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In this paper, we describe an overall strategy for robust estimation of multivariate location
and shape, and the consequent identification of outliers and leverage points. Parts of this strategy
have been described in a series of previous papers (Rocke, Ann. Statist., in press; Rocke and
Woodruff, Statist. Neerlandica 47 (1993), 27-42, J. Amer. Statist. Assoc., in press; Woodruff
and Rocke, J. Comput. Graphical Statist. 2 (1993), 69-95; J. A mer. Statist. Assoc. 89 (1994),
888-896) but the overall structure is presented here for the first time. After describing the first-
level architecture of a class of algorithms for this problem, we review available information about
possible tactics for each major step in the process. The major steps that we have found to be
necessary are as follows: (1) partition the data into groups of perhaps five times the dimension;
(2) for each group, search for the best available sol~tion.!~~!:combinatori~l ~u!na~QJ_suchas
the Minimum Covariance Determinant (MCD) -these are the preliminary estimates; (3) for
each preliminary estimate, iterate to the solution of a smooth estimator chosen for robustness and
outlier resistance; and (4) choose among the final iterates based on a robust criterion, such as
minimum volume. Use of this algorithm architecture can enable reliable, fast, robust estimation
of heavily contaminated multivariate data in high (> 20) dimension even with large quantities
of data. A computer program implementing the algorithm is available from the authors.

AMS classification: 62H12

Keywords: M-estimator; Minimum covariance determinant (MCD); Minimum volume ellipsoid

(MVE); S-estimator

.Introduction

The estimation of multivariate location and shape is one of the most difficult prob-

lems in robust statistics. For some statistical procedures, it is relatively straightforward
to obtain estimates that are resistant to a reasonable fraction of outliers -for example,

one-dimensional location (Andrews et al., 1972) and regression with outlier-free pre-

dictors (Huber, 1981). The multivariate location and shape problem is more difficult,
since most known methods will break down if the fraction of outliers is larger than

+1 

9167522924; e-mail: dmrocke@ucdavis.edu.9167527368; Fax...Corresponding author. Tel.



246 Do M. Rocke, DoL. Woodruff/Journal of Statistical Planning and Inference 57 (1997) 245-255

l/(p+ 1), where p is the dimension of the data (Maronna, 1976 Donoho, 1982; Stahel,

1981). This means that, in high dimension, a very small fracti n of outliers can result

in very bad estimates.

We are particularly interested in obtaining estimates that are affine equivariant

(Grubel and Rocke, 1990). A location estimator t n E RP is a ne equivariant if and
only if for any vector b E RP and any non-singular p x p matrix A,

tn(AX + b) Atn(X) + b.

A shape estimator C n E PDS(p) is affine equivariant if and only if for any vector

bE RP and any non-singular p x p matrix A, .I

Cn(AX + b) = ACn(X)AT,

This implies, for example, that stretching or rotating measurement scales will not

change the ~stimates. ..1

ComputatIonal methods have been reported In the lIterature for a number of ap-

proaches for finding robust estimates of multivariate location and shape (and therefore

identifying outliers). Combinatorial estimators, such as the mimmum volume ellipsoid

(MVE) and minimum covariance determinant (MCD) estimatprs (Rousseeuw, 1985;
Hampel et al., 1986; Rousseeuw and Leroy, 1987; Rousseeuw and van Zomeren, 1990,

1991) have been addressed with random search (Rousseeuw and Leroy, 1987), steepest

descent with random restarts (Hawkins, 1993, 1994), and heuristic search optimization

efforts (RQ~k~ ~pdcWoo~~ )993, 1995,1996; Wo~~ ~ Rocke):l99-J~~!994};
Iterative estimators such as maximum likelihood and M-estimators (Campbell, 1980,

1982; Huber, 1981; Kent and Tyler, 1991; Lopuhaa, 1992; Maronna, 1976; Rocke,
1996; Tyler, 1983, 1988, 1991), and S-estimators (Davies, 19817; Hampel et al., 1986;

Lopuhaa, 1989; Rousseeuw and Leroy, 1987) can be computed with a straightforward

iteration from a good starting point (Rocke and Woodruff, 1993) or using an ad hoc

search for the global minimum (Ruppert, 1992). Sequential PQint addition estimators

have been defined algorithmically by Atkinson (1993, 1995;1 Atkinson and Mulira,

1993) and Hadi (1992) working separately.
In this paper we review previous work on robust estimation and multivariate outlier

detection. We describe an overall strategy for robust estimation of multivariate location

and shape, and the consequent identification of outliers and leverage points. Parts of

this strategy have been described in a series of previous papeI1s (Rocke, 1996; Rocke

and Woodruff, 1993, 1996; Woodruff and Rocke, 1993, 1994), but the overall structure

is presented here for the first time.

2. A basic architecture for algorithms

In the following sections, we describe a basic structure for a class of methods of
estimation for multivariate 'location and shape. The criteria on which this structure is

based includes the following:
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I.

Affine equivariance: The solution should not depend on, f9r example, the measure-
ment scales used for the variables. I

Robustness: The method should be capable of obtaining a solution that reflects the

majority of the data, even when a large fraction of the data are disparate.

Statistical efficiency: The solution should be reasonably sta~stically efficient, subject

to robustness.

Computational practicality: The solution should be obtainable in a practical amount
of computing time, even in high dimension or with large amqunts of data.

Although these criteria are loosely defined, they limit the choice of methods severely,

since many techniques fail one or more of the tests by any interpretation of the criteria.
Our research has indicated that several properties seem impqrtant for a method to be

successful in estimation of multivariate location and shape, at least in higher dimension

and with larger sample sizes (Rocke, 1996; Rocke and Woo~ff, 1993, 1995, 1996;

Woodruff and Rocke, 1993, 1994). These steps, which are explained in more detail in

Sections 3-6, are as follows:
1. Partition the data into groups of a size that does not ri$e with the sample size.

Our current practice is to use 5 times the dimension for the group size (Woodruff and

Rocke, 1994).
2. Within each group, search for the best available solutioh to a combinatorial es-

timator such as the minimum covariance determinant (MCD~. The collection of the

best solutions found comprise the preliminary estimates for the next stage (Rocke and

Woodruff, 1996; Woodruff and Rocke, 1994), '-. .c"~ c-

3. For
a smooth estimator chosen for robustness and outlier resistance. This means that the

smooth estimator should have both a high breakdown and should downweigh points
that are clear outliers, criteria that may seem to overlap but alie not redundent (Rocke,

1996).
4. Choose among the final iterates based on a robust criterion.

Statistical efficiency considerations outlined later dictate that the final stage should

be the solution of a smooth estimator such as an S- or M.i.estimator. Simple start-

ing points for the iteration, such as the sample mean and sample covariance ma-

trix, do not necessarily guarantee convergence to a high b~eakdown point solution

to the estimating equations. Two methods of addressing this problem seem possi-

ble. One is to look directly for the global minimizer of th S criterion. The other
is to find a good starting point for the iteration by use of a p eliminary combinatorial

estimator.
We have examined both the methods of Ruppert (1992) d our own versions of

direct search as a method of finding the good root for S- 0 M-estimation and have
found that it seems superior to use a preliminary combinatorial estimator such as the

MCD. The term good root here means that root of the est~ating equations which

has the minimum value of an auxiliary criterion (Clarke, 19~3). The MCD, although

the best of the preliminary estimates that we have tried, preset ts severe computational

difficulties (Woodruff and Rocke, 1994).
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3. Partitioning

Regardless of which algorithms are used to compute them, combinatorial estimators
such as the MCD search a space that increases exponentially with the sample size and
the dimension. In fact, when using the MCD as a first stage ~n a two-stage estimator,

one can have the perverse situation of being made worse o~ by having more data.

That is, doubling the number of data points and doubling the: amount of computation

time can result in poorer estimates, unless partitioning is employed. To cope with this

problem, the data must be partitioned so that the search space for the MCD is kept in
a reasonable range. After some modest experimentation, we $ettled on a cell size of

5 p (Rocke and Woodruff, 1994). This allowed the acquisition of good solutions with

high pro~ability with a computational time increasing only 11early with n (instead of

exponentIally).
Specifically, the proposal is that, in any preliminary combinatorial search, the data be

partitioned into cells whose size does not grow with' n, and the collection of solutions
to these problems be used as starting points for further iteratiqn. In our computational

experience, attempting combinatorial search on the entire data set results in rapid degra-
dation of performance with increasing sample size.

4. Combinatorial methods

":;:-":-:_-:;;;:"

Combinatorially defined estimators fonD an important part of the estimation strat.::
egy. Much earlier work was based on the minimum volume ~llipsoid (MVE) estima-
tor which is defined as the center and shape matrix of that ellipsoid from a given

class of ellipsoids that has a minimum volume, subject to containing a fixed fraction

of the data (Rousseeuw, 1985). We choose to refer to this estimate as combinato-

rial, since it is combinatorial in the sense that it is determined by the choice of the
I

subset of points that are contained in the ellipsoid. Howeveli, the MVE is an n-I/3
estimator (Davies, 1992), so has asymptotic efficiency zero.! A more effective can-

didate is the minimum covariance determinant estimator (~CD), which is defined

as the mean and covariance of that subset of the data of ptescribed size such that
the determinant of the covariance matrix is smallest. The MCD is an n- 1/2 estima-

tor, so has better statistical properties than the MVE (Butler, et al., 1993). Recent
work has shown that the MCD is much more effective in practice than the MVE,

so our work has focused on this estimator (Woodruff and Riocke, 1994; Rocke and

Woodruff, 1996). Fig. 1 shows the asymptotic location efficiencies for multivariate nor-

mal data for the MCD, a biweight S-estimator, and a translat d biweight M-estimator

(Rocke, 1996) as a function of the dimension. The MCD suffers some efficiency

loss compared to the smooth estimators, but may still be acceptable under some

cirumstances.
Fig. 2 shows the finite-sample location efficiencies of the VE, MCD, the median,

and the biweight S-estimator for normal data in dimension, where the estimators
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Fig. 1. Asymptotic efficiency for the location component of three estimatot of multivariate location and
shape as a function of the dimension.

can be computed exactly by enumerating intervals. The pldt shows the log of the

inefficiency (reciprocal efficiency) against the log of the sample size. An exact n-l/2

estimator should have a level plot, whereas an exact n-" estim~tor, with '1 < t, should

have a plot .that is a straight line sloping up. The extreme inef1lciency of the MVE can

be seen, as well as the slow convergence of the MCD to its ~symptotic behavior. On

this standard, S- and M-estimators look attractive by compari$on.
It should also be noted that the use of the MCD as a fina~ estimator could not be

recommended, even for outlier identification, for an. import~nt feaso~ -comput.atio~al
methods are not known that can find good MCD estImates m cpntammated data m hIgh

dimension and large sample sizes. Otherwise stated, the asymp~otics of the exact MCD

are only relevant if the exact MCD or something close to i1 can be computed, and

there is no known method of accomplishing this objective i high dimension and/or

large sample size. I
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Fig. 2. Finite sample inefficiency of the location component of four estimatOrs of location and shape in

dimension I as a function of the sample size.
I

5. 

Smooth methods

The use of smooth methods is important for two reasons. First, the solution once
obtained is much more statistically efficient. Second, a reaso able starting point will
lead reliably to a good solution of the smooth estimator, wher as it is of little help in

finding a better combinatorial estimator.
An S-estimate of multivariate location and shape is defined s that vector t and PDS

matrix C which minimizes ICI subject to

(1)n

which we write as

(2-I L p(dj)
boon
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It has been shown by Lopuhaa (1989) that S-estimators are in ~he class of M -estimators
with standardizing constraints with weight functions VI (d) =:j: w(d), v2(d) = pw(d),
v3(d) = v(d), where l/I(d) = p'(d), w(d) = l/I(d)jd, v(d) = l/I~d)d, with constraint (2).

In Rocke (1996) it is shown that S-estimators in high dithension can be sensitive

to outliers even if the breakdown point is set to be near 50~1o. We utilize the trans-

lated biweight (or t-biweight) M -estimation method defined in Rocke (1996), with a

standardization step consisting of equating the median of P«(Ji) with the median un-

der nonnality. This is then not an S-estimate, but is instead 1 constrained M-estimate.

Specifically,

l -«d -M)fc)2)2,Wt(d; c,M) =

0,

O~d < M, I

M~d~M+c

d > M + c,

O~d < M,d,

d(l -«d -M)/C)2)2,

0,

I/It(d; c,M M~d~M+F'
d > M + c, I

O~d < M,

pt(d;c,M)

M~d~M+c,

d > M + c,

d2/2,

M2jk.,.,-M?(M4 -5M2c2 + 15c4)/(30c1)
","~",,"

+d2(1/2 + M4/(2c4) -M2/cl)

+d3(4M/(3cl) -4M3/(3c4»

+d4(3M2/(2c4) -1/(2c2»)

-4Md5/(5c4) + d6/(6c4),

M2/2 + c(5c + 16M)/30,

where we set M to the match the median of a X~ to the tnedian of the data, and

M + c is set to the 0.99 point of a X~. This estimator is shov.1n in Rocke (1996) to be
more outlier resistant in high dimension than typical S-estima~ors. The specifics of the

iteration for both M- and S-estimators is given in Rocke and Woodruff (1996).
I

In accord with the theory in Rocke (1996), we have foul!1d that the use of the t-

biweight M-estimator makes a large improvement in the pe~forniance of the hybrid
algorithm compared to the use of biweight S-estimation. Sqme detailed evidence is

given in Table 1 (Rocke and Woodruff, 1996). The situation !here is that 20 replicates
of shift outliers with indicated sample size, fraction of outliets, and computation time

allowed (all computation times are CPO seconds on a DEtStation 5000/200). The

response is the percentage of replicates for which the indicat~d estimator achieved the

good root. Note that the t-biweight performance exceeds that df the biweight S-estimate

by large amounts in every case. A large number of additional [! experiments confirm this

important difference in performance. i
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Table 1 !

Comparison of biweight S-estimation with t-biweight M-estimatio

n IX Time (s) Biweight (%) t-biweight (%)

50
50
50
50

200
200
200
200

o.
o.
o.
o.
o.
o.
o.
o.

3
30
3

30
9

36
9

36

5
5
0
0

55
55

0
0

50
70
20
25
95
95
35
55

Another feature of this table is worth noting. A small addition to the fraction of

outliers converts a problem that is easy to solve into one that is quite difficult. With
200 points in dimension 10, 30% outliers are quite managable, whereas 35% outliers

are much more difficult. Seemingly, all robust multivariate estimation methods behave

this way. There seems to be a critical level of contamination f~r any particular method

and type of problem such that, when the contamination is much below that critical

level, success is frequent, and when contamination is much above that level, success

IS rare.

6. Selection criterion

Given a set of solutions to the equations defining a smooth estimator, it remains to

be decided which to use. For S-estimators, this is automatic -r one uses the solution
I

with the best value of the criterion function. For M-estimators, this is hardly more

difficult. To avoid implosion, all such M-estimators require a constraint -we use the

contraint of matching the median of the Mahalanobis square distances to the median of

a X~. We can then use the candidate whose estimated 50% probability content ellipsoid

has the smallest volume (the same one is chosen if any other content is used). This is

equivalent to choosing the solution whose shape matrix determinant is smallest.

7. Overall performance

This section is devoted to the following question: for what dimensions, sample sizes,

outlier distances, fractions of outliers, and computation times is the algorithm described

in this paper effective? The theoretical results in Woodruff and Rocke (1994) demon-
strate that any amount of contamination less than 50% can theoretically be handled

with sufficient data and sufficient processing time. Here we ~sk a different question:
what amount of contamination can be practically detected wit~ an amount of data that

is given and with practical processing times. 1
Table 2 shows some results (Rocke and Woodruff, 1996). ,or each indicated com-

bination of dimension and outlier distance, a generalized linear model was fit to a

,30

30
35
35
30
30
35
35
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Table 2
Critical contamination level for 90% success with thd hybrid

algorit~ I

(X

2
2
2
4
4
4
2
2
2
4
4
4

50
100

200

50
100

200

200

400

800

200

400

800

0.27
0.30
0.33
0.35
0.37
0.39
0.26
0.28
0.30
0.27
0.32
0.35

series of experiments. For each data set, the estimation method may succeed, so

that the' good root' was found and all outliers successfully identified. If not, the

'bad root' (obtainable by iterating from a starting value of the sample mean and

covariance matrix) was found, and the process failed. Then the level of contam-
ination was found that allowed a predicted 90% of the data sets to be success-

fully completed. To avoid undue extrapolation, computation times and sample sizes
were set to within the bo~ds of what _were_~~d.forprobleJn$ofthat nature in our,

study .~ The more data (and the more computation time), the greater the fraction of outliers

that can be handled. Within our self-imposed bounds, we can say that outlier fractions in

the 30-40% range can be reliably solved in dimension 10, with 25-35% in dimension

20, and 20-25% in dimension 40 (not shown). Although these bounds are crude, it
does give some feel for what problems are feasible.

A point that should not be overlooked is that advances in processor technology and

parallel processing can have an important effect. For example, the DEC 3000/700 Alpha
AXP workstation we used for the computations in this paper is about 10 times faster

than the DECStation 5000/200 on which the simulations in Woodruff and Rocke (1994)

were conducted, and multiple processor machines could also be used to multiply the

effectiveness of the algorithm, which is parallelizable in a number of ways (Woodruff
and Rocke, 1994). Further improvements in the algorithms, as well as the use of higher

speed or parallel computers should extend the domain of performance of the algorithm
to larger contamination and higher dimension. "lNote on Software

A computer implementation (MUL TP ART) of the algorithms escribed in this paper

is available from the authors, who may be contacted at dmrocke@ucdavis.edu and

dlwoodruff@ucdavis.edu. The programs are written in the C programming language.
Also available is a program to generate the instances used to tQst different features of

the algorithm. These programs are also available from ST A TLIB.
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