UC Davis
UC Davis Previously Published Works

Title
A Crystal on Decreasing Factorizations in the 0-Hecke Monoid

Permalink
https://escholarship.org/uc/item/13x7k801

Journal
The Electronic Journal of Combinatorics, 27(2)

ISSN
1097-1440

Authors

Morse, Jennifer
Pan, Jianping
Poh, Wencin

Publication Date
2020

DOI
10.37236/9168

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/13x7k80f
https://escholarship.org/uc/item/13x7k80f#author
https://escholarship.org
http://www.cdlib.org/

arXiv:1911.08732v3 [math.CO] 10 May 2020

A CRYSTAL ON DECREASING FACTORIZATIONS IN THE 0-HECKE
MONOID

JENNIFER MORSE, JIANPING PAN, WENCIN POH, AND ANNE SCHILLING

ABSTRACT. We introduce a type A crystal structure on decreasing factorizations of fully-commu-
tative elements in the 0-Hecke monoid which we call x-crystal. This crystal is a K-theoretic gen-
eralization of the crystal on decreasing factorizations in the symmetric group of the first and last
author. We prove that under the residue map the *-crystal intertwines with the crystal on set-
valued tableaux recently introduced by Monical, Pechenik and Scrimshaw. We also define a new
insertion from decreasing factorization to pairs of semistandard Young tableaux and prove several
properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The new
insertion also intertwines with the crystal operators.

1. INTRODUCTION

Grothendieck polynomials were introduced by Lascoux and Schiitzenberger [LS82, 1.S83] as rep-
resentatives for the Schubert classes in the K-theory of the flag manifold. Their stabilizations
were studied by Fomin and Kirillov [FK94]. The stable Grothendieck polynomials, labeled by
permutations w € S, are defined as

(1.1) Gy (@1, ... ami ) =y BITHIK,
(k,h)

where the sum is over decreasing factorizations [k, h]! of w in the 0-Hecke algebra. When 3 = 0,
&,, specializes to the Stanley symmetric function F,, [Sta84].

A robust combinatorial picture has been developed for the special case of Grothendieck poly-
nomials indexed by Grassmannian permutations. Buch [Buc02] showed that the Grassmannian
Grothendieck polynomials can be realized as the generating functions of semistandard set-valued
tableaux:

(1.2) Br(z1, .., Tm; ﬂ) = Z ,BeX(T)th(T)7
TESVT™())

where SVT™()) is the set of semistandard set-valued tableaux of shape A in the alphabet [m] :=
{1,2,...,m} and ex(7T) is the excess of T'. Recently, Monical, Pechenik and Scrimshaw [MPS18]
provided a type A,,_1-crystal structure on SVT™ () which, in particular, implies that

6)\(‘Tl7 o 7xmw8) = ZIB|/‘|_‘)‘|M§ Sll(xh o 7‘Tm)7
I

where M /’( is the number of highest-weight set-valued tableaux of weight u in the crystal SVT™(A).
Their approach recovers a Schur expansion formula for Grassmannian Grothendieck polynomials
given by Lenart [Len00, Theorem 2.2] in terms of flagged increasing tableaux.

In this paper, we define a type A crystal structure on decreasing factorizations of w in the 0-Hecke
algebra of (1.1), when w is fully-commutative [Ste96] (or equivalently 321-avoiding). A permutation
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w is fully-commutative if its reduced expressions do not contain any braids. The number of fully-
commutative elements of S,, is the n-th Catalan number. The residue map (see Section 2.4) shows
that fully-commutative permutations correspond to skew shapes. We call our crystal x-crystal.
It is local in the sense that the crystal operators f and e} only act on the i-th and (i + 1)-th
factors of the decreasing factorization. It generalizes the crystal of Morse and Schilling [MS16] for
Stanley symmetric functions (or equivalently reduced decreasing factorizations of w) in the fully-
commutative case. We show that the x-crystal and the crystal on set-valued tableaux intertwine
under the residue map (see Theorem 2.17). We also show that the residue map and the Hecke
insertion [BKS*08] are related (see Theorem 3.5), thereby resolving [MPS18, Open Problem 5.8]
in the fully-commutative case. In addition, we provide a new insertion algorithm, which we call
*-insertion, from decreasing factorizations on fully-commutative elements in the 0-Hecke monoid
to pairs of (transposes of ) semistandard Young tableaux of the same shape (see Definition 3.8 and
Theorem 3.16), which intertwines with crystal operators (see Theorem 4.22). This recovers the
Schur expansion of &,, of Fomin and Greene [FG98] when w is fully-commutative, stating that

1

where
gl = {T € SSYT" (i) | wo(T) = w}],

and we(T) is the column reading word of T' (see Remark 4.23). We also show that the composi-
tion of the residue map with the *-insertion is related to the uncrowding algorithm [Buc02] (see
Theorem 4.29). Other insertion algorithms have recently been studied in [CP19].

The paper is organized as follows. In Section 2, we introduce the x-crystal on decreasing fac-
torizations in the 0-Hecke monoid and show that it intertwines with the crystal on semistandard
set-valued tableaux [MPS18] under the residue map. In Section 3, we discuss two insertion al-
gorithms for decreasing factorizations. The first is the Hecke insertion introduced by Buch et
al. [BKST08] and the second is the new *-insertion. In Section 4, properties of the *-insertion
are discussed. In particular, we prove that it intertwines with the crystal operators and that it
relates to the uncrowding algorithm. We conclude in Section 5 with some discussions about the
non-fully-commutative case.
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Jennifer Morse and Anne Schilling would like to thank MRSI for hospitality during their stay in
July 2019, where part of this research was carried out.
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DMS-1833333. The last author was partially supported by NSF grants DMS-1760329 and DMS—
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2. THE x-CRYSTAL

In this section, we define the K-theoretic generalization of the crystal on decreasing factorizations
by Morse and Schilling [MS16] when the associated word is fully-commutative. The underlying com-
binatorial objects are decreasing factorizations in the 0-Hecke monoid introduced in Section 2.1.
The *-crystal on these decreasing factorizations is defined in Section 2.2. We review the crys-
tal structure on set-valued tableaux introduced by Monical, Pechenik and Scrimshaw [MPS18] in
Section 2.3. The residue map and the proof that it intertwines the x-crystal and the crystal on
set-valued tableaux is given in Section 2.4.
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2.1. Decreasing factorizations in the 0-Hecke monoid. The symmetric group S, for n > 1

is generated by the simple transpositions si, so,...,s,—1 subject to the relations
5155 = 5;5;, if |i — j| > 1,
$iSi+18; = Si+18iSi+1, forl<i<n—1,
s?zl, forl<i<n—1.
A reduced expression for an element w € S,, is a word ajasg ...a; with a; € [n—1] :={1,2,...,n—1}
such that
(2.1) W= Sq, """ Sa,

and / is minimal among all words satisfying (2.1). In this case, ¢ is called the length of w.

Definition 2.1. The 0-Hecke monoid Ho(n), where n > 1 is an integer, is the monoid of finite
words generated by positive integers in the alphabet [n — 1] subject to the relations

pg=qp iflp—q|>1,
(2.2) pqp = qpq  for all p,q,
pPp=0Dn for all p.

We may form an equivalence relation =4, on all words in the alphabet [n — 1] based on the
relations (2.2). The equivalence classes are infinite since the last relation changes the length of the
word. We say that a word a = ajas...ay is reduced if £ > 0 is the smallest among all words in
Ho(n) equivalent to a. In this case, £ is the length of a. Note that Ho(n) is in bijection with S,
by identifying the reduced word ajas...a; in Ho(n) with sq,Sa, -+ Sa, € Sp. We say w € Ho(n)
or S, is fully-commutative or 321-avoiding if none of the reduced words equivalent to w contain a
consecutive braid subword of the form ¢ i+ 17 or i3 — 14 for any i € [n — 1].

Remark 2.2. Any (not necessarily reduced) word w € Ho(0) containing a consecutive braid
subword is not fully-commutative.

Definition 2.3. A decreasing factorization of w € Ho(n) into m factors is a product of the form
h=h"...h%h,
where the sequence in each factor ' o '
h' = hihy ... hy,
is either empty (meaning ¢; = 0) or strictly decreasing (meaning hi > h% > --- > h%i) for each
1 <i<mand h=y, win Ho(n).
The set of all possible decreasing factorizations into m factors is denoted by H™ or H™(n) if we
want to indicate the value of n. We call ex(h) = len(h) — ¢ the excess of h, where len(h) is the

number of letters in h and ¢ is the length of w. We say h is fully-commutative (or 321-avoiding) if
w is fully-commutative.

2.2. The *-crystal. Let H™* be the set of fully-commutative decreasing factorizations in H™.
We introduce a type A,,_1 crystal structure on H™*, which we call the x-crystal. This generalizes
the crystal for Stanley symmetric functions [MS16] (see also [Len04]).

Definition 2.4. For any h = h™...h*h! € H™*, we define crystal operators e; and f7 for
i € [m — 1] and a weight function wt(h). The weight function is determined by the length of the
factors
wt(h) = (len(h'),len(R?),... len(h™)).
To define the crystal operators e and f}, we first describe a pairing process:
e Start with the largest letter b in A+, pair it with the smallest @ > b in h’. If there is no
such a, then b is unpaired.
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e The pairing proceeds in decreasing order on elements of h‘t! and with each iteration,
previously paired letters of h* are ignored.

If all letters in h' are paired, then f* annihilates h. Otherwise, let = be the largest unpaired letter
in h*. The crystal operator f/ acts on h in either of the following ways:

(1) If 2+ 1 € A" N A", then remove x + 1 from h', add z to h'*'.

(2) Otherwise, remove x from A’ and add z to ki1,
If all letters in A*t! are paired, then e; annihilates h. Let y be the smallest unpaired letter in hitt,
The crystal operator e acts on h in either of the following ways:

(1) If y — 1 € K" N A*!, then remove y — 1 from A", add y to A'.

(2) Otherwise, remove y from hit! and add y to A’

It is not hard to see that e and f are partial inverses of each other.
Example 2.5. Let h = (7532)(621)(6), then

fi(h) =0, ei(h) = (7532)(62)(61),
£2(h) = (75321)(61)(6), e5(h) = (753)(6321)(6).

Remark 2.6. Compared to [MS16], one pairs a letter b in h**! with the smallest letter a > b in
h* rather than a > b.

Proposition 2.7. Let h = h™ ... h! € H™* such that fF(h) # 0. Then fF(h) € H™*, fr(h) =4,
h, and ex(f*(h)) = ex(h). Furthermore, the j-th factor in f*(h) and h agrees for j ¢ {i,i + 1}.
Analogous statements hold for e.

Proof. Suppose h := f#(h) # 0. Then by definition of ¥, h = ™ ... hi2pi+1Ripi=1 Al and b7
is unchanged for j ¢ {i,7+ 1}. In addition, the number of factors does not change.

To see h =y, h, it suffices to show that hit1p! =14 fli*lﬁi. Let z be the largest unpaired letter
in h'. By the bracketing procedure this implies that = ¢ h'T'. We can write hiT! as wyws, where
w1 Is a word containing only letters greater than z, and w; is a word containing only letters smaller
than x. We can write h' as wzxw,, where w3 contains only letters greater than x and w4 contains
only letters smaller than x.

The pairing process will result in one of the two following cases:

(1) If £ + 1 € h* N hit!, then obtain A’ by removing x + 1 from A’, and h*t!' by adding = to
hi—i—l‘
(2) Otherwise, obtain h by removing z from h' and obtain hit! by adding = to h*T!.

We first argue that in either case we must have z — 1 ¢ wsy. Assume x — 1 € wy and let k be
the largest number such that the interval [z — k, 2 — 1] C wo. By assumption k£ > 1. In order for
x to be the largest unpaired letter in h’, [z — k,x — 1] must be contained in wy. We can write
wy=(x—1)...(x — k)wh and wy = (z — 1)... (x — k)w}, where all letters in w), are smaller than
x —k — 1. When k£ = 1, we have the following subword

(z — Dwhwsz(z — 1) =g, whws(x — 1)z(z — 1),
which contains a braid (x — 1)z(x — 1). When k > 1, we also have the following subword
(x — k)whwsz(z —1) ... (z —k+1)(x — k) =g, whws(x —1)... (x —k+2)(z —k)(z — k+ 1)(x — k),
which also contains a braid.

Case (1): Let k be the largest letter such that [z + 1,2 + k] C ws3. Clearly k > 1. Suppose k > 1,
then we can write ws = wi(z+k) ... (x+1). Since z is the largest unpaired letter in h’, everything
in [+ 1,2+ k] C ws must be paired. The letter x+ 1 in ws is paired with 2+ 1 € wy, which implies
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that « 4+ ¢ in ws is paired with = + ¢ € w; for all 1 < ¢ < k. This implies that [z + 1,2 + k] C w;.
Then we have the following subword

(z + Dwowh(z + k) ... (2 +2)(z + 1) =g, wowh(z + k) ... (z + 1)(z + 2)(x + 1)

which contains a braid. Thus, we must have k¥ = 1, which implies that x + 2 ¢ ws. Write
wy = wi(x + 1). Then by direct computation

R =4 wi(z + Dwawh(z + 1)zwy =4, wh(z 4+ 1)(x + Dwowhzwy

=34, Wi (T + Dwoawhrrws =y, (0 (z + Daws) (whzws) = AR

Case (2): We claim that if x +1 ¢ "' then x +1 ¢ h’. Otherwise the z + 1 € h? must be paired
with some z € A1, so we have z < = + 1. But z is unpaired, which implies z > x, that gives
us a contradiction. Hence x + 1 ¢ ws. Recall that x — 1 ¢ wy. Therefore, by a straightforward
computation

R = wiwewszwy =, (wizws) (Waws) =, RHRE,

The above arguments show that AH1h! =14 ﬁi“ﬁi, thus h =4, fl, and the total length of the
decreasing factorization are unchanged under f/. Furthermore, the excess remains unchanged
under f7.

Similar arguments hold for €. O

Remark 2.8. Here we summarize several results from the proof that will be needed later. Namely,
if = is the largest unpaired letter in h‘, then
er—1¢ hitt,
e One and only one of the three statements hold: z +1 € AT N Al 2+ 1 ¢ AT U A, and
r+1ehtlz+1¢hnt

It will be shown in Section 2.4 that H™* is indeed a Stembridge crystal of type A,,—1 (for an
introduction to crystal and terminology, see [BS17]).

2.3. The crystal on set-valued tableaux. In this section, we review the type A crystal structure
on set-valued tableaux introduced in [MPS18]. In fact, in [MPS18] the authors only considered the
crystal structure on straight-shaped set-valued tableaux. Here we consider the crystal on skew
shapes as well, see Theorem 2.11.

We use French notation for partitions A = (A1, Ag,...) with A\; > Ay > --- > 0, that is, in the
Ferrers diagram for A, the largest part A; is at the bottom.

Definition 2.9 ([Buc02]). A semistandard set-valued tableau T is the filling of a skew shape \/pu
with nonempty subsets of positive integers such that:

e for all adjacent cells A, B in the same row with A to the left of B, we have max(A) < min(B),
o for all adjacent cells A, C in the same column with A below C, we have max(A) < min(C).

The weight of T, denoted by wt(T), is the integer vector whose i-th component counts the number
of i’s that occur in T. The excess of T is defined as ex(T) = |wt(T')| — |A|]. We denote the set of
all semistandard set-valued tableaux of shape A/u by SVT(A\/u). Similarly, if the maximum entry
is restricted to m, the set is denoted by SVT™(\/pu).

We now review the crystal structure on semistandard set-valued tableaux given in [MPS18]. We
state the definition on skew shapes rather than just straight shapes.

Definition 2.10. Let T € SVT™(A/u). We employ the following pairing rule for letters ¢ and
i+ 1. Assign — to every column of T containing an i but not an ¢+ 1. Similarly, assign + to every
column of T" containing an ¢ + 1 but not an ¢. Then, successively pair each + that is to the left of
and adjacent to a —, removing all paired signs until nothing can be paired.
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The operator f; changes the i in the rightmost column with an unpaired — (if this exists) to
i+ 1, except if the cell b containing that ¢ has a cell to its right, denoted b, that contains both i
and 7 + 1. In that case, f; removes ¢ from b~ and adds ¢ + 1 to b. Finally, if no unpaired — exists,
then f; annihilates 7T'.

Similarly, the operator e; changes the i + 1 in the leftmost column with an unpaired + (if this
exists) to 4, except if the cell b containing that ¢ + 1 has a cell to its left, denoted b, that contains
both 7 and 7 + 1. In that case, e; removes 7 + 1 from b and adds i to b. Finally, if no unpaired +
exists, then e; annihilates T

Based on the pairing procedure above, ¢;(T") is the number of unpaired — while £;(T) is the
number of unpaired +.

One can easily show that the crystal on SVT™(\/u) of Definition 2.10 defines a seminormal
crystal (for definitions see [BS17]). It was proved in [MPS18, Theorem 3.9] that the above described
operators e; and f; define a type A,,—; Stembridge crystal structure on SVT™(X). We claim that
their proof goes through also for skew shapes.

Theorem 2.11. The crystal SNT™(\/u) of Definition 2.10 is a Stembridge crystal of type Ap,—1.

Proof. Since the proof is exactly the same as in [MPS18, Theorem 3.9], we just state the outline
and give a brief description. For details we refer to [MPS18].

First note that the signature rule given by column-reading is compatible with the signature rule
given by row-reading (top to bottom, left to right, and arrange the letters in the same cell by
descending order) by semistandardness. Hence we may consider the crystal to live inside the tensor
product of its rows. A single-row semistandard set-valued tableaux of a fixed shape is isomorphic
to a Stembridge crystal, as shown in [MPS18, Proposition 3.5]:

O : SVT™(sA1) — EBB((S — 1A+ Ag),
k=1

where A, are the fundamental weights of type A,,_1.
Let A = (A1,...,A¢) and p = (p1,...,pe) (the last couple u; could be zero) be two partitions
such that u C A. Construct the map below, which is a strict crystal embedding:

v SVTm()\//L) — SVTm(()\l — ,ul)Al) & SVTm(()\Q — ,UQ)Al) Q& SVTm(()\g — /Lg)Al).

Thus, we have a strict crystal embedding;:

l m
(q))\l—ul D---D (I))\Z—Me) oVU: SVTm(/\/,u) — ® (@ B(()\j — ,uj)Al + Ak)> .

j=1 \k=1

Since SVT™(A/p) is a seminormal crystal, we can conclude that it is a Stembridge crystal. O

2.4. The residue map. In this section, we define the residue map from set-valued tableaux of
skew shape to fully-commutative decreasing factorizations in the 0-Hecke monoid. We then show
in Theorem 2.17 that the residue map intertwines with the crystal operators, proving that H™™* is
indeed a crystal of type A,,_1 (see Corollary 2.18).

Definition 2.12. Given 7' € SVT™(\/u), we define the residue map res : SVT™(A\/u) — H™ as
follows. Associate to each cell (7, ) in A/p its content () + j —i, where £()) is the number of parts
in \. Produce a decreasing factorization h = A™h™~1 .. h%2h! by declaring h* to be the (possibly
empty) sequence formed by taking the contents of all cells in 7' containing the entry k£ and then
arranging the contents in decreasing order. This defines res(7T’) := h.
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Example 2.13. Let T be the set-valued tableau of skew shape (2,2)/(1)

1,::\23 3|
12

The content of each cell in T is denoted by a subscript as follows:

\231 3, |
125

To read off the third factor, we search for all cells with an entry 3; these cells have contents 1 and
2, so we have 21 in the third factor. Altogether, we obtain res(T") = (21)(31)(3) € H3.

The image of the residue map res is H"™*, the set of fully-commutative decreasing factorizations
into m factors. In fact, res is a bijection from semistandard set-valued skew tableaux on the alphabet
[m] to H™™* up to shifts in the skew shape.

For this purpose, let us describe the inverse of the residue map. Let h = Ah™~ 1 ... h2ht € H™*.
Begin by filling the diagonals of content that appear in h™ by the entry m. As the resulting 7" is
supposed to be of skew shape, the cells containing m along increasing diagonals need to go weakly
down from left to right. If these diagonals are consecutive, then the cells have to be in the same row
of T since T is semistandard. Continue the procedure above by putting entry i into the diagonals
specified by h! for all i = m—1,m—2,...,1, applying the condition that the resulting filling should
be semistandard.

Proposition 2.14. Ifh = h™h™~ 1. h2h' € H™*, then the above algorithm is well-defined up to
shifts along diagonals. It produces a skew semistandard set-valued tableau T such that res(T) = h.

Proof. We shall show more generally that at any given stage in the algorithm for the inverse of the
residue map above, the tableau T" produced is of skew shape if and only if h is fully-commutative.

Assume that T is not of skew shape. Consider the earliest stage in the algorithm when the
produced tableau is not of skew shape. Then, either one of the following cases must have occurred
for the first time.

Case 1: There are adjacent cells with nonempty sets A and B (where max(A) < min(B)) in the
same row on diagonals ¢ and i 4+ 1 respectively with no cells appearing directly below these cells,
as illustrated on the left side of Figure 1. Moreover, by minimality, we have an integer x with the
following properties:

(1) i+ 1 € h*” and = < min(A),

(2) there does not exist a y with x < y < min(B) and i + 2 € hY.
By applying semistandardness, a cell containing z is created directly below the cell containing the
set A as in the right side of Figure 1. Furthermore, by (2), for all z < y < min(B), we have that
every letter in hY is either at most ¢ + 1 or at least ¢ + 3. It follows that, after possibly applying
commutativity (¢ + 1 with letters at most ¢ — 1 or at least i + 3) and the idempotent relation,
poin(B) | prHlpT ig equivalent to one containing the braid subword ¢+ 1 ¢ ¢ + 1. This implies that
h is equivalent to a Hecke word containing the same braid subword.

Case 2: There are adjacent cells with nonempty sets A and B in the same column on diagonals
i+ 1 and 7 respectively with no cells appearing directly to the left of these cells, as illustrated on the
left side of Figure 2. Moreover, by minimality, we have an integer x with the following properties:
(1) i € h* and = < min(A),
(2) there does not exist a y with < y < min(B) and i — 1 € hY.
By applying semistandardness, a cell containing x is created directly to the left of the cell containing
the set A as in the right side of Figure 2. Furthermore, by (2), for all x < y < min(B), we have
that every letter in hY is either at most ¢ — 2 or at least ¢. Similar to the argument in Case 1,
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A; |Biqi A; |Biyi

Lit+1

FIGURE 1. A forbidden case while inverting the residue map.

B B

At x; |Aip

FIGURE 2. Another forbidden case while inverting the residue map.
pmin(B) | prHIpT s equivalent to one containing the braid subword ¢ ¢ + 1 4. This implies that h
is equivalent to a word in Hy(n) containing the same braid subword.

The above arguments imply that the image of res is contained in H"™*. Conversely, if h is fully-
commutative, then the algorithm for res™! does not produce Case 1 or Case 2 above and hence the
resulting tableau T is of skew shape which in turn implies that the algorithm is well-defined (up to
shifts along the diagonal if a gap of size at least 3 occurs in the labels). O

If the skew shape A/u of the tableau 7' is known, then one may simplify the procedure above
noting that the filling of i specified by letters in A* must occur along a horizontal strip for all
i=m,m—1,...,1. In this case, the recovered tableau T is unique and there is no shift ambiguity
if a gap of size at least 3 occurs in the labels.

Example 2.15. Let h = (61)(752)(75)(762) be a decreasing factorization of w = 651762.

In the algorithm for the inverse of the residue map, the entry 4 is placed on diagonal 1 and 6,
respectively. Due to semistandardness, the entry 3 in diagonal 2 must be placed below the 4 in
diagonal 1, while the 3’s in diagonals 5 and 7 are respectively to the left and below the 4 in diagonal
6. Continuing with the remaining fillings, we have two possibilities:

44
135
T = 235 | 46 |
1s 1237
or
44
139
Ty = ;
235 | 4¢
1 1237

where Ty € SVT4((4,4,1,1)/(2,2)) and T, € SVT*((3,3,1,1,1)/(1,1,1)). Note that they indeed
just differ by a shift along diagonals as stated in Proposition 2.14.
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Example 2.16. Let h = (8431)(863)(8654)(941) be a decreasing factorization of w = 84396541.
Suppose that h = res(T’), where T € SVT4(\/u) with \/pu = (5,5,4,2,1)/(4,4,1,1).

Then, we fill in 4 along the diagonals with labels 1, 3, 4, 8 respectively, noting that the 4 in
diagonal 4 is to the right of the 4 in diagonal 3 (due to the semistandardness of 7). Continuing
with the remaining fillings, we have

144

33| 44

124 | 25 |236

234g|"

1o

Theorem 2.17. The crystal on set-valued tableauz SNT™(N/u) and the crystal on decreasing fac-
torizations H"™* intertwine under the residue map. That is, the following diagrams commute:

SVT™(\/p) —ey Hmo* SVT™(\/p) —1&s Hmo*
S bk
SVT™(A\/p) —e=y Hmo» SVT™(A\/p) —1y Hmox,

Proof. Let T € SVT™(A\/u), h = res(T) and ¢ = ¢(\). We prove the following three statements
associated to fi(T) and f(h).

(1) We claim that if there is no unpaired k£ in 7', then f; annihilates h. Furthermore, if the
rightmost unpaired & in cell b of T has content z, then z is also the largest unpaired letter in h*.

For the proof of (1) it suffices to notice that the signature rule on tableaux is equivalent to
the pairing process for decreasing factorizations of Ho(n). We rephrase the pairing procedure for
decreasing factorizations on tableaux:

e At the beginning, no letter is paired.

e Then start with the rightmost column and work westward.

e Successively, for each k+ 1, compute its content a, then pair it with the & of smallest content
weakly greater than a that is yet unpaired.

Next, we argue that the signature rule yields the same result on the rightmost unpaired letter.
Assume we are looking at cell b containing the current k + 1 with content a.

Case (a): Suppose there is no unpaired k with content a but at least one unpaired k with strictly
greater content(s). Then pair it with the current k + 1. This is the direct signature rule.

Case (b): Suppose there is no unpaired k with content weakly greater than a, then this k + 1 is
unpaired. This is also the direct signature rule.

Case (c): Suppose there is an unpaired k with content a. Then it must be either in the same cell
b, or one row below and one column to the left of b on the diagonal labeled a. If they are in the
same cell, then the pairing is the direct signature rule.

Otherwise, there must be cells to the left and below b since the shape is skew. Suppose cell b is
in row r. Consider the rightmost entry in cell (r, j) in row r containing a k + 1, and the leftmost
entry in cell (r — 1,q) in row r — 1 containing a k. Considering this as the first of a consecutive
occurrence, cell b is cell (r,j), so we have ¢ + j — r = a. By semistandardness and the condition
that the shape is skew, we can partially fill out the involved subtableau of T" for rows r — 1, r from
column ¢ to j:
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k+1 lrq—r k+1 Obqtl—r | --- k+1 Oj—1—r k+1.. j—r
ook ergori1 | K ooggr oo | Ko K oyj—r+1

All the cells (s,t) with ¢ <t < jand s € {r,r—1} and the cells (r,q) and (r—1, j) are single-valued
by semistandardness as shown in the above figure.

From the k41 in (r,j), we start the pairing process. First, we claim that the & in cell (r — 1, j)
must be unpaired at this point. Suppose that there is a k + 1 to the east of cell (r, j) with content
smaller or equal to ¢ + j — r + 1, then it must be cell (r,j 4+ 1), which violates that (r,j) is the
rightmost cell in row r containing a k + 1. Then the pairing says the k + 1 in cell (r,t) pairs with
the k in cell (r—1,t—1) for ¢ < t < j. Lastly, the k+ 1 in cell (r, ¢) has to pair with the previously
unpaired & in cell (r — 1,7) since there are no unpaired k with label greater or equal to £+ g —r
and smaller than ¢+ j —r + 1.

Although the pairing is different than the usual signature rule pairing, which pairs k£ + 1,k in
the same column, the 2(j — ¢+ 1) letters end up being paired. Since it will not influence which one
will be the rightmost unpaired letter, it is still equivalent to the signature rule.

So in any case, the pairing is equivalent to the signature rule. Thus, the rightmost unpaired k
in T corresponds to the largest unpaired letter in A*.

(2) We claim that if f changes the rightmost unpaired k in T to a k + 1 (with content z) without
moving it, then f moves a letter x from h¥ to REFT.

Since fr does not need to move any letter, it means the cell to the right of b, denoted by b,
does not contain a k. It is the only cell with content z + 1 that could contain a k. This implies
that = + 1 ¢ h*. By Definition 2.4, [ moves x from h¥ to hFTT.

(3) We claim the following. If fj, changes a k from b~ into a k + 1 and moves to cell b, then f}
removes an = + 1 from h¥ and changes it to an z in A**+1,

That fi needs to move a number means that k& and k + 1 are in b, which implies that z + 1 €
h* N hE+L. By Definition 2.4, f; removes the x + 1 from h* and adds an z to h**1.

We have proved the three statements and they complete the proof that f; and f; intertwine
under the residue map. The proof is similar for e; and ej. O

Corollary 2.18. The set H™*, together with crystal operators e and f7 for 1 < i < m and weight
function wt defined in Definition 2.4, is a Stembridge crystal.

Proof. By Theorem 2.17 and the fact that the residue map preserves the weight and is invertible,
this follows from the fact that SVT"(\/u) is a Stembridge crystal proven in [MPS18, Theorem 3.9]
(see also Theorem 2.11). O

Example 2.19. Consider the tableau 7' (with labels in red) given by

=% :

15 1233

with res(T") = (31)(3)(32).
For the crystal operators on set-valued tableaux we obtain

31
fl (T) = 5
125233
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with res (f1(T")) = (31)(32)(2). Then it can be easily checked that the following diagram commutes:

31
T= (31)(3)(32)
15 1233
P i
31
H(T) = res (31)(32)(2).
129|233

3. INSERTION ALGORITHMS

In this section, we discuss two insertion algorithms for decreasing factorizations in H™ (resp.
H™*). The first is the Hecke insertion introduced by Buch et al. [BKS*08], which we review in Sec-
tion 3.1. We prove a relationship between Hecke insertion and the residue map (see Theorem 3.5).
In particular, this proves [MPS18, Open Problem 5.8] for fully-commutative permutations. The
second insertion is a new insertion, which we call x-insertion, introduced in Section 3.2. It goes
from fully-commutative decreasing factorizations in the 0-Hecke monoid to pairs of (transposes of)
semistandard tableaux of the same shape and is well-behaved with respect to the crystal operators.

3.1. Hecke insertion. Hecke insertion was first introduced in [BKS*08] as column insertion. Here
we state the row insertion version as in [PP16]. In this section, we represent a decreasing factor-
ization h = h™h™~1... bl where h' = hihj ... hy,, by a decreasing Hecke biword

ki |m ... m ... 1 ... 1
h| — [A" ... A0 Rt ... h%l '
In addition, we say that [k, h]' is fully-commutative if h is fully-commutative.

Example 3.1. Consider the decreasing factorization h = (1)(2)(31)( )(32). Then the correspond-

ing biword [k, h] is
K] [543 311
h) (1 2 3 1 3 2|°

Definition 3.2. Starting with a decreasing Hecke biword [k, h]’, we define Hecke row insertion
from the right. The insertion sequence is read from right to left. Suppose there are n columns in
[k, h]t.

Start the insertion with (P, Qo) being both empty tableaux. We recursively construct (P41, Q;+1)
from (P;, Q;). Suppose the (n —i)-th column in [k, h]? is [y, ]’

We describe how to insert x into P;, denoted P; <— x, by describing how to insert x into a row
R. The insertion may modify the row and may produce an output integer, which will be inserted
into the next row. First, we insert x into the first row R of P; following the rules below:

(1) If x > =z for all z € R, the insertion terminates in either of the following ways:
(a) If we can append x to the right of R and obtain an increasing tableau, the result P;;q
is obtained by doing so; form Q;+1 by adding a box with y in the same position where
x is added to P;.
(b) Otherwise row R remains unchanged. Form @;;1 by adding y to the existing corner of
(); whose column contains the rightmost box of row R.
(2) Otherwise, there exists a smallest z in R such that z > x.
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(a) If replacing z with z results in an increasing tableau, then do so. Let z be the output
integer to be inserted into the next row.

(b) Otherwise, row R remains unchanged. Let z be the output integer to be inserted into
the next row.

The entire Hecke insertion terminates at (P, Q,) after we have inserted every letter from the Hecke
biword. The resulting insertion tableau P, is an increasing tableau, meaning that both rows and
columns of P, are strictly increasing. If k = (n,n—1,...,1), the recording tableau @, is a standard
set-valued tableau.

Example 3.3. Take [k, h]! from Example 3.1. Following the Hecke row insertion, we compute its
insertion tableau and recording tableau:

" 2 2 2]3 3] _p
- II—> IHH[+ 13\—> 1 3(% 2| |2
1
" 3] 3] s[a] ., [5] _o
T[0T T A s sl (3] ¢
] | |
113

Example 3.4. Note that the recording tableau for the Hecke insertion of Definition 3.2 is not
always a semistandard set-valued tableau. For example, for h = (21)(41) we have

HE

22|
2\ 1 ﬂ

and

P =

However, in Theorem 3.5 below we will see that in certain cases it is.

Theorem 3.5. Let T € SVT()) and [k, h]' = res(T). Apply Hecke row insertion from the right on
[k, h]! to obtain the pair of tableaux (P,Q). Then Q =T.

Remark 3.6. Combining Theorems 3.5 and 2.17 shows that Hecke insertion from right to left (as
opposed to left to right in [PP16]) intertwines the crystal on set-valued tableaux and the x-crystal,
even though in general it is not always well-defined (see Example 3.4). This resolves [MPS18, Open
Problem 5.8] when the decreasing factorizations are fully-commutative. Even when h is fully-
commutative, but does not correspond to a straight-shaped tableau under res™! as in Example 3.4,
one can fill the skew part with small enough numbers and apply the Hecke insertion on this tableau.
In the above example

k] [2 2

h| |2 1
Note, however, that unlike in [MPS18] we use row Hecke insertion from right to left rather than
column insertion from left to right (in analogy to [MS16] for Edelman—Greene insertion).

Do with  Q=7=|" .
0]0]1]

Since k € T(i,7) if and only if £ + j — i € h* under the residue map, where £ = ¢(\) and h* is
the k-th factor of h, the statement of Theorem 3.5 is equivalent to applying Hecke insertion on the
entries of T sorted first by ascending order of entries, followed by ascending diagonal content.
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Example 3.7. Let T be the semistandard set-valued tableau
21 42
15 (233

T =

The insertion sequence by entry is listed in the table below:

Cll (L) 1) (12) (1.2) (22)
Content 2 1 3 3 2
Entry 1 2 2 3 4

We will prove Theorem 3.5 by induction by considering all subtableaux of T, obtained by adding
the entries in 7" one by one in the order above:

0 2] 2, 2[4
- —> —> Lo 23\_> 12233\_) 15 233

In addition, the corresponding sequence of insertion tableaux and recording tableaux is listed here:

=T.

" 2], |2 2 2[3|_»p
— II—}_i:% ; 3‘% 1:”—> D P
0 2], [2] 2] 2[4]_,
%_)L_)12\—>123\—>123Q

Proof of Theorem 3.5. We prove the theorem by proving the following more specific statement.
For a given step in the insertion process, suppose that the entries of T' that are involved so far
form a nonempty subtableau 7" of T' with shape p containing cell (1,1), and the insertion tableau
and recording tableau at the corresponding step are P(T”) and Q(7”). Then, they both have shape
p, and the entry of cell (4, j) of P(T") is £+j —p);+i—1, and Q(T") = T', where i’ is the transpose
of the partition g and £ := X| = £()).
We prove this by induction on subtableaux of T'.
Base step: Suppose T” only contains a single cell (1,1) and 77(1,1) = S, where S is a subset of
T(1,1) with cardinality d. Then P(T") is obtained by inserting d times the number ¢. So we have

P(T) = and Q(T") =T'. Here i = (1), so for (i,5) = (1,1), we have £ +j — p; +i— 1=/
Inductive step: Suppose that the statements hold for some subtableau T” of shape u. Assume
the next insertion step involves adding the entry k in cell (p,q) of T to T” to obtain T”. There are
two cases: (1) the cell (p,q) is already in T”, or (2) the cell (p,q) is not in T".

Case (1): We must have (p,q) to be an inner corner of 7" (no cell is to its right or above it), so
p =y and p > py . In this case, k is recorded in Q(7"). Then by the induction on 7", every cell
(i,4) of P(T") has value £ + j — pi; +14 — 1. To determine the insertion path of P(T") < £+ q — p,
we compute the columns ¢ and g + 1 of P(T") as follows:

row number g-th column (g + 1)-st column
P L+q—1

fg1 <p [ l+q—p+p,—1 l+q
2 l+q—p+1 C4+q+2—
1 l4+q—p C+q+1— gy
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Following Case 2(b) of Hecke insertion, the insertion path is vertically up column g + 1. At
the top of the column, ¢ + ¢ is inserted into row u; 41 + 1. Furthermore, £ + ¢ is greater than
C+q—p+pgyq in cell (g4 +1,q) because p > iy . By Hecke insertion Case 1(b), the insertion
ends in row g 4 +1. Also P(T") is unchanged, and k is recorded in cell (p, q) of Q(T”) since it is the
corner whose column contains the rightmost box of row yi ,; + 1. In this case, we get Q(T") = T".
Since the shape u is unchanged, we have that P(T") = P(T") also satisfies the statement.

Case (2): If cell (p,q) is not in T”, then it must be an outer corner of 7", so y; = p — 1 and
u;_l > p — 1. Specifically, two cases can happen: (a) p = 1 and (1,¢ — 1) € T’, (b) both
(p—1,9),(pg—1) €T org=1and (p—1,1) e T.

Case 2(a): The first row of P(T") is £+ 1 — iy, ..., 0 +j — pfy ..., L+ (¢ — 1) — pg_y. Since
(+q—p=L+q—1>L+(qg—1)— py_y, it is appended to the end of the first row which is the
cell (1,q). The letter k is recorded in the same new cell of Q(T”). In this case, the only entry in P
that is changed is (1, q), and its entry £ + g — 1 satisfies the statement. Also Q(T") equals T".
Case 2(b): Since entry (i,q — 1) of P(T") is £+ ¢q—1—p;_; +i— 1 and entry (i,q) of P(T") is
{+q— u; + 4 — 1, the number ¢ — p + /£ is in-between the two when ¢ = 1. So the insertion starts
by bumping (1, g). To get the insertion path, we compute columns ¢ — 1 and ¢ as follows:

row number (¢ — 1)-st column  g-th column
Hg—1 (+q—2

p—1 (+q+p—py1—3] L+qg—1

C4q— iy 4 {+q—p+2
1 (+q—1—p,  [l+q—p+1

By Hecke insertion Case 2(a), £ + g — p is placed in cell (1,q) and the original column ¢ is
shifted one position higher. By Hecke insertion Case 1(a), the insertion terminates at row p and
the original entry in cell (p —1, ¢) is appended at the rightmost box of row p. Thus, y;, increases by
1. The updated entries in column ¢ still satisfy the statement. Since the entries in other columns
of P(T") are unchanged and ,u;- is unchanged for j # ¢, they also satisfy the statement. So we
have P(T") satisfies the statement. The letter k is inserted into the new cell (p,q) of Q(T"), which
makes Q(T") =T".

Thus, the statement holds, proving the theorem. O

3.2. The x-insertion. We define a new insertion algorithm, which we call x-insertion, from fully-
commutative decreasing Hecke biwords [k, h]! to pairs of tableaux P and @, denoted by x([k, h]*) =
(P,Q), as follows.

Definition 3.8. Fix a fully-commutative decreasing Hecke biword [k, h]!. The insertion is done
by reading the columns of this biword from right to left.

Begin with (FPy, Qo) being a pair of empty tableaux. For every integer i > 0, we recursively
construct (Piy1,Qy1) from (P;,Q;) as follows. Let [g, 2] be the i-th column (from the right) of
[k, h]’. Suppose that we are inserting z into row R of P;.

Case 1: If R is empty or z > max(R), then form P;;; by appending x to row R and form
Qi+1 by adding ¢ in the corresponding position to @);. Terminate and return (P11, @Qi+1).

Case 2: Otherwise, if z ¢ R, locate the smallest y in R with y > z. Bump y with z and
insert y into the next row of P;.

Case 3: Otherwise, if x € R, locate the smallest y in R with y < x and interval [y, ] contained
in R. Row R remains unchanged and y is to be inserted into the next row of F;.
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Denote (P,Q) = (P, Qy) if [k, h]* has length ¢. We define the x-insertion by x([k, h]') = (P, Q).

Furthermore, denote by P < x the tableau obtained by inserting x into P. The collection of all
cells in P + z, where insertion or bumping has occurred is called the insertion path for P < z. In
particular, in Case 1 the newly added cell is in the insertion path, in Case 2 the cell containing the
bumped letter y is in the insertion path, and in Case 3 the cell containing the same entry as the
inserted letter is in the insertion path.

ki 442 211
hi (4 2 4 2 3 1|°
The corresponding sequence of insertion tableaux and recording tableaux under the x-insertion
is listed here:

Example 3.9. Let

0 ¢ 3 3 3] _p
- _> _> 12\_) 12\4\_) 1 B
12\4\ 124\
; 10 1 I I R £ S
- —> _> 11\—> 11\2\—> 2 MR ©
11\2\ 112\

Then we have x([k, h]") = (P,Q), and the cells in the insertion paths at each step are highlighted
in yellow.

Lemma 3.10. Let [k, h]' be a fully-commutative decreasing Hecke biword. Suppose that x([k,h]t) =
(P,Q). Then, the following statements hold:

(1) P! is semistandard and Q has the same shape as P.
(2) Let x be an integer such that x -h is fully-commutative. Then the insertion path for P < x
goes weakly to the left.

Proof. We will prove (1) by induction on the number of cells of P. Statement (2) will follow by
some results in the proof of statement (1).

Consider the leftmost column [q,z]" of [k, h]* and let [k’,h’]" be the Hecke biword formed by
taking the remaining columns in the same order. If the x-insertion of [k’,h’]" yields (P, Q"), note
that we have P = P’ < z. For all integers j > 1, denote by R; the (possibly empty) j-th row of
P'. Denote by u the entry to be inserted into R; and B; as the cell in the insertion path at Rj,
where 1 < j < k. Additionally, if bumping occurs at R;, denote the entry bumped out as y.

(1) We will prove that if (P')! is semistandard, then the transpose of the updated tableau is
semistandard.

Case (a): Suppose that the insertion terminates at R;. Then Case 1 of the x-insertion has
occurred, with a cell containing x appended at the end of the row. If R; is nonempty, then
r > max(R;). Additionally, as (P’)! is semistandard, integers strictly increase along R;
but weakly increase along the column containing B;. Hence, the transpose of the resulting
tableau P is semistandard.

Case (b): Suppose that insertion terminates at Ry, where k£ > 1. We will show that for all
1 < j < k, the changes introduced at row R; of P’ maintain the property that the transpose
of the updated tableau is semistandard.

Case (b)(i): Suppose that j = k. In this case, a new cell containing w is appended at the end
of Ry and u > max(Ry) if the row is nonempty, proving that the integers increase strictly
along Ry.
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If Case 2 occurs at Rp_1, then u is the entry bumped out of Ry_; with the property that
when o is inserted into Rj_1, u € Rj_1 is the smallest entry with u > u/. Let z be the
entry below cell Bx. We claim that z < u. If we assume instead that z > u, then the cell
containing z is strictly to the right of Bx_1. However, the cell above B,_; has value greater
than u since (P')! is semistandard and u ¢ Ry. This contradicts the minimality of v/, as u’
is greater than this value, hence proving the claim.

If Case 3 occurs at Ry_1, then u is bumped out of Ri_; with the property that when
o' is inserted into Rg_1, u € Ry_1 is the smallest entry with [u,u'] C Rg_1. Let z be the
entry below cell By. Then, similar to the argument immediately before, 2 < u’. Hence, we
have established that the integers weakly increase along the column containing B} after u
is appended at the end of Ry.

Case (b)(ii): Suppose that 1 < j < k and Case 2 occurs at R;. Then y is the entry bumped
out of R; with the property that when u is inserted into R;, y € R; is the smallest entry
with y > u. Thus, as u ¢ R;, for all entries z and 2’ respectively to the left and to the right
of Bj, we have z <u <y < 2.

If Case 2 occurs at R;_1, then u is bumped out of R;_; with the property that when u’
is inserted into R;_1, u € Rj_1 is the smallest entry with v > «’. Let z be the entry below
cell Bj. Then by repeating the same argument as in the first subcase of in Case (b)(i), we
obtain z < u.

If Case 3 occurs at R;_1, then u was bumped out of R;_; with the property that when
v is inserted into R;_1, uw € Rj_; is the smallest entry with [u,u'] C R;j_1. Let z be the
entry below cell B;. Then by repeating the same argument as in the second subcase of in
Case (b)(i