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Abstract 

Experiment 1 demonstrates that problem solving knowledge 
can be applied while a move is in progress in certain Tower 
of London (ToL) problems.  A two-stage move process is 
often delayed in the second stage when participants have been 
misled by similarity to a previous problem.  We suggest this 
is indicative of misgivings about the chosen move caused by 
on-going analysis of the move that is being made. Experiment 
2 swapped the stages of the two-stage process and again 
reported more hesitancy in the second stage when participants 
had been misled.  We conclude that it is desirable for models 
of problem solving to evolve so that they can apply the same 
learned problem solving knowledge both before a move is 
selected and while the move is being made.  We then describe 
a model of ToL problem solving that fulfills these criteria and 
has been computationally-implemented within an embodied 
cognitive architecture. 

Keywords: Problem Solving, Embodied Cognition, 
Production Systems 

Introduction 
The current paper tries to distinguish between two 

accounts of how a move (or action) is selected and executed 
during solving a problem.  The first account holds that 
knowledge about how to solve a problem is used to decide 
the move and then this move is simply executed.  A 
description of the problem acts as input to the problem 
solving process (here we term this a situation-only decision 
process).  On this basis an action is selected and then 
executed.  The second account suggests that problem 
solving occurs after the move has been selected as well as 
beforehand.   In this account problem solving also occurs 
after an action is selected, immediately prior to and during 
the execution of said action.  The input to this problem 
solving processes is not only a description of the problem 
but also a description of the intended action (we term this a 
situation-action decision process). 

Problem solving after a move has been selected is rare in 
current psychological theories, for example this does not 
typically occur in ACT-r models (see Anderson, 2007).  
While theories of problem solving based solely on situation-
only problem solving have the advantage of simplicity, they 
lack the power to use existing problem solving knowledge 
to evaluate ongoing or imminent actions.  Theories featuring 
situation-action problem solving must necessarily feature 
some situation-only problem solving in order to derive an 
action for consideration.  However, this situation-only 
problem solving does not necessarily have to be complex – 
indeed an algorithm that simply picks an action at random 

that hasn’t been considered before might be sufficient.  
Some recent theories, particularly those exploring embodied 
problem solving, favour a combination of simple situation-
only problem solving prior to action selection followed by 
more complex situation-action problem solving afterward 
(e.g. Miles, 2009, 2011; Schuboltz, 2007), the latter is often 
based on the mental simulation of the results of the action. 

The differences between the two accounts are important 
because each implies a different form for knowledge about 
solving problems.   Situation-action problem solving 
representations potentially could replace much of the need 
for situation-only problem solving representations.    A key 
element of situation-action problem solving knowledge is 
that it typically either encourages or discourages an already 
selected action.  By contrast situation-only problem solving 
knowledge is concerned with suggesting an action.  Once 
situation-action problem solving knowledge is added to a 
theory of problem solving then there is less emphasis on the 
need to select the correct action first.  An unsuitable action 
can be selected then rejected using situation-action 
knowledge.  Indeed, a situation-action account suggests that 
people often cycle through a series of possible actions at any 
given stage of solving a problem, allowing situation-action 
knowledge to confirm or deny each action.    

Hence the two accounts of problem solving are 
fundamentally different.  The traditional model suggests a 
single decision point, followed by action.  The situation-
action position suggests a series of tentative decisions 
regarding possible actions followed by evidence gathering 
while that action is held in mind. It is notable that the 
second position is much more temporally scalable than the 
first.  For example it is awkward to model speed-accuracy-
tradeoffs in the first style of problem solving, while the 
ability to vary the amount of time spent gathering evidence 
is implicit in the second proposal. 

Empirical Support for Situation-Action Knowledge 
Currently there is only indirect empirical support for the 

existence of situation-action knowledge.  A necessary pre-
condition of this knowledge is the ability to represent an 
action without necessarily executing that action. 

  Neuroscience has provided evidence of a 
representational role for parts of the brain associated with 
action, for example the premotor cortex (e.g. Decety et al., 
1994). The existence of mirror neurons that are activated 
both by performing an action and observing an action 
(Gallese, Fadiga, Fogasse, & Rizzolatti, 1996) suggests that 
the motor areas of the brain are involved in thinking as well 
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as doing.  Over the last 15 years a large body of work has 
pointed to the conclusion that motor areas of the brain are 
used for representational roles as well as for executing 
actions (see Barsalou, 2009, p. 1285,  for a brief review). 

If representations in the motor areas of the brain are 
available to other areas of the brain, then logically these 
other areas will be able to make use of these representations 
when deciding what to do.  It is exactly this logic that 
supports the existence of situation-action knowledge.  
Simply the problem solving parts of the brain are aware of 
the situation, they are also aware of the action that has been 
represented in the premotor cortex and related areas. It 
makes sense for the problem solving areas of the brain to 
make use of this knowledge regarding the conjunction of 
situation and action to either spur the motor areas into that 
action or pull them back from the brink of making an error. 

The paper begins by reporting two Experiments that 
looked for evidence of continuing problem solving in the 
final stages of move selection in the Tower of London 
(variant) problem.  We then show how these data can be 
computationally modeled using situation-action knowledge.   

 
Experiment 1 

The paradigm used in both Experiments reported here 
works by biasing the selection of a first move in a given 
Tower of London problem.  The bias occurs because 
participants have earlier solved a problem that is either 
superficially similar or the same as the target problem.  In 
the repeat condition the bias supports the correct first move 
(of two possible moves), while in the false-analogy 
condition the bias supports the incorrect first move (again of 
two possible moves).  These conditions are contrasted with 
problems where there is no bias. 

Method 
Design: The Experiment was presented in two blocks, 

firstly of 3-disk problems then of 4-disk problems.  Each 
block featured two training problems, a one minute pause, 
then two target problems. Each target problem had an 
inverse version, which although superficially similar has a 
different optimal first move. In each block one of the target 
problems was the same as one of the training problems 
(repeat condition) and one target problem was the inverse of 
the other training problem (false-analogy condition).  
Comparisons were planned between these conditions and 
the unbiased performance on the final training problem 
(novel condition). 

Participants: Twenty-eight undergraduates participated 
in Experiment 1, each received either 30 minutes course 
credit or £2. 

Materials and apparatus: The ToL problems were 
presented on a desktop computer. Participants responded 
using a mouse. To move a disk the participants had to click 
on the disk they wanted to move and then click on the peg 
they wished to move it to. At the top of the screen the goal 
state was shown while the current state was interacted with 
in the main area of the screen.  Disks were shown in 

different colours and each was labeled with a different 
letter. 

Procedure: At the beginning of each of the two blocks 
participants were first presented with an orientation task. 
The orientation task required six moves from a flat start 
state, with no goal displayed. Instructions were then 
displayed on the screen for a minimum of 30 seconds. 

For 10 seconds prior to all training and target problems, 
the goal state for the problem was presented, on top of, and 
obscuring, the initial configuration for the problem. During 
this period a miniature representation of the start state was 
shown near the top of the screen, but all the disks in this 
representation were blocked grey, preventing participants 
from beginning a solution to the problem.  This part of the 
procedure was designed to act as a cue to the related training 
problem. This display was then removed revealing the 
interface.  

During the training phase problems the participant was 
only allowed the number of moves in the optimal solution to 
a problem. Once they had made this number of moves (and 
the goal state was not reached) a panel appeared (for 3 
seconds) obscuring the problem, with “Try Again!” 
displayed in large letters. The problem was then reset to its 
original start state. This restriction was critical in ensuring 
all participants learned the same correct solution for each 
training problem (each problem had only one optimal 
solution path). 

Timed lockouts were used between problems and between 
blocks.  Participants were locked out for 30 seconds 
between all consecutive problems. The pause between 
training and target phases was one minute. There was also a 
minute lockout between blocks.  

Prior to each target problem in a block a hint was given 
during the last 15 seconds of the lockout time. In the 3-disk 
block it was phrased as follows “The next problem will be 
the same as one you have already done.” while in the 4-disk 
block it was “Note: You will have already solved the next 
problem”. This change of phrasing was designed to increase 
the salience of the hint in the 4-disk block. 

Results 
All latency data were log transformed for analysis; the 

raw data are summarised in Table 1.  Comparisons were 
made between i) false-analogy condition and the repeat 
condition, ii) false-analogy condition and the final training 
problem (novel condition).  The later comparison is subject 
to order effects, but the order effects (one would expect 
improved performance with practice) run counter to the 
predicted effects of condition (false-analogy < novel). 

 
 The 3-disk problems 

No significant effects of condition were found in 
measures of 3-disk problem solving. Most participants were 
still learning the basic methods needed to solve the ToL 
during this block, and this may have disrupted performance 
on the experimental conditions. 
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Table 1: Number of optimal first moves (from 28), first 
click latency (secs), and second click latency (secs) in 

Experiment 1 
 
Condition No. of 

Optimal 1st 
moves  

1st Click 
latency (SD) 

2nd Click 
Latency (SD) 

Repeat 28 5.18(1.66) 1.33(1.57) 
Novel 26 6.22(1.66) 1.39(1.54) 
False Analog. 12 7.35(1.83) 1.94(1.84) 
 
The 4-disk problems 

Significantly more optimal moves were made under the 
repeat condition than the false-analogy condition, 28/28 vs. 
12/28, p < .001. A within-participant T-test found no 
significant differences between the false-analogy and repeat 
conditions on measures of the time taken to initiate the first 
move (t < 1). However participants took less time to 
complete a move in the repeat condition than they did in the 
false-analogy condition, t(27) = 5.86, p < .001.   

In the novel condition participants succeeding 26 times on 
28 first attempts at the final training problem, this compares 
to 12 times from 28 attempts of false-analogy target 
problems, p < .001.   There was no significant difference 
between the novel condition and the false-analogy condition 
selection on time taken to initiate the first move by clicking 
a disk (t < 1) but it took longer for participants to click on 
the location the disk was to go to in the false-analogy 
condition, t(27) = 2.99, p < .01. 

Of the 28 participants, two made an error in the ‘novel’ 
condition. The remaining 26 were split into those that made 
an error on the subsequent false-analogy condition and those 
that did not; groups error (N=14) and correct (N=12). These 
data were analysed in 2 x 2 mixed design ANOVA on disk 
destination click latency, with condition (false-analogy Vs. 
novel) as a within participant factor and error group (error 
Vs. correct) as a between participant factor. There were no 
interactions with, or main effects of group (all F < 1).  This 
analysis suggests that hesitancy over the move being made 
was present both in those who did make the correct move 
those who didn’t. 

These results are consistent with the hypothesis that 
participants were engaged in problem solving during the 
final stages of completing the move.  The hesitancy seen in 
the final stages of the move in the false-analogy condition is 
best explained as second thoughts about a move that has 
previously been decided upon.  Despite these second 
thoughts, the original move is at least sometimes completed, 
but sometimes an alternative move is chosen (as indicated 
by the lack of differences in hesitancy between those who 
made errors and those that made the correct move in the 
false-analogy condition).  This suggests that problem 
solving knowledge is being used after the first move has 
been decided upon and initiated. 

Our theoretical account assumes that the participants have 
decided on the move they want to make prior to clicking the 
disk.  Certainly the relative distribution of latency between 

first click and second click supports this idea.  However to 
demonstrate that the move has been decided upon prior to 
the first click, Experiment 2 reversed the order of actions 
needed to make the move, with the destination selected first 
and the disk selected second. In the second stage of the 
move only one disk (the top disk) could be selected, the 
decision about where to move it having already been made. 

Experiment 2 
As well as changing the order in which the actions needed 

to complete a move were carried out, Experiment 2 
attempted to improve on several elements of the design of 
Experiment 1. Crucially, only the comparison between the 
novel condition and the false-analogy condition was 
explored.  It was felt that this comparison best captured the 
impact of the false-analogy manipulation.  

Though the novel condition replaced the repeat condition, 
Experiment 2 used the same basic design as Experiment 1, 
with the exception that the two Experimental blocks now 
used 4-disk and 5-disk problems.  Prior to this, participants 
completed a training block of 3-disk problems that 
facilitated the learning of the main principles of solving 
Tower of London problems.  While the order of actions 
needed to move a disk were changed, other aspects of the 
interface remained unchanged. 

Method 
Participants: Sixty-four undergraduates took part in the 

Experiment, each received 30 minutes credit toward their 
course requirement. 

Apparatus: The apparatus and software was the same as 
it had been in Experiment 1.  In all stages of the Experiment 
the method for moving the disks was altered. Now the 
participant had to click on the location they wanted the disk 
to go to. When this was done the peg they had pointed to 
was highlighted (turned from black to yellow). At this stage 
the participant then clicked on the disk they wanted to move 
to this peg. If the next click was not on a disk that could be 
legally moved to the highlighted peg then the highlighting 
on the chosen peg was removed, thus allowing participants 
to change their mind on the desired move. 

A set of 5-disk problems was introduced for Experiment 
2.  It was reasoned that these would be sensitive to our 
Experimental manipulations in the same way as the 4-disk 
problems were in Experiment 1 (and the ‘too simple’ 3-disk 
problems were not). Each problem again had an inverse 
counterpart that was used in the false-analogy condition.  
The use of different problems was balanced across the 
Experimental conditions for both 4-disk and 5-disk 
problems. 

Procedure: Many elements of the procedure were the 
same as they were in Experiment 1, though the block 
structure of the experiment was altered. Initially participants 
completed a block of four 3-disk problems. Following this 
block the two Experimental blocks were presented.  The 
first used 4-disk problems in the same basic structure as was 
used in Experiment 1 (orientation task – two training 
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problems – pause – orientation task – target problems).  In 
each Experimental block one of the target problems was 
Novel and one a false-analogy to a training problem (order 
of conditions was counterbalanced).  A 5-disk block 
followed the 4-disk block, using the same structure. 
 

Table 2: Number of optimal first moves (from 128), first 
click latency (secs), and second click latency (secs) in 

Experiment 2 
 
Condition No. of 

Optimal 1st 
moves  

1st Click 
latency (SD) 

2nd Click 
Latency (SD) 

Novel 104 5.35(1.71) 1.17(1.66) 
False analog. 86 4.73(1.77) 1.34(1.85) 
 

Results and Discussion 
Descriptive data for Experiment 2 are shown in Table 2. 

We combined data from the two Experimental blocks with 
latency data log transformed. There were significantly fewer 
correct first moves in the false-analogy condition in 
comparison to the novel condition (proportionally .67 vs. 
.81 respectively), p < .05.  Comparisons on latency 
measures were made using a data set reduced by two, as two 
of the data points in the 5-disk block showed zero values for 
first-click latency (126 paired comparisons remained). This 
was due to participants clicking prior to the interface 
becoming active causing a zero to be recorded for first click 
latency. The effects on the counter-balancing of the 
Experiment were thought to be minimal. The expected 
simple effect, i.e. false-analogy slower, was found in the 
second stage latency, i.e. disk-selection, t(125) = 2.00, p < 
.05. There was no significant difference in the time taken to 
initiate the move.   

The data confirm that problem solving knowledge is 
being applied after a move has been decided upon in the 
Tower of London.  We argue in the next section that these 
data and those from Experiment 1 are best accommodated 
by a cognitive architecture that primarily uses situation-
action knowledge to solve problems. 

Modeling Problem Solving Following Action 
Selection 

Problem solving knowledge has often been modeled in 
production system architectures, a tradition with its origins 
in Newell & Simon’s (1972) seminal book Human Problem 
Solving.  Recently the ACT-r cognitive architecture has 
been used to produce production system accounts of 
problem solving.  In traditional problem solving accounts, 
situation-only knowledge is represented in the following 
format: IF situation THEN action. 

The model presented (TOL-GLAM) here is coded in the 
Glamorgan Problem Solver (GLAM-PS) architecture.  This 
is notable because it doesn’t use amodal representation and 
doesn’t have a dedicated mechanism for processing goals 
(see Miles, 2011).  TOL-GLAM is thus an example of an 

embodied account of problem solving in the Tower of 
London, with emphasis placed on representation in the 
motor and perceptual systems used to complete the task.  In 
terms of the representation of knowledge about solving the 
ToL, much of what TOL-GLAM knows is stored in the 
format: IF situation AND action THEN inhibit/activate 
action.  This knowledge verifies the appropriateness of an 
already selected action, rather than specifying what action 
should be taken in a particular situation. 

The TOL-GLAM Model 
In the GLAM-PS architecture there are modules dedicated 

to visual perception, ocular movement and motor actions.  
There are also modules dealing with other functions, for 
example auditory perception, speech production and bodily 
movement.  Each module has its own production memory, 
working memory and production matching bottleneck. 

Executive control within a GLAM-PS model emerges 
from the interaction of distributed subsystems (a similar 
idea was explored by Barnard, 1991).  This control is based 
on each module’s ability to see what is happening in all the 
other modules.  So a production in the motor action module 
can match to working memory representations in other 
modules as well as working memory representations in the 
motor module itself. 

 
Situation-Only Problem Solving in TOL-GLAM 

There are examples of situation-only and situation-action 
problem solving knowledge in TOL-GLAM.  In the two 
Experiments the first move is restricted to two possibilities.  
The disk that is to be moved is always known (as it is on top 
of all the other disks in a tower configuration), the only 
question is the disks destination. 

The situation-only algorithm used by TOL-GLAM begins 
by generating an action plan for moving a disk.  This action 
plan is represented in the motor module, within a 
hierarchical structure.  An example is given below (with 
only key attributes shown): 

 
  Action_plan1 
 Type   Action_plan 
 First_element  disk_click1 
 Last_element  destination_click1 
   
  Disk_click1 
 Type   click_on_object 
 Location  diskA_location 
 Super_element  Action_plan1 
 Previous_element none 
 Next_element  destination_click1 

 
  Destination_click1 
  Type   click_on_object 
 Location  Peg2_location 
 Super_element  Action_plan1 
 Previous_element Disk_click1 
 Next_element  none 
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This initial action plan will often not involve the 

movement of the top disk.  Typically TOL-GLAM, will first 
represent the movement of the bottom disk in the tower to 
its goal location.  This reflects a means-ends analysis of the 
ToL problem where the bottom disk is prioritized as the 
biggest difference between the start state and goal state.  
While the GLAM-PS architecture doesn’t feature explicit 
goal representation, what is happening is that TOL-GLAM 
is effectively ‘subgoaling’ the bottom disk.  The model then 
represents a move of the top disk (the first blocking disk) to 
the peg where the ‘subgoaled’ disk is not going (in order to 
remove the block). 

An exception to this process occurs when TOL-GLAM 
recalls a previous problem that was apparently the same as 
the current problem.  In this case the first move that was 
made successfully in the previous problem is used to 
determine where the top disk should go. 

TOL-GLAM will now have a representation of a potential 
first move in its motor module.  It is at this point that 
situation-action knowledge is used to determine the 
appropriateness of the action, either increasing its activation 
till it is executed, or blocking its execution. 

 
Situation-Action Problem Solving in TOL-GLAM 

The situation-action algorithm used in TOL-GLAM is 
based upon forward search, and makes use of 
representational simulation of the results of the move that is 
being considered.   

The process begins after a potential move of the top disk 
has been represented in the motor module.  At this point 
productions in the visual module are able to match to this 
motor module representation and simulate the result of this 
action.  In Miles (2011) visually simulated interim stages 
were utilized in a model of offline algebra problem solving, 
what the TOL-GLAM model does is very similar, 
essentially looking ahead to see what the results of the 
action that is being considered will be. 

Simulation of the results of the move involves the 
creation of a projected representation of the disk being 
moved in its new location, and the inhibition of the 
representation of the disk in its current location.  Once the 
move has been simulated in the visual module, the motor 
module is now able to consider the next move that will be 
made after the current one.   The productions that do this 
match both to simulated and actual visual representations.   

At this stage an action plan will be generated for the 
second move and typically, any conflict with the first move 
will often become apparent to TOL-GLAM.  This is 
particularly the case if the first move blocks the ideal second 
move.  A production looks for incompatibilities between the 
two moves being considered. On the other hand if the first 
move doesn’t block the ideal second move then it is taken as 
providing evidence that the first move is a good one.   

 

Executing an Action in TOL-GLAM 
Key features of the GLAM-PS architecture determine the 

process of action execution in TOL-GLAM.  One of these is 
the Action-Execution Threshold (AET), a level of activation 
that must be reached before an action or action plan will be 
executed.  The AET is an important element of GLAM-PS 
because it allows actions to be represented without 
necessarily being executed (Miles, 2009).  Within the TOL-
GLAM model it allows a move to be represented and then 
evidence gathered about the suitability of the move.  There 
is no limit in GLAM-PS to the number of productions that 
can match if those productions change an existing 
representations activation level.  This means that in TOL-
GLAM the representation of a move can be simultaneously 
inhibited and activated by competing productions.  It is the 
relative strength of the competing productions that will 
determine whether the action representation will continue to 
increase in activation until it surpasses the AET, or be 
inhibited. 

Simulating the Results of Experiment 1 and 2 in 
TOL-GLAM 

To simulate the results of Experiments 1 and 2 TOL-
GLAM was setup with productions that represented 
knowledge gained from previous training problems, which 
were added to the productions that model normal problem 
solving in the ToL. 

  The additional productions, modeling knowledge from 
specific previous problems, trigger when TOL-GLAM is 
faced with a problem that has the same initial configuration 
and goal configuration as the previous problem in terms of 
number of disks on each peg in each configuration (so an 
exact match wasn’t necessary).  The identity of the first disk 
to be moved must also match.  These encodings of solutions 
from previous problems result in the first move used in the 
previous problem first being represented in the motor 
module and subsequently quickly gaining activation. 

The performance of the model was tested on simulation 
runs of the 84 problems from which data were taken for 
Experiment 1 (28 each in the repeat, novel and false-
analogy conditions) and the 256 problems from Experiment 
2 (128 novel, 128 false-analogy). 

In GLAM-PS each production has a strength value, this 
strength modifies the impact of the production – so a strong 
production will increase the activation of an action 
representation more than a weak one. The strength of the 
productions modeling knowledge from the previous 
problem was systematically varied through a single 
parameter beta, which multiplied the strength of productions 
activating a representation of the action used previously. 
The beta values used conformed to a Gaussian distribution, 
meaning that in some case the influence of previous 
problems was strong, but in others the influence was 
weaker.   A second parameter theta modified the strength of 
productions that solved the problems, this was a free 
parameter with a single value across all simulations runs 
used to maximize the match between model and data.  
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Another free parameter was AET, the level of activation at 
which an action was executed in the motor module.  
Additional parameters included the time taken to initiate 
problem solving and the time taken to execute a mouse 
click. 

A comparison of the models performance to the latency 
and accuracy data showed relatively strong fits, χ2 = .72 and    
χ2 = .83 respectively. The matches of model to data do 
show some differences with the model making fewer errors 
than participants did in Experiment 1, but more errors than 
seen in Experiment 2. The timing of the mouse clicks was 
simulated more closely, partially reflecting the availability 
of parameters that varied the timing of the models 
performance. 

A key purpose of the model was to simulate the 
differences in latency seen in the false-analogy condition (as 
compared to Repeat and Novel problems).  In this respect 
the model is very successful, showing the same differences 
as participants.    

General Discussion 
Experiments 1 and 2 provide evidence of problem solving 

occurring after move-selection in the Tower of London 
(ToL).  The TOL-GLAM model accounts for this data 
through a mechanism based around situation-action 
knowledge.  This knowledge is encoded in TOL-GLAM as 
production rules that increase or decrease the activation of a 
particular motor action, depending on the apparent 
suitability of this action.  The delays seen in move 
completion during the false-analogy condition in 
Experiment 1 and 2 are explained as TOL-GLAM having 
‘second thoughts’ about the suitability of an already selected 
move. Our findings are similar to those of Walsh and 
Anderson (2009) who demonstrated how participants 
adaptively ‘changed their minds’ about the best strategy to 
solve a multiplication problem after a quick initial choice. 

The way problem solving knowledge is structured in 
TOL-GLAM is noteworthy, relatively simple situation-only 
productions suggest a possible action, while more complex 
situation-action productions contain much of the knowledge 
that TOL-GLAM possess of how to solve ToL problems. 

The notion that actions are selected and then evaluated is 
found in other theories.  However in most existing theories 
this evaluation occurs in a single cycle of the system, and is 
only necessary if there is a conflict between two or more 
possible actions.  For example in SOAR (Newell, 1990) 
preference rules are used for conflict resolution, while in 
ACT-r  (Anderson, 2007) the relative utility of actions is 
considered.  In TOL-GLAM, and more generally in the 
GLAM-PS architecture, the evaluation of an action is a 
protracted process, typically involving the evaluation of a 
single action, rather than multiple competing actions. 

Although the current research focuses on a simple 
knowledge-lean domain (ToL), the issue explored is 
fundamental to understanding human thought.  Current 
accounts (e.g. ACT-r, SOAR) appear to suggest that we 
think about situations, reason about them and only then 

select an action.  The suggestion here is that much of human 
thought begins with a possible action, and is followed by 
reasoning about the suitability of this action for the current 
situation. 
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