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Abstract

Fragile X syndrome (FXS), the most common inherited from of autism and mental impairment, is caused by transcriptional
silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein FMRP. Dendritic spines of cortical pyramidal
neurons in affected individuals are abnormally immature and in Fmr1 knockout (KO) mice they are also abnormally unstable.
This could result in defects in synaptogenesis, because spine dynamics are critical for synapse formation. We have
previously shown that the earliest dendritic protrusions, which are highly dynamic and might serve an exploratory role to
reach out for axons, elongate in response to glutamate. Here, we tested the hypothesis that this process is mediated by
metabotropic glutamate receptors (mGluRs) and that it is defective in Fmr1 KO mice. Using time-lapse imaging with two-
photon microscopy in acute brain slices from early postnatal mice, we find that early dendritic protrusions in layer 2/3
neurons become longer in response to application of glutamate or DHPG, a Group 1 mGluR agonist. Blockade of mGluR5
signaling, which reverses some adult phenotypes of KO mice, prevented the glutamate-mediated elongation of early
protrusions. In contrast, dendritic protrusions from KO mice failed to respond to glutamate. Thus, absence of FMRP may
impair the ability of cortical pyramidal neurons to respond to glutamate released from nearby pre-synaptic terminals, which
may be a critical step to initiate synaptogenesis and stabilize spines.
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Introduction

In excitatory pyramidal neurons, most synapses are formed on

tiny dendritic appendages called spines. Time-lapse imaging

experiments have shown that early dendritic protrusions in

immature neurons are not only motile and pleomorphic, but also

very unstable, turning over quickly over time scales of minutes-

hours [1,2,3,4]. This dynamic behavior suggests that immature

spines serve an exploratory role, presumably to reach out for

appropriate presynaptic partners and initiate synaptogenesis [5].

This notion is supported by data showing that synaptogenesis is

impaired following manipulations that alter spine dynamics [6,7].

We and others have previously demonstrated that focal application

of glutamate onto dendrites either recruits new protrusions or

causes existing ones to elongate [2,8,9]. This suggests that axons

might release this excitatory neurotransmitter to attract immature

protrusions from nearby dendrites for the purposes of synapse

formation. The exact glutamate receptor that mediates these

phenomena is not known, though recent evidence suggests

NMDA-receptors play a role in glutamate-mediated de novo

spinogenesis [9].

However, given that glutamate-mediated elongation of dendritic

filopodia is slow (over minutes), it is conceivable that this process

might instead be mediated by Group I (GpI) metabotropic

glutamate receptors (mGluRs), especially considering that ionotropic

receptor blockers do not change protrusion length [2]. Indeed, other

studies have shown that application of mGluR agonists causes an

elongation of mature dendritic spines in vitro [10,11].

Whether mGluRs mediate glutamate-induced elongation of

dendritic protrusions is an important question in the context of the

pathogenesis of fragile X syndrome (FXS), a neurodevelopmental

disorder characterized by spine dysgenesis and dysregulated

mGluR signaling [12]. We recently showed that immature layer

(L) 2/3 cortical pyramidal neurons of Fmr1 knockout (KO) mice

[13], a mouse model of FXS, exhibit a delay in the stabilization of

dendritic spines during early postnatal cortical development [14].

A different study also reported that dendritic spines of L5 cortical

neurons in adult Fmr1 KO mice also display an abnormally high

turnover [15]. Symptoms of FXS could therefore partially result

from altered synaptogenesis stemming from defects in spine

stabilization and perhaps defects in glutamate-mediated elongation

of dendritic protrusions.
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Here, we used two-photon time-lapse imaging of GFP-

expressing neocortical neurons in acute brain slices from neonatal

mice to address two questions: First, do mGluRs mediate

glutamate-induced elongation of dendritic protrusions? Second,

is this phenomenon altered or defective in Fmr1 KO mice? We

show that early dendritic protrusions of L2/3 neurons become

longer in response to bath application of DHPG, a GpI mGluR

agonist. Protrusions also elongate in response to focal puffing of

glutamate, but this effect is prevented by blocking GpI mGluR

signaling. Importantly, dendritic protrusions from Fmr1 KO mice

failed to respond to glutamate.

Materials and Methods

All experimental protocols (ARC# 2006-016) were conducted

according to the National Institutes of Health guidelines for

animal research and were approved by the Institutional Animal

Care and Use Committee at University California, Los Angeles.

Mice, constructs and reagents
Fmr1 KO mice in a C57BL/6 background were obtained from

Dr. William Greenough (University of Illinois at Urbana

Champaign) and bred at UCLA. The experimenters (ACM and

MC) were blind to genotyping until after the analysis was

completed. Genotypes were determined by PCR analysis of

DNA extracted from tail samples using previously described

primers [13]. As controls we used either wild type littermates or

wild type mice from different litters. A plasmid containing the

EGFP coding sequence under the control of the CAG promoter

(pCAG-GFP, Addgene plasmid 11150; [16] was used for

electroporation. All DNA was purified and concentrated using

Qiagen plasmid preparation kits (Valencia, California, United

States) and dissolved in 10 mM Tris–HCl.

In utero electroporation
Progenitor cells of future L2/3 neurons in barrel cortex were

transfected via in utero electroporation (Figure 1), as previously

described [17]. Timed-pregnant mice at embryonic day (E) 16

were deeply anesthetized using an isoflurane–oxygen mixture

(4.5% [v/v] for induction and 1.5% [v/v] for maintenance)

delivered via nose cone using an anesthesia regulator (SurgiVet,

Waukesha, Wisconsin, United States). After a midline low

abdominal incision the uterine horns were exposed and individual

embryos handled gently with forceps. Approximately 1 ml of DNA

solution (containing 0.65–1.0 mg/mL of plasmid and 0.1% Fast

Green) was pressure injected with a Picospritzer III (Parker

Hannifin Corporation, Fairfield, NJ, United States) through the

uterine wall into the left lateral ventricle of all embryos using

pulled-glass capillaries (Sutter Instrument, Novato, California,

United States). Next, the head of each embryo was placed between

custom made tweezer-type copper electrodes, and then 2–3 square

electric pulses (40 V, 50 ms long) were delivered at 500 ms

intervals using a custom built electroporator. The embryos were

placed back in the abdominal cavity and the wall of the dam’s

abdominal cavity and skin were then sutured. After surgery, the

dams were allowed to recover in a warm chamber for 1 hour and

then returned to their cage.

Acute slices
Pups at postnatal day (P) 4 through P11 were anesthetized by

intraperitoneal injection of ketamine-xylazine and decapitated.

The brains were quickly removed and transferred to ice-cold

artificial cerebrospinal fluid (ACSF) containing (in mM):126 NaCl,

3 KCl, 3 MgSO4, 1.14 NaH2PO4, 1 CaCl2, 26 NaHCO3, and 10

dextrose, bubbled with 95% O2/5% CO2 to a final pH of 7.4.

Acute coronal brain slices (300 mm) that included primary soma-

tosensory cortex were obtained using a vibratome (VT1000S;

Leica, Bannockburn, IL, United States). The slices were then

incubated at 37uC for 15–30 min and a minimum of 30 minutes

at room temperature before imaging.

Pharmacology
For stimulation of GpI mGluRs we bath applied the selective

agonist (S)-3,5-dihydroxyphenylglycine (DHPG; Tocris Bioscience,

Ellisville, MO, United States) at 50 mM, after a baseline imaging

period of 10 min. Controls for these experiments (‘‘no drug’’ in

Figure 2) consisted in imaging under standard ACSF conditions

for the entire duration of the experiment. For glutamate puffing

experiments, a glass microelectrode filled with 200 mM glutamate

(dissolved in ACSF and containing 0.05 mM Alexa-488 to

visualize the pipette while imaging) was lowered into the slice

and placed within 10–50 mm away from the dendrite of interest.

Using a PicoSpritzer, we delivered 5 puffs of glutamate (200 msec

duration, 800 msec interval, 15 psi) at 3 different times (3 min

apart) beginning after a baseline imaging period of 6 min (see

Figure 3A), which is similar to what we did previously [2]. 2-

methyl-6-phenylethynyl pyridine hydrochloride (MPEP, 50 mM;

gift from the FRAXA Research Foundation) was bath applied

starting 20 min before imaging began and throughout the imaging

session, including during the glutamate puffing.

Imaging
All imaging was performed with a custom-built two-photon

microscope, using a Ti:Sapphire laser (Chameleon XR, Coherent

Inc., Santa Clara, California, United States) tuned to 910 nm. The

objective (40X, 0.8 NA water immersion), tube lens and trinoc

were from Olympus (Tokyo, Japan) and the photomultiplier tube

from Hamamatsu (Hamamatsu City, Japan). For imaging, we used

ScanImage software [18] written in MATLAB (MathWorks,

Natick, Massachusetts, United States). Excitation power measured

at the back aperture of the objective was typically between 20 to

40 mW and was adjusted to achieve near identical levels of

fluorescence within each imaging session. During an imaging

session, 1–5 dendritic regions of interest (ROI) per brain slice were

selected along apical dendrites of GFP-expressing L2/3 pyramidal

neurons. Each dendritic ROI was collected at high ScanImage

zoom (7–9x) and consisted of a stack of images (,5–20 optical

sections, each separated axially from the next by 1 mm), where the

resolution for each optical section (5126512 pixels) was 0.12–

0.15 mm/pixel. For time-lapse imaging of the developmental time

course of dendritic protrusions in WT and KO mice and for

DHPG experiments, we collected stacks every 60 seconds over

15–30 min. For glutamate puffing experiments we imaged slices

every 3 min. Care was taken to achieve close to identical

fluorescence levels across imaged regions within an experiment

and across different imaging time points. In some of the figure

panels, distracting processes (e.g., axons and dendrites from other

neurons) were digitally removed in Adobe Photoshop for display

purposes only.

Data analysis
For the developmental time course experiments in WT mice

(Figure 1) we analyzed 13 and 12 dendrites (from 8 mice each) at

P4–7 and P8–11, respectively. For the developmental time course

experiments in Fmr1 KO mice (Figure 1), we analyzed 17 and 15

dendrites from 8 and 4 mice at P4–7 and P8–11, respectively. For

the DHPG experiments (Figure 2), we analyzed 8 dendrites from 6

different mice treated with 50 mM DHPG and 9 control dendrites

No mGluR-Mediated Spine Growth in Fmr1 KO Mice
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Figure 1. Early dendritic protrusions of Fmr1 KO mice develop normally in vitro, except for a transiently elevated density at P4–7.
(A) Low magnification view of L2/3 cells in an acute slice through the somatosensory cortex of a P11 WT mouse (maximum intensity projection of 40
optical slices, 3 mm apart). The cells were sparsely labeled with GFP via in utero electroporation and imaged with two-photon microscopy. The
location of the pia is shown by a red line. The boxed region in blue is shown at higher magnification in panel B, right). (B) High magnification view of
representative dendritic branches at the two postnatal ages examined. Images are best projections (,5–11 optical sections, 1 mm apart). Dendrites
were imaged every 60 seconds, but only a subset of time points is shown. From P5 to P11, thin protrusions that quickly appear and disappear (green
and red arrowheads, respectively) are gradually replaced with more stable spines (yellow arrowheads), typical of mature dendrites, and which often
have large swellings (heads) at their tips. (C) Length of dendritic protrusions at two different postnatal ages in WT and Fmr1 KO mice. Each gray
square indicates a different dendrite from a WT mouse and each blue circle indicates a different dendrite from a KO mouse. Protrusion length did not
change significantly during early postnatal development in WT or KO mice (p = 0.27 and p = 0.79, respectively). (D) Density of dendritic protrusions in
WT mice increases by 43% between P4–7 and P8–P11 (o p = 0.05). There was also a nearly significant trend towards higher protrusion density in older
KO mice (7 p = 0.06). Compared to WT mice, dendrites in KO mice had a slightly higher density of protrusions at P4–P7 (* p,0.05). (E) Motility of
dendritic protrusions decreases between P4–7 and P8–P11 in both WT and KO mice (* p,0.05 and ** p = 0.001, respectively). There were no
significant differences in motility between WT and KO mice at either age. (F) Turnover ratio (TOR) of dendritic protrusions does not change
significantly in WT mice (p = 0.15), but there was a trend toward lower turnover in older KO mice (o p = 0.05). There were no significant differences in
turnover between WT and KO mice at either age.
doi:10.1371/journal.pone.0032446.g001

No mGluR-Mediated Spine Growth in Fmr1 KO Mice
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from 8 mice without DHPG (‘‘no drug’’ in Figure 2). For

glutamate and MPEP experiments in WT mice (Figure 3), we

analyzed 2 dendrites from 2 mice exposed with ACSF alone, 9

dendrites from 8 mice exposed to glutamate alone, 3 dendrites

from 3 mice exposed to MPEP alone, and 6 dendrites from 4 mice

exposed to glutamate+MPEP. For glutamate puffing experiments

in KO mice (Figure 4), we analyzed 5 dendrites from 4 mice.

Data on dendritic protrusion length, density and dynamics was

obtained using protrusion analysis software written in MATLAB

(kindly provided by Tim O’Connor and Karel Svoboda, Janelia

Farm, HHMI). This analysis is done on the raw image stacks

(except for a median filter, radius = 1) and the presence or absence

of a protrusion was determined by inspecting individual slices from

the entire stack of images. However, because of the lower

resolution of two-photon microscopy in the axial plane, only

dendritic protrusions that were clearly projecting laterally were

included in the analysis [19]. For a dendritic protrusion to be

considered new or lost it had to clearly protrude out of the shaft by

at least three pixels (.0.45 mm), which corresponded to the noise

on either side of the dendritic shaft. Measurements of protrusion

length (from protrusion head to shaft) were accomplished by

manually drawing a line through the center of the protrusion to

the shaft of the dendrite for each frame the protrusion was present,

divided by the total number of frames. Motility was calculated as

the absolute difference in length of protrusions from frame-to-

frame, divided by the total number of frames. Protrusion turnover

(per 60 sec) was defined as the number of protrusions lost+the

number of protrusions gained, divided by twice the total number

of protrusions.

All statistical analyses were performed with GraphPad Prism

(GraphPad Software Inc., La Jolla, California, United States) and

error bars in graphs represent the standard error of the mean

(s.e.m.). To determine statistical significance, we used either an

unpaired two-tailed Student t-test (Figures 1C–F, 2D–E, 3F–G), or

a one-way repeated measures ANOVA followed by Dunnett’s

multiple comparison test (Figures 3D–E and 4B–C). Significance

was set at p,0.05.

Results

Developmental regulation of early dendritic protrusions
in vitro

We examined various aspects of the maturation of dendritic

protrusions in L2/3 pyramidal neurons from WT and KO mice

during early postnatal cortical development with two-photon

microscopy in acute brain slices, similarly to our previous study of

L5 neurons [2]. L2/3 neurons were labeled with GFP using in

utero electroporation in mice at E16. This resulted in a sparse

labeling of neurons, which was ideal for high-resolution two-

photon imaging of dendritic spines (Figure 1A). In a series of

control experiments, we previously characterized the action

potential firing and passive membrane properties of GFP-

transfected neurons and found them to be indistinguishable from

those of untransfected neighboring neurons [14].

For imaging experiments, we focused on the first two postnatal

weeks because this time period is characterized by the initial stages

of synapse formation [20] and a critical period for experience-

dependent fine tuning of intracortical circuitry [21,22,23,24,25].

This age range also includes the time when we reported an

abnormally high rate of protrusion turnover in Fmr1 KO mice

[14]. In order to investigate whether similar alterations in

protrusion dynamics occur in vitro, we performed time-lapse

imaging of dendritic branches of L2/3 neurons at 60 sec intervals.

In acute slices from WT mice, dendritic protrusions followed the

expected changes in density, shape and size throughout postnatal

development (Figure 1B). At the earliest ages imaged (P4–7) there

was an abundance of long and headless protrusions, as previously

described for immature neurons in vitro [1,2,26]. But by P8–11,

Figure 2. The mGluR5 agonist DHPG elongates early dendritic protrusions in WT mice. (A) Representative images of an apical dendritic
segment of a L2/3 neuron from a P6 WT mouse, before (0, 8 min) and after (15, 25 min) bath application of DHPG (50 mM). Images are best
projections (,6–11 optical sections, 1 mm apart). Dendrites were imaged every 60 seconds for 25 min, but only a few representative time points are
shown. (B) Change in length of protrusions over time, before and during bath application of DHPG. The data is normalized to the average of the
baseline time points (0–10 min). (C) Change in length of protrusions before and after bath application of DHPG or ACSF alone (‘‘No drug’’). Data from
the last 21–25 min are compared to the baseline 0–5 min for each condition. The mGluR agonist caused a 24% increase in the average length of
protrusions, compared to ACSF alone (* p,0.05). (D) DHPG did not change the density of dendritic protrusions (p = 0.47).
doi:10.1371/journal.pone.0032446.g002

No mGluR-Mediated Spine Growth in Fmr1 KO Mice

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e32446



Figure 3. Blockade of mGluR5 prevents glutamate-mediated elongation of dendritic protrusions. (A) Experimental design. Using a
Picospritzer we delivered 5 quick puffs of glutamate (200 msec duration, 800 msec interval) onto the dendrites at 3 different times (black arrows;
3 min apart) beginning after a baseline imaging period of 6 min. Images were acquired every 3 min for the duration of the experiment, but we only
analyzed data at 0, 3, 6, 9, 12, 15, 24 and 30 min. (B) Representative images showing a dendritic segment of a L2/3 neuron from a P7 WT mouse
before (0 min) and after (15 and 30 min) puffing of glutamate (200 mM). Images are best projections (4–7 optical sections, 1 mm apart). Note how
several protrusions elongated in response to glutamate (white arrows). (C) Representative images showing a dendritic segment of a L2/3 neuron from
a P8 WT mouse before and after puffing of glutamate (200 mM) in the presence of the mGluR5 inverse agonist MPEP (50 mM). Images are best
projections (6–9 optical sections, 1 mm apart. The glutamate-mediated lengthening of protrusions was blocked by MPEP. (D) Length of protrusions
before and after application of glutamate. Only protrusions that were present for at least 2 time points before puffing and for at least 2 time points
after puffing were included in this analysis. Glutamate caused a 18% and 21% increase in the average length of protrusions at 9–15 min and 15–
30 min, respectively (* p = 0.05; ** p,0.005). (E) Density of protrusions before and after application of glutamate. All protrusions present during
imaging were included in this analysis. There were no significant changes after glutamate (p.0.39). (F) Changes in length of protrusions (as a
percentage of the 0–6 min baseline) at 15–30 min after glutamate puffing, bath application of MPEP alone, or puffing glutamate in the presence of
MPEP. Only the glutamate-induced 21% increase in the length of protrusions was significant (p,0.05, Dunnet’s multiple comparison test). (G)
Changes in density of protrusions (as a percentage of the 0–6 min baseline) at 15–30 min for the same three conditions. There were no significant
changes (p.0.05, repeated measures ANOVA).
doi:10.1371/journal.pone.0032446.g003

No mGluR-Mediated Spine Growth in Fmr1 KO Mice
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many protrusions resembled mushroom-like spines, which are

typical of mature dendrites [27]. Quantitative analysis demon-

strated a slight decrease in the length of protrusions between P4–7

and P8–11, but it was not statistically significant (1.4460.08 vs.

1.2960.09 mm, n = 13 and 12 dendrites at P4–7 and P8–11,

respectively; p = 0.27, t-test; Figure 1C). The density of protrusions

was 43% higher in the older age group (0.2860.03 vs. 0.4060.05

protrusions/mm; p = 0.05, t-test; Figure 1D). Compared to in vivo

imaging data for L2/3 neurons at similar ages [14], the density of

protrusions in acute slices was similar.

The time-lapse imaging experiments allowed us to quantify

dynamic parameters, such as protrusion motility and turnover.

Early dendritic protrusions in WT mice were 30% more motile at

P4–7 than at P8–11 (0.6660.04 vs. 0.5060.06 mm/min, p = 0.03,

t-test; Figure 1E), as has been reported previously [2,26]. In

addition to being highly motile, protrusions of immature neurons

quickly emerged and disappeared from dendrites over a scale of

minutes. The turnover ratio of protrusions was slightly higher at

P4–7 than at P8–11, but this difference was not significant

(p = 0.15, t-test; Figure 1F). Of note, protrusion turnover for L2/3

neurons is much higher in acute brain slices than in vivo, where

protrusions appear and disappear over time scales of tens of

minutes [14], which underscores the effects of slicing on protrusion

dynamics and synaptogenesis.

Transiently higher density but normal length of
protrusions in Fmr1 KO mice in vitro

Next we examined whether the developmental maturation of

dendritic spines is altered in acute brain slices from Fmr1 KO

mice. Data on spine density and length in Fmr1 KO mice are

somewhat controversial, even during early postnatal development

[28]. One study that examined L5 cortical neurons in fixed tissue

from neonatal Fmr1 KO mice found that the density and length of

spines are abnormally high in the first postnatal week, but both are

normal by 4 weeks of age [29]. In contrast, when spines were

imaged in living neurons in organotypic slices the same authors

reported no differences in spine density or length compared to WT

mice. Similarly, two recent live imaging studies of cortical

pyramidal neurons failed to detect differences in spine density in

neonatal, juvenile or adult Fmr1 KO mice [14,15].

We imaged early dendritic protrusions in acute brain slices of

Fmr1 KO animals. Just as with WT mice, the length of protrusions

in KO mice remained stable throughout the first two postnatal

weeks (1.3760.09 at P4–7 vs. 1.4160.15 at P8–11, p = 0.79, t-test;

Figure 1C), and there were no significant differences compared to

WT at either age (p.0.52, t-test). In addition, KO mice also

exhibited a strong developmental trend toward higher protrusion

density in older mice (from 0.3760.03 protrusions/mm at P4–7 to

0.4860.05 protrusions/mm at P8–11; p = 0.06, t-test; n = 17 and

15 dendrites at P4–7 and P8–11, respectively; Figure 1D).

Interestingly, the density of dendritic protrusions was slightly

higher in KO than in WT mice but the difference was only

statistically significant at P4–7 (0.2860.03 protrusions/mm in WT

vs. 0.3760.03 protrusions/mm in KO, respectively; p = 0.04, t-test;

Figure 1D).

Normal dynamics of dendritic protrusions in Fmr1 KO
mice in vitro

We recently showed that L2/3 neurons from Fmr1 KO mice

have an abnormally high turnover of early dendritic protrusions in

vivo at P10–12 [14]. Here, we examined protrusion dynamics in

vitro using time-lapse imaging of L2/3 neurons at 1 min intervals.

A previous study failed to detect changes in motility of protrusions

in 7-day old L5 neurons imaged in organotypic slices at 2-min

intervals [29]. Just as in WT mice, protrusion motility in KO mice

decreased over the first 2 postnatal weeks (0.5960.03 mm/min at

P4–7 vs. 0.3960.05 mm/min at P8–11; p = 0.001, t-test), but there

were no differences compared to WT mice at either age (p.0.15,

t-test; Figure 1E). We also observed a slight developmental

downregulation of protrusion turnover in KO mice (0.1360.01

per min at P4–7 vs. 0.0860.02 at P8–11, p = 0.05, t-test;

Figure 1F), but there was no difference between KO and WT

mice at either age (p.0.43, t-test).

Glutamate-induced elongation of dendritic protrusions is
mediated by group I mGluRs

Previous work has demonstrated that the mGluR agonist DHPG

can elongate mature dendritic spines of dissociated hippocampal

neurons in culture and/or granule cells in organotypic hippocampal

Figure 4. Early dendritic protrusions of Fmr1 KO mice are insensitive to glutamate. (A) High-resolution images of dendritic protrusions
from a Fmr1 KO mouse at P9, before (0 min) and after (15 and 30 min) puffing glutamate (200 mM). Images are best projections of 8–11 optical
sections, 1 mm apart. (B) Length of protrusions in Fmr1 KO mice before and after puff application of glutamate (analysis was the same as in Figure 3).
The average length of protrusions was not changed by glutamate (p = 0.78). (C) Density of protrusions before and after application of glutamate.
There were no significant changes after glutamate (p = 0.12).
doi:10.1371/journal.pone.0032446.g004

No mGluR-Mediated Spine Growth in Fmr1 KO Mice

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e32446



slice cultures (,3 weeks in culture) [10,11]. To test whether this is

also the case for less mature dendritic protrusions of neocortical

pyramidal neurons in a more intact neuronal circuit, we examined

the effects of DHPG on apical dendrites of L2/3 neurons in acute

slices (age range P4–P10, average 6.6 days of age). Bath application

of DHPG (50 mM) resulted in a 24% increase in the average length

of dendritic protrusions compared to slices incubated in ACSF alone

(Figure 2; p = 0.01, t-test, n = 8 and 9 dendrites, respectively), but

had no effect on protrusion density (p = 0.48).

Next, we investigated whether the glutamate-induced elongation of

dendritic protrusions that we previously observed on L5 pyramidal

neurons (Portera-Cailliau, 2003) is a generalized phenomenon that

also affects L2/3 neurons, and whether it could be prevented by

blocking GpI mGluRs. We pressure injected glutamate (200 mM)

onto apical dendritic segments of L2/3 neurons (age range P7–P9,

average 7.9 days of age) during high-resolution time-lapse imaging

sessions, at 3 min intervals after a baseline 6 min-long period of

imaging (see Methods; Figure 3A). When we analyzed all protrusions

that were present throughout the entire imaging period (0–30 min),

including new ones that appeared during imaging and those that

disappeared before glutamate puffing, we observed an increase in the

length of all protrusions, but it did not quite reach statistical

significance (1.6060.09 mm at 0–6 min vs. 1.6660.08 mm at 9–

15 min and 1.8060.10 mm at 15–30 min; p = 0.076, repeated

measures ANOVA; n = 9 dendrites, 172 protrusions; not shown).

However, when we analyzed only those protrusions that were present

for at least 2 baseline time points immediately before puffing (i.e.,

those that were exposed to puffing) and persisted for at least 2 time

points after puffing, we found that glutamate led to a significant

increase in the length of protrusions both immediately after

application (2.1160.08 mm at 9–15 min vs. 1.8560.10 mm at 0–

6 min; 18% increase; n = 9 dendrites, 59 protrusions; p,0.05,

Dunnett’s multiple comparison test) and up to 30 min after puffing

(2.2260.14 mm at 15–30 min; 21% increase; n = 9 dendrites, 53

protrusions; p,0.005, Dunnett’s multiple comparison test; Figure 3B

and D). In contrast, puffing ACSF had no effect on protrusion length

(not shown; n = 2 dendrites, 27 protrusions, from 2 mice), suggesting

that the glutamate effect was not purely mechanical (e.g., due to

displacement of the dendrite). Glutamate puffing did not affect the

density of protrusions (0.3260.02 protrusions/mm at 15–30 min vs.

0.3060.03/mm at 0–6 min; p.0.05, repeated measures ANOVA;

n = 9 dendrites, 172 protrusions; Figure 3E).

We then tested whether this glutamate-induced elongation of

dendritic protrusions could be prevented by bath application of

MPEP (50 mM), which acts as a potent non-competitive mGluR5

antagonist by inhibiting both agonist-induced activation of the

receptor and its constitutive activity [30]. For these experiments

with MPEP we again analyzed only those protrusions that were

present for at least 2 baseline time points immediately before

puffing. MPEP alone (age range P6–P9, average 8 days of age) had

no effect on the length or density of dendritic protrusions (p.0.05,

repeated measures ANOVA, 0–6 min vs. 9–15 min vs. 15–30 min;

n = 3 dendrites, 62 protrusions exposed to MPEP throughout the

imaging period). When brain slices were pre-incubated in the

presence of MPEP for 10–20 min before glutamate puffing (age

range P6–P10, average 7.8 days of age), glutamate failed to elongate

dendritic protrusions (Figure 3C, F; p.0.05, repeated measures

ANOVA, 0–6 min vs. 9–15 min vs. 15–30 min; n = 6 dendrites, 29

protrusions that were present throughout the baseline and

glutamate puffing). When we compared the effects of glutamate

alone, MPEP alone, or glutamate in the presence of MPEP to one

another, only the effects of glutamate on baseline protrusion length

were significant (Figure 3F; p,0.05, Dunnett’s multiple comparison

test, baseline vs. 15–30 min).

Dendrites of L2/3 neurons in Fmr1 KO mice are
insensitive to glutamate

It has been proposed that unchecked signaling though mGluRs in

Fmr1 KO mice could account for many of the neurological and

psychiatric aspects of FXS [31]. This might conceivably result in

exaggerated glutamate-induced lengthening of dendritic protrusions,

so we tested how dendritic protrusions of L2/3 neurons in Fmr1 KO

mice respond to glutamate (age range P7–P9, average 8.2 days of

age). Again, we analyzed only those protrusions that were present for

at least 2 baseline time points immediately before puffing, just as with

WT mice in Figure 3. Unexpectedly, we found that dendritic

protrusions of Fmr1 KO mice were insensitive to focal puff

application of glutamate, as their length did not change up to

30 min after puffing (2.0660.33 mm at 9–15 min and

2.1260.34 mm at 15–30 min, vs. 2.0160.03 mm at 0–6 min;

p.0.05, repeated measures ANOVA; n = 5 dendrites, 34 protrusions

that were present throughout the baseline and glutamate puffing;

Figure 4B). Although average protrusion length was slightly higher in

the mutant mice (compare baselines in Figure 3D with Figure 4B),

the difference was negligible and not statistically significant. The

overall density of protrusions in KO mice also remained unchanged

after glutamate (0.3260.01 protrusions/mm at 15–30 min vs.

0.3660.02 protrusions/mm at 0–6 min; p.0.05, repeated measures

ANOVA; n = 5 dendrites, 88 protrusions; Figure 4C).

Discussion

Regulation of early dendritic protrusions by glutamate
One of the main findings in this study is that immature dendritic

protrusions of L2/3 cortical pyramidal neurons elongate in

response to focal glutamate application. Previously, it had been

shown that glutamate can elongate dendritic protrusions in

cultured hippocampal neurons [8,32], and we also demonstrated

that the same holds true for L5 pyramidal neurons in acute slices

[2]. We conclude that this is a widespread phenomenon for

excitatory neurons during the development of cortical structures. It

seems intuitive that glutamate released by axons might recruit

immature protrusions of nearby dendrites to initiate synaptogen-

esis. This idea is further supported by recent work showing that

glutamate uncaging onto dendritic shafts of immature L2/3

neurons in slices can lead to de novo spinogenesis [9], a finding

that echoed results obtained through electrical stimulation in

hippocampal neurons [33]. The change in protrusion length

triggered by glutamate that we previously reported for L5 neurons

was more dramatic (75% longer; [2]) than what we now see for

L2/3 neurons (21% longer). We suspect the difference is because

at the older ages that we imaged L2/3 neurons the neuropil is

more densely packed, which may impose a physical constraint for

spine growth. A crucial question that remains to be addressed is

whether glutamate also induces spine growth/elongation in vivo.

One of the goals of the present study was to identify the

signaling pathway that mediates this glutamate-induced elongation

of dendritic protrusions. Because the process evolves slowly over

minutes rather than seconds, we hypothesized that mGluRs might

be involved. In addition, others had already found that the group I

mGluR agonist DHPG causes an elongation of mature dendritic

spines in neurons in culture [10,11]. Here we show that DHPG

causes a similar elongation of immature dendritic protrusions

without affecting their density (Figure 2). Furthermore, we show

that glutamate-mediated elongation of dendritic protrusions is

blocked by MPEP, a specific mGluR5 blocker. Our results

contrast with those of Kwon et al. (2011), demonstrating that

MPEP and other blockers of GpI mGluR signaling did not prevent

glutamate-mediated spinogenesis, while an NMDA-R antagonist

No mGluR-Mediated Spine Growth in Fmr1 KO Mice
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did. It is certainly possible that the generation and elongation of

spines are two different phenomena that are regulated by different

pathways. Interestingly, we previously found that chronic bath

application of APV (and CNQX) to neonatal cortical slices led to a

decrease in spine density in L5 neurons [2], which fits with the

Kwon et al. data (2011). It is also worth noting that our glutamate

experiments were done in slightly younger mice and also that

differences in how glutamate is applied (uncaging focally vs.

puffing over a large dendritic segment) could have different effects

on protrusions.

Normal developmental regulation of dendritic protrusion
dynamics in Fmr1 KO in slices

Two groups recently demonstrated, independently, that den-

dritic spines of cortical pyramidal neurons are abnormally unstable

in developing and adult Fmr1 KO mice, compared to WT mice

[14,15]. Considering the evidence supporting a an important

role for FMRP in experience-dependent synaptic plasticity

[15,34,35,36], we wondered whether similar defects in turnover

are also apparent in vitro. However, our time-lapse imaging of

L2/3 neurons in acute brain slices failed to detect any differences

in the length or dynamics of dendritic protrusions between WT

and KO mice during early postnatal development. The only

difference we identified was a transiently elevated spine density in

KO mice at P4–P7. This is in contrast with two studies that

reported a normal spine density for L2/3 and L4 pyramidal

neurons in fixed slices at early postnatal ages [35,37]. In addition,

in our recent in vivo imaging study, we reported that spine density

was normal in KO mice throughout postnatal development [14].

However, our slice data are in agreement with a prior study in

fixed tissue that reported a transiently higher density of dendritic

spines in L5 pyramidal neurons from barrel cortex of KO mice

during the first postnatal weeks [29]. Curiously, that same study

failed to detect differences in protrusion density or length using live

imaging in cultured slices of the same age [29]. These conflicting

results underscore the impact of methodological differences on

results of spine density in KO mice and also the differences

between studies done in vivo and in vitro. The latter is particularly

striking for spine turnover, which can be an order of magnitude

higher in vitro than in vivo (compare our data presented here and

that in the Cruz-Martin 2010 study). Indeed, spine dynamics are

regulated by sensory experience [22,38], so removing peripheral

inputs during brain slicing likely explains these differences.

Another possible explanation is that the slicing procedure itself

could lead to changes in spine turnover, as it also affects their

density [39,40]. Importantly, our data at P10–12 are in agreement

with several other studies that have found normal spine density for

pyramidal neurons in L2/3, L4 or L5, at 2 weeks of age, especially

studies using imaging in living neurons [14,29,37].

Protrusions in Fmr1 KO mice do not respond to
glutamate: implications for synaptogenesis

The mGluR theory of FXS has proposed that many of the

anatomical, circuit plasticity and cognitive-behavioral defects of

Fmr1 KO mice could be explained by altered (excessive) signaling

through mGluRs [31]. This is certainly true in hippocampus, and

recent evidence suggests that enhanced mGluR5 signaling may

also occur in the neocortex of mutant mice [41]. This prompted

us to examine whether mGluR-mediated elongation of early

dendritic protrusions might be deficient in Fmr1 KO mice. We

found that early dendritic protrusions of L2/3 neurons from KO

mice, unlike those of WT mice, did not elongate in response to

glutamate. Intuitively, one might have expected that dendrites

from Fmr1 KO mice would have an exaggerated response to

glutamate application and therefore that protrusions in KO mice

would have been even longer after glutamate puffing. One possible

explanation is that the mGluR signaling pathway is saturated in

Fmr1 KO mice and protrusions cannot elongate further with

glutamate puffing. But this is unlikely considering that protrusion

length was normal in the mutant mice at both ages (Figure 1C).

Another possibility is that the defects in mGluR signaling may be

different in the neocortex than in the hippocampus of Fmr1 KO

mice. Although our data do support the notion that mGluR

signaling may be disrupted in the barrel cortex of mutant mice,

additional studies will be needed to determine whether mGluR

signaling is also upregulated in neocortex, and whether the

alteration is a primary defect from loss of FMRP or a

compensatory phenomenon.

We hypothesize that glutamate-induced elongation of early

protrusions is probably a crucial step to initiate synaptogenesis.

The fact that L2/3 neurons in Fmr1 KO mice are insensitive to

glutamate might explain the apparent reductions in spine synapses

that have been reported in the mutant mice [42,43]. In addition, it

might explain why spine turnover is abnormally high in Fmr1 KO

mice, because even the slightest problems in forming early

synapses could result in a failure to stabilize spines during the

peak period of synaptogenesis in early postnatal development [14].

Given that perturbations in protrusion dynamics result in altered

synaptogenesis [6,7], this may result in a vicious cycle of altered

synaptogenesis in FXS. Future studies will have to address how

FMRP, which is an RNA-binding protein that controls the

translation of several mRNAs that regulate spine shape, receptor

trafficking, synaptogenesis, and synaptic plasticity [44,45,46],

influences the maturation and dynamics of early dendritic

protrusions.
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