286106
0.41541845
_0.382919i9

Schenk,
Dumoré
(1953) . -

e M
2.70437 0.819
6.6790 0.101

0.6733  0.032
b6711 . 0.005
k
My
0.819050%
o.0975269 |
0. 0325oho |
o 015uh02:
- 0.0087835

Jakob took his values from Nusselt, but modified the wvalues of Mk"

he

@
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The axial.diffusion:term, neglected_in the work already mentioned,
becomes important at high’Péclet numbers only in a small region near z = 0O
and r = R, a region which becomes smaller as the Péclet number increases, as
is typicalvof a sithlar-perturbation problem. With neglect of axial diffusion,
the originally elliptic problem becomes parabolic. This region near z = 0 is
the only place where the elliptic nature of ‘the problem persists; thus, it is
a small elliptic region embedded in en otherwise/parabolic domain. Axial dif-
fusion has been treated by Singh26 and will be treated in section 7 as a
singular-perturbation problem. !

Schenk and Dumorégo have treated the effeot of a nonzero tranefer
resistance of the tube wall, which serves to eliminate the infinite tranefer
rate at z = 0. Problems ihvolving a catalytic reection at the tube wali have ‘

been- treated by Katz8 and by Solomon and Hudson,27

fluids has been treated by Schenk and Van Laar.'21

and transfer to non-Newtonian

It seems appropriate at this point'in time to review the Graetz problem,
which has beeo treated eXtensively, and to show.how the vérious phases.of the
probiem are interrelated. This will oe done in the order in which they have
been introduced. . The author was motivated by a desire to try a new method for
golving eigenvalue problems and to prepare for presentation in class the
complete solution of a classical probiem, including the effect of axial diffu-

gion. Furthermore, in an earlier comparison of the Graetz series and the

.Lévgque series it became apparent that Lipkis's values of the coefficients

could not be accurate to the number of significant figures given. (The precise

| ok | |

results of Brown were not discovered until the present work had been completed.) _
New results are presented for the first five eigenvalues and coefficients -

(corroborating the results of Brown), for the asymptotic forms for large eigen-

values, and for the region of axial diffusion.



-6-

2. The Graetz series

With neglect of axial diffusion, the solution of equations 4 and 5 can

~ N

be expressed as
‘A‘)"
e -xig | »
©= ZCe Rk(e‘) , - - (6)

where Rk and Xk are eigenfunctions and eigenvalues of the Sturm-Liouville gystem

3 gdé(&g—@ + 221" R =0, (1)
R=0at £=1, dRfd¢ =0at £ =0, R=1lat £=0 . (8)

- Furthermore, withvhéglect of axiai diffusion, the solution for §{ < 0 is simply

i

® = 1. - Consequently, the Graetz series must satisfy the initial condition

iC)

1 at £ = 0. Because they come from the.Sturm-Liouvilleisjstem T and 8, the

. eigenfunctions are orthogonal with respect to a weighting function of E(l-&e).
Thus, the coefficients of equation 6 can be obtained by setting £ = o, multipiying
by ﬁ(lhig)Rn(é), integrating from £ = O to € = 1, and observing that only one

term from the infinite series, that for k = n, is nonzero. The result is
_ A : _
- 2\ o i 2,2 '
c, = [ 6(-E7)R (£)at [ [ E(1-E7)RC (£)at . )
0 o '

‘We should be interested in the total amount of material J transferred

to the wall in a length L:

o .Qc., . v ' o
: B i _ :
7 "."h[DSF'Ir%R amRdz. L - - (209)
(o] ' : .



This can be expressed as

L o _'Xig _ v
R = I Mke p) (ll)
k=1 :

———

J

m 2 .
7R (cb-co)<vz>

[€3]
1
'_J
8
H
H
]
A=

where Nu' is the average Nusselt number based on the concentration difference at

the inlet, c

b-c;, and
1 . | | |
w = ko, [Ea-€PR (€)ae . - (12)
o : ' '

In equatibn 11, J is divided by the total amouﬁt-of material which wouldfbe
transferred in an ihfinite length-of pipe. -Equation ll_can also7béireéarded
as expressing the dimensionless;v"cup-mixing" concentration difference ®m
between the wall and the fluid. The local Nusselt number based on the concentra-

tion difference at the inlet is feadily obtained from equatidn 11:
_ 1 _ -
Nu(f) = = 5 MMe . S - (13)

Finally, in later calculations it will be convenient to have available

two additional formulas. If the SOlution‘R of the Sturm-Liouville syétem T and

8 is regarded as a function of the parameter M as well as the variable £, where

R satisfies the conditions at € = O but not necessarily the one at £ =1, then

-we obtain

%%(E:.l’ reh ) = -xifg.(l-gg)deg o R (14)

and



';U

—E-—x evaluafed atl€ = 1 and A = kk

o1
E,ka (1-6 ) a -
-

Consequently we can write

\

1,2 dr/af I o
A = = A=A .
T _kMk XE%EY evalua.tgd at e 1 and "

(15)

(16)
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3. Calculation of eigenvalues and eigenfunctions
Let us add to the Sfurm—Liouville systém'7 and 8 a second differential

equation:

2 : . . . :
%E-:o . | | - - an

o 2 ‘ ’ . -
Then if R and A are regarded as the unknowns, we have a nonlinear system of

two coupled, ordinary differential equations with three boundary conditions at

two values of €. Tt should now be possible to solve this problem by standard

techniques.l6 For initial guessés we used

cosl (k2)m]

=3}
il

. Y _ (18)
12 2 : : . '
A = g(k__g—) i 9 k = l, 2’ 3’ s . .

Here'we know in adﬁance that the solution is not unique, so we select an initial
guess which is roughily simiiar to the Graetz functions. Thé qalculation proce-
dure converged for fhe first five eigenfunctions and eigenvalues,.all that were
tried. Calculations were cérried out for 100, 200, 40O, and 800 mesh intervals,
and the results, extrapolated to an infinite number of intervals,,afe given in

table 1. Figure 1 shows the first three eigenfunctions. In table 1, the eigen-

values of Abramowitz are. seen to be'quite acéurate, while the coefficients of

Lipkis are in some cases in error in the fourth significant figure. Our values

are in good agreement with the more precise values of Brown. .
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4. Asymptotic forms for large eigenvalues

For large eigenvalues, the eigenvalues can be expressed as

un ~ 4/3 . 3-8/3 . . 4-10/3 -11/3 0 -14/3 |
: o= xo * Slxo + SQXO * S3X0v ;+ tho +_O(Xo ) s (19)
where
.
Xo =hk - 4/3, k=1, 2, ... ,
8 = 0.159152288, 83 = -0.224731440, !
(20)
S, = 0.0L1485635k," 5, = -0.033772601L
]

Lauwerier;o gave values for'ho, S;, and S, (with an erfof in the sigh of Sé),

andlseliars, Tribus, and KleinEl1L gave values for M 9' | |
Lauwerier showed that the Graetz function R(&,X) can be expressed in

terms of the confluent hypergeometric function and then obtained the asymptotic

fofm_ _ - . _
o0 -G (3 3] 2 oG
QR T T TR P

AL By:an extension of his method we can obtain (see also Lauwerierll)



% = = T s | Yo = 1s

a, = -0.OLLLLMMLLL, Y, = 0.03801587302,

a, = 0.009882467268, Y, = =0.0L971517369,

oy = -0.0213166L753, ) Ty = 0.036185291#39,

BO = -0.073571u2857, | 50 = -0.3, | |

B - 0.02887167277,_ : 8_1' = 0.0218950216k, |

B, = -0.04405535292, 8, = -0.021k0k01k20 .. (23)

These equations contain divergent; asymptotic serieé which:cannot Be éummed £6
p = o, Howeve;, since'bnly é finite number of coefficients are given, this
causes no p?dblem. |

.The_éigenvalueg are to be determiﬁed by setting R(1,*) in equation 21
equal to zefo. Thg first approximation Xo to the eigenvalueé is obtained by
setfing‘\cos[(Xo/h_- l/6)ﬂ] equal to zero,:wiﬁh the result given iﬁ equation

20. -If wérdéfine a correctioh A

1 to this first approximation'by

A=A +)\g
o]}

1 2

then the eigenvalue equation becomes

(24)



\
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. 2p 1/3 » RDH/3 |
sin(—%)pz oup(%)_,v = {7217)S1r1< h 3) Z B ) - (25)

This can either be expanded to y1eld equatlon 19, or it can be solved dlrectly
to obtain the correctlon Xl to the elgenvalue. We favor the latter procedure
31nce it allows full use of the coefficients 23 to be made, whereas equation.

19 would have to be carried to terms of order X;T to obtain comparable accureéy.

On the other hand, the equation
1852y b/ , | »
A=A -0. A A
o * (sl 0.183/ o)/ o (26)

will do a fair:job.
Eigenvalues have been calculated by solving eduation 25} The:first
five deviate from those reported in table 1 by amounts decreasing rapidly from"'

0.15 percent for the first to one ?art in the tenth significent figure for.tne

_fifth. The next five eigenvalues are given in table 2.

Table 2. FEigenvalues andvcoefficiénts evaluated from the asymptdtic forms.

K ' M | B
6 | | 22.66014336 C 0.3586855666
ST 26.66866200 - .0.33962216u3
| 8 : “_ 30;6683é33u | 0.32u0622113
s , -; 3h.66807382  0.3110140736

10 38.66788335 C o 0.2998kko3TT
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‘

The coefficients can be obtained by means of equation 16. Equation

21 is differentiated with respect to X; and the result is put in the form .

; 1/3 AN '. eptl -
B = 0 G T BE o) 2, 5f) o) 2 6
| o (e7)
- 3 A - . 2p+14-/3 . A . L 2p+7/3
+ 3:.1'/3 ;(if:g_g[-g coS(—E—J: + l;)pio BP(%) - sin —II',']; + 'g)pio(2p+§)ﬁp(%) : ]} .

Equation 22 becomes

2p

- 1/3
%Igl)ﬁ:l = (—l)kf} _7T_3 1"( ){Sln( T 7—;) pio Yp('%)

+ 1
31/3

2p+2/3}!

A ol %) fo @

Although we prefer to determine the coefficients from equation 16 by direct

evaluation of equations 27 and 28, one can obtain the following asymptotic

form:
1,2 ' 3 L .
g M 7 b E7 6/3 x7/3 10/3 11/3 + 00 )}' (29)
where : L . v B Y
C = 1.012787288, - | L, = -0.21220305, ] EEE
I, = 0.144335160, I = -0.1871301k2, r S Go)
L, = 0.115555556; Ly = -0.0918850832 .
’ /
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Finally, the formula

%AQM - (c/xl/3)(1+o.2/xu/3)/(1+o.d§1/xh/3) | | (31)

gives good results.

The term C/Xl/3 in equation 29 was obtained by'Sellars, Tribus, and

KZLein,ebr though expressed as C/Xi/3.’ They used a singular-perturbation ekpan-

_ sion involving three regions-——one near the center of the pipe, one near the

wall, and one in between. We have extended theilr method to obtain the Sl term

in equation 19 and the L, term in equation 29. However; the method of Lauwerier

L
yields the asymptotic forms with less effort..
The coefficients, evaluated from equations 16, 27, and 28, are given

in table 2 for the sixth through tenth terms in the Graetz series. For the.

| first five terms, the deviation from the values reported in table 1 varied

7

from 0.21 percent to 6+10 ' percent in a manner similar to that found for the

eigenvalues. The eigenvalues and coefficients in table 2 are in excellent

 agreement with the results of Brown.
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‘ 5. The'Lévgque series
Near‘z =0, the transfer rate beéomes infinite, and many terms in the
Gfaetz series are required for aécurate results. .In such cases it is frequent-~
ly possible to make.approximafions which permit a similarity sqlution valid.
near z = 0. Here the approximations follow frdm the fact that © differs from
the inlet walue oniyvin a thin diffusion layer near the wall of the tube.

This means that in this layer the velocity distribution can be approximated by
v, = k<> (1-r/R) | (32)

'and_the effect of the c&lindrical geométryjdisappears in the sense that

2
- 108 0@
= s <L = .
- (33)
r
With these approximations, Lévgque13 obtained the solution
T . .
1 =X _ : :
®=P)+3je dx,. ‘ : _ (3)4-)
in terms of the similarity variable
. 1 ' ) :
1= o)/ L | (35)

-

N . L S !
approximations of Léveque, Newman

17

' By taking into account the extended this

; éolution so that the local Nusselt number can be expressed as

ma(t) = 13565975 t/3 - 1.2 < 0.206019 €3 4 0(?3) L (38)



slightly further, to about 10
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6. Compariéon'of Graetz and Lév%que series

The local Nusselt number, proportional:to the local transfer rate, is
expressed by the Graetz series 13 or alternately by the Léveque series 36:
Figure 2 shows the local Nusselt numbér, divided by ﬁhe first term of the
Lévgque series so that this ratio-approacﬁes 1 éé,c = 0. The dashed lines
indicate how wgll the Lévgquevseries approximatesvtﬁe exact solution. The
dimensionless cup#mixing concentration difference (see equation ll)‘is.also
shown. |

During the development of fhis work, a comparison of fhe Graétz series
and the Lévgque series served as a convenient check for errors and a measure
of the significance of the various improvements in the Graetz series. Thié
comparison was made with the quantitg J, the total amount Qf material transfer;
red to the wall in a given length. If CO denotes the value of § Qhere the
error in the Graété series is roughly comparable to the'eiror‘in ﬁhe.three—

term Lévgque series, then'Co = 0.006 when the Graetz séries is based on

Abramowitz's eigenvalues, Lipkis's coefficients, and the asymptotic forms of

Sellars, Tribus, and Klein. Refinement of the coefficients for the first five
terms moves CO down to 0.0017. Use of the modified asymptotic forms moves CO
down to about 2'10—5, and‘refinement of the first five eigenvalues moves it

5

- -4
- Here the error is about 10  percent. The’

" use of Brown's results leads to some: further improvement.
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Figure 2, Dimensionless cup-mixing conceiltratlon difference ® and the local
Nusselt number (divided by Leveque S solutlon). For comparison with
the latter, the corresponding form of the Leveque series is shown for_
2 and 3 terms.
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T. The region of axial diffusion

Graetz6 included axiai diffusion in his tfeatment of plug flow in a
fube. Sing’hev6 did the-same'thing for a parabelicvvelocity profile in- a tube.
However, both of these authors took ® = 1 in¢he cross section at the begiﬁning
of the‘transfer section, without apparehtly recognizing the physically abeurd
consquences ef this condition. The cendition 2 or 5, onvthe‘other hand,
represents a reasonable situation corresponding to an insulated wall upstream
ofvthe transfer section. If axial diffusion is important, then the fluid must
become depieted, to some extent, upstream of ﬁhe transfer section. Itvis ohly_
in the limit of an infinite Péclet eumber'that axial diffusion can be neglected
and the condition ©® ;‘l applied in the Cfoss section z = O. Furthermore, to
have a surface with @ =1 ;mmediately adjoining a surfaee with @ = O,'here the
tube wall for z > 0, will result in aﬁ infinite'transfer rate near z = 0, a
rate which canhot be integrated. In other words, wifh'the boundary condiﬁion
used by Graetz and Singh, the total amouﬁt_of material transferred in any non-
zero length z will be infinite.

Bodnaregcu2 treated axial diffusion‘ﬁith an upstreem'wall maintained
at ene tempereture and a downstream wall at another temperature. Wilson28 used
the same boundary conditions'with plug flow. As Drew5 has pointed out, the
total transfer will agaiﬁ be ihfinite. Schneider?2 treated the seme eituationv
as Wilson, but{wifh the addition of a transfer reeistance at thevwali.*

In practical applications, with the possible exception'bf heat transfer

in liquid metals, the Pdclet number will be large, and axial diffusion will be

important only in a small region near z = O and r = R. This regioh can-be

Half of Schneider's solutions without axial conduction are wrong.
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treated by the method of singulaggperturbatibns.- Stretched coardinates X. and

Y are infroduced:
Y = (1-€) Jpe ana X = §(Pe)3/2 = (z/R) \/EE . (37)

Subétitutionvinto,equation L yields, in the limit Pe = ®, the appropriate dif-

ferential equation for the region of axial diffusion
e _d8 _ de . |
oy .98,90 - - | (38

The approximations introduced have the same meaning as.in the case of the

\

Lévgque solution—near the wall the effects of curvature of the wall“can be

.neglected and the velocity profile can be approximated by equation 32—but the

stretching of the coordinates makes it apparent that in this region axial dif- , :

fusion is just as important as convection and radial diffusion..
qulboundary conditions we have
1. ®=0at Y= 0, X > 0.
2. /Y = 0at Y =0, X < O.
3 @1 as X—’-°°‘:'.or"as Y‘*5°, ‘
L, 'As“X7ﬂ'§, the pe;m BQQ/BX2 should become negiigible'compared to the-pther'
terms in'equation 38. . : |

The last of these conditions is somevhat unusual. It expresses thevfactgthat

~ this elliptic region where axial diffusion is important is embedded in an other-

- wise parabolic domain. From this last -condition and equation.38 one can derive -

the asymptotic form-

® -*_(1;7_” 1 3 f e-X dx as X-'fm s : . o ) ' : (39-) ‘
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where
1 = ¥(2/o0)3 . | | | -~ (40)

_In other words, © approaches the Lév@dué solution far downstream iﬁ the fegion
of axial diffusion. However, since effecté are transmitted downstream in the
parsbolic regions, a better phraéing-would be to:say that © in the Lévgque or
Graetz regions should approach the form given by equation 39 as § ‘*O;. In
other words, the development leading tQ equation 39 is the proper Justification
for the validity of the Léveque solution. .

) Here we have formulated a proper singular—pértﬁrbatibn problem; now
independent of the'exﬁiicif apﬁearancévof the Péclet number. The situation and
mathematical treatmént are ;éry similar to those encountered in the'célculation
of rates of transfer to the rear of bluff objectsvin a free stream in slow,
laminar flow.25’l8

The problem pbsed here was solved'numerically by suééessive over-
relaxation in parabolic coordinates, codrdinates selected so that the derivatives
of ® would be finite at the origin. In each direction, 120 méshbintervals were -
used. .DifficultieS'were encountered away from the wall where convection becomeé
dominant. These were circumvented'bj usihg an over-relaxation factor which
decreases as convecffon becomes more important and by setting.® =.1 when con-
vection becomes dominant.

Figure 3 presents the dimensignless transfer rate in the region of
axial diffusion. As X =0, 8®/BY at Y = 0 approaches O.529h5/J_. Thus, if
axial. diffusion is taken into account, the transfer réte becomes infinite like

2 } s~
l/zl/ rather than 1/21/3, as predicted by the Léveque solution. As X ™ %,



0

2.

, /A\Lévéque solution

/
/
1

JX 08/0Y at Y

XBL68I2-7378

Figur_e 3. The normal derivative at the wall in the reglon of axial
o d1ff‘us1on, w1th the Leveque solution for comparlson. '
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the transfer rate approaches that'given by the Lévgque solution. Figure L
show§ithe dimensionless concentration diétribution along the upstream,‘inéulat-
ing wall and in the cross section at z = 0, the beginning of the transfer set-
ﬁion, and gives a quantitative indication of the extent of the region of axial-
diffusion.

From a préctical poiht of view, axiéi diffusion is not important for
large_Péclet numbers, although ité proper mathematical treatment is of some

T

interest. The Lévgque soelution ¢ould be extendedh to higﬂér order terms ih,§
because those corrections did not involve axial diffusion but only curvature
effects and the parabo;ic nature of the wvelocity profile. The correction of

the Lév@que solution for the effects of axial diffusion would require as a basis
a uniformly valid approximation such as that presentéd here. In fact, the‘entire;>
Léveque solution is included here in'the'sblufioﬁ for the region of axial dif-
fusion, and corrections to the Léveque solution solely for the effects of.axial

diffusion are merely higher .order terms in the asymptdtic'solution of equation

38 for large values of X. Thus

o L /M3y 00 -8/3 v |

or

‘ /3 o
o 2 2 0.1548 -k —- 0 -0
Nu(t) m—; (-9—C'> (l + Wé_i;é + O(Pe_ )) as Pe and € 0.

(L2)
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‘ Figur_e b, Dimensionless concentration distribution ®(X O) along the
o upstream wall and ©(0,Y) in the cross sectlon at z = 0. -
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It miéht be asked whether any usefui inférmation about the role of .
axial diffusion can be obtainéd_from thé solutions of Graetz and Singh or
whether their method can be eitended to yield useful results; The conclusion
of Singh that the effect of axial diffusién becomes negligible for large Péclet
nuﬁbérs is certainly wvalid, but where axial diffusioﬁ ig Important, at low
Péclet numbers, one cannot eiiminate with any confidence the effect of the non-
integrable singularity in the transfer,réte at z = 0. The method of separation
of variables used by Graetz and Singh will not be useful if it becomes necessary.

to consider the upstream, insulated pipe. An artificial way to avoid the

~infinite total transfer while retaining the methdd'of separation of variables

would be to specify'instead the flux at the cross section at z = 0, say by the

condition

(1-€7)(0-1) = (1/2?)0f3C &t € = 0. 3)

Another artificial way would be to specify the concentration at { = 0 not by

® = 1 but perhaps by means of figure 4 with some adjustment so that the total

~flux corresponds to the convective flow far upstream. For an idea of the dif-

ficulties involved, it would be. pertinent to consult the work.of Bodnarescu,2

22 2 ' 28
Schneider,. Singh, 6 and Wilson.



8. Coﬁclusions

If the eigenvalqé is regarded as an unknown &ariable, a Sturm-Liouville
system can be solved numericali& by standard techniques with quadratic conver-
génce characteristics. In the present case this involved only about four hours
of programming, key punching,vand debugging, which is‘régarded as a minimal
amount of‘persoﬁnel effort. The,resplts confirm the more precise wvalues of
Brown.

Numerical results for the lower eigehvalues are complemented by asymp-

totic forms for large eigenvalues, developed along the lines of Lauwerier}lo’ll

With the new results, the Graetz series'yields-accurate-results even for fairly '

small values of the axial distance.. Thus, good agreement can now be obtained
between the Graetz series and the extended solution of Lévgque, a situation
which did not prevail in 1955.23' |
Tt should, perhaps, be emphasized that asymptﬁtic forms shoﬁld hot.

replace accurately calculated values of the lower eigenvalues and cbéfficiehts.
The first eigenvalue calculated even by Graetz is more accurate than the asymp-
totic form of Sellars, Tribus, and Klein.
.Fbr.high Péélet numbers, axial diffusion is important only in a small

‘ 1/2

region near z = 0 and r = R and of spatial dimensions on the order of R/Pe .

For an insulating wall upstream and a constant wall concentration downstream,
’ 1/2

thé transfer rate becomes infinite near z = O like l/z . The Lévgque solutibn,

' 1/3,

~ which neglects axial diffusion, predicts a behavior like l/z
Tt is felt that an insulating wall upstream of the transfer section

represents a more relaistic boundary condition than either a specified:

=
fs

@
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concentration in the cross section z = O or a gspecified upstream wall concentra-

tion, even if a nonzero resistance at the wall is considered in the last case.
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‘dimensionless axial distance.
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Nomenclature
upstream concentration. :
concentration of species 1. .
constant concentration at the downstream wall. ‘ _ T

constant in asymptotic form for Mk
coefficients in Graetz series for ©.

diffﬁsion céefficient (cme/sec).

a@ouﬁt transferred in a given length of tube.
coefficients in asymptotic form for.Mk. |
coefficients in Graetz series for @m.
Nusselt number.j

Péclet nﬁmbef.

radial distance from akis of tube (cm).
radius of tube (cm).

radial functions in Graetz series for ©.

coefficients in asymptotic form for Xk
fluid velocity in axial direction (em/sec).

average value of v, (cm/sec).

stretched axial distance in elliptic region.

'stretched distance from the wall in the elliptic region.

axial distance from the beginning of the transfer section (cm).

s

K and dR/dﬁ. : ‘ o v

coefficients in asymptotic form for R

gamma function. ' v _ . ‘ R

. N : P . .
Léveque's similarity variable.



.

dimensionless poncentfatioﬁ.

dimensionless cuj—mixihg-cbnéentraﬁibn.
eigenvalues.

firs£ asymptotig:approxihatioﬁ té'the eigenvalues.

dimensionless radial distance.
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behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or

- process disclosed in this report.

As used in the above, ''person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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