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ABSTRACT

A general finite element method of analysis is developed
to analyze reinforced concrete slabs of arbitrary geometry
and free-form shells under dead loads and monotonically
increasing live loads. The method can be used to trace the
load-deformation response and crack propagation through the
elastic, inelastic and ultimate ranges. The internal concrete
and steel stresses can also be determined for any stage of
the response history,

The nonlinear analysis includes cracking of the concrete,
the tension stiffening effect of concrete between the cracks,
and the nonlinear stress-strain relationships for the concrete
and steel reinforcement. The concrete is assumed to be
brittle in tension and elasto-plastic in compression. The
von Mises yield criterion and the associated flow rule are
adopted to govern the plastic behavior of the concrete, The
reinforcing steel is considered as a one-dimensional elasto-
plastic material,

A layered triangular shell finite element taking account
of the coupling effect between the membrane action and the
bending action is developed. An incremental tangent stiffness
method is used to obtain a numerical solution,

A general computer program is developed to implement the
analysis, A-series of examples including beams, slabs and
shells are analyzed. Validity of thé method is studied by
comparing the analytical results with experimental data.

Effects of various important parameters are also discussed.
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1. INTRODUCTION

1.1 General Remarks

Reinforced concrete shell structures possess many of
the qualities of an ideal structure, They require a minimum
amount of maferial and permit the covering of large areas
without intermediate support.‘ Their forms offer virtually
unlimited possibilities for aesthetic and architectural
expression, However, their design is usually still based
on a linear elastic analysis assuming that the.materials
are uncracked, homogeneous, isotropic and linearly elastic,
It has long been recognized that the reinforced concrete shells,
and slabs as special forms of shells, are usually too heavily
loaded to remain inthe range of validity of linear elastic
theory. Many of them experience considerable cracking even
under normal service loads, In order to assess their true
safety against failure and to énsure their serviceability
at the working load, a complete analysis tracing their response
through the elastic, inelastic and ultimate ranges is desirable,

Experiments on microconcrete models can very well render
a clear understanding of the nonlinear behavior of the con-
crete shells, but are very expensive and technically difficult,
Furthermore, a great many models are required to cover all
the possible variations of the important variables, Hence,
there is a need for a general method of analysis to comple-
ment, and eventually to replace, the phjsical experiments,

It is believed that the ultimate solution is a method of



analysis confirmed by a few selected well-controlled
experiments,

The development of an analytical model for reinforced
concrete structures is complicated by the following facts.

1., The structural system is composed of two materials,
concrete and steel,

2, The structural system has a continuously changing
topology due to the cracking of the concrete under increasing
load.

3. The stress-strain relationship for concrete is
nonlinear and is a function of many variables., Constitutive
relationship and failure criteria for concrete under multi-
axial stress states are difficult to define.

4, Concrete deformations are influenced by creep and
shrinkage and are dependent on load and environmental
history.

5, Cracking in the concrete exhibits some degree of
random characteristics,

6, Effects of dowel action in the steel reinforcement,
aggregate interlocking and bond slip between the reinforcement

and the concrete are difficult to model,

1.2 Historical Background

Classical thin shell theory yields differential equations
whose complexity depends on the shell geometry, Closed form
solutions are available only for a few very simple shapes

under very simple loading and boundary conditions, Thanks



to the advent of high-speed digital computers and modern
numerical methods, such as the finite element method, the
analysis of free-form shells subjected to arbitrary loading
and boundary conditions becomes possible,

The earliest published application of the finite element
method to reinforced concrete structures was by Ngo and
Scordelis [1.1]. In these studies, simple beams were analyzed
in which the concrete and steel reinforcement were represented
by plane stress triangular finite elements and special bond
link elements were used to connect the steel to the concrete,
Linear elastic analyses were performed on beams with predefined
crack patterns to determine principal stresses in the concrete,
stresses in the steel reinforcement and bond stresses, Ngo,
Scordelis and Franklin [1,27] used this same approach to study
shear in beams with diagonal tension cracks, considering the
effect of stirrups, dowel shear, aggregate interlock and
horizontal splitting along reinforcement near the support,

Nilson [1.3, 1.4] introduced nonlinear material properties
and a nonlinear bond-slip relationship into the analysis and
used an incremental loading technique to account for these
nonlinearities, Cracking was accounted for by stopping the
solution when an element indicated a tensile failure and
thence redefining a new crackeg structure which was again
input into the computer and reloaded incrementally., The
method was applied to concentric and eccentric reinforced

tensile members subjected to loads applied longitudinally



through the reinforcing bars and .the results were checked
against experimental results,

Franklin [1.5] advanced the capability of the analyti-
cal method by developing an incremental loading procedure
which can trace the response of plane stress systems from
initial loading to failure in one continuous computer
analysis, Instead of redefining the finite element mesh
and nodal connectivities, the cracking of concrete was
accounted for by modifying the material properties and
redistributing the unbalanced stresses, Iterations are
performed within each increment to account for the change
of material properties, Franklin used special frame-type
elements, quadrilateral plane stress elements, one-dimensional
truss elements, two-dimensional bond links and tie links to
study reinforced concrete frames with or without infilled
shear panels,

Zienkiewicz et al [1.6, 1.7, 1.8, 1.9] have made plane
stress studies of reinforced concrete structures which include
tensile cracking and elasto-plastic behavior in compression
using an "initial stress' approach., Cervenka [1.10] derived
a constitutive relationship for the composite concrete-steel
material, and studied reinforced concrete shear walls and
spandrel beams under monotonically increasing or cyclic loading.

McCutcheon, Mirza, Mufti et al [1,11, 1.12, 1,13, 1,14,
1.157] have conducted an extensive research investigation on
the application of the finite element method to reinforced

concrete structures, They studied plane stress problems



using a modeling system similar to that of Nilson, extended
to incorporated automatic cracking and bond failures in one
continuous computer analysis., -Prestressed concrete slabs
have also been studied using an elasto-plastic concept to
account for cracking,

Studies of reinforced concrete slabs by the finite
element method have been presented by Jofriet and McNeice
[1.167]. A progressive cracking procedure was used together
with some semi-empirical bilinear moment curvature relation-
ship. Bells and Elms [1,17, 1.18] adopted a similar material
idealization to study slabs and shells, Recently Scanlon
[1.197] has developed a layered finite element for reinforced
concrete slabs which can account for the effects of cracking
and time dependent behavior, The layered rectangular slab-
elements can be cracked progressively layer by layer, and
cracks are assumed to propagate only parallei and perpendi-
cular to orthogonal reinforcements,

Rashid [1.20, 1.21, 1.227 and Wahl and Kasiba [1.23]
have made extensive finite element studies of prestressed
concrete nuclear reactor pressure vessels treated as axi-
symmetrical solids, Rashid's work is the most advanced since
it attempts to take into account cracking, temperature, creep
and load history.

Schnobrich et al, [1.24, 1.257] have made significant
contributi;m'to the analysis of shear wall-frame systems

as well as plates and shells, They used composite plane



stress quadrilateral elements, including the concrete stiff-
ness and reinforcement stiffness, for the walls or frames, and
a special flexurai element for the frame and 1ink elements

to connect the wall elements to the frame elements, This
work is similar to that by Franklin [1.5]. In their work

on the plates and shells, a rectangular shallow shell layered
finite element was developed, Owing to the inherent 1limita-
tioms of the finite element they used, the class of structures
that can be analyzed are restricted to plates and shallow
shells of constant thickness,

Lastly, in a recent state of the art paper by Scordelis
[1.267], a comprehensive survey of the past and current re-
search on the finite element analysis of reinforced concrete
structures is presented., The paper concludes with a discussion
of the major problems and questions needing answers on this

general subject.

1.3 Object and Scope

The objective of this study is to develop a general method
of analysis which can analyze reinforced concrete slabs of
arbitrary geometry and free-form shells under dead loads
and monotonically increasing live loads, The analysis
includes tracing the load-deformation response and crack
propogation and determining the internal concrete and steel
stresses,

The nonlinear effects considered are cracking of the

concrete, the tension stiffening effect of concrete between



cracks, and the nonlinear stress strain relationship for the
concrete and steel reinforcement., Bond slip between the
reinforcement and concrete, time dependent effects and
thermal effects are not included, Also not considered are
the effects of inelastic load reversals and large deforma-
tions,

A layered triangular finite element taking account of
the coupling effect between the membrane action and the
bending action is developed, A tangent stiffness iterative
method incorporated with incremental loading procedure is
used for the nonlinear analysis.

Finally a series of numerical examples including beams,
slabs and shells are presented, Validity of the method is
studied by comparing the analytical results with experimental
data, Effects of various important parameters are also

discussed.



2., MATERIAL PROPERTIES AND CONSTITUTIVE RELATIONS

2.1 Introduction

Reinforced concrete is a composite material consisting
of steel reinforcement and concrete, The properties of
steel reinforcement are generally.well defined., However,
those for concrete are more difficult to define because
it is a heterogeneous material composed of mortar and ag-
gregate, Nevertheless for purposes of analysis, concrete
is generally considered as homogeneous in a macroscopic
sense, It is the intrinsic heterogeneity which makes the
determination of the constitutive relation of concrete a
formidable task. Because of the complexity of analyzing
shells themselves, in this study the nonlinear material
model will be made very simple but yet capable of capturing
the dominant behavior of the reinforced concrete material.

Most reinforced concrete slab or shell structures
experience cyclic loading or load reversal in their lives,
Wind load, traffic load and seismic load are among the most
common loads encountered by the structures, The unloading
behavior of concrete in the inelastic or cracked range is
very difficult to define, The scope of the present investi-
gation is restricted to the case of monotonically increasing
loads, but an ultimate goal of future studies should also
include cyclic loading. Under monotonical loading it is

quite unlikely that significant unloadihg (strain decreasing)



will ever occur, so the change of material states due to
unloading is ignored in this study. Tﬁose cases with
significant unloading should be included in the cyclic
loading or load reversal cases,

The short-time nonlinear behavior of reinforced concrete
structures are mainly attributed to the nonlinear stress-
strain relationship, cracking and crushing of concrete, and
the bond slip between the reinforcement and the concrete,

The direct effect of bond slip will not be considered in
this study,

As will be seen in the subsequent discussion, the
material properties of concrete and steel will depend on
the stress or strain state of the material. In order to
account for the varied material properties within a finite
element, the element is divided into imaginary concrete
layers and steel layers (Fig. 2.1). Each layer may have
different material properties corresponding to its stress
or strain state. Besides, in accordance with the Kirchhoff's
hypotheses the transverse normal stress is neglected, thus
any point in the element may be considered to be in a state
of plane stress, Therefore only the plane stress constitutive

relations need to be developed for the layer system,

2,2 Concrete

2,2,1 Stress-Strain Relationship

A typical uniaxial stress-strain relation for

©

concrete is shown in Fig, 2.2, On the tension side, the
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curve is nearly linear up to the tensile strength where the
concrete cracks and the stress drops to zero, On the com-
pression side, the curve starts out with a nearly linear
portion that stretches to about 30% of the ultimate stress,
then deviates gradually from the straight line till the
slope becomes zero and reaches the ultimate stress, A
descending tail follows the peak and finally ends with a
complete crushing. The departure of the curve from linearity
can be attributed mainly to the development of internal
microcracking at the interfaces between the cement paste and
the aggregate, The theory of internal microcracking [2.1,
2.2, 2,3] can give only a qualitative description of the
stress-strain relationship., For the quantitative description
many empirical formulas are available, but each has its own
limit of validity and degree of approximation. Fig. 2.3
compares several of the formulas in non-dimensional form.
It can be seen that the curvature of the various diagrams may
differ considerably. 1In general, the selection of a formula
or the determination of parameters for a formula can be done
by curve fitting, so that the diagram fits well a given
series of experimental results, All of these formulas are
only applicable to the case of uniaxial stress state. An
extensive review on the subject was presented in a state of
the art report by Popovics [2.7].

For the stress-strain relations under biaxial compression

a typical experimental result is shown in Fig. 2.4, Like
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an ordinary elastic, homogeneous and isotropic material,
the stiffness of the concrete in one of the principal
directions increases in the presence of the compressive
stress in the perpendicular direction, The increase of
stiffness, howe;er, is considerably greater than can be
explained by the Poisson's effect alone. According to
the microcracking theory the increase of stiffness is
mainly due to the confinement of potential microcracking
in the presence of biaxial stresses, The test data reported
by various investigators deviate from each other considerably.
Kupfer et al., [2.8] pointed out that these discrepancies
often can be traced back to unintended differences in the
stress states developed in the test specimen,

Recently an analytical form for the stress-strain
relationship of concrete in biaxial compression has been
proposed by Liu et al [2,13]. The expression takes the

following form,

o = ¢ E
(/-pX)(/+CE+DER)

where & = ratio of the principal stress in the orthogonal

direction to the principal stress in the direction considered,
E = initial tangent modulus in uniaxial loading, \ = Poisson's
ratio in uniaxial loading, C and D are functions of a, op

and Ep. op and Eb are peak stress in biaxial compression'

and the strain at peak stress, respectively. The equation
provides good agreement between experimental and analytical

plots for the ascending portion of the stress-strain curve



(Fig., 2.5). Taylor et al [2.14] also proposed a highly ela-
borate multilinear biaxial constitutive model for concrete,
and applied the model to axisymmetric and planar structures,
In the model the principal stress or strain space is divided
into regions of equal damage, each of which possesses
particular values of modulus of elasticity and Poisson's
ratio, The complete construction of the model further
involves a series of ad hoc assumptions, Verification of
the model with experimental data is still lacking. Most of
those ad hoc assumptions have to be verified as a whole,
rather than individually, by comparing the over-all results
with experimental data. The difficulty will increase rapidly
with the number of assumptions. Moreover an elaborate model
often requires more computation. A true assessment of the
model should consider both the improvement of solution and
the increase of computational effort,
However, it is believed that the over-all nonlinear
behavior of a reinforced concrete system is dominated by
the tensile cracking of the concrete, Therefore it is
concluded that the adoption of an elaborate hypothetical
stress-strain law is not warranted at this time, 1In this
study the concrete is idealized to be elastic-plastic in
biaxial compression, and linear elastic in biaxial tension
and tension-compression (Fig. 2.6),
2,2.2 Failure Criteria
Figure 2,7 shows a failure envelop of concrete

under biaxial stress loading obtained by Kupfer et al [2.8],
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FIG. 2,7 FAILURE SURFACE OF CONCRETE
OBTAINED BY KUPFER ET AL,
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An examination of the crack patterns in the specimen after
failure reveals that the failure can be classified into two
distinct modes - cracking and yielding. In Fig. 2.7 OA and

OC are radial lines with cyl/o

o equal to -15/1 and 1/-15

respectively, Envelopes ABC and ADC represent the cracking
failure envelope and yielding failure envelope respectively.
Tests by Kupfer et al [2,8] have shown that if the stress
state of concrete reaches envelope ABC, a single cleavage
perpendicular to the maximum tensile stress and the free
plane of the specimen is formed (Fig. 2.8a). On the other
hand, if the stress state reaches envelop ADC, numerous
microcracks parallel to the free surfaces of the specimen
are formed, but the specimen can still undergo some apparent
plastic deformation before it collapses completely. At
failure additional major cracks develop with various angles
to the free surfaces of the specimen (Fig. 2.8Db).

For simplicity, in this investigation von Mises yield
criterion is used to approximate the failure surface in
biaxial compression so that the results of the well-established
plasticity theory can be utilized. The yield criterion can

be expressed as follows (Fig. 2.9)

Fla) =/ 00-003 +03° 43T =T = 0 (2.1

where O is the uniaxial yield strength, and is assumed to
be equal to the uniaxial compressive strength fc'. In terms

of principal stresses, it can also be shown as
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Fo)=/¢*-cn+g:—5 =0 2.2

The apparent'plastic yielding of the concrete is not
connected with actual plastic flow of cement gel or other
components, but rather represents the cumulative effect of
microcrack propagation, There is no theory in existence
which provides a flow rule governing the post-yielding
stress-strain relations for concrete. However, for
consistency, the classical normality flow rule is assumed
valid for yielded concrete, 1In addition a crushing surface,
analogous to the yield surface but in terms of strains, is
postulated to define the complete collapse (or crushing)
for the yielded concrete. The crushing surface (Fig. 2.10)

is as follows,

Cler = [er-ece,+ €} + S Ty - €=0 (@3

Cler=/Je*-€e+6 — €, =0

]

3

where eu is the ultimate strain in the uniaxial compression
test,

Experimental results consistently show that the strength
of concrete under biaxial tension is almost independent of
the stress ratio 01/62 and equal to the uniaxial tensile
strenéth. The maximum stress failure theory is adopted in
this investigation for biaxial tensile stress state., The

concrete is assumed to crack when either of the principal
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stresses exceeds the uniaxial tensile gtrength ft’ (Fig., 2.9).
For the tension-compression stress state, a straight line
connecting fcl and ft’ in Fig. 2,9 is used to approximate
the true failure surface, and the failure mode is assumed
to be cracked,
2.2,3 Uncracked Elastié Stiffness -
In the elastic region (Fig, 2.9), the concrete
is assumed to be isotropic, homogeneous, linearly elastic,

Thus the stress-strain relations are

o c VA €,
T iy L €y (2.9
Py o 0 L:f' Yx’

where E is modulus of elasticity, and v is Poisson's ratio,
y

2,2,4 Cracked Stiffness
When any of the principal stresses exceeds the

tensile strength, cracks will occur in a direction perpendi-
cular to that principal stress, The normal stresses at‘the
cracks drop to zero, The shear modulus is also reduced
by cracking, The effects of dowel action and aggregate
interlock tend to complicate the determination of an effective
value for the shear modulus., In this study, a cracked shear
constant is introduced to estimafe the effective shear modulus
including dowel action and aggregate interlock,

Let the coordinate axes x’, y' be parallel and perpendi-
cular respectively to the cracks (Fig, 2.1i), then the stress-

. : . 7 2
strain relations referring to x y coordinate system are
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T E ¢ o €4 /
oG | =] ¢ 0o €y | or {o’j=[o]{e’} (2.5)
Ty ¢ 0 wa ]|l Tul, .

where G = §?T§;T is the uncracked shear modulus, o is the

cracked shear constant,

Note that the strain vector transforms in the following

manner:
€ ¢t s sc €x |
€/ 7| o ¢ e €y or{E f[T“é}, (2.6)
Yy 2s¢ 25¢ =5 | [ 7y )
where ¢ = cos B, s = sin B

R = the angle from x axis to x’ axis.

The stress vector transforms as follows:

0, ¢ g -2scC a’

,
gy { =| S° ¢* o2sc ay’ er {a—} =[T] {a"} (2.7)
Ty sc -s¢ =5 | Tyl ,

Eq. (2,5) can be transformed to global xy coordinate system

as follows

EECIE
and [D] = [T]T[ D] [ T] (2.9)

O
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If both of the principal stresses exceeds the tensile
strength, the concrete will crack in both principal directions,

. . . vt .
The stress-strain relations in x'y° coordinate system are

ox c o ¢ €
GB/- = ¢ © eg’
Txg 0 o «G@ Ty (2.10)

Eq. (2.9) is still valid for transforming these relations
into the global xy coordinate system,

If the concrete cracks in one direction, and the stress
parallel to the cracks reaches yield point fc’, then the stress-

strain relations can be expressed as follows:

d gy o ¢ dé’
o = 6 ¢ © eg’ (2.11)
Txé. ¢ O tACT J ‘)/,(3/

Note that in the incremental form, the first equation of (2.11)
indicates that the material retains the yield stress while
requiring no increase of stress to be further strained,
Cracking in reinforced concrete is complicated by the
presence of the reinforcing bars, Fig. 2,12 shows a reinforced
concrete element under uniaxial stress, When the concrete
reaches the ultimate tensile strength, primary cracks form
at finite intervals along the length, The total load is

transferred across these cracks by the reinforcement, but
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FIG. 2.11 COORDINATE TRANSFORMATION FOR A
CRACKED ELEMENT
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FIG., 2.12 STRESS DISTRIBUTION IN A CRACKED R/C
ELEMENT
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the concrete between cracks is still capable of carrying
stresses because of the bond between steel and concrete,
This phenomenon is called the "tension stiffening effect,"”
The concrete stréss is zero at the cracks but is not zero
if averaged over the length. As the load increases,

more cracks form and the amount of tension carried by

the concrete progressively decreases, Thus the average
concrete stress vs, strain curve for the element may be
considered to have an unloading portion (Fig. 2.13). The
concept of working with average stress and strain over a
relatively long gauge length to account for the tension
stiffening effect was first introduced by Scanlon [1.197,
In his work he replaced the average stress-strain curve

by a series of straight lines with stepwise decreasing
modulus of elésticity (Fig. 2,13)., 1In this investigation,
the modulus of the concrete is assumed to be zero once

the concrete cracks, but the unbalanced stress is released
stepwise gradually according to a specified unloading
curve (Fig. 2.14). For instance in Fig. 2.14, the

first solution 01 exceeds the tensile strength, the
concrete cracks, and zero modulus is used for the fol-
lowing solution, 001 instead of total stress 01 is con-
sidered as the unbalanced stress, For the second solution
o is the unbalanced stress etc.

02

In the computer program developed for this study, the
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unloading curve is specified by ihputing pairs of stress

and strain values to define a polynomial curve of the form
o = 0 t+ta€E+ Q;ez +03€3

An interpolation procedure is used to pass an unloading

curve through the given stress-strain points.

It should be noted that the steel stress obtained will
also be the average stress in the steel layer. Thus the
maximum steel stress is always underestimated. 1In most cases,
however, the cracked concrete will reach the zero-stress stage
before the reinforcement reaches the yield point, hence the
results should not be significantly affected,

Further note that if the concrete in compression is
treated as a strain softening material (Fig. 2.15) the step-
wise gradual unloading scheme can also be used to avoid the
numerical difficulty caused by using negative moduli, For
the sake of simplicity the concrete in compression is treated
as a elastic perfectly plastic material in this investigation,

2,2,5 Plastic Stiffness

The associated flow rule of the von Mises yield
criterion is also assumed to be valid for the concrete
yielding in compression, The normality principal can be

expressed as follows,

- F ’
d{é}r =A :{q.) ’ (2.12)

where d{e}p denotes the increment of plastic strain,
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A is a proportional constant, F is the yield function, It
is further assumed that during an infinitesimal increment
of stress, changes of strain are divisible into elastic

and plastic parts, namely

dfe} =d{e), +dfe}, (2.13)

The elastic strain increments are related to stress increments
by the following relation:
-1
d{é}e=[D] d{q’_} . (2.14)
where [D] is the elasticity matrix. The following incremental
stress-strain relationship is obtained following some mathe-
matical manipulation described in detail in References 1,6

and 1,9,

d{O'_} = [ DJer d{é} (2.15)

(0]~ (0} -(2){5) [F) (O 4 + i o) ) o

The elasto-plastic matrix [D]ep takes the place of the elas-
ticity matrix [D] in incremental analysis. A is a hardening
parameter, equals zero for perfectly plastic material, If

the [D] and F given in Sec. 2.2.2 and 2.2.3 are substituted,

[D]ep can be expressed explicitly as follows:

g 2 2 .
£ - t /+ﬂ T’" 4"
[D]el’: _a. g+ i T" 0t T '6«’ (2.17)
. a4ya; .
“ET:"%"]' Txy Y Txg 20+

’
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’ y; ;-
where R = g 200 +Ty"

R + 2( i-b)'?'xyl ,

)}
I

= :%’(2(7:'“03) :

b A -
g = (25 7 )

The normality flow rule has been proved applicable to
many ductile metals, As pointed out earlier, the inelasti-
city of the concrete is caused not by actual plastic flow,
but by the cumulative effect of microcrack propagation, It
is questionable whether the normality flow rule is still
applicable to concrete, Another question arises naturally as
to how important the assumed flow rule is to the overall
behavior of a concrete structure as compared to other effects
such as cracking, tension stiffening, bond slip and yielding
of the reinforcement. The normality flow rule constrains
the plastic strain to flow in a direction norﬁal to the
yield surface, What would happen if the flow of plastic
strain is not constrained but the stress is fixed at the
initial yield point on the yield surface? To study this
question the following ''unconstrained flow rule' will also
be used, and the results will be compared with those using

the more complex normality flow rule,

d{o} = [ © ] d{e} (2.18)



2,.2,6 .Crushed Stiffness

When the concrete is crushed, it is assumed to

lose all its stiffness. Thus, the stress-strain reldations

are
a; o © o Ex
G| =| ¢ o o &y
Tyl o o o)l My
2.3 Steel
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(2.19)

The crack propagation in reinforced concrete is influenced

by local stress concentrations which are in turn influenced

by the size and spacing of the reinforcement, 1In reinforced

cdncrete slabs and shells, unlike beams, reinforcement is
usually more uniformly distributed, and reinforcing bars
used tend to be smaller in size. The finite element meshes
can always be so laid out that the reinforcement is more or
less uniformly distributed in each element. In this study,
the effects of reinforcement size and spacing will not be
considered, and the reinforcement will be assumed to be
uniformly distributed over the element, Thus each layer of

reinforcement will be replaced by an equivalent smeared

distributed steel layer (Fig. 2.1). The equivalent thickness

of the layer is

t, = 15 = psxd

where As is the area of one reinforcing bar,
b is the spacing of the reinforcing bars,
Pg is the reinforcement ratio,

d 1is the effective depth of the slab,

(2.20)
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The steel is considered as an elastic-plastic material
with yield stresses : fy and elastic modulus ES (Fig. 2.16).
It is further assumed that the reinforcing bars carry only
uniaxial stress. When the stress in the reinforcement
remains in the elastic range, the stress-strain relations

referring to the x'y' coordinate system (Fig. 2.17) are

o l Eq ¢ o I €x
& | =| o ¢ of! €y’ (2.21)
T:g'J o o o | Ty

Eq. (2.9) may be used to transform the relations to the
global coordinate system,
When the reinforcing still has yielded, it is assumed

to have zero incremental stiffness, that is
d{7) =[C]d{€J (2.22)

2,4 Composite Layer System

Although the finite element is divided into imaginary
concrete and steel layers, the displacement field of the
element is still assumed to be continuous, Any volume
integration involving the material properties can be carried

out layer by layer, namely

f. :ND} av = szwfﬂo]u‘“’ +§5~CF[D]&-C‘V (2.23)

where ¢ is an arbitrary function of space,



32

o

STRESS

STRAIN

{ -f,

FIG. 2.16 STRESS-STRAIN RELATION FOR STEEL

d | '

FIG. 2,17 COORDINATE TRANSFORMATION FOR
STEEL STIFFNESS



33

[D] is the material matrix of the element,

[D]C,1 is the material matrix of the i th concrete layer,

[D]S,1 is the material matrix of the i th steel layer,

n, is the total number of concrete layers,

ng is the total number of steel layers.

2,5 Summary

A composite layer system consisting of concrete layers
and steel layers is constructed to account for the varied
material properties within the finite element, The concrete
is assumed to be elasto-plastic in compression and brittle
in tension (Fig, 2.6). The von Mises yield surface, a
maximum principal stress crack criterion and an effective
strain crush criterion are used to define the transition
boundaries for different material states (Figs, 2.9, 2,10).
The steel is considered as a one-dimensional elasto-plastic
material (Fig, 2,16), The tension stiffening effect is
accounted for by releasing the unbalanced stress gradually

according to a specified unloading curve (Fig., 2,14).
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3. FINITE ELEMENT IDEALIZATION

3.1 General Remarks

The finite element method is essentially a discretization
procedure through which a continuum with infinite degrees of
freedom can be approximated by an assemblage of discrete
subregions (or elements) each with a specified finite number
of unknowns, The concept was originally introduced by Turner
et al. [3.1] in the early 1950s as the result of an attempt to
improve the Hrennikoff-McHenry's lattice analogy for the
solution of plane stress problems,

Owing to the popularity of the matrix methods in struc-
tural mechaniés and the accessibility of the high speed
digital computers, the method rapidly won widespread acceptance
as an effective, powerful and versatile tool in structural
mechanics, In attempts to consolidate the mathematical
foundation of the method, it was soon recognized as a special
form of the classical Rayleigh-Ritz method, It was further
realized that the method is a rediscovery of a known mathe-
matical method which appeared in Courant’'s approximate
solution of St. Venant torsion problem in 1943 [3,2],

One of the very basic assumptions in continuum mechanics
is that the material is totally continuous. This simplifying
assumption means that the molecular structure of matter is
to be disregarded, and the material is pictured without
gaps or empty spaces. Most engineering materials are formed

of either crystals or fibers whose dimensions are extremely
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small in comparison with the dimensions of the entire body.
Therefore the continuum approach is completely justified
for studying the behavior of the material on the average.

Concrete is not a continuum by any standard. Cracks
at the interface between coarse aggregate and mortar exist
even at unstrained state, These interfacial cracks begin
to increase in length, width and number at about 30% of ul-
timate load., At about 80% of ultimate load, cracks propagate
through mortar and form continuous crack patterns, Yet the
continuum approach should yield a useful explanation of the
average behavior of the concrete, except that the average
should be taken over a much larger, finite gauge length,.

In the finite element analysis of this study, the dis-
placement field of each element is assumed continuous even
after tensile cracks form inside the element. 1In essence,
the cracked concrete is approximated by a continuous medium
with equivalent average properties. Therefore the strains
or stresses of a concrete or steel layer obtained from the
analysis should be interpreted as average values over the

whole layer,

3.2 Displacement Formulation

The finite element displacement analysis of an elastic
continuum starts with the subdivision of the original system
into an assemblage of discrete elements. The displacements

{f} at any point within the element are approximated by
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interpolation functions associated with generalized coordinates

ri which are the nodal point displacements,

re

(0 =[N {f= (w1

-

where the components of [N].are in general functions of
position and {r}e represents a listing of nodal displacements
for a particular element.

With displacements known at ali points within the element
the strains at any point can be determined. These will result

in the following relationship:

{€] =[.5]{Tje (3.2)

From the material constitutive law, the stresses
{o} =[D]({€]-{e}) + {a) 3.9)

where [D] is an elasticity matrix containing the appropriate
material properties, {eo} is the initial strain vector,
{co} the initial stress vector.

Applying the virtual work principle or the theorem of
minimum potential energy to the total structure as an assemblage
of all elements, the following equilibrium equation will be

[KJ{r} + {F}r+{F}3+ {’F}eo*‘{ﬂm" (R} =0 . (3.4)

where the stiffness matrix

[k] = %f(B]T[D][B]d(V"I') , (3.5)



the nodal forces due to body forces

{F), == Jn){p} dlel) |

e

the nodal forces due to surface forces
iF-}g %J[NJ g d(areq)
the nodal forces due to initial strains
- T I'4 3 N
{FJG‘--EJ[B][D]iajd(vo/) ,
those due to initial stresses

(Fl =-3J(8) (o} dtvei)

37

(3.6)

(3.7)

(3.8)

(3.9)

{r} is the vector of all nodal displacements, {R} the applied

nodal forces, {p} the body force vector, {g} the surface force

vector, The summation notationéﬁ means summation over all
e

elements., In practical computation this is achieved by the

well-known direct stiffness method. The stiffness matrix or

the force vector for each element is generated sequentially
and the summation is carried out by direct addition of the
element matrices or vectors to the proper places in the
assembled structure matrices or vectors,

The nodal displacements {r} can be obtained by solving
the system of simultaneous algebraic equations (3.,4). The
strains and stresses at any point of the element can be

determined by the relations in Egs. (3.2) and (3.3).
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3.3 Application to Shell Structures

The finite element analysis of shell structures requires
the division of the shell surface into a system of subregions.
The surface geometry of each subregion must be idealized by
an approximation of its actual curvatures, The simplest
approximation is that the elements are flat surfaces or an
assemblage of flat surfaces., If the material properties
are symmetrical with respect to the middle plane, this
approximation will decouple the membrane and the bending
actions at the element level. Note that the coupling of
these actions will develop once these flat elements are
assembled into an approximation of the curved shell surface.
If the material properties are not symmetrical or if the
individual elements are curved rather than flat, there will
be membrane-bending coupling at the element level, In
general it is very difficult to define the stiffness prop-
erties and to include the rigid body displacement modes for
curved elements, Flat elements are more widely used in
general shell programs at the present time, and will also
be used in this work. The approximation of a typical shell
surface by flat triangular elements is shown in Fig, 3.1.
The size and shape of the triéngles are defined by the
coordinates of the nodal points lying on the reference sur-
face of the shell,

If the shell is to be treated as a two-dimensional

surface rather than a three-dimensional solid, some kinematic
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assumptions have to be adopted. In this investigation, the
classical Kirchhoff's hypotheses are adopted, The assumptions
may be stated as follows.

(1) The straight fibres of a plate which are perpendi-
cular to the reference surface before deformation remain so
after deformation and do not change their length,

(2) The normal stresses acting on planes parallel to
the reference surface may be neglected in comparison with
the other stresses,

It should be noted that the first assumption results in
plane strain constitutive relations, whereas the second assump-
tion yields plane stress condition, This inconsistency can
be avoided by assuming that the material is approximated by

one with a special type of orthotropy wherein

{ _ | - { _ _ _
En Gin Gan - l%n Lén =0

where E is the modulus of elasticity, G the shear rigidity,
‘. the Poisson's ratio; subscripts n indicate the normal
direction, 1 and 2 indicate two perpendicular direction on
the reference surface (Fig. 3.2).
The Kirchhoff's assumptions enable the displacements

at any point of the shell to be described in terms of the
displacements and their derivatives on the reference surface.
Thus,

W= we (X, Y)

u = U, ('x,g)—é%-‘i-'- (3.10)

v o= vo(x,g)—-ég‘g—'
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FIG. 3.1 DISCRETIZED SHELL SURFACE

FIG. 3.2 DIFFERENTIAL ELEMENT OF A SHELL
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where u, v, w are displacements in x, y, z directions

respectively, referring to Fig. 3.3, and letting subscripts

"0" indicate the values on the reference surface. Assuming

the shape functipns for WO, Uo’ V0 gives,
. w)®
We =:-¢f(x"g) bx
6, ’

U, = 4) (x,g) {UJe \ (3.11)

e
ve = ¢ (9 {v]
where (G, ‘-‘-%‘? ’ éjz—iﬁ

X
and the vectors with superscript "e"

A

denote the nodal displacements,

Differentiation of Eq. (3.10) gives

3 Ue _QHU
( ‘},‘5‘ X Ix*
‘ ‘ = = ‘LE& - iﬁg&‘
{GJ [ < VJ > 3 °q (3.12)
. 3 Ue L i
3—;’ +g—x- ‘;_y_* 2X 23:.)
or {e} = (&) - 3{x]
Differentiation of Eq. (3.11) with the usual comma notation
yields
{Eb_} = o ¢/3 { v = [ Bm] { L"}
Py P (3.13)

yy’x) 'u} € w e
'\U,” Ox = [ Bb] O« (3.14)
L 2V By L Cy

)
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Substituting Eqs, (3.13) and (3.14) into (3.12) gives:
w e
. , 6x e
{€) = ["3 B, Bm] 8y = [ BJ { 5} (3.15)
u ,
v
From Eq. (3.5) we obtain the element stiffness

(k)= (e(o)B)ev = [ [.a_fzs.o_@_.__s_e_tp.s_‘] v

-3Bm D B! B, DB,
I
KL :__K*_i (3.16)

where [K“] =f32[35]YfD][ Jav = ﬂ (8J7[J; Dd;][bs]dx dy | (3.17)

T

(k) = [[(B)T[-[3Dd3)[B.) dvdd =[Kub] (5.1

[ Kna) = JJ (Ba) [ JD 4] 8] dxdy (3.19)

note that B, and B are functions of x, y only.
b m

K K and Kmm are the bending stiffness coupling stiffness

bb’ “bm
and membrane stiffness respectively. If the material properties

are symmetrical with respect to the middle plane, the term

Idez becomes zero, and thus so does Kbm' Physically, this is the
case wherein the bending and membrane stiffness properties

are uncoupled, The nodal forces due to initial stresses can

also be found by substituting into Eq. (3.9).

{Flo = (8"l av = Jf [ Bé;’((}jé.f?)'] oo
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3.4 Layered Discretization

3.4.1 Evaluation of the Element Stiffness
As pointed out in Chapter 2, any integration
involving material properties can be integrated layer by
layer. Let € and S denote the number of concrete layers

and steel layers respectively for a typical layered finite

element shown in Fig., 3.4. Assuming the material properties

are constant within each layer, the inner integrations of
Eqs. (3.17) to (3.19) can be carried out as follows.

Aiel
(0] = J3tolas = £ | 7(pd g+ 00,
Ec.- é(éz:l—jf)[ocji +§,} 9;[ DS]‘:‘t{ (3.21)

(=

(D) = [Du] ==f3(0)a3

I

c s
-% 3’-(3‘4,-& )i D), — X, l[Ds}{- t (3.22)

‘¥

-

. [
[ Dmm_] =;=Z’ (c;('l _Jt) DCJ + y [D5]L .tL (3.23)

Where J is the material matrix of the i th concrete layer,

L[)SL is the material matrix of the i th steel layer,

Thus the stiffnesses become

[ Ku] = ,U D;.LJ [Bs] dx dy (3.24)
[ Kin) = J”B]T[;Lmj{ Bm) dlx dy (3.25)
[ Ko = fﬂ B [ Dun[B) dx dy (3.26)
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3.4.2 Evaluation of the Layer Strains and Stresses
Once the nodal displacements are known, the
membrane strains on the reference plane {eo} and the curva-
tures D(} can be obtained by Egqs. (3.13) and (3,14). The
strains at the centers of layers can be computed from

Eq. (3.12).

{6,_}‘. = {é} -5 (3 T 30) {Kj (3.27)

{es), ={e&) - 3.AX] (3.28)

The layer stresses are computed as follows,

I

{a}, =D, {éc}; (3.29)

{a); = DS]; {est: (3.30)

where {ec}i and {GCTi denote the stresses and strains at the

center of the i th concrete layer; {e;iand {os}i denote those at

the center of the i th steel layer.

3.4.3 Evaluation of the Unbalanced Nodal Forces

In all structural analyses, aim is taken to find
solutions which simultaneously satisfy continuity, equilibrium
and constitutive relationship. For nonlinear problems,
procedures are often devised to obtain trial solutions,
satisfying one or two of the three conditions, and then cor-
rections are successively made until the remaining conditions
are also satisfied, 1In the numerical method adopted in this
study, the nonlinear constitutive relationship will be satis-

fied by successive corrections, For each iteration, assuming
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material properties constant a set of solutions {rz}, {62}
and {oé} are obtained (Fig. 3.5). In order to satisfy
constitutive relations corrective stresses {Go? are intro-
duced to bring {027 to the true stresses {02} cérresponding
to {ez}. {rz}, {ez} and {021 are chosen as the corrected set
of solutions, and {Uo} are considered the stresses which do
not satisfy equilibrium, The unbalanced stresses foo} can

be transformed into nodal forces by Eq. (3,20) treating them

as the initial stresses, The inner integrations are computed

as follows,

'{O'cb}z“fé{o'}dé"‘%f 3o —3{a} —2‘;‘ {g) t, .80
{@n} = f{m} dj = lZ:‘ Gin — 3@}, + L}: {@} t, (3.32)

The unbalanced nodal forces become

_J.[Bs {G?L} d"d'gl

s (3.33)

.” B m {0} d dy

—
el
——
!

i

Computation of {oo} will be discussed in detail in Section 4.4,

3.5 Selection of Elements

The intrinsic adaptability of the triangular geometry
to the free-form shell surface and an arbitrary boundary
geometry make it a desirable choice for the element shape

for this study., The flat triangular element used here is
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one with 15 degrees of freedom, 5 at each corner node, sat-
isfying full compatibility, along inter-element boundaries
when adjacent elements are on one plane. The element derives
from incorporating a linear curvature triangular bending
element (LCCT9) with a constant strain triangular membrane
element (CST).

The triangular bending element was originally developed
by Clough and Tocher [3.3], and reformulated by Felippa
using triangular coordinates instead of Cartesian ones [3.47].
The element is divided into three subtriangles, as shown in
Fig. 3,6 in which the internal point "0" is the centroid of
the element area. Interpolation functions for the transverse
displacement w are assumed independently with cubic variations
for each subtriangle, However, slope compatibility along
the internal common edges of the subtriangles is imposed,
Thus the displacement field has a continuous first derivative
over the whole element, and linearly varying curvature within
each subelement. The end result is a compatible triangular
bending element with 9 degrees of freedom, including trans-
verse displacements and rotations about X and Y axes at three
corner nodes,

The constant strain triangular membrane element possesses
6 degrees of freedom, translations in X and Y directions at
three corner nodes (Fig. 3.7). The incorporation of LCCT9
and CST provides a good representation of the bending deforma-

tion, but poor approximation of the membrane deformation,
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Carr [3.5] developed a refined triangular element, using

the LCCTY9 bending stiffness but employing a quadratic

strain triangle to represent the membrane stiffness., The
membrane deformations involve 6 degrees of freedom at each
node; rotation ébout the normal to the surface, 2 translations
in the surface plane, and 3 components of strain, Therefore
there are a total of 9 degrees of freedom at each node. This
results in a tremendous increase in computational effort.
Clough and Felippa [3.47] developed a highly efficient quad-
rilateral element which provides improved membrane behavior
while retaining the basic 5 degrees of freedom per node
system, However, the computing time for forming the element
stiffness is approximately 9 times as much as that for the
simple triangular element, In view of the crude approximation
of the material properties and the advantage of possible
element mesh refinement by using simpler elements, the

simple triangular element is adopted in this investigation,

3.6 Assemblage of Elements

3.6.1 Coordinate Transformation
The stiffness matrix for the total structure can
be obtained most conveniently by the direct stiffness pro-
cedure, The two essential steps in the procedure are the
coordinate transformations and the subsequent superposition
of each element stiffness,
Let x ; ; be the element coordinaté system, x y z denote

the global coordinate system (Fig. 3.8). Define the nodal
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displacements and nodal forces as follows

' u; ]
v 4
{ r(-} _ <lg _ {é;} (3.35)
C‘,{ '
\ ébt J

R:
| &

={. B
{RL} MAC
M,(
\ h”;c

(3.36)

1
i
—

Then their components in local and global coordinates will

be related by the following relations:

Tix 7}3 gl Y

Tji T"y _Tij i er {5053[7—]{8‘} (3.37)
Ty Ty Tpllw

<
!

e
(el
l

.

where T x y = cosine of angle between ; and y axes, etc,

Inversely, 4 g‘.} — [ TJT {z\:} (3.38)
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PJ = [T]{Pé} , (3.39)
J :[T]T{T)L} (3.40)

Similarly, {
and {

Since the rotation about an axis normal to the element

surface ezi is not included in defining the element deforma-

tion, it is assumed that the element stiffness corresponding

to 8 . is negligible. Therefore 8 ., and M . can be ignored
zi zi zi

in the coordinate transformation, and the following are

justified:

{exi}:[ Tix Tsy 7};} Ox;

[ T Tay Teal | 6x] {8 =(1}{6) can
O3
{M =[ Tix Tay Tv} M,;)
Fy:) Tyx Ty Tyz )| Myef o {M)=[1]) {M)e.02
v
also, {GL} =['tJT{ ELJ (3.43)
{MJ = [-t-]r{ /T,{J (3.44)
The transformation relations for the displacements of
the three nodes of an element can be written as:
s) [T 1 (&)
6, t 6
Ez = T { J\z
2 t 6. (3.45)
& T &
| é}} | t \ GJJ
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or [ 7]

and
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(3.46)
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(3.47)

Similarly, for the corresponding nodal forces

{ ’:\Ti = l L'j {R} (3.4-8)

{R} =LK (3.49)

The element equilibrium equation in local coordinate can be

written as

[ K J {’_} = {ﬁi (3.50)

Substitute Eq. (3.46) into Eq. (3.50) and premultiply both

sides by [L]T:

T

‘ Te i s, T =
(L) (K]t ir) =) {R)
. N \ )
therefore [ f\J {rj = {RJ (3.51)
\T/'*T» ~
where [ I\J =[ L] LKJ[LJ (3.52)
18418 IRV ENISN 4
is the element stiffness in global coordinates,
Note that the incomplete transformation, Eqs. (3.41)
to (3,44), can be avoided by retaining 6;1 and Mzi while
inserting an appropriate number of zeros into the stiffness
matrix, and the same final relation Eq., (3.52) will be obtained,
The z axis of the element coordinate system is normal

to the element plane, while x and ; axes lie on the plane,
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In the computer program developed for this study, the
directions of x and ; are defined by assuming X is given
b; the direction from node 1 to node 2, or by specifying
the direction of.; or ;.

3.6.2 Boundary Element

In the transformation described above, the

element stiffness corresponding to 6;1 is assumed to be
zero, This will yield a singular set of equilibrium
equations when all glements meeting at a node are co-planar,
This numerical difficulty can be eliminated by attaching to
each node a boundary element with a specified high rotational
stiffness about a normal to the shell surface. The boundary
element is a one-dimensional element with an axial or torsional
stiffness., The stiffness and the direction of the element are
specified in the input data. The element stiffness coeffi-
cients are added directly to the total structural stiffness
matrix. In addition, the boundary element can also be used
in the idealization of the following boundary conditions:

(1) external elastic supports,

(2) skewed boundary conditions,

(3) non-zero displacement boundary conditions.
The concept of this versatile boundary element is borrowed
from the well-known SAP program [3.6].

3.6.3 Remarks

Clough and Johnson [3,7, 3.87 avoided the difficulty

of the "sixth" degree of freedom by neglecting the rotational
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degree of freedom about the normal to shell surface at each
node, In their approach, all translational degrees of

freedom are transformed to a common global coordinate

system, The rotational degrees of freedom at each node are
transformed to a surface coordinate system with ore axis

normal to the shell surface, the other two tahgent to the -
surface.

Another alternative suggested by Zienkiewicz [2,11] is
to add a fictitious set of rotational stiffness coefficients
to each element. As these rotations, normal to the element
but not to the shell surface, have components tangent to
the surface, the results will be affected by the added
fictitious stiffness.

In the author's opinion, the application of the boundary
element is superior to the above mentioned two approaches
in terms of simplicity and versatility.

Some investigators [3.5, 3.9, 3.10] have attempted to
include 6;1 as an additional degree of freedom in plane

analysis with some success,

3.7 Summary

The shell surface is approximated as an assemblage of
flat triangular surfaces, Each triangle is represented by
a flat triangular finite element with 5 degrees of freedom
at each node, The element is derived from combining a linear
curvature compatible triangular bending element with a constanf

strain triangular membrane element, The coupling effect
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The procedure starts with dividing the loading into

finite number of increments, For each load increment,

iterations are performed until the equilibrium and constitu-

tive relations are satisfied within a certain allowable

limit, The following steps are carried out for each load

increment,

(1)

(2)

DO the fol

(3)

4)

(5

(6)

Analyze the structure to obtain the increments of
nodal forces using the updated stiffness existing
at the end of the iterations for the previous

load increment, For the first load increment, the
initial uncracked linear elastic stiffness is used.
Find the total nodal displacements by adding the
new increments to the previous totals,

lowing steps (3) to (6) for each element,

Calculate the increments and the total values of
curvatures and membrane strains at the centroid

of the reference plane,

Compute the increments and the total values of

the strains and stresses for each layer using the
material properties used in forming the current
structure stiffness,

Check the stress or strain state of each layer
against applicable transition criteria, calculate
the unbalanced stresses and update the constitutive
properties according to the corrected stresses.

Convert the unbalanced stresses into unbalanced

63
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nodal forces through proper integration, Calculate
the new element stiffness if any of the layers
change their constitutive properties,

(7) Assemble the unbalanced nodal forces,

(8) Check the unbalanced forces or displacement incre-
ments for convergence and divergence. If they have
converged, or the prescribed maximum number of
iterations has been exceeded, go to step(l) for the
next load increment, If they have diverged, stop
the solution.

(9) Form new structure stiffness, and analyze for the
unbalanced nodal forces to obtain the increments
of nodal displacements,

(10) Go to step (2).

Recall the constitutive properties in Chapter 2, The
stress-strain relations for uncracked elastic concrete and
elastic steel are linear, so the moduli can be considered
as tangent moduli. The constitutive relations defined for
plastic concrete and plastic steel are incremental, thus are
tangent in nature, For the cracked concrete (Fig. 2.11), the
modulus in one direction is reduced to zero, but the unbalanced
stresses are allowed to release stepwise gradually. In
effect, the material stiffness is almost tangent, For the
crushed concrete, the stiffness defined is tangent stiffness
with a discontinuity at the onset of crushing. In summary,
the procedure used can be classified as an incremental tangent

stiffness method,
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4,4 Evaluation of the Unbalanced Nodal Forces

The unbalanced nodal forces can be obtained by carrying
out the integration of Eq. (3.33), once the unbalanced stresses

are known, The unbalanced stresses can be found as follows:

{O’J = {‘T}’- {T} (4.4)

where {01' are the total stresses obtained in step (4) of
Section 4.3,
{G} are the true stresses for the obtained total

strains satisfying the constitutive relations,
The true stresses can be easily found for all material states
except the plastic concrete, Therefore the following two
cases will be further discussed,

(1) Concrete in the plastic state: The incremental
stress-strain relations for plastic concrete can be written

d{0) =[Dw]d{e] 4.5)

where [D(c)] is a function of stress, Fig. 4.4 shows the
changes of stresses and strains in a two dimensional stress
space and a n-dimensional stress-strain diagram. {011, {e}l
are stresses and strains at the beginning of the increment
respectively; A{o}’ and Afe} are stress and strain increments
obtained from the linearized solution; {6112 and {612 are
obtained total stresses and strains, If the true stress

increment A{G} corresponding to A{e? can be found, then the
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unbalanced stress can also be computed as follows,
: N /
‘Z {af = a{0} "Af‘TJ (4.6)

Exact value of A{G} cannot be found, but one can resort to
numerical solutions of Eq. (4.5), which is a first order
matrix differential equation, In this work, the equation

is solved by the refined Runge-Kutta method, which involves

the following sequence of calculations:

o

{k) = [Dwn]a{g = s{o¥

{k) =[ Do+ Lko] afe]

{kj =[ Do+ 5k a{¢}

(k) =[D(c+ ks o{€)

afa)'= £ (fkf +2{ka) +2{k:f +{kd}) (1.7)

The truncation error is of order (Ae)s. Thus Egq. (4.6) is

fre——

replaced by

o} = A{G);‘A{G'}* (4.8)

(2) Concrete in elastic-plastic transition state: As
shown in Fig. 4.5, during the transition from elastic state

to plastic state, the obtained total stresses fc}'z
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will end up beyond the yield surface. The intermediate

£ a7 : ’ . . .
stresses 70} 1 and strains {¢} 1 touching the yield surface
can be obtained by scaling down the increment by a factor

o such that Eq. (2,1) is satisfied,

(7 +a A'J’x)LHU, 1—o<c\a§)"— (0x + X 2TR)(Ty + %o 0y)

2 -2 (4.9)
where G is the uniaxial yield strength,
5&1 ( aJx ,
J — —
wd}%'—h% ey = e{9)
Ty , LaTy
4 can be obtained by solving Eq. (4.9), then
’ . ’ /
{e} ={0}, + A afg} (1.10)

{e}, ={e, +x a{¢] (@.11)

. Ak
The true stress increments A%G} for the strain increments
(1-9) A{e} can be obtained by the same procedure as in the

last case, The unbalanced stresses are then

{a) = U-=02{o) —afef | (4.12)

4.5 Convergence Criteria

In the proposéd iteration procedure, the equilibrium
equation is operated on to solve the nodal displacements,

The two most obvious criteria of measuring the convergence

at the end of an iteration are the magnitude by which



equilibrium is violated or the accuracy of the total dis-
placements. The violation of the equilibrium can be
measured by the magnitude of the residual unbalanced nodal
forces, The accuracy of the nodal displacementé can be
measured by the magnitudes of the additional increment of
displacements,

In the computer program developed for this study, either
one of the above mentioned two criteria can be used according
to the prescription in the input data, The six components
of the nodal forces or nodal displacements corresponding to
six degrees of freedom are treated independently. The
maximum vector norm is used to measure the error for each
component, Let the Arin' ARin denote the increment of
displacement and the unbalanced force respectively for the
i th component at node n. Then, for the unbalanced force
criterion the errors

||£|i=7n:w|AR‘m| .

for the displacement increment criterion the errors

lel; = max| ara]

where i =1, ---, 6, When all six components of the errors
become smaller than their convergence criteria, the computer
will stop the iteration and go on to the next load increment,
The residual unbalanced nodal forces will be carried over
and added to the next load increment,

Usually the failure of a structure is symptomatically

indicated by the divergence of the iteration., 1In order to

70



prevent the computer from wasteful computation, a
divergence criterion is also specified together with the
adopted convergence criterion, The solution will stop
whenever any component of the errors exceeds its divergence
criterion,

To further guard the solution from overstringent con-
vergence criteria, a ceiling has to be specified in the input
data to limit the number of iterations for one load increment,
The solution will go on to the next load increment if the
number of iterations for a particular increment exceeds the

limit,

4,6 Computer Program

4.6,1 Input and Output
A computer program called NARCS (Nonlinear Analysis

of Reinforced Concrete Shells) has been developed to implement
the proposed method of analysis, The program was coded in
FORTRAN IV language and has been tested on the CDC 6400 com-
puter at the University of California, Berkeley. It can
analyze free-form reinforced concrete shells subjected to
constant dead loads and monotonically increasing arbitrary
live loads. A brief description of the input and output is
given below,

The required input data includes:

(1) Control data such as number of joints, number of

types of material properties, number of layer

systems, number of load increments, convergence



(2)
(3)
4
(5)
(6)
(7
(8)
(9)
The
1)

The
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control code, output control code, definition
of local coordinate systems, etc,

Convergence and divergence criteria,

Concrete and steel material properties,
Construction of layer systems.

Nodal point coordinates and boundary conditions,
Element data for each shell element.

Boundary elements,

Concentrated joint loads.

Load increments,

output consists of:

Input and generated data as a check.

following data for each load increment or each

iteration,

(2)

(3)

4)

(5)

(6)

(7

(8)

Load factor (multiple of the input live

load).

Unbalanced nodal forces,

Nodal displacements in global coordinates,
Centroidal curvatures and/or nodal displacements
in local coordinates for each shell element if
requested,

Stresses and material state indices for concrete
and steel layers for each shell element,

Strains for concrete and steel layers for each
shell element if requested.

Stresses in the boundary elements. Note that re-
actions can be obtained by proper interpretation

of these stresses,
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If the gravity load (dead load) is not included, the
input loading will be considered merely as a load pattern.
The first linear elastic solution will be scaled up or
down to a point where one of the layers first starts
cracking or yielding, the corresponding load will be
termed the proportional 1limit,  The input increments will
be considered as fractions of the proportinal limit., On
the other hand, if the gravity load is included, no propor-
tional 1limit will be computed, and the input increments are
taken as fractions of the input live load.

4,6.2 Flow Charts

The flow chart of the incremental iterative
procedure is shown in Fig. 4.6, As supplements, flow charts
for subroutines PROP and CHECK are shown in Figs. 4.7 and
4,8, Subroutine PROP finds the proportional limit, sub-
routine CHECK checks the stress state, updates the stiffness

and calculates the unbalanced forces.
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Fig. 4.6 Flow Chart for NARCS



PR

— - DO 10 N = 1, no. of shell
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Y
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layer

|
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factor required to crack or
yield one of the layers

Scale the displacements to the
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'
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7

e

CALL CHECK

@9

Calculate stresses in the
boundary elements

Fig. 4.7 Flow Chart for Subroutine PROP
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analyzed through the nonlinear stage till failure to demon-

strate the applicability of the proposed method of analysis,

5.2 ‘Reinforced Concrete Beams

Reinforced.concrete beams can be treated as strips of
one-way slabs, As described in Chapter 3, the transverse
shear deformation is neglected in the basic kinematic
assumptions, go any point in the shell is in a plane
stress state, Consequently diagonal tension cracks resulting
from a combination of shearing and flexural tension stresses
can not be taken into account in this analysis, In the
following beam examples, it is assumed that all of the beams
are adequately reinforced with web reinforcement, such that
shear type failures are excluded,

5.2,1 Example 1 -- Hypothetical Beams

Three simply supported beams with identical
configuration, loading condition and material properties,
but with different reinforcement ratios are analyzed (Fig. 5.1).
Each of the beams represents a distinct reinforcement condi-
tion (Fig. 5.2a), The balanced design case is the condition
in which the concrete and the reinforcing steel reach the
ultimate yield stress at the same time, The under-reinforced
case is the condition with a smaller amount of steel in
which the steel yields before the concrete, For the over-
reinforced case, the reverse is true, with the concrete
reaches its ultimate strength before the steel yields, The

same finite element mesh layout, layer system construction

—

sy

o

[l

R

AR

rom
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and material properties are used for all three beams (Fig. 5.1),

No experimental data are available to determine quan-
titatively the tension stiffening effect, At this initial
stage, three unloading curves (Fig. 5.2b) are assumed to
study the influence of the effect on the solution for each
of the reinforcement conditions, Type O assumes that once
one of the concrete principal stresses exceeds the tensile
strength cracks form in the perpendicular direction and the
principal stress drops abruptly to zero, which is equivalent
to totally ignoring the tension stiffening effect. Types A
and B are two intuitively assumed unloading curves. Type A
represents the more rapid unloading of the concrete stress,
and thus includes less stiffening effect from the concrete
between cracks than Type B. Both A and B release the con-
crete stress completely at a strain about five times of
that corresponding to the tensiie strength,

The resulting load-deflection curves are shown in Figs,
5.3 to 5,5, and failure mechanisms at the ultimate loads
in Fig. 5.6, It can be seen that the influence of the ten-
sion stiffening on the post-cracking load-deflection response
is quite significant for the under-reinforced case (Fig. 5.3).
This is consistent with the wide spreading of the cracked
region in Fig. 5.,6(a). However all three curves converge

eventually because ultimately most of the cracked concrete

reaches the zero stress state in Fig., 5.2(b). For the balanced
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design case, the influence of the tension stiffening is

small (Fig., 5.4), and the extent éf the cracked region is
limited (Fig. 5.6b), The effect becomes negligible for the
over-reinforced casé (Fig. 5.5 and 5,6c¢c), It is concluded that
the significance of the tension stiffening effect decreases
with the increase of the reinforcement ratio,

Also shown on the load-deflection diagrams are the
ultimate loads (Pu's) calculated from the elementary beam
theory, assuming a linear strain distribution over the
depth, trapezoidal compressive concrete stress blocks, and
neglecting the tensile concrete stresses, The differences
of the Pu's and the ultimate loads from the computer solution
are due to the contribution of the tensile concrete stresses,
The contribution increases with the extent of the uncracked
regions of the concrete in tension, Consequently, it is
found that the effect of the tensile concrete stresses on
the ultimate loads increases with the reinforceﬁent ratio.

Finally, in order to study the effect of the magnitude
of load increment, Example 1A with Type A stiffening was
reanalyzed with two increments between the proportional load
and the ultimate load (Fig. 5.3). These results show the
path-dependency of the solution.

5.2,2 Example 2 -- Breéler—Scordelis Beam B3

Among a series of reinforced concrete beams
tested by Bresler and Scordelis [5.1, 5.2], one designated
as B3 was selected for study. The simple span beam had

web-reinforcement and a long span length, such that a flexural



failure occured. A concentrated load is applied at the middle of
the span, The beam elevation, cross-section and the finite ele-
ment mesh used are shown in Fig., 5.7. The layer systems, material
properties and the assumed tension stiffening relation are shown
in Fig. 5.8.

Fig. 5.9 shows the load-deflection curves obtained from both
the experiment and the analysis, In the experiment the beam was
first loaded to about 30% of ultimate in two or three increments
and then the load was removed. The load was reapplied in 10 kip
increments to a point near failure and then in 5 kip increments
until failure occured. The experimental curve shown in Fig. 5,9
was obtained from the deflections recorded during the final
cycle of loading from zero to ultimate. On the analytical
curve the load corresponding to the first point is the pro-
portional load limit - the load when the tensile cracking first
starts, Comparing the two curves, the slight discrepancy in the
lower load range is attributed to the above mentioned unloading
and reloading in the experiment. The difference in the higher
load range is due to the bilinear approximation of the concrete
stress-strain relation in the analysis which over-estimates the
concrete modulus at high stresses. Nevertheless, excellent
agreement is found for the ultimate loads.

Shown in Fig. 5.10 are the crack patterns at the ultimate
load for both the experiment and- the analysis. In the experiment
a few diagonal tension cracks did appear in certain regions, but
never constituted a failure mechanism, The actual failure mode
is a flexure-compression failure. It can be seen from the figure

that the average cracked region from the analytical solution
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coincides with that observed in the experiment, The yielded
region of concrete in the analytical results also concurs with

the compressive crushed region in the experimental results,

5.3 Reinforced Concrete Slabs

5.3.1 Example 3 -- Cardenas Circular Slab C2

An isotropically reinforced concrete circular slab tested
by Cardenas and Sozen [5.3] is selected for analysis, The shape
of the specimen is chosen to demonstrate the adaptability of the.
triangular finite element. The slab is simply supported and
subjected to a uniformly distributed moment all around the
periphery, It should be realized that in this example, unlike
the beam examples, the concrete is in a state of biaxial stresses,
Therefore the proposed method of analysis can be further veri-
fied for two-dimensional cases.

The dimensions, reinforcement, loading condition, finite
element mesh and layer systems are shown in Fig, 5.11., Since
the slab is in a constant curvature state, only two elements are
needed to satisfactorily approximate one quadrant of the structure,

Using the axisymmetrical condition of the problem, only one quad-
rant of the §1ab need to be analyzed, The applied distributed
moment is replaced by statically equivalent nodal moments, The
material properties and the assumed tension stiffening relation
are given in Fig. 5.12,

Figs. 5.13 through 5.15 show the plots of the applied moment
vs., curvature, concrete strain and steel strain obtained from
both the experiment and the analysis, Reasonably good agreement
is found for all of the plots, The discrepancy in the moment-
steel strain plots (Fig. 5.15) may be attributed to the possible

difference between the assumed reinforcement position in the
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cross-section and the actual position, and to the difference bet-

ween the steel modulus of elasticity used and the actual modulus.

The slab was also analyzed with a single large increment
from the proportionél load 1imit., The results were virtually
identical to those previously obtained.

5.3.2 Example 4 -- Cardenas Rectangular Slab B7

A rectangular slab also tested by Cardenas and
Sozen is selected as another example, The slab is simply
supported on two opposite edges and free on the other two
edges (Fig. 5.16a). Uniformly distributed moments are
applied on the two simply supported edges., The slab is iso-
tropically reinforced with reinforcement oriented at 45° to
the edges. This may serve to demonstrate the capability of
the proposed method to accomodate arbitrary orientation of
the reinforcement,

The dimensions, smeared reinforcement, loading condition,
finite element mesh and layer systems are given in Fig. 5.16,
Material properties and the assumed tension stiffening
relation are given in Fig. 5.17.

Figs, 5.18 through 5,20 show the plots of the moment

vs, curvature, concrete strain and steel strain resulting

from the experiment and the analysis. The agreement between
experimental results and the analytical solution is satisfactory,
considering the possible experimental inaccuracy and the finite
element approximation, The discrepancy in the higher load

range of the moment-concrete strain plots can be attributed

to the possible over-estimation of the concrete compressive

strength f; and the concrete modulus at higher stresses,
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The break in the three analytical curves at 50% of the ultimate
load can be smoothed to a certain extent by increasing the
tension stiffening effect, noting that the slab is under-
reinforced., The sharp increase of the slope on the analytical
moment-concrete strain curve (Fig, 5.19) for loads above 50%
of the ultimate also indicates a rapid shifting of the neutral
surface,

5.3.3 Example 5 -- McNeice Slab

An isotropically reinforced square slab tested

by McNeice [5.47] was also analyzed. The slab is simply
supported at four corners, and is subjected to a concentrate
load at the center (Fig, 5.21). Unlike the last two examples,
the slab can serve as a realistically complicated example,
Unfortunately, there is a lack of report on the detailed test
results, it appears that the slab was not loaded up to failure,
and the provided information on the material properties are
insufficient, The dimensions, cross-section properties,
finite element meshes, layer systems are all shown in Fig.v5.21.
The given and assumed material properties are shown in Fig. 5.22,

The resulting load-deflection curves are shown in Fig. 5.23.
The slab was first analyzed using 3 x 3 mesh and 0,77 ksi for
concrete tensile strength and neglecting the tension stiffening
effect., The resulting initial uncracked slope of the obtained
load-deflection curve agrees with that of the experimental
curve, but the proportional load limit is over-estimated,

Therefore the tensile strength of concrete was reduced to 0,55 ksi,
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Then the proportional load limit concurs with the experimental
result, but there is a general over—estiﬁation of displacement
in the post-cracking range, Subsequently the tension stiffening
effect was included with an assumed crack unloading curve

(Fig. 5.22b), The agreement of the resulting curve with the
experiment was considerably improved, but the deflections

were under-estimated at the earlier post-cracking stage and
over-estimated at the later stage. Finally, the refined 6 x 6
mesh was used, and a smooth load-deflection curve was obtained,
The deflections are still over-estimated at the earlier post-
cracking stage, but conforms with the experimental curve at

the later stage,

The refinement of element mesh has two effects: one is
refinement of the displacement field approximation, the other
is refinement of the material discretization., In this example,
it appears that the improvement of solution is mainly attributed
to the latter, because the solution for the uncracked and
the early post-cracking ranges is hardly changed by the
refinement of mesh, This shows the accuracy of the linear
curvature finite element in approximating the true displacement
field, 1In accordance with the previous finding for beams,
it can be observed that the influeﬁce of the ténsion stiffening
on the post-cracking response is very significént for the
under-reinforced slab, It is felt that the analytical solution
can be further impréved by adjusting the tension stiffening

effect, However, there are many factofs °
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which may affect the tension stiffening effect, such as the
size and spacing of the reinforcing bars, bond characteristics
between steel and concrete etc, To be more precise, each
concrete layer shbuld have different tension stiffening

effect because of their different relative position with
respect to the reinforcement, In the absence of the quanti-
tative knowledge of the effect of each individual factor,

it seems wiser to make an estimation of the over-all average
of the effect for all layers, Further discussion on the
tension stiffening effect will be given in Chapter 6, Finally,
it is noteworthy that all the analytical curves converge
toward the same curve at the ultimate range, which indicates
that the ultimate response is not affected by the magnitude

of the concrete tensile strength and the tension stiffening
effect., 1In conclusion, the comparison of the analytical
solution and the experimental result is satisfactory in the
sense that the experimental curve is bounded by the analyti-

cal curves with some of the unknown parameters varied.

5.4 Reinforced Concrete Shells

5.,4,1 Example 6 -- Hedgren Cylindrical Shell
A microconcrete, 1/8 scale model of cylindrical
shell tested by Hedgren [5.,47] was selected to study the
validity of the method of analysis for shells, The parabolic
cylindrical shell (Fig. 5.24) was supportéd on end diaphragms

and had free longitudinal edges. The rise to span ratio was
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1:5,3 and the width to length ratio was 1: 1.75. The longi-
tudinal edges of the shell was thickened over a 5 inch
horizontal distance, "according to the variation
-

h = 0.5 + (y?)
where h is the thickness and y{ is the horizontal distance,
The reinforcement of the shell is shown in Figs, 5.25 and
5.26, The shell was tested under a uniformly distributed
normal pressure using a vacuum loading system. In the
analysis, the shell was assumed to be simply supported on
both ends, and one quadrant of it is divided into a 8 x 8
finite element mesh (Fig. 5.27). The material properties
and the assumed tension stiffening effect are given in
Fig. 5.28. The concrete was divided, through the thickness,
into 8 equal layers and two very thin layers, one on each
of the top and bottom surfaces, so that the surface stresses
can be approximated by the stresses in the special thin
layers., The actual reinforcement, including longitudinal,
transverse, diagonal and edge reinforcing bars, was closely
approximated by 24 types of steel layer systems. Each type
had 4 to 7 steel layers of different smeared thickness and
orientation, The cover of the reinforcement was uniformly
assumed to be 1/8" to the center of the reinforcing bars.
The design load of the shell was 0,52 lb/inz. In the following
presentation of the analytical and experimental results, the
applied load will be expressed'in terms of a load factor F,

which is defined as the ratio of the applied load to the
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design load.

The shell was first analyzed using the given yield
strength for the reinforcement. A premature failure occurred
at F = 2,4 which was far below the experimental ultimate
load (Fig. 5.29), The failure mechanism consisted of
extensive cracking at the edges and the top of the crown,
and yielding of the edge reinforcement and the top lateral
reinforcement at the crown,

A rough estimation of the ultimate load carrying
capacity of the shell was obtained by computing the T-C
couple assuming a beam type failure mechanism, Supposing
the tensile region of the shell cracked and all longitudinal
edge steel at its yield point, a resultant tensile force of
8.16 kips was found, Neglecting the change of the structural
configuration due to finite deflection, the moment arm of
the T-C couple was assumed to be 8 inches, An upper bound
of the ultimate load factor F = 2,97 was obtained, Even if
the secondary longitudinal reinforcement was included, only
F = 3.33 could be found. The extra load carrying capacity
in the experiment might be derived from the constraint of
the monolithically casted end diaphragms, the strain
hardening of stgel during yielding, and the finite deflection
prior to collapse, None of these factors can be accounted
for in the present method of analysis,

In order to study the effect of the strain hardening and

116

finite deformation, the shell was reanalyzed using the ultimate
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strength of steel as the yield strength, The resulting
load-deflection curves are shown in Fig. 5.29. In agreement
with the experimental results, an ultimate load factor of
4,0 was obtained, The distribution of normal displacement
at the midspan section and along the crown of the shell are
shown respectively in Figs, 5.30 and 5,31, It can be seen
that the analytical results were consistently more flexible
than the experimental results, It should be noted that in
the experiment the dial indicators measuring the edge
deflections became out of contact with the shell for loading
beyond F = 2,4, Therefore the experimental curve for the
edge deflection in Fig. 5.29 was completed by extrapolation
of the experimental deflection profile in Fig. 5.30, For

F = 4,0 the analysis gave a vertical uplift of 0.33 in. at
the crown and a downward vertical displacement of 2,69 in,
at the edge at the midspan cross-section, If the effect of
the finite deflection is included in the estimation of the
ultimate load, the moment arm of the T-C couple could be
increased to 11 in, With the original given yield strength,
an upper bound of the ultimate load facto? F=4.08, or F = 4,58
including the secondary longitudinal reinforcement could be
obtained, It was concluded that in this particular example
there was considerable stiffening effect due to the finite
deflection of the shell, This suggests that for certain
cases of flexible shells the inclusion of thé geometric.non—
linear effect should be considered in computing ultimate

strengths.
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Despite the above mentioned differences, it was considered
informative to discuss some of the internal concrete and steel
stresses obtained from the analysis, Figs. 5.32 and 5,33
show the longitudinal distribution of longitudinal stresses
in the edge reinfbrcement and the crown concrete respectively
for different load levels, It was observed that there was
little longitudinal bending action taking place along the
edges, and virtually none at the ultimate stage. On the other
hand, there was considerable longitudinal bending action
along the crown of the shell throughout all load levels,

Fig. 5.34 shows the load vs, longitudinal stresses curves
for the edge reinforcement and the crown concrete at the
midspan,

Shown in Figs, 5.35 and 5.36 are the distribution of
transverse steel and concrete stresses at the midspan section,
The yielding of the top steel and the crack propagation of
the concrete can be observed from these figures., It is
of interest to note that there was a stress reversal in the
bottom steel after the cracks penetrated deep into the thickness,
The validity of the solution, however, was not affected, because
the reversal occurred well within the elastic limit, Figure
5,37 shows the load vs, transverse stresses curves for the
steel and concrete at the crown of midspan,

Figures 5,38 and 5,39 show the crack patterns on the tgp
and bottom surfaces respectively at the ultimate load.

Transverse cracking occurred in all the elements along the



edges, a negative longitudinal yield line formed at the crown,
and a positive yield line initiated near the edge. The
trend and direction of the crack patterns agreed with the
experimental results,
To test the self-consistency of the analytical solution,
a static check was made at a cfoss—section near the midspan,
section X-X in Fig, 5.27, for F = 4.0.. The internal stresses
were integrated, The resultant tensile force was compared
with the resultant compressive force, and the resultant
internal resisting moment was checked with the external
moment due to the applied load., The calculation can be
summarized as follows,
Forces: Tensile 7.62 kips
} should be equal
Compressive 8,08 kips
Error 5.7%
Moments: Internal 45.23 in-k
} should be equal

External 45,95 in-k

Error 1.6%

A similar check was also made for F = 2,4, The results were
equally satisfactory.

In conclusion, the analytical solution agreed with the
experimental results at the linear and the early nonlinear
stages., For the later nonlinear and ultimate stages the
analysis gave a more flexible and weaker sothion because

of the inability to include the geometric nonlinearity.
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5.4.2 Example 7 -- Hyperbolic Paraboloid Shell
A doubly curved hyperbolic paraboloid shell, 80

ft. square in plan, with its edge beams completely fixed into
abutments at the low points and the high points free to deflect,
was designed for dead weight of the shell plus the edge
beams and a live load of 20 1bs. per square foot of horizontal
projection (Fig. 5.40), A constant thickness of 4 in. was
adopted for the entire shell surface. A constant cross-section
of 20 in, by 20 in, was used for the edge beams, Unit weight
of the concrete was assumed to be 150 1b/ft3, Concrete with
a compressive strength of 3750 psi was used, A single layer
of uniform, orthotropic reinforcement parallel to the two
straight line generators was nominally designed to resist
the maximum membrane forces and bending moments, The edge
beams were designed as eccentrically loaded columns to resist
the maximum axial forces and bending moments., As shown in
Fig. 5.41(a), the structure is symmetrical with respect to
two vertical planes, XZ and YZ, therefore only one quadrant
of the shell needs to be analyzed. The finite element mesh
used, designated as 8 x 8, is also shown in Fig. 5.41(a).
Material properties are given in Fig. 5.41(b). The edge
beams were treated as thickened shell elements., Each element
was divided into 10 layers of equal thickness,

The HP shell is known for the predominant participation
of membrane action in load transference. It is also recognized

that the simple triangular shell element used in this study
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provides a poor representation of membrane action. In order
to ensure the convergence of the solution with decreasing
mesh size, linear analyses with different mesh sizes were
conducted for the design loads using the NARCS program
developed as part of the present study. The resulting verti-
cal deflection, axial force and bending moment for one of
the edge beams are shown in Fig. 5.42, Also shown for com-
parison are results from the SAP program, which uses Clough
and Felippa's quadrilateral element (refer to Section 3.5),
Convergence of the NARCS solution towards the SAP solution
with decreasing mesh sizes can be observed, Since the purpose
of this example is Anly to demonstrate the applicability of
the method to shells of double curvatures, the 8 x 8 coarse
mesh is chosen for the nonlinear analysis,

The resulting nonlinear load-deflection curve is shown
in Fig. 5.43., The structure exhibited no cracking under design
load, namely dead load plus 20 lb/ft2 live load. Cracking
probagated slowly during the following overloading until a
live load of 110 lb/ft2 was reached., The crack directions
were generally parallel to the parabolic arch connecting the
crown point and the two low points, Fig, 5.40(b). At 110 lb/ft2
live load, the crack propagation reached the parabolic ridge
connecting the two high points and the crown point. At
the following load increment, the shell abruptly failed with
a cantilever type failure mechanism, Also shown in Fig, 5.43

are the axial force and the bending moment at section B-B of
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an edge beam (Fig. 5,41a), It can be observed that the
responses of the deflection, the axial force and the bending
moment are almost linear up to the. failure load., This
indicates that the stress redistribution due to cracking is
very localized, thus the global behavior of the shell is

almost linearly elastic up to the ultimate stage where a
brittle type failure occurs abruptly. 1In conclusion, the
analysis shows the tremendous load carrying capacity, dead

load plus 5,5 times design live load, of the lightly-reinforced
HP shell, and its lack of ductility during failure,

A static check was made at cross-section C-C in Fig. 5.41(5).
for the ultimate load, The calculation is summarized as
follows,

Force: Tensile 420 kips

should be equal
Compressive 470 kips

Error 11%
Moment Internal 5350 kip-ft
}should be equal
External 6010 kip-ft
Error 11%

The results were considered satisfactory for the coarse finite

element mesh used,

5.5 Computer Time

The most distinct feature of the proposed incremental
iterative procedure is the repetition of a series of linear

analyses, The required computer time for the implementation
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of NARCS program is approximately directly proportional to
the total number of iterations, The total number of itera-
tions ;s controlled by the magnitudes of load increments,
convergence criteria and allowable maximum number of
iterations for each increment,

The computation involved in each iteration consists
of two major parts: (1) solving the equilibrium equations,
(2) calculating the internal stresses and updating the element
stiffness, The computer time required for the first part
is directly proportional to NMz, where N is the number of
unknowns, M the half band width of the structure stiffness
matrix. That for the second part is a function of the num-
ber of elements, the number of layers in each element and
whether output is requested, In general the relative weight
of equation solving time increases as the size of structure
system increases,

Another distinct feature of the NARCS program is the
large amount of bookkeeping using tapes, which requires a
lot of additional peripheral processor (PP) time, The cost
of PP time usually depends on the total central memory
being used by the job. The effective time used for computing
cost is the central processor (CP) time plus a fraction of
PP time,.

The computer time required for the preceding numerical
examples on a CDC 6400 computer is tabulated in Table 5.1

for reference,
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6, PARAMETER STUDIES

6.1 Introduction

The difficulty associated with attempting a stress analysis
of a reinforced concrete system is mainly due to the c;mplexity
of the material nonlinearity. The difficulty is further
enhanced by the complicated stress states existing in rein-
forced concrete shells, With the highly simplified material
model of this study, there are still factors which cannot
be determined quantitatively directly from experiments, The
rarity of available experimental data on the shells makes
the verification and parameter studies of the analytical
method extremely difficult.

The parameters which will be studied in this chapter
are limited to those of the analytical model, and the study

resorts mainly to numerical experimentation,.

6.2 Tension Stiffening Effect

In Chapter 2, the tension stiffening effect was introduced
through the behavior of a reinforced concrete member subjected
to uniaxial tensile forces, For flexural members, Fig. 6,1
schematically shows the stress distribution between two cracks.
The concrete has zero stress at the cracks b;t gradually
gains stress through the bond action between the steel and
the concrete, Therefore the post-cracking average stress-
strain relationship for concrete may be rep;esented by an
unloading curve., The shape of the curve is affected by many

variables, such as size, spacing, concrete cover and the
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surface characteristics of the reinforcing bars, and the

strength of concrete, etc, However, the following three

necessary characteristics of the curve can be deduced

mathematically.

(1) o= ft' in Fig. 6.2 constitutes the upper bound of the
unloading curve,

(2) ¢ =0 in Fig. 6.2 is the lower bound of the curve,

(3) The slope of the curve is less than or equal to zero.

It can be further observed that the average value of
the concrete stress decreases as the crack spacing s (Fig. 6.1)
decreases, Fig. 6,3(a) shows a typical crack pattern in a
flexural member. Flexural cracks initiated from the tension
side of the meﬁber penetrate to various depths., If the
member is divided into an imaginary layer system over the
depth, each layer will have various crack spacing. Among
the six layers in tension in Fig., 6.3(a), crack spacings
increase from layer 1 to layer 6, Therefore the average
concrete stress should also increase from layer 1 to layer 6.
This is reflected in Fig. 6,3(b), where the decreasing strains
from layer 1 to layer 6 correspond to increasing stresses
on the unloading curve.

In the finite element analysis, the tensile concrete
stress is averaged throughout the element, once the cracking
starts. The average stress decreases as the element gets
smaller, similar to the effect of decreasing crack spacing,

Consequently the tension stiffening unloading curve should
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also depend on the fineness of the finite element meshes.
Theoretically the tension stiffening effect can be neglected
if the elements approach infinitesimal siée.

Despite the uncertainty of the unloading curve the
existence of the tension stiffening effect is unquestionable,
The following conclusions can be drawn from the experience
in Chapter 5.

(1) The influence of the tension stiffening effect on the
response of the reinforced concrete structures is very
significant for under-reinforced cases, which constitute

the majority of the slabs and shells,

(2) The behavior of the structure at the ultimate stage

is not affected by tension stiffening.

(3) An unloading curve similar to the one in Fig. 5.12(b)
is generally a reasonable estimate and usually yields satis-

factory results.,

6.3 Load Increments

As pointed out in Section 4.3, the tensile cracking of
concrete is‘path-dependent, the elasto-plastic analysis for
compressive concrete is valid only for small load increments.
Therefore it is generally necessary to carry out the solution
in a series of small load increments, However, numerical
experimepts in Examples 1A and 3 of Chapter 5 reveal that
the results are not very sensitive to the magnitude of the
increment, Considering all of the approximations introduced

and the uncertainty of some of the parameters, the effect
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of the magnitude of increment is not significant and prac-
tically negligible. The major concern in planning load
increments is that the increments should be fine enough

to capture the drastic changes of slope on the load-
response curve, ﬁsually finer increments can better trace
the load response curve, but this consumes more computer
time, It is generally more efficient to apply larger load
increments at the earlier stages and smaller load increments

at the ultimate stage in order to bracket the ultimate load

more closely,

6.4 Convergence Criteria

Figure 6,4 shows the load-deflection curves for
Example 1(a) with Type A tension stiffening using nodal
displacement convergence criterion with different con-
vergence tolerances, Similar curves using unbalanced nodal
force convergence criterion are shown in Fig, 6.5, The
applied loading increments are identical to those previously
used in Fig. 5.3. The convergence of the solution with
decreasing tolerance can be observed, Fig. 6.6 shows the
relation between the total number of iterations and the
tolerance, An almost linear relation can be found between
the number of iterations and the logarithm of the tolerance,.

The determination of the tolerance should be based on
the desired accuracy of the results which is often dictated

by the accuracy of measurement in an experiment., Both the
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nodal displacement criterion and the unbalanced nodal force
criterion guarantee the convergence to an approximate true
solution, rThe choice between these two criteria should
depend on the interest of the analyst. For an experimentalist
who is mainly interested in the nodal displacements the nodal
displacement criterion appears to be more desirable, On
the other hand, a designer may find that the unbalanced
nodal force criterion is more suitable because he is more
concerned about equilibrium than the nodal displacements,

In the computer program developed for this study, the
input convergence tolerance is in terms of components
with respect to the global coordinate system rather than
local coordinate systems, The use of an unbalanced nodal

force criterion becomes very difficult for shell structures,

6.5 Yield Surface and Flow Rule

The adopted von Mises yield criterion is an approximation
to the true failure surface, and the validity of its associated
flow rule is purely a postulation, The majority of reinforced
concrete structures are under-reinforced. Their nonlinear
behavior is dominated by the tensile cracking of concrete
and the yielding of reinforcement, For these under-reinforced
cases, the concrete does not reach the yield state and thus
it is obvious that the yield criterion and the flow rule chosen
for the concrete are irrelevant.

In order to study the over-reinfdrced cases in which

the concrete will reach yield state before failure, an
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extreme case Qas chosen by modifying Example 5 to a highly
oVer-reinforced slab by increasing the reinforcement ratio
to 5% in both directions, The slab was reanalyzed using
both the normality flow rule and the "unconstrained flow

rule,"

The difference between the two results was found

to be negligible. The extent of yielded region was very
limited, and the movement of the stress vectors of yielded
layers on the yield surface according to the normality flow
rule was negligiblé.

Therefore, it is concluded that although the validity
of ﬁny flow rule for concrete is still an open question, for
the majority of cases where the yielded region is limited
either the normality flow rule or the "unconstrained flow

rule"

can be applied with little danger of serious error,
It should also be noted that the '"unconstrained flow rule"
has the distinct advantage of extreme simplicity, its
adoption may enable one to approximate the true failure

surface to almost any desired degree of accuracy without

difficulty.

6.6 Cracked Shear Constant

The cracked shear constant is introduced to estimate
the effective shear modulus along the cracks due to the
effect of dowel action and aggregate interlock., 1Its value

is bound between O and 1, 1In all the examples studied, it
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is found that the solution is insensitive to the numerical
value of the constant, Values ranging from O to 1 were
tried, and very little difference was noted. In fact the
shear stresses exist along the cracks were always found
very small.

However, Hand et al, [1.25] in their latest work found
that for a slab subjected to pure torsion an unstable crack
configuration was attained with the cracked shear constant
set to O when the load was approximately one-fourth of the

experimental ultimate,.
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7. CONCLUSIONS

7.1 Summary

A nonlinear finite element method of analysis has been
presented for analyzing reinforced concrete slabs of arbi-
trary geometry and free-form shells under dead loads and
monotonically increasing live loads., The method is
capable of tracing the load-deformation response and crack
propagation, as well as determining the internal concrete
and steel stresses through the elastic, inelastic and ultimate
ranges in one coﬁtinuous computer analysis. The nonlinearity
due to material properties is considered in the analysis, but
not the geometric nonlinearity.

A composite layer system consisting of concrete layers
and smeared steel layers is constructed to account for the
varied material properties within the finite element. The
concrete is assumed to be elasto-plastic in compression,
brittle in tension. Von Mises yield surface, the maximum
principal stress crack criterion and an effective strain
crush criterion are used to define the transition boundaries
for different material states. The normality flow rule is
adopted to govern the plastic behavior of concrete. The
tension stiffening effect of the concrete between cracks
is accounted for by releasing the unbalanced stress gradually
according to a specified unloading curve, The steel is con-
sidered as a one-dimensional elasto—plasti; material,

The shell surface is approximated as an assemblage of
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flat triangular surfaces. Each triangle is represented by

a flat triangular finite element with 5 degrees of freedom
at each node. The element is derived from combining a
linear curvature compatible triangular bending element with
a constant strain triangular membrane element. The coupling
effect between the membrane action and bending action is
included. The problem of the missing "sixth' degree of
freedom in the element formulation, corresponding to the
rotation about an axis normal to the plane of the element,
is overcome by attaching to each node of the assembled
structure stiffness matrix a special boundary element with

a high rotational stiffness about an axis normal to the shell
surface,

An incremental tangent stiffness itergtive procedure
is used. Either the nodal displacement criterion or the
unbalanced nodal force criterion can be prescribed for the
convergence criterion,

Several numerical examples, including beams, slabs and
shells, are studied to investigate the validity and applica-
bility of the proposed method. Important parameters, such
as the tension stiffening effect, load increments, convergence
criteria, yield surface and flow rule, crackedAshear constant,
are also studied.

7.2 Conclusions

1. The proposed method of analysis appears to be a valid

and powerful tool for the nonlinear analysis of reinforced -
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concrete slabs and shells for the cases or the ranges where
the effect of large deformation is negligible.

2. The proposed material idealization is capable of
capturing the dominant behavior of the reinforced concrete
structures under monotonically increasing loads. For the
majority of cases where the yielded region is limited, it
is reasonably safe to apply either the normality flow rule
or the "unconstrained flow rule."

3. The tension stiffening effect has a very signifi-
cant influence on the post-cracking response of under-rein-
forced concrete structures, but not the behavior at the
ultimate stage,

4, The adopted simple triangular shell element has
the deficiency of poor representation of the shell membrane
strains, but is very accurate in approximating the bending
action, Therefore, the required fineness of element mesh
to obtain reasonably accurate results depends on the pre-
dominance of the membrane action or bending action. A
doubly curved shell generally requires a finer mesh than a

slab,

7.3 Recommendations for Further Study

1, More experimental work is needed to assess the val-
idity of the analytical method and to further improve the
analytical model. It is believed that parallel interaction
of analyses and experiments will surely lead to fruitful

findings.



2, Major improvement in the efficiency of the method
can be achieved by improving the membrane representation of
the finite element.

3. Systematic parameter studies using the proposed
method may yield improvement in the design practice of
concrete slabs and shells, noting that the method is
capable of treating varying thickness, arbitrary orientation
and number of layers for reinforcement.

4. The analytical procedure may be extended to include

geometric nonlinearity.

5. Extension of the method to include cyclic loading

155

or load reversal can be done by constructing a simple realistic

cyclic material model. However, extensive experimental

study of the stress-strain relations for concrete under cyclic

loading is imperative for the construction of the material

model.

6. The method can also be extended to include creep,

shrinkage and temperature effects,
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