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ABSTRACT OF THE DISSERTATION
The Tightness of the Kesten-Stigum Reconstruction Bound
by

Wenjian Liu
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2013
Professor Kefeng Liu, Chair

It is well known that reconstruction problems, as the cross-disciplinary subject, have been stud-
ied in numerous contexts including statistical physics, information theory and computational biol-
ogy. My major contributions to the this field are to figure out the tightness of the Kesten-Stigum
reconstruction bound for both the 2¢-state symmetric model with triple mutation probabilities and
the asymmetric binary channel on trees. Furthermore, we determine asymptotics for the recon-

struction thresholds on regular trees of large degree.
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries.

We start with the following broadcasting process that stands as a discrete, irreducible, aperiodic,
and reversible Markov chain. Let T = (V, E, p) be a tree with nodes V, edges [E and root p € V.
Each edge of the tree acts as a channel on a finite characters set C, whose elements are config-
urations on T, denoted by o. We set a probability transition matrix M = (M;;) as the noisy
communication channel on each edge. The state of the root p, denoted by o, is chosen according
to an initial distribution 7 on C. This symbol is then propagated in the tree as follows. For each

vertex v having as a parent u, the spin at v is defined according to the probabilities
Plo,=j|ou=1) = M,;

with 7,7 € C. Roughly speaking, the problem of reconstruction is the following: consider all
the symbols received at the vertices of the nth generation. Does this configuration contain a non-

vanishing information on the letter transmitted by the root, as n goes to co?

In this paper, we will restrict our attention to regular d-ary trees, that is the infinite rooted tree
where every vertex has exactly d offspring(every vertex has degree d + 1 except the root which has
degree d). Let o(n) denote the spins at distance n from the root and let o*(n) denote o(n) condi-
tioned on o, = <. Two important channels will be mainly investigated in this thesis. First consider a
characters set C = C; | Co, consisting of two categories C; = {1,...,q}andCo = {¢+1,...,2q}
with ¢ > 2, and the state of the root p is chosen according to the uniform distribution on C. More-

over, a 2¢q X 2q probability transition matrix M = (1/;;)24x2, is defined as following:



Po if 12]7

Mij =14 m if i # j and ¢, 7 are in the same category,

[ P2 if i # j and 7, j are in different categories,

where pg, p; and p, are all nonnegative, as well as py + (¢ — 1)p; + gp2 = 1.

The second model taken into account in Chapter 5 is the asymmetric binary channel with the

configuration set C = {1, 2}, whose transition matrix is of the form
1 146 1-06 -1 1

+A
1—-60 146 -1 1

M =

First of all, we would like to give the formal definition of the reconstruction.

Definition 1.1.1. The reconstruction problem for the infinite tree T is solvable if for some 7, j € C,

limsup dry (0" (n), 0’ (n)) > 0

n—oo

where dry is the total variation distance. When the lim sup is 0 we will say the model has non-

reconstruction on T.

For any channel M, it is well known that the reconstruction problem is connected tightly to A,
the second largest eigenvalue by absolute value of M. An important general bound was obtained
by Kesten and Stigum (KS)[1][2]: the reconstruction problem is solvable if d|\|> > 1(\ may be
a complex number), which is known as the Kesten-Stigum bound. On the other side, for larger
noise (d|A|* < 1) one may wonder whether reconstruction is possible exploiting the whole set
of symbols received at the nth generation, through a clever use of the correlations between the
symbols received on the leaves. The answer depends on the channel. A particularly important ex-

ample is provided by g-state symmetric channels, that is, Potts channels in the statistical mechanics



terminology, with the transition matrix

Po P10 DM
p p PR p
M — 1 Po 1
pr p1 - Do

whose eigenvalues are A = py — p; and 1. In [3], this model has been completely investigated
by means of the recursive structure of the tree, and more importantly, the author successfully
accomplished that non-reconstruction is equivalent to lim,, .., z,, = 0, where z,, = EP(c, =1 |
al(n)) — %. Therefore the key method 1s to analyze the recursion relation between z,, and z,,41.

As a result, most parts of the conjecture in [4] have been solved as follows.

Theorem. When q > 5, for every d the Kesten-Stigum bound is not sharp. Moreover for fixed q, a

precise asymptotic result for the threshold A of reconstruction as d goes to infinity:

lim dA? = Cy

d—oo

where 0 < C, < 1 is a constant depending on q. When q = 3 there exists a dmyi, such that
for d > dp;, the Kesten-Stigum bound is sharp for both the ferromagnetic and antiferrmagnetic

channels.

In contrast to the symmetric model in [3], our 2¢ model turns out to be much more challenging,
because of an additional class of mutation that would complicate the second largest eigenvalue .
Despite of these troubles, inspired by the techniques in [3], we could still refer to the recursion
approach, however, it would need much improvements, such as introducing additional auxiliary
parameters ¥y, and z,, after x,,. More specifically, the blueprint of my proof is to research a second

order recursion relation, which can be counted as a nonlinear dynamical system.

There is no difficulty of calculating the eigenvalues of 2¢q symmetric channel M: first set

Po— A y4i y4i P2 p2 - P2
A p‘l po.—>\ p} nd B — P2 P2 ot P2
b1 b1 e po— A P2 p2 - P2

gxq axq



and then

det(M — AI)
Po— A P y4! D2 D2 D2
y4! Po— A - 4 D2 D2 D2
— et b1 b1 e po— A b2 b2 b2
P2 p2 cc+ P2 Po—A  p1 M
P2 P2 D2 Pr Po—A 0 M
P2 P2 P2 P1 P1 e po— A
A B
= det
B A

= det(A + B)det(A — B)

= [(po+p2—A) + (¢ = 1)(pr +p2)l[(po — p2 = A) + (¢ = (1 = p2)l(po — pr = N)* "7V,

Therefore the eigenvalues are Ay = pg— p1, Ao = po+ (¢—1)p1 —qps2, and A3 = po+(¢—1)p1 +
qp2 = 1, where we have two candidates \; and )\, for A, the second largest eigenvalue by absolute
value, by which a big trouble is caused. Because non-reconstruction happens at most d|\|? = 1, in
order to investigate the tightness of the Kesten-Stigum bound, without loss of generality, assume

+ < d|A]* < 1in the following context.

1.2 Background.

Beyond fundamental interest of determining the reconstruction threshold of a Markov random field
in probability, this problem is relevant to statistical physics, biology, and information theory(the

problem being equivalent to computing the information capacity of the tree network), and so on.

The reconstruction problem is intimately related to statistical physics. Consider a model of Potts

spins C = {1,...,¢} on a finite rooted tree with n generations, denoted by T,, Suppose that the



energy of a configuration x = {x; € C : i € T,,} is given by:

E(g) =—J Z 5a:ia:j

(4,5)€Tx

where (i, j) denotes pairs of spins connected by an edge of the tree. Let X be the random config-
uration produced by the broadcast process with the symmetric Potts channel up to generation n,

when the transmitted symbol is uniformly random in C. Then

1
P(X =z)= Ee_ﬂE@

where the normalizing constant Z = Z([3) is the partition function and the free parameter 3 is the
inverse temperature [5]. In other words, the broadcast process allows to construct one particular
Gibbs measure (state) associated to the energy function: in the statistical physics terminology this
is the free-boundary measure. On an infinite tree the Gibbs measure is not the unique for this
energy function. Even if more than one Gibbs state exists, the free-boundary state can be extremal.
It turns out that the reconstruction problem is solvable if and only if the Gibbs state with free

boundary conditions is not extremal.

Given the strong connection between extremality of Gibbs states and spatial decay of corre-
lations [6], there is the relation of the reconstructibility with the existence of a dynamical glass
phase. In recent years, an ongoing effort has been devoted to the study of glassy models on sparse
random graphs. These are graphs which contain cycles but locally look like a tree (e.g. uniformly
random graphs with given degree). One of the most widespread features of these models, is the
occurrence of glass phases in which the Boltzmann measure gets split into an exponential number
of lumps (also referred to as clusters or pure states). This phenomenon is usually studied by solv-
ing some one-step replica symmetry breaking (1RSB) distributional equations. It was shown that
these equations, as well as the criterion used to detect glass phases, do indeed coincide with the

solvability of an appropriate reconstruction problem.

Reconstruction thresholds on trees are also believed to determine the dynamic phase transitions
in many constraint satisfaction problems including random K-SAT and random colorings on ran-
dom graphs[7][8]. The reconstruction threshold is also believed to play an important role in the

efficiency of the Glauber dynamics on trees and random graphs. In [9] it was shown that the mix-

14Q(1)

ing time for the the Glauber dynamics on trees is n when the model has reconstruction and

5



slower than at higher temperature when the mixing time is O(nlogn). In the case of the Ising

model this is tight, the mixing time is O(nlogn) when d\? < 1.

Phylogenetic reconstruction is a major task of systematic biology [10]. It was shown in [11]
that for binary symmetric channels, also called CFN models in evolutionary biology, the sampling
efficiency of phylogenetic reconstruction is determined by the reconstruction threshold. Thus, if
for all edges of the tree, it holds that 20 > 1 the tree can be recovered efficiently from O(logn)
samples. If 20° < 1, then [12] implies that n§)(1) samples are needed. In fact, the proof of
the lower bound in [12] implies the lower bound n€)(1) whenever the reconstruction problem
is “exponentially” unsolvable. The results in [13] imply nQ(1) lower bounds for phylogenetic
reconstruction for asymmetric channels such that 20 < 1 and § sufficiently small. The details are
omitted from this extended abstract. It is natural to conjecture that this is tight and that if 26% > 1
then phylogenetic reconstruction may be achieved with O(log n) sequences. Indeed my results in

this thesis could improve the preceding topic further.

1.3 Main Results.

From Chapter 2 to Chapter 4, we will specify the 2¢ symmetric model first.

Theorem 1.3.1. Assume |\o| < |\i|. When q > 4, for every d the Kesten-Stigum bound is not

sharp, that is, the reconstruction is solvable for some \ = \ even if d\3 < 1.

The case of ¢ = 3 is kind of the threshold with respect to ¢, so we need more delicate analysis
to figure out the reconstruction. Therefore we defer this discussion to a subsequent paper. On the

other side, if ¢ is small, say, ¢ = 2, there would be no longer the reconstruction for large degree.

Theorem 1.3.2. When q = 2, there exists a D > 0 such that for d > D the Kesten-Stigum bound

. . . . _1
is sharp, that is, there is non-reconstruction whenever |\| < d~2.

In light of the techniques in symmetric models, it is feasible to deal with the asymmetric binary
channel with the initial distribution 7 = (71, 7) analogously. It is easy to see that the second

largest eigenvalue by absolute value is 6. Proposition 12 of [14] implies that for any asymmetric

6



channel, given d and 7, reconstruction is monotone in |6|, say, there exist the thresholds 6~ < 0 <

67 such that there is non-reconstruction when 6 € (0~, 07) while it is reconstructible given 6 < 6~

orf >0,
Theorem 1.3.3. When A? > %(1 — 0)2, for every d the Kesten-Stigum bound is not sharp.

Theorem 1.3.4. When A* < 3(1 — 0)2, there exists a D = D(w) > 0 such that for d > D the

Kesten-Stigum bound is tight.

Furthermore with the assistance of the central limit theorem and gaussian approximation, we
could figured out the precise asymptotic result for the threshold © = 6 or 6~ for fixed 7 as d goes

to infinity.

Theorem 1.3.5. When A? > %(1 — 0)% limg_, dO? = Cy, where 0 < C; < 1 is a constant

depending only on .



CHAPTER 2

SECOND ORDER RECURSION RELATION

2.1 Notations.

Before further reading, let’s introduce the notation in our proofs. Let uy, . . ., ug4 be the children of
p and T, be the subtree of descendants of v € T. Furthermore, if we set d(-, -) as the graph-metric
distance on T, denote the nth level of the tree by L,, = {v € V : d(p,v) = n}. With the notation
above, let o(n) and 0;(n) denote the spins on L, and L,, N T, respectively. For a configuration A

on L,, define the posterior function
fu(i,A) =P(o, =1i|o(n) = A).

By the recursive nature of the tree for a configuration A on L(n + 1) N T,,; we can further give

the equivalent form

fuli,A) =P(oy, =i | oj(n+1) = A).

Now for any 1 < ¢ < 2¢, define a collection of random variables

Xz(”) = fn(iv U(”))

to describe the posterior probability of state i at the root given the random configuration o(n) of

the leaves, and analogously,

X(l)(n) — fn(l,al(n)),
X(z)(n) — fn(2,al(n)),

and

XO(n) = fala+1,0'(n)).



By symmetry the collections { f,,(i,0'(n)) : 2 < i < q} and {f.(i,0'(n)) : ¢+ 1 < i < 2¢} are
exchangeable respectively, in addition, f,,(j,c%(n)) is distributed as

/

XW(n) ifi=j,

fa(dio'(n)) ~ ¢ X@(n)  ifi+ jare in the same category,

X®)(n)  ifi # j are in different categories.

Lase denote the corresponding moments of former random variables, which would be the main

objectives in this paper,

1 1 1
=E(XW(n)- = w=E(XP0n) - — Z=E(X®n) - =

and

2.2 Basic Facts.

First from the symmetric property of the tree and the fact Zfil X;(n) = 1, it follows that for any

1 <'i < 2q and nonnegative n € Z, EX;(n) = i is always true and

+ ! +(¢—1) + ! +q | 2+ ! 1
T = - n =~ n 5 ) = L
2% q ot g, ) T 2%

Ty + (g — Dyn +qz, = 0.

which implies

Besides, there are also some nontrivial results concerning these quantities.

Lemma 2.2.1. For any n € N|{J{0}, we have

29 1\2
i=1

meanwhile,



Proof. Starting with the definition and applying the Bayes’ rule yield

and thus

ogEiq (Xl(n) -

Next let’s consider the covariance matrix of random variables {X i(n) —

N 1
Tn -—
2q

EXY(n)
EP(0, = 1] 0'(n))

S full, A)P(o(n)

=Alo,=1)

_ P(o, =1{No(n) = 4)
R P@pzl) P4
= 22 Pl =404
= 2qEX12( )
= 2_EX!(n)
Ly’ ! 2 2 1
2q) = ZEX (n) — % ZEXi(n) + % T (2.2.1)

2q
= } . First point taken
7)1

into account is to express covariances in terms of x,,, v, and z,,. The same trick above is on again,

1
b+ 5

EX®(n)
Z fu(2,A)P(o(n)
2q Z P(o

QQEXl( )Xz( )>

=A|o,=1)

A) fu(L, A) (2, A)

so for any ¢; < 79 in the same category, it is concluded that, from the symmetric property of the

tree,

Similarly as above,



and thus

Therefore the covariance matrix is

2¢ 2 2¢ 29 2gq 2q

2¢ 2q 2¢ 29 g 2q

29 2gq 29 29 2q 2q
ZX n)=

29 2q 29 29 2q 2q

29 2q 29 29 2q 2q

2qg 2q 29 29 2q 2q

2qX2q

anr(q*l)yn*an

whose eigenvalues are 0, 52

, and =22 respectively. It is well known that the co-
variance matrix of a multivariate probability distribution is always positive semi-definite, which
implies that all eigenvalues are nonnegative, i.e. =, + (¢ — 1)y, — ¢z, > 0 and x, — y,, > 0.

Combining these results and the fact z, + (¢ — 1)y, + ¢z, = 0 completes the proof. [

Next it would be of interest to reveal the relation identities between means and covariances.

Lemma 2.2.2. For any n € N{J{0}, we have

11



Proof. Let’s display our discussion in virtue of the total probability formula, starting with the

identity (2.2.1),

In

Applying the analogous trick in Lemma 2.2.1 gives

EXW(n)X®(n)
= ZP(O'p =1]o(n)=A)P(o,=2|0(n)=A)P(c(n)=A|o,=1)

= D[P0, = 1|o(n) = A)PP(o(n) = A | 0, = 2)

and hence (i1) follows immediately as

1 1 1\? - -
E <X<1>(n) - —) (X<2>(n> - —) - E (X<2> = —) + y”2 S —

2q 2q 2q q 2q

Similarly, (iii) turns out to be true, by means of EX(VX®) = E (X ®) ? Finally (iv), (v) and (vi)

can be handled as before, plus considering the symmetry,

EX® x3)

= ZP ,=2|o(n)=APloc,=q+1|0(n)=APoc(n)=A|c,=1)
- ZP ,=1]0(n)=AP(o,=2]|0(n)=A)P(o(n)=A|o,=q+1)
= ZPap:q—l—l|a(n):A)P(ap:2q|a(n):A)P(U(n):A|ap:1)

— Efu(q+1,0'(n)f0(2q, 0" (n)).

12



To obtain the expression of EX ) X3 first recall

1
n+— = EX®
g, (n)

= Ef,(¢+1,0" EE:j‘z o!

= Ex (n)X(3) (n) + (q — )EX(Q)(n)X(g) (n) + E(X(?’))2
+(g = DEfu(q+ 1,0'(n)) fu(2,0" (1))

= EXYn) X)) +2(¢ - 1DEXPn)XO(n) + B(X®)2,

and it implies that EX®X® = ;-1 - (zn + A 2E(X<3>)2), further leading to

2(g—1

and thus

. <f”(q 1ol m) - 2—1(]) (fn<2q,al<n>> _ Qi)

2¢) " Ag?
_ py@x® _ A1
q 4q¢*
1 1 1z 1
- EBE(Xx® _ — G _ — EX® 4 x@®y_ - 2~
( 261)( 2q+q( - )4q2 q 4
_ _Wn W Un Un
q—1 2(¢—-1) 2¢ 29 2q
Wy, Zn

As in the preceding discussion, starting with

1
n+— = EX®
Unt 50 (n)

= Ef,(2,0' Zf i,o!
L EXO() X () 1 BCXD) 4 (g DES(2.01 () ol oM () + EXOXO

— 2B(XP) + (¢ — 2)Bfu(2, 0" (1)) fulg, o' (n)) + EXDXO),
13



we conclude

1 1
Em@m%mnu%a%m>:——5Pm+§——mmx®f—quwX“ﬂ,
q— q
as well as,
B (fu2.0' )~ 5 ) ( fula.o"(m) — 5
) 2q ) 2q
1 1 2 1 1
= —5\Un + o - QE(X(2))2 - qEX(Q)X(g) 5. \Un o T o
q—2 2q 2 2q 4q?
1 1 Un 1 q 1 2z, 1
= 4 n — =2 n -5 | — n 2 n - T =5
q—Q[y+2q (U+ +4q2> 2((1—1)( T3 q 2q2)]
Yn 1
q A¢
B 2v, Zn quwn,
¢—=2 2(q-1) (¢-1)(¢—-2)
O
2.3 Means and Covariances of Y;;.
Define
Yij(n) = fu (i,0;(n+ 1)),
and taking advantage of the symmetries of the model, it is apparent that for j = 1,...,d, the

2 .
random vectors (Y;;);2, are independent.

Since the moments of Y;; would play a key role in further calculation, it is necessary to figure

out them in the first place.

(i) foreach 1 < j <,
1 1

B (V- )
= B (X000 = )+ (= Do (X - o)+ e (X0 - 5

= poTn + (¢ — 1)p1Yn + qp22n
= MTp+ (A1 — A2)2p;

14



(1) for2 <1 <gq,

1 1
= pE (X(”(n) - 2_q) + [po + (¢ = 2)p1 | E (X(z)(n) - 2—q) + gpoE (X(S) (n) — —
= p1xn + [P0+ (¢ — 2)p1]yn + qp22n
_ _)\1 _)\1+(q—1))\2
q o 1 n q _ 1 mny

(iii) for ¢ + 1 <1 < 2¢, by means of the identity Zfil Yi;(n) = 1, it follows immediately

(iv) wheni =1,

1)? 12 1
= poE [ XW(n) — — —DpE ([ XP(n) - — E(X®(n) - —
Do ( (n) 2q) +(¢—1)p ( (n) 5 + qp2 (n) %

= Poun + (¢ — 1)p1v, + qpawy,

1+ X —2A

(v) for2 < <g,

1\?2 1\?2
= nE (X0 = o)+t (g - Dl (X - 5
= Pty + [po+ (¢ — 2)p1]vn + qpowy,
1A A A A — 1A
(—+—2+ : >xn— Ly, -2t e DA
2¢  2¢ q(qg—1) q qg—1

(vi) forqg+1 <1 < 2gq,

+ gp2E (X(g)(”)

n)

= pE (X(”(n) - 2—1q)2 +(q— p:E <X‘2) (n) - —q>2 +[po+ (¢ — DpiJE (X(g)(n)

= Pty + (¢ — 1)povn, + [po + (¢ — 1)p1]ws,
1— X

2% Tp + AW

15
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2q

:

)



X 1
tamB (£a+ 100 - 5 ) (oo ) - 5 )
o q(p1 — p2) - 1 2 Po + 1
= (po—p)n+ —1 - 2((_]—1) Zn + 2 ( xn)
(@+2M —Ao—1 N (q+ 1)\ — A
2q(q — 1) "2(¢-1) g¢-1 qg—1
(vii1) forg+1 <1 < 2gq,
1 1
B (v - g;) (%0 3,
_ Oy — 2 (x® ) — L
= (p +p)E(X (n) Qq)(X (n) Qq)
Hia =+ (= palB (X000 = o) (X900 - o)
_ T . _ W Y
= (poer)[ +2q( n)]+(q 1)(p +p2){ =1 -1 2
= _ﬁ LT
= 2q$ +2q—|— 1w

+2mE <X<1>(n) — 2—1q> <X<2> (n) — 2—1q)

:[_

=D =2)"

) (fn(CI+1,01(n))—2_1q> <fn(2q’al(n))_%)

2(q+2)M + (g — 2) X2 B 1 1 .
2q(q —1)(q — 2) 2¢(¢—1)]"" 2(¢—1)
2\ 2(¢+ DA+ (g — 2))\2w _

16
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(x) forl <11 < g < iy < 2gq,

B (¥ - 5 ) (Vi - 3. )

~ D+ =28 (X200 - 1) (X9 - 5

tpE (X(l)(n) - 2—1q> <X(3 (n) — 2—1(]) +poE <X<1)(n) - 2—1(]) <X<3) (n) — 2—1(]

)
Ha - 1B (X0 - o)

1
(- 5,)
2 1 3 1
= B = 2+ g DplB (X900 - o) (X900 - )
Wi - LY (x® 0 - L
o+ 2B (X000 = ) (X9 - )
w Zn Yn
= Dot =2 (= ) [ B ]
Hon o pa) [0+ 5 (o = )
_ bo—p,  po—p Pt (@@=t (g=Dp  prtp
g—1 " 2q(q — 1) 2q 2q

Ha- 2B (') - 5 ) (o' - o )
+opoE (X<1>(n) _ i) (X<2><n) - i)

2q 2q
w z
= @w+@—1MJ(— T )
qg—1 2(q—1)
2v, Zn qWy 1
q—2 2q-1) (¢—1)(¢g—2) 2q
+(q—1)p — +(@—1p1+(¢g—2
_ _bo (¢ —Dp1 —qpo w, — po+ (g —1)p1+ (¢ —2)ps 2+ @(yn — )
q—1 2(¢—1) q
/\2 —1 Zn /\2

= Ty — — Wy,
2q(q — 1) 20¢—=1) q—1
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2.4 Distributional Recursion.

The following standard relation follows from the Markov random field property:

fn+1(17 A)

= Plo,=1]|0p41 =A4A)
_ P(o,=10ont1 = A)
P<0n+1 == A)
_ P(o,=10nt1 = A4A)
> Plo,=iNon = A)
[Ty [PofullA) + 1 S0y Fali Ay) + 92 2 0 Fuli A
2?11 H?:1 Z?il Mz‘ﬂf(& Aj)
Hj=1 [1 +2¢(po — p2) <fn<17Aj) - %) +2q¢(p1 — p2) D7y (fn(i;Aj) - %)]
Z?il H?:l Z?il M f (£, Aj)

d

_ {H

- L+ 24(po = p2) (f"(LAJ‘) - 2—1q> + 2q(p1 —pz)i: (fn(z',Aj) _ 2—1(1)] } x

(S ]
]

1+ 2q(po — p2) (fn(l,Aj) - 2%) +2¢(pr —p2) ) (fn(i,Aj) - i)] } x

=2 2q
11

.

pofuali, A)+p1 D falls Ay) +p22fnm

1<l#£i<q {=q+1

.

2q q
+ Z H [pofn 1, A +p1 Z fn(ﬁ,A]) +p22fn(£’Aj)

i=q+13j q+1<04£i<2q =1

_ {

o BN

/—/H
Q

1+ 2q(po — p2) (f (i, A;) — ;q) +2(p1—p2) Y (fn(é, Aj) = 2%)]

i=1 j=1 1<t#i<q
-1
a4 , 1 1
+ > T 11+ 2400 — p2) (fn(@,Aj) - Z) +2(p1 —p2) > (fn(&Aj) - 2—q)] }
i=q+1 j=1 q+1<t#i<2q

and similarly,
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fn+1(q + 17A>

= Plo,=q+1|0p41=A4)

_ {ﬁ 1+ 24(po — ps) (fn(2,Aj)—2iq>+2q(p1—pz) >, (fn(zA) 21q)”x

j=1 1<i#2<q
q d
{ZH Va2l o) (£ A) = o) + 2 - ) 3 (faltid) - })]
i=1 j=1 q 1<b#£i<q 1
2q d 1 1 -1
+ > IT 1 +2a(m0 — o) (fn(i’Aj) - 2—) +2q(p1—p2) Y <fn(€ Aj) =3 )]} :
i=q+1 j=1 q q+1<{#i<2q a

Next consider the preceding recursive formula by taking A = o!(n + 1), then there are two

random variables

Z
X0+ 1) = fra (Lo (n+1) = g —
Zz’il Zi
and
X(3)(n+1) :fn+1<q—|—170'1<n+1)> = ZQ?;—I )
Zz’:l Z;
where

(@ if1<i<gq

d
1
=t L 1<t#£i<q
) 1
= H 1+ 2q(po — ( )—261(291—292) > (Yej—2—q>]
j=1 L q+1<4<2q
) 1 1
— H 1+ 2g\ (Yij - 2—q) +2M =) Y (nj — 2—q)]
J=11 q+1<4<2q
(b) ifg+1<14<2q
) 1 1
Zi=Zin) = H 1+ 2¢(po — p2) (Yzj - 2_q> +2q(p1 — p2) Z <Y£g 2q>]
j=1 L q+1<l#i<2q

I
=~

14 2q(po — p1) (Yij - 2%) —2q(pr—p2) Y, (Y@ 21(1)]

=1 L 1<t<q
d [ 1 1
j=1 L 1<4<q

19



To carry out the further proof, it is convenient to derive some identities of Z;(n)’s.

Lemma 2.4.1. For any nonnegative n € Z and 1 < 1 < 2q, we have
EZ(n)Zi(n) = EZ;(n)?

and givenany 2 < i1 < q < q+1 <1y < 2q, then

EZ;, (1) Ziy(n) = EZys1(n) Zag(n).

Proof. When i = 1, the result is trivial. If 2 < ¢ < 2¢, for any configurations A = (4, ...

on the (n + 1)th level, where A; denote the spins on L,,.; N Ty, ,we have
Plo(n+1)=A)
d
Hj:l P(oj(n+1) = 4))
By the symmetry of the tree,

Zi(A) =2q Plo,=i|o(n+1)=A)

EZ\Z;

7Ad)

- (zq)2z< dP("(”“);f)Aj) P(o,=1|o(n+1)= AP, =i|o(n+1) = A)

A Hj:1P(Uj(n+
Plo(n+1)=A|o,=1)

9 on+1)=A) ’ 5 ,
= (2¢q) P (o,=1|o(n+1)=A)Poc(n+1)=A|o,=1
(29) EA (H p( A)) ( | o )= A)P(o( ) | )

ogiin+1) =

- (QQ)2§<H?P(U(TL+1) )A)> P, =i|o(n+1)=AP(on+1)=A|o,=1)

P(oj(n+1)
= EZ2

Similarly, given arbitrary 2 < 41 < g < 12 < 2q,

EZ;, Zi,

= (QQ)QZ ( P(o(n+1) =>A)A)> Plo,=1|o(n+1)=A)P(c, =141 |o(n+1)=A)

A H?:1P(Uj(”+ 1)=
Plo(n+1)=A]0,=1)

- 2 ot ) =) 2 = n = o, = o(n _
) ZA:(H] 1 P ) = A)) Plo,=q+1|o(n+1)=A)P(0, =2q[o(n+1)=A4)

oin+1
Plo(n+1)=A]o,=1)

— EZ, 17,
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2.5 Main Expansion of x,,.; and z,,, 1.

In this section, we are about to figure out the second order recursion relation of z,; and 2,41,
specifically speaking, their major expansions, which would play a crucial rule in our further dis-
cussion. First let’s take care of approximating means and variances of Z;s by extending the results

in [3, Lemma 2.6.] and Taylor series approximations.

Lemma 2.5.1. Recall that |\| = max{|\i|, |\a|}. For1 < j < dand1 <i <i' < 2q, there exists

a constant C = C(q) such that

1 1 2

veec;
igC;

and

1 1
E |20\ (n - %) +2(A — ) Y (Ya -~ 2—q>

veee;
i¢C;

1 1
2Q)\1 <Y;/1 — 2—) + 2()\1 - )\2) E <}/g1 - 2—) S C/\2l’n
q V@ECZ./ q
i/eci,

Proof. The key of the proof is to estimate means and covariances of the previous random variables,

denoted by A;s and (D)s respectively:

i -3) s T (-]

q+1<0<2q

= 2q)\1 [)\1.7)n + ()\1 - )\2)Zn] + 2(](/\1 - /\2))\2,2”

Ale

= Qquxn + 2q()\% - )\g)zn;

forany 2 <1 < g,

1 1
Ay = E|2¢\ (Yij —~ Q—q) +2 =) Y (nj -~ 2—q)]
q+1<e<2q
A A — 1A
= 2(]}\1 [— ! Ty — ! + <q ) 2Zn:| + 2(]()\1 — >\2)>\22n
qg—1 qg—1
2903 2g)\7 2
q—lx" (q—1+ qA;y | Zn;
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forany ¢+ 1 <1 < 2gq,

As; = E

1 1
2q\ (}/(q—‘,-l)j - 2_C]> +2(X2 — \p) Z (YEJ - 2_q>]

q+1<4<2q

= 2q\3zn.

Next consider covariances:

@

E

2
1 AL — A 1
At (YM—Z>+ . . 2 E (Yzj_2_q>]

q+1<4<2q

1)\?2 A — A 1 1
A%E(Yu——) + 20 QE(YH——) > (Ym——)
2q q 2q q+1<£<2q 2q
A=A\ 2 ]
(25 e 3 (g
q 2q
q+1<0<2q

1\? A — Ay 1 1
NE (Y — — 20\ E(Yy—— | (Y S
! (H 2q) ey <H 261)<(q+1)1 2Q>

A=A 1\° A=A’ 1 1
E (Y, — — 1 E (Y- — ) (Yoo — —
+Q( p ) ( (¢+1)1 2q> +qlg—1) P e+11 ~ 3, (01~ 5

1—4X\ + 3\ A2 — )2
il sk P Sl
2q 2q

Zn + Mty + 3001 — A2) A 2wy,;

forany 2 <i < g,

@

E

2

1 A — Ay 1

N Y — — Y, — —
1(” QQ)+ q 2 (Z” 2q)

q+1<4<2q

1\? 1 1
AME (Yn - Q_q) +2M(A1 = A)E (Yz‘ - 2—q> (Y(q+1)1 - 2_q>

A= )2 1\? A= M) 1 1
E (Y —— —1 E (Y — — ) Yo — —
+q ( 7 ) ( (g+1)1 2q> + Q(q ) q (g+1)1 2% (2¢)1 2%

[ D S
2¢ 2¢ q(qg—1) qg—1 g—1

)\1 Zn )\1
0= (gt =)

)\1—)\2)2(1—>\2 ) ()\1—)\2>2(()\2—1)$L’n—q2n )\2 )
! ( q 2q ’ da-V\ 2q(q — 1) g—1

(1 4)\1+(q—3))\2) Wﬁxf—gz X3t (a—3)h

2.
AW

2q 2q(q — 1)

2q " g—-1" qg—1
22



forany ¢ + 1 < i < 2gq,

2
1 Ay — A 1
Al(n-——)Jr == (nj——)
2q q 2q
q+1<4<2q

. {[@— 2 (AQ;M)Q}E (Yorns —5) +{ 000~ l2a 20

q2
—1)(q—2 1 1
+2A] + ((];#(/\2 - >\1)2} E <Y(q+1)j - Q—q) (Y(zq)j - —>

® = E

2q
_1 2 2 1_
_ (¢ AL+ A3 )\2$n+)\2wn
q 2q
+<q—1><A5—A%>( TELI -
q 2¢(¢—1)"" 2(¢—-1) g¢-1"

A2 A2 —)\2 Ty
= 2—;1’n+ 12q 22n+)\%/\2 (wn — —) ;

f0r2§i1<i2§q,

1Y A=A 1
— B\ (V- — Yy — —
@ 1( N 261>+ q 2 (4” QQ>]
q+1<4<2q
1Y M= 1
M (Vi — — Yy — —
1( Y 261>+ q qH;SQq(@ 2Q>

1 1 1 1
= 8 (v g, ) (v g) 280 (v - ) (Yo - )

(A — Xg)? 1\° 1 1
Tz qE ( Yigtin — %) T (g = 1)E { Yig411 — 2 Yiog — %
= A\ { {— — Ty — + U,
! 2q(q —1)(q — 2) 2q(q— 1) 20—1)  (¢—1)(¢—2)
2((] + 1))\1 + (q — 2))\2 } { )\1 Zn )\1 }
+ Wy o + 20 (M — X)) § =———Tn + — — Wy,
(¢—1)(g—2) 1 =) 2q(q — 1) 29 q-—1
()\1—>\2)2 {|:1—)\2 :| |: )\2—1 Zn )\2 :|}
+ Ty + Xowy | +(¢—1 Ty — — Wy,
7 % S Rl Py ATy R
2 2 - 2 3
_ —an AL (g —1)A3 o+ 2A7 (Un _ @)
2q(q — 1) 2q(q — 1) (¢—1)(¢g—2) 2q

61 + (3q — 6))\2)\2 (wn l’n) ;

@-D(@-2 *\U" 2
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forg+ 1 <i<2q,

1 A — Ao ( 1 )
= ElMYe — — ) — Y, — —
© 1( N 2Q> q léq Yy
1 Al — Ao 1
)25 E ()
2(] 4 q+1<£<2q 2q

Ao — A\ Al — As 1 1
= — E(Y,——) (Y - —
q (Al q q) ( H 2Q> ( (D1 2Q)
A — A A — A 1 1
+(A1—(q—1) 1q 2) (Al— lq 2Q>E(Y21—Z> (mqm—z—q)

/\3 — /\1/\2 < /\1 Zn > )\1)\2 + (q — 1))\% < )\1 Zn /\1
= 22—+ 4 Nw, ) + Ty + == —
q 2q 2 ' q 2q(q — 1) 2¢ q—1
/\2 2
= 2 n >‘1)‘2 Wy — ﬁ )
2q qg—1 2q

forany 2 <1 < g,

1 Al — A 1
©® = E)‘I(YM‘_Q_)—" —= ) (%‘2—)]
q q q+1<4<2¢q q
1 Al — Aa 1
A <Y;j - —) + Z (Yéj - —)]
2q q q+1<4<2q 2q
A2 A2 A3 n 3 —3)A n
= M () -2, (un—x—)— 1+ (g )2)\%(10”_55_);
2q(q — 1) 2q q—1 2q q—1 2q
forany ¢ + 1 < i < 2gq,
1 Al — A 1
D = E)‘1<Y1j_2_>+ —= > (ij—z—)]
q q q+1<£<2q q
1 A — Ao ( 1 )
(Y- )+ Yiy — =
1 ( ’ 2q) q ggq Yy
— DA + N2 1 1
- Lz ZE(YH ——) (Y@H)l——)
q 2q 2q
qg—1 1 1
+T()\§ — MA)E (Ym - 2—q> <Y(q+1)1 - 2_q>
(g — DA + A3 ( A\ Zn ) qg—1,, ( A\ Zn
- e 2w ) (02— [,
q 2q 2 q (R = hude) 2¢(q — 1) 2q
2 Tn
= e+ An (wn 2_q>

As aresult of Lemma 2.2.1 and Lemma 2.2.2, it is easy to get that x,, > |2,/ and 0 < u,,, w, < x,,

which, together with the fact of [\| < d~2 < 1 completes the proof. O
24
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Lemma 2.5.2. For each positive integer k, there exists a C = C(k,q) only depending on k and q
such that for each 0 < ky, ..., kyy < kand1 < j <d,
2q

R[]z <c

=1

2q 2q
1 1
EHZiki—l—d EH 1+2qA1(Y¢j—2—q)+2(/\1—/\2)Z(Y@‘—Q—J — 1| <Cu,
i=1

i=1

i¢c;
and
ki
= = 1 1
E|l[ZF-1-d{E 1—|—2q/\1(Yij——)—|—2()\1—)\2) (nj——) —1
igc;
o 2
dd—1) | 1 1
———E]] |t +20M (YU —~ —) +2(M = A2) Y (nj —~ —) —1y | <Cal.
2 i=1 2q veee; 2q
iéci
Proof. In the first place, we would like to discuss nonnegative integral exponents si, ..., s, with

s; < k; for all 7. The following C’;s denote the constants depending only on ¢ and k.

(a) If s, > 2 for some £, it follows from the fact 0 < Y;; < 1 and Lemma 2.5.1 that

Si

2q
1
EH 2(])\1 <Y;1 — 2_(]) + 2()\1 — )\2)
i=1

> ()

veee;
i¢c;
2

1 —2
(Ya—z—q) G\ ] (6an

1<i#£h<2q

1 .
< E 2(]}\1 (th — Z) + 2(>\1 - >\2) Z )SZ

veecy,
h¢Cy,

S Cl)\ana

where the last inequality comes from |A\| < d~2 < 1.

25



(b) If s;, = s = 1 holds for some h # h’, then Lemma 2.5.1 also yields

Si

o o - ) 20 2 (-3)

veee;
igCy
< E2/\(Y 1>+2()\ )\)E (Y 1>
= qAl hl — 7 1 — A2 1 — =
2q 2q
hgcy,
1 1
200 ( Ying ) +200 =) D (Yo —o ||| T] (6alr
q veec,, q 1<i<2q
h’éch, i#h or h'
S Cz/\2l’n.

(c) If s, =1ands; =0 forall i # h,

Si

eI pon (v 5;) #0020 2 (1 )

veee;
igc;

VeLEC),
hich

Therefore, combining the preceding results together, we conclude

k;
2 1 1
EJ] |1+2¢M Yﬂ—Z +2(0 =) > nj—Q—q -1
i=1 veee;
i¢c;

veec;

i¢c;
1
= EZk 2qM ( il ——> +2(A — Ag) Z (Y}Zj — 2_q)
veece;
i¢Cy

(h15--sh2q) veec
S @
< 04)\ Tn

26
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1 1
= |E |2¢\ (th - Q_q) +2(A = Ag) Z (Ym - 2_q) < C3N\’x,,.

)

= X Eﬁ(i) 20\ (m1—2—2>+2(A1—A2)Z<nj—2i



Next write

2q
1 1
r=E]] L+%M(n-—%)+2Qy—M)§:<nf_%> —1

i=1 veec;
i¢c;

and then
2q
E[[z" = (1+x)
i=1

since for any 1 < ¢ < 2¢, the terms in the product of Z; are independent and identically distributed.
Referring to the binomial expansion, in tandem with the Remainder Theorem, there is no difficulty
in concluding that if d|x| < Cj for some constant C5 > 0, then

o0

= (d dm
1 d __ m| < - m < Cs d n+1'
o= (8)ar| < 30 Sl < elad
m=0 m=n+1
Finally applying the facts of 0 < z,, < 1 and d\? < 1 completes the proof. O]

As regards 7,41 and 2,41, we could expand them out in virtue of the identity

a a ar 1 a

_a_o (2.5.1)

s+r s s s2s+4r

Specifically, taking a = 71, s = 2q and r = Z?il Z; — 2q yields

1 7
n - - E—
e T Sz
Z 7 /) 7 2 7 94)2
2 (20) Y 7 (20)
as well as
1 Z
i1t — = E 2q+1
2q Ziil Zi
— EZQ"Fl . EZQ+1(Z?11 Zz - 26]) IE Zq+1 (Z?il Z,L — 2q)2 .
24 (24)? SH 7z (207

Then we have to distract our attention to taking care of terms in expansions above respectively.
The following R;s denote the remainder terms bounded by O,(x2), where O,-constants depend

only on g.
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(i) Wheni =1,

d
EZ, = HE

j=1

1 1
1+ 29\ <Y1j —~ 2—q) +20 =) Y (nj -~ 2—q)]

q+1<t<2q

d(d— 1)

= 1+dA+ A + Ry;
(i) For2 <1 <gq,
d
EZ, =EZ, = HE

J=1

1 1
1+ 290 <Y2j —~ 2—q) +2M =) Y (nj —~ 2—q)]

q+1<4<2q

d(d—1)

= 1+dAy + A3+ Ry;

(iii) Forqg+1 <1 < 2gq,

1 1
B2, =82 = [[B |1+ 200 (Yo - 5 ) #2002 3 (V- Q—q)]

=L 1<(<q
d 1 1
= HE 1+ 2(])\1 Yv(qul)j — 2_q + 2(>\2 - )\1) Z }/fj - 2_q
j=1 L q+1<€<2q
d(d—1
W il

Next consider covariances of Z;s:

(a) beginning with EZ?2,

d 2
1 1
EZ? = EH 1+ 2¢\, <Y1j - Q—q) +20 =) Y (nj —~ Q_q)]
Jj=1 q+1<4<2q
dd—1
= 1+4dI; + ( 5 >H§+R4
where
1 1 ?
I, = E|[1+2¢\ (Ylj—2—) +2M = X)) (nj_Q_)] —1
4 q+1<6<2q q
= 2A1 +4¢°0
= Ag\iz, + 49\ — \3)z, + 4¢°D
1—4X\ + 3\ A2 — A3
= Adg\iz, +49(\F — \3)z, + 4¢° [#)\%xn + - % 2 on + N, + 3\ — )\Q)Afwn}
= 6gAzy + 6g(AT — A3)z + 44°A] (Un - %) +12¢°A1 (A1 = No) (wn - %) :
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(b) For2 <i <g,

d

2
1 1
EZ?} = E| | 1+ 2q)\ (Yij - Q—q) +2(A1 — A2) § j (nj — _2q)]

J=1 q+1<0<2q
dd—1
= 1+dH2+%H§+R5
where
2
1 1
I, = E 1+2q)\1<Yij—2—)+2()\1—)\2) > (nj_2_>] 1
1 q+1<0<2q q
= 2\ +44°Q
4g)\2 4g)2
= g, — (400 ) 2
qg—1 qg—1
1 4\ -3 22— )\2 23 Y — 3\
2 -3 2 -3 Ag? .
_ %mn + <%)\f _ 6qu) = (u _ ;C_q>
q_

(c) Whenqg+1 <1 < 2q,

d 2
1 1
E22 E | | }r 2 : ]r

d(d —1
= 1+dH3+¥H§+R6

where
1 1 2
I[I; = E|[1+4+2¢\ (Y — — 9Ny — \ v, _ L L
3 +C_I1<J Qq)+(2 1)2(@ Qq)]
q+1<6<2q
= 203+0
q
= 20022, 4 2¢(A\2 + A2)z, + 42NN, (wn B %> |
q

By Lemma 2.4.1, it is known that EZ,Z; = EZ?, and hence we can skip the calculations of

these covariances.
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(d) F0r2§i1<i2§q,

EZZ ZZ - EZQZq

s

Jj=1

14 2¢\ (Yq‘ - 2_1q> T2 =) D (YU - %ﬂ

q+1<€<2q

1 1
14+ 2\ (YQJ — 2—q) +2(A — Ag) Z (Yﬁg - 2_q)]

q+1<0<2q

d(d—1)

5 IT; + Ry

= 1—{—dH4+

where

H4:E

1 1
14 2g)\ (Yzj — Z_q) +2(A\1 — A2) Z (Y@' - 2_q)]

q+1<4<2q

1 1
1+2q)\1<Yq4—2—q)+2()\1—/\2) Z (3/@;‘—2—()]—1

q+1<0<2q

= 2A, +4¢°®

49\ ( 4g\T 2> > { i A+ (g — DA
= Ty — +49)\; ) zn +4¢° | —————=2, —

q—1 ? 2q(q — 1) 2q(q — 1)

2} | (u ) a:_) RGN (wn . w_)]

+—
(q—1)(g—2 2q (q—1)(qg—2) 2q
6g\; ( 6gAT 2> 8¢° A} ( T
= — Ty, — +6gX; | 2 + ———— | U — —
qg—1 g—1 " T (g—1)(¢—2) 2q
6M1 + (3¢ — 6)As 2( xn>
(g—1)(g—2) ' 2q

Zn

+4¢>

(e) Forg+1 <1 < 2q,

EZQZl — EZQZqul

i (- L)oo 5 (- 0)

j=1 q+1<4<2q
1 1
1 + 2(])\1 Yv(q+1)j - 2— + 2()\1 — )\2) Z Yv@j - 2_
q 1<4<q g

d(d —1
= 1+dll;+ (2 )H§+Rg

30



where

II5

d
B]1
j=1

1
14 2g\ (Y(qﬂ)j — Z) +2(M = X)) > (nj —

1<t<q
Ao+ A3 + 440

q+1<€<2q

1 1
1+ 2\ (YZJ- —~ Z_q) +20 =) Y (nj -~ Q—q)]

)]

2 2 )\2 )\2 A2\ n
_QQ)\lxn_ a n+4q Zn 12 wn_x_
q—1 -1 2q q -1 2q
2q)\2 2q/\2 9 Ty
— 2q); A n— — | .

Finally taken together, all the calculation above yield

and

d(d
2

+(g —1)(g —

113 + 3(q — 1)II3 + 3¢I13 + (¢ — 1) (g — 2)II3 + 3q(q — 1)II2

d(d—1)
2

—4qAT — 4q(q — 1)A3

ZEZ2+ZZEZlZ +2Z Z EZ

d(d
2

2q
— 4q Z EZ; + 4¢*

11=219=%1+1 =1

_—U{[Hg 4 (g — DI + I + 2[(g — DI + 12

25 + 2q(q — DIIZ + g(q — DIIZ] — 4gAT — 4q(q — 1)A3

— 4(]2/\3] + RlO-

Finally we obtain the main expansion of

In+1

Eé B EZI(Z?L Zi —2q) LE Z (21221 Z; — 2q)* B
2 2o S5 7 CoP
2q 2q 2
; Zz -2 i ZZ —2 1
Eé—E 1205 ’ q) +E(Z’*1 - Q> 1
2q (29) (2q) 2q
Z 1 M Zi—2q)°
+E 5 1 _ (Zz:l > q)
Ay d(d—-1)
d—+ ———F&
2% + 5 >+ R
d(d—1
dN{zy + (AN} — dA3)zn + %Xg + R,
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—1
=D 12 4 (g — 1) 4 T2 — 2972 + Ry

— 4q2A§} + RIO
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2. 7,—2q)?
where R, = E <22q 7= %}) (Zz—@Tq) +0,(23) and
LV 1 2 2 2 2
Xy = 2_qu - (2q)2 [Hl + (q - 1)H2 + QH3 — 2qA1]
1
+w[ﬂf +3(q — VI3 + 3¢115 + (¢ — 1)(¢ — 2)T1F + 3¢(q — I3
—4gAT —4q(g — 1)A; — 4¢*A]]
20-1o 4=l 1y 20-1p, (0= D(20-3)
— A2__A2__ 2_ H2— ]___[2
203 (@a=1)@=2),  3a—1
8¢ (2¢)° ! 8q?
2q — 9 9 o q—1 QqA% 2(])\% , 2 1 L
- - - - n n - 2 )\ n
v 200 = X)z ) = e T T T gy TR ) 3 120%en}
2 —1)(2¢ —3) (2q(q—3 2
2g—-1 : {6q)\2;pn +6g(A2 — A2)z, ) — (¢ —1)(2¢ —3) { q(q )A%(% L) - 6quzn}

(20 (2q)3 q—1

29 — 2 2 2 2 (¢a—=1D(g—2) 6gAT 6\ 2 ?
- 2 n+ 2q(A] + A3)z, - 6g)\5
S { g Ty + 29(N] + Nz} + 20)° paas Rl G 1+
3(qg—1) 2q\? 2q)\2 ) 2 s o (lun 1 w, 1
- 2905 | zn A -n _
- { s L D200 ) 2 g+ 0y [Nl s

Tn 2
20 — 5
= 4aT ) N2 42N + 2) e — dgAL2?

1
0, [ |M[°2?2 D2 1)),
o (e ([ - |+ 52 - 34)))

Hence we come up with
dd—1 2q—5
Tpp1 = ANz, + (dA] — dA3)z, + ( ) (q< g )X*( + 2,)7 — 4gAINS (T + 20) 20 — AqN322

1
)\ 5 2 %__ .
0 <| ! x”(l‘n 2| " |z 2CJD)>+R

1 27 —
= d\x, + (d\3 —d)3)z, + did = 1) (q( 4-5) N (@ + 20)2 — 4NN (3 + 20) 20 — 4cp\§zi)

9 Wy, 1
— = = R,.
on (i (52«22 ) +

The argument of z,, is substantially the same as z,, .1, by noting that, instead of Z;, there is an

Up, 1

analogous discussion such as

2q 2q
EZ, (Z Z; — 2q> = EZ2, +EZiZ4 + ZEZqHZ + Y EZy1Zi — 20EZ,

=1 i=q+2

did—1
= (—)[2H§ + (2(1 - 2)H§ - 2qA§] + Ry,

2
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and therefore

Zns1l = EZq+1 _ EZqul(Z?il Zi —2q) +E Zgt1 (21211 Zi — 26])2 o i
! 2q (2¢)? SN Z; (2¢)? 2q
_ gl pZn(CHZi-20) (XM Zi-20° 1
2q (2¢)? (29)3 2q
—|—E Zq+1 . i (Z?il ZZ - 2q)2
SH Z 2 (29)?
A did—1
R ¥Zz +R.,
2q 2
2q o 2
where R, = E (ZZquﬁ - %}) % + 0,(2?) and
I 1 2 2 2
1
+E£Fﬁﬁ+3@—1ﬂ@+3ﬂﬁ+{q—D@—2Hﬁ+3ﬂq—nﬂg

—4qA] — 4q(q — 1)A3 — 4¢°A3)

— <qiL1Xll(xn + 2,)? — 4q)\%zi) + O, (|>\1|5:(;721 (

U, 1

T, 2q

Last plugging in gives

dd—1
Zog1 = d\32z, — ( 5 ) (qzl)\‘f(a:n—l—zn)z —4q)\§z,21>

1
|22 Un = ..
+0, (y 1yxn( + - 2q))+R

To the end, taking substitutions of X,, = z,, + 2, and Z,, = —z,, this two dimensional recursive

U, 1

T,  2q

formula becomes the canonical form of the linear diagonal part,

d(d—1) (2q(q -3
Xpp1 = dAJX, + (2 )<‘f{1>ﬁxﬁ+anﬂygzo

.1 .1
0, (Il (|2 = =+ |22~ =) ) + R, + R, 2.5.2)

T, 2q T, 2q

and
d(d —1
Lo = 032, + W (oix? - a0z
q

20, (g2 (|2 = 2412 L)) — R (2.5.3)
T\ |z, 2 T, 2q - o




CHAPTER 3

RECONSTRUCTION FOR ¢ > 4

3.1 Equivalent Condition for Non-reconstruction.

If the reconstruction problem is solvable, then o(n) contains significant information on the root

variable. This may be expressed in several equivalent ways [14, Proposition 14].

Lemma 3.1.1. The non-reconstruction is equivalent to

lim z, = 0.

n—oo

Proof. The maximum-likelihood algorithm, which is the optimal reconstruction algorithm of o,

given o(n), is successful with probability

A(n) = E max X;(n).

1<i<2q

The inequality :L’,ﬁ% < A,, was shown in [4] by noting that the algorithm that choose o, randomly

according to probabilities X is correct with probability x,, + %}.

2
On the other side, the identity (2.2.1) indicates that z,, = B S22, <Xl-(n) - ﬁ) and then by

the Cauchy-Schwartz inequality, we have

1
A, < — +Emax|X;(n)

2q
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To sum up, we come up with the inequalities

Sl

1
Tn S An a5 S T,
2q
following that lim,, .., z, = 0 is equivalent to lim,, .., A, = %}, which is in turn equivalent to

non-reconstruction [14]. OJ

3.2 Concentration Analysis.

Before investigating the concentration, we would like to introduce a significant lemma showing

that x,, does not drop from a very large value to a very small one.

Lemma 3.2.1. For any ¢ > 0 there exists a constant v = v(q,d, 0) > 0 such that for all n when
min{|\d], Ael} > o

Tpg1 = Vp.

Proof. For a configuration A on T,,, N L(n + 1) define

frn(LA) = Plo,=1|ailn+1) = A)
1P(oi(n+1)=A4]0,=1)
2q P(oi(n+1)=A)

= (Ploi(n+1) = A)pP@r(n+1) = A| 0,y = 1)

2q
q 2q
Y Ploin+ ) =Alo, =) +p Y Plow(n+1)=A| oy, =)
i=2 i=q+1
= iJrzo <f(1 A)—i)ﬂ? i(f(i A)—i>+p % (f (i A)—i)
2(] 0 n\L, 2q 11':2 n\ts 2q 2i:q+1 n\Y, 2q
2q
1 1 A — Ao . 1
= —+A <fn1,A——)+ (fnz,A——)
and then
1 1 Al — Ao 1
Ef* (1.0} 1)) = —+ME (Y, - — E (Y, - —
Fialloln+ 1) = o+ 3B (Yl - o) + 2228 (Yeut) - o )
I P S U L I UV E e )
2q q q
1
= 2—q+/\%xn—|—()\%—)\§)zn.
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The estimator that chooses a state with probability f,.1(i,01(n + 1)) correctly reconstructs
the root with probability 5. + A{z, + (Af — A3)2,. Since this probability must be less than the
maximum-likelihood estimation, it follows that

1 1 1
% + Man + (A = A3)zn < Ay < % +xpig

If A2 > A2, by noting that z,, + 2, > 0 in Lemma 2.2.1, it follows

NTn < ANz, + (A7 = A)(zn + 2,)

= XNar, + (X = )\)z,

2
S xn—‘rl‘

1
On the other side, if A] < A3, then A\{z,, < 22, follows from z, < 0 immediately. To sum up, we
always have

1
VIRV 3
min{ 7, A\3}x, <2,

Next choose £ = g, by the expansion of z,,1, it is known that there exists a § = (e, q) > 0
when z,, < 90,
Tpy1 > (dmin{A2 A3} — &)z, > (d — 1) 0%z,
On the other hand, if z,, > 6, then z,,,; > (min{\}, A\3}z,,)?0"*dz,,. Finally making v = min{(d —

1)¢?%, 0*5} completes the proof. O

Next we come up with a crucial lemma, indicating that the fixed finite vertices long way from the

root have only a small effect on the root, which would play a crucial role in concentration analysis.

Lemma 3.2.2. For any ¢ > 0 and positive integer k there exists M = M (q, ¢, k) such that for any

collection of vertices vy, . .., v € L(M),

sup |P(o,=ilo,, =i;,1<j<k)——|<e
i,il,...,ik 2(]

Proof. Denote the transition matrices at distance s by
Ug= M7, Vi=M, ad W,=M] .,
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and then it is convenient to figure out the iterative formulae of them such as

Us = poUs—1 + (¢ = D)p1Vio1 + qpoWsa
Vi =p1Us—1 + [po + (¢ — 2)p1] Vo1 + qpaWsq
Ws =poUs—1 + (¢ — 1)paVis1 + [po + (¢ — 1)p1]Wi—1.

To evaluate this three order recursive system, let’s start with the difference of the first two equation
Us = Vo= MUs-1 — Via),
and then considering the initial conditions of Uy = 1 and Vj = W, = 0, it follows that
Us — Vs = Aj. (3.2.1)
Taking all the formulae above in tandem with the stationary property of
Us+(q—=1)Vs +qWs =1
we conclude that

Us = poUs—1+ (¢ — D)p1Vioa + qpaWes

= (po = p2)Us1 + (¢ = 1)(p1 = p2)(Us = A7) + p2

1—A —1
- >\2U371+ 2 _q (
2q q

Ao — A)AT
Therefore the general solutions are
l@:i+(1—i)@—(1—ﬂkﬂ£—A@
s -1 s s
1@:%,—%&+(1—%7M>@2—M)
Wo=g—ad— (1- 1) 1= (s = X))

and thus under the conditions of d\? < 1, it is concluded that Uy, V; and W, all range in the same

small interval such as

1 s 1 s
-~ 3d7§ S Um‘/saWs S = +3d7§7
2q 2q
For fixed ¢, d and k, define
1 _s
_ 2% + 3d™2
%} —3d 2
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and let v be a sufficiently large integer, depending only on ¢, such that B*(y) < 1 + ¢, since
d=s/? < 27%/2 — (0 as s — oo implies B(s) — 1.

Fix an integer M such that M > k~. Now choose any k vertices on the Mth level vy, ..., v, €
L(M). For 0 < ¢ < M define

ne=#{v e L) :|T,N{vy,...,vx}| > 0},

the number of vertices with distance ¢ from the root that have at least one decedent in the set
{v1, ..., v }. Then from the definition, it is trivial to come up with that n, is an increasing integer
valued function with respect to ¢ from ny = 1 to ny; = k, which, by the pigeonhole principle,

implies that there must exist some ¢ such that n, = 1.

Next denote {wy,...,w,,} and {wi,...,w,,} by the vertices in the sets {v € L({ + ) :
T, N {v1,..., 05} > 0} and {v € L(¢) : [T, N {v1,...,vx}| > O} respectively, such that w; is

the descendent of w;, and then

P(O'wj = ig | Uﬁj = 21) = M,Zm
Then for any 4,4', 41, ..., i,, € C, the following could be derived from Bayes’ Rule,
Po,=1i| 0y, =1;,1 < j <ny)
P(o, =1 | 0w, =1;,1 < j <ny)
P(ow, =i;,1 <j<ng|o,=1)

P(ow, =i;,1 <j<ng|o,=1)

Zhl,...,hnzec P (V] ow; =15 | V] ow; = hyj)P(Vj 0w, = Ny [ 0, = 1)
Zhl,...,hneeCP(vj Ow; = iy | V] ow, = hy)P(Vj 0w, = hy | o) =)
Zhl,...,hneec P(Vj ow, = h;j | 0, =1) H;Lil M’?ﬂj

2ohrinyec PV 0wy = hy [ op =) TI3E My,

np

< B() , '
Zhl?'“:hn[ec P(vj Uﬁj == h] ’ O'p = 2/)

< B(y)

S (1 —+ 5)’

where the third equality comes from the Markov random field property, implying that the o, are

conditionally independent given the o4;. The preceding formula yields that

1— 1
€§P(0p:i|0w-=ij,1§j§ne)§ e
2q ! 2q
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Finally the proof is completed as following

. . , 1
sup (P(o, =10, =1;,1<j<k)— —
Z,il ..... 1k 2q
: . , 1
< sup |P(o, =1 0w, =1;,1<j<ng) — —
i1y g 2q
< &
since o, is conditionally independent of the collection o, .. ., 0y, given o, ..., T, - [

With the assistance of (3.2.1) we are able to set up the following lemma immediately.
Lemma 3.2.3. Assume \; # 0. For any nonnegative n € 7, we always have
T, + 2, > 0.

Proof. In Lemma 2.2.1 we have proved that z,, + z,, > 0, so here it suffices to exclude the equality.
Now we refer to the contradiction and assume x,, + z,, = 0 for some n € N. It follows that if ¢ # j

are in the same configuration set, then

== 2_q —_
2q 2q
_ Tn — Yn
q
Ty + Zn
= =71
= 0.
Therefore X;(n) = Xs(n) = --- X,(n) and X 41(n) = X,0(n) = -+ Xoy(n) a.s., that is, for

any configuration combination A on the nth level, we always have
P(o,=1]0(n)=A4)=P(o,=2]0(n) =A).
Denote the leftmost vertex on the nth level by v,,(1), and it follows

P(o,=1|0y,0)=1)=P(0o, =2|0,,0)=1).
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Last from the reversible property of the channel, we can conclude that
N=U,-V,=P(o,=1|0,,1)=1) —P(0,=2]0y,0)=1) =0,
i.e., Ay = 0, a contradiction to the assumption of \; # 0. ]

The next lemma establishes concentration of the posterior distributions when x,, is small.

Lemma 3.2.4. Assume min{|\|, |\2|} > o for some o > 0. Given arbitrary €, > 0 there exist

constants C' = C(q,d,e,«,0) > 0and N = N(q, ¢, «, o) such that whenever n > N,

P 21
E?il Zi 2q

Proof. Suppose that £ is an integer with k£ > «. In Lemma 3.2.3 choose M to hold with bound £.

n

> 5) < Cz.

Then let vy, ..., vjr(ar) denote the vertices on L(M) and define
F(i,v) = fop1-m(i, 00 (n+ 1))

where o (n + 1) denotes the spins of vertices in T, N L(n + 1). The distribution of F'(i,v) would

be discussed as follows,

(

XOn+1-M) ifol =i,

F(i,v)~ ¢ X®(n+1-M) ifcl =7 i,jcome from the same category,

X®(n+1-M) ifol=j: 4,7 arein the different categories.

\

By the Markov random field property, the vectors (F'(1,v), ..., F(2q,v)) are conditionally inde-
pendent on o (M) for different v € L(M). Repeating the technique of recursion relation in Section
2.4, a posterior probability of a vertex can be written as a function of the posterior probabilities of

its children such as
Z1

2
Zz’il Zi
for some function H (F) with the vector variable

= fani(Lo'(n+1)) = H(F)

.7: = (F(l,vl), Ce ,F(1,1)|L(M)|), ceey (F(Qq,vl), ey F(Qq,U|L(M)‘)).
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There is no difficulty in finding that H(F) = i when all the entries in JF are identically i and
H(F) is a continuous function of the vector F. Therefore by Lemma 3.2.3, if there are at most k

vertices v € L(M) such that for some 1 < i < 2¢q, F'(i,v) # %{ then

1 €

As aresult, there exists a § = §(g) > 0 such that if F satisfies

#{v € L(M) : max

1<i<2q

F(z’,v)—;—q‘ >5} <k

then

IA
Y
N

5—2

IN

12
+qE <X(3)(n+ 1—M)— —) ]
2q
_ Tntl-M
52
Finally based on the conditional independence given o (M), the random variables max F(i,v) — 2—1q
X149

further turn out to be independent because of the symmetry of the model implying that they do not
in fact depend on the spins in L(M). To the end, under the assumption of min{|\|, [\2|} > o,

there exist constants C' = C(q,d, ¢, «, 9) and N = N(q, €, o, p) such that whenever n > N,

P Z 1
21‘211 Z; 29

>5) < P(#{UGL(M): max

F(i,v)—Qi‘ >6} >k>

1<i<2q q
< P(B(jLON =52 > k)
< /$Z+17M
< (Cz%

n’
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where B (-, -) denotes the binomial distribution, and we use the fact of £ > « and Lemma 3.2.1.

]

With the preceding concentration result, we are able to bound 1z, and R, in (2.5.2) and (2.5.3).

Proposition 3.2.5. Assume min{|\1|,|\2|} > o for some o0 > 0. For any € > 0, there exist
N = N(q,¢,0) and 6 = §(q,d,e,0) > 0 such that if n > N and x,, < ¢ then |R,| < ex? and

|R,| < ex?.

Proof. Forany 7 > 0 and 1 < < 2¢g, applying Cauchy-Schwartz inequality gives

g 2 0L Zi—27 1 (X Zi—2)
SN Z; (2¢)? 2¢ (29)2
c pEHZi-20P?| 241
— 2
- (2¢)? Mz 2q) T (2¢)? S Z 2

(X, 2~ 20 (22,2~ 29)" 1 :

2
From the calculation for distributional recursion and Lemma 2.5.2, E (%) < (] (q)xi

2 pp—
and E(Zi(12+2(1)4 < (5(q). Besides, by taking & = 6 in Lemma 3.2.4, there exist C3 =

C3(q,d,n, 0) and N = N(q,n, o) such that whenever n > N,

P 2 _ 1
Z?LZ@ 2q

and thus there is a Cy = Cy4(q, d, n) such that
o 2\ a-p
Z2q 7. - 2q (2(])2 + q(‘rn)
i=1 i
< nCyx2 + Cyxl.

|Rz| =

Finally it suffices to take Cin = § and § = so if z, < 4, then R, < ez?. Repeating the

_£_
2Cy°

similar discussion yields R, < ex?. [l

In the following we would like to estimate the terms u,, — ”;—Z and w,, — g—g when x,, is small.
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Lemma 3.2.6. Assume |\1| = |\o| or ‘/\ I > Kk for some k > 1, where Ao = 0 is allowed since

in that case we could choose any k. > 1. For any € > 0, there exist N = N(q,k,¢) and § =

d(q, k,€) > 0 such that if n > N and x,, < 0 then

Proof. Applying the identity (2.5.1) again, we have
)
E
(S, 2)

1 1 L N (N
ol ) e 8 ()

1 2(1 2 2

1 (Zl — 30 D i Zz‘) a

+ 16 4E 2;(] B} Z ZZ — 4q2
4 (Zi:1 Zi) =1

Next let’s estimate these expectations term by term and we remark that all the O, constants in the

un+1 —

following context only depend on g:

P&\’
Elz,-—5 Z

2q 2
2 1
= B(Z - 1) = 5 B(Z - 1) (ZZ —2q> R (;Z —2q>
— EZ2—2EZ, + 1+ +0,(z?)
= (1+dM;) —2(1 +dAy) + 14 Oy(22)
= 2dg\im, + 2dq(\] — N3)z, + 4dg* )3 (un — g—;) +12dg* N ( A — Ag) (wn - g—;) + O, (z2)

and similarly,

<Z1 - — Z Z) (Zq Zi) - 492 = Oq(xi)y

as well as
2

2q 2
(Z Zi) — ¢’ = Oy(z7).
=1
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Substituting these bounds into the expansion of u,, 1, plus noting that

2
2
<Z1 - i Zzil Zz)
2 2 =1
(Ziil Zi)
it comes up with the following expansion

d\x, + d2()\% — M)z, N <
q

Up+1

zm—%>+wﬁurmgg%——>+@@@

Tn Tn

by means of z,,11 = d\x,, + d(A? — \3)z, + O,(x2). Moreover, the similar expansion of w;, 1

would be

(Zlﬁ‘l 2q Z >
E

Wnp+1 =
(>, ‘)
L o PN A
= — - — Lgp1 — =— Z; Z. | —4¢®
2
1 2q 2 2
1 (ZqH T 2 Zui=1 Zz') ( a )
+ E 3 Zi | —Aq¢
1
= 4_612E(Zq+1 —1)% + Oy(z7)
1
ANz, + d(A2 — N2z, Tn
= 1 2q1 2 + d/\f/\g (wn — 2_q) + Oq(:pi)
Tn+1 Tn
= Q‘MHMG%_Z)+%“9
and thus
(0 1 n w1 2
e L - (w— - —) +Oq< T ) . (3.2.2)
Tn41 q Tp+1 Tp 2(1 Tn+1

Next let’s display our discussion in the XOZ plane. First consider the case of x > 1. Then in
the small neighborhood of (0, 0), because of dA\3 < k?d|\3] < d\? < 1 and X,, > 0, the discrete
trajectories approach to the origin point tangential” to the X -axis if x,, is small enough for some

n [15]. Besides, the conclusion of Lemma 3.2.3 excludes the trajectory along Z-axis. Then for
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some M > 1, there exist absolute constants Ny = Ny(q,x, M) and 6; = 01(q, k, M) such that

if n > Ny and z,, < 4y, we have X,, > MZ, and ———~d\z, + O,(z2) > 0 simultaneously,

M(M—H)

where the remainder term O,(z2) comes from the expansion of z, ;. Consequently, we have

Tn+ 2n = X, > 2Lz, which yields, in connection with the result of 2z, < 0 in Lemma 2.2.1,

M+1
Tn . Tn
Tnpr ANzn + d(A] = M)z, + Og(22)
< o To
T AN T, + O4(22)
< Tp
= (- 55) dA3z,
M 1
= ——. 323
M1 (3:2.3)
The second case taken into account is [A;| = |Ao|. In view of £ < dA? = dA? < 1, there also exist

absolute constants No = Ny(q, M) and §; = d5(q, M) such that if n > N, and z,, < J; then

Tn Tn Tn M 1

Tnp1 AN+ Og(22) = (1= &) dN3z, M —1dN

For fixed k, it is known by (2.5.2) and (2.5.3) that
Znsr — (AN2X, + dN2Z,)| < C(q)2,

and then there exists a d3 = d3(q, k, M, k) < 01, d2 such that if z,, < J3 then z,,, < 263 for any

1 < ¢ < k. Therefore for any positive integer k, iterating (3.2.2) k times yields

1 IAZA, Ttk ( the1 )+O <$n+k—1 +k 1)
Tnik 24 Tptk \Tntk-1 29 Ltk

k
_ 1
— (D2 IIM Yn_ 2\ p
( ! 2) (Z:l Tn4e Tn 2(] * ’

k k k
_ M 1 M
AN2\,)F ||—"“"”+€1 < (AN Ao])F — ) =(—"—A
(dXiAo) (H Tove | (dAa]) M —1d)\2 1!

and the remainder term

where

k

M 1Y\’ . 1— (=M M1
IRl < 200 (Z (M_ —) (dA%IAQI)“) < 2c5, -~ Uil )"

1dA; 1— (75Al) M —1adX

i=1
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with C' denoting the O, constant in (3.2.2). From the identity z,, = u,, + (¢ — 1)v,, + qw,, it is easy

1

Wn L
Tn

to obtain 0 < “= < 1 which implies
Tn q 2q

< i. Next from |A\y| < [N\] < dz < %, it can

be guaranteed that 17~ |As| < 1 by choosing arbitrary M > 4, say, M = 4. Therefore it is feasible

to take k = k(e) sufficiently large and 0 = d(q, s, k,€) = (g, k,€) < I3 sufficiently small to

make sure that wL*: — Qiq is arbitrarily small. Finally choosing N = N(q, k,¢,k) = N(q, k,e) >

Tt
Ny + k, Ny + k, plus noting that if z,, < 6 then z,,_;, < (3755 7x2)"@n < (§)%0, the previous result
1
completes the proof of
W, 1 -
— - —|<e.
Tn  2q

Finally the case of 7» — 2%1 follows by plugging in the first result and processing similarly as

above. O]

3.3 Proof of Theorem 1.3.1.

Proof. First for any fixed o > 0, consider o < || < |A1]. By Lemma 3.1.1 it suffices to establish
that when d)? is close enough to 1, X,, does not converge to 0, which implies z,, does not converge

to O either, in virtue of 0 < X,, = x,, + 2, < x,,. Therefore it is convenient to see Ay > p fixed and

2
just A\; varying, and then without loss of generality, assume d\? > 1+§’\2. Consequently choose
1+d\2 A
Kk =k(d, ) = T/\g"’ > 1 and thus ﬁ > K.

As the discussion in Lemma 3.2.6, display our proof in the XOZ plane. With the condition of
q > 4 and (2.5.2), it is apparent that

d(d—1) (2q(q —
Xop1 = dN X, + ( >(Q(q 3)A%X§+4qA§A§XnZn)

2 qg—1
+0, M2 (|2 ol I L + R, +R
X T 5 T a5 xr z
s\, 2q T, 2q
d(d—1)2¢(qg—3
> e, + W=D20@=3) iy
2 qg—1
1 w 1
—ox? (|8~ | - ) — Ry~ |R.

where C' = C(g) > 0 is a constant and the last inequality comes from |\;| < d~2 < 1. Then by
Lemma 3.2.6 and Proposition 3.2.5, there exist N = N(q, k, ¢) and § = §(q, d, k, 0) > 0 such that

if n > N and x,, < 9, then in the small neighborhood of the origin point (0, 0), we have X,, > Z,
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and thus X,, > %", which enables the positive quadratic term of XTQL, as the major one, to control

remainder terms, meanwhile, the following estimates hold simultaneously:
u, 1 < 1 d(d—l)Qq(q— 3)
T, 2q| " 8C 2 q—

w, 1 1 d(d—1)2q(q— 3)

< A4
T, 2q| 8C 2 g—1 "7

4
AL;

and
1 29(q — 1d(d—1)2
32 2 q—1 s 2 q—1
1dd—1)2q(q—3) 4 o 1d(d—1)2q(q—3) 49
M2 < MX2,
Rl <= =1 "S53 -1

Therefore taken together, the preceding results give the following crucial estimate
1d(d—1)2q(q —3)
2 2 q—1
1d(d—1)2q(q —3)
2 2 qg—1

Xpp1 > dN2X, + A X2

= X, [d\} + MNX, | (3.3.1)

Take e = min{37",7d} > 0, where v = (¢, d, 0) > 0 is the constant in Lemma 3.2.1. Because

q > 4 and ¢ is independent of \{, we can choose \; < d~3 to make

oo 2 g—1

Ae>1

Since zp = 1 — &+ > 1

5 5» it is concluded that x,, > %7" > 2¢ when n < N, in addition,

Xy > XN2;ZN = xTN > €. Now suppose X,, > ¢ for some n > N. Then display our discussion of

X,, as follows:

(1) If X,, > 2y~ !¢, then
Tl o VTn v X,
2 - 2 = 2

Xn+1 2 2 g;

(2) Ife < X,, <2y~ 'e, then z, < %= < y7'e < 6, and thus it follows by (3.3.1) that

Tn+1 Z X
qg—1
- X { —1)2(1(q 3)>\i‘€}
qg—1
> X,
> ¢
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Finally show by induction that for all n that z,, > X,, > €. Consequently it is established that the

Kesten-Stigum bound is not tight.

The second case taken into account is |A\;| = | 2|, under which there are two equal multipliers
in this nonlinear second order point mapping, the origin point must be a star node. Although the

principal axis is undetermined, just by the comparison of the quadratic terms and ¢ > 4, it is

concluded that
d(d_l) 2(1<Q_3) 42 4 d(d_l) q 4 v2 472
AT X 4N X, Z,, | — MNXE —Adgh\TZ
2 <q_1 1n+Q1 2 q_lln Q1n
d(d—1) [2¢*> —
_ (2 )(q_17‘1A§*X5+4qA;*XnZn+4qA§Zg>
> —d(d; Usiaz,

and thus the decay rate of X, is much slower than Z,, when n is sufficiently large. Therefore in
light of the preceding discussion, there still exist N = N(¢) and § = §(¢) such that if n > N and
z, < 0, we have X,, > Z, and thus z,, = X,, + Z,, < 2X,,. Then the rest would be the same as

the first part.

Last consider the case of 0 = |\a| < |\1]|. Due to |\y| = 0, Lemma 3.2.1 loses its effectiveness,

however, in connection with the previous discussion, it suffices to make a subtle adjustment.

Lemma 3.3.1. Assume d)\% > %, Ao = 0 and lim,,_.o, x,, = 0. Then there still exists a constant

0 <~ =7(d,q) < 1suchthat for alln > 0
Tpt1 = Vp.

Proof. Under the assumptions of d\? > % and the fact that the less d\? is, the faster x,, approaches
to 0, it is concluded that there exists a large N = N(q) > 0 such that when n > N, we always
have Z,, < X,, that implies X, > %, and 1d\z,, + Oy(22) > 0, where O, (x2) is the error of the

linear approximation of ;. Consequently,

€T T T 4
o= - < L= <8 3.3.2
o AKX, +O,(2) = Tinte, v S (3.3.2)

1
4

Since here \; # 0 implies x,, > X,, > 0 from Lemma 3.2.3, it is feasible to define a positive
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function

. 1 z
I'(A\i,d, q) :mln{—, 2t 0<m < N} :
&8 x,
Now fix d and ¢, from the construction of z,, it is natural that x,, is continuous for the parameter
A1, so is I'. Based on the assumption, we have 4 / 2_1(1 < |\ < \/g, that is, A\; ranges in a compact

set, and then there exists a \; € [— \/g, —4/ %l} U [, /o, \/g] such that T = D(A1, d, q) > 0.

Finally choosing v(d, ¢) = I'(\1, d, ¢) > 0 completes the proof. H

Finally apply contradiction by assuming that the Kesten-Stigum bound is tight, say, lim,, .. x,, =
0 for any \; with (2d)_% < |\ < d~3, which implies X,, — 0 and Z,, — 0 simultaneously as n
tends to co. With the assistance of Lemma 3.3.1, it is pleasant to see that Lemma 3.2.1 recovers
from the trouble caused by A\, = 0, accordingly results of Lemma 3.2.4 and Proposition 3.2.5 still
work out for this model. Thus there exist N = N(q) and § = (g, d) such that if n > N and
x, < 0 then (3.3.1) holds. The rest would be exactly the same as the discussion in the first part of
this section to present that there exists a € > 0 such that x,, > ¢ holds for all n, a contradiction to

the assumption. Thus we establish the non-tightness of the Kesten-Stigum bound. [

49



CHAPTER 4

NON-RECONSTRUCTION FOR ¢ = 2.

In this chapter we present the asymptotic behavior of the symmetric model, say, what happens as d
grows, under which the interactions become weaker. Moreover we could utilize this technique to
solve the non-reconstruction when ¢ = 2. It worth mentioning that this asympotics approach is of
more power than just solving the case of ¢ = 2, but also could be engaged in the investigation of
the reconstruction corresponding to ¢ = 3 and the asymptotic reconstruction threshold concerning
with \; and \,. However, in light of the more delicate analysis in those topics, we defer these

discussions to a subsequent paper.

4.1 Gauss Approximation.

Define
(A) whenl1 <i<g¢q

Uij = 10g

1 1
14 2q\ (er" - Q_q) +2(A — Ag) Z (Yzj - 2_q>] ;

q+1<€<2q

(B) wheng+1 <1< 2q

Uij = log

1 1
1+ 290 <nj—2—q) +2(0 = X)) > (nj—Q—q)] :

and Uj = (Ulja ceey U(gq)j) € RY.

In order to set up a distribution approximation, it is desired to estimate the means and covariances

of the Ul]
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Lemma 4.1.1. There exist constants C' and D depending only on q such that when d > D,
dEU,; — d{g\2z, + q(N2 — N3)z,}| < Cd™3;
when 2 <1 < g,

1 1 1
’dEUij + d{q(q +1 )/\fxn + (q(q - ))\f +q/\§) zn}’ < Cdz;
q

qg—1
forq+1<i<2gq,
[dBU,; + d {g\3z, + g(\2 — 3)2)2,}| < Cd .
Meanwhile, for any 1 <1 < 2gq,
|dVar(Uy) — d{2g) 3z, +2q(A2 — A2)z,}| < Cd™3;
forany 1 <1y < iy < 2q in the same category,
dCov(Uy,;,Usy;) +d {(i—qlA’;’xn + qQ_—ql(Af + (¢ — 1))\§)zn}‘ <Cd 7y
forany 1l <1, < q <19 < 2g,
|[dCov(Usyj, Usyy) — d2gN22,| < Cd™3.

Proof. For any 1 < 5 < d, write

1 1
a; = 2q\ (Ylj - Q_q) —2(A2 — A1) Z (Yej - Q_q) ;

q+1<6<2q

1 1
bj =2q\ | Yoj — o= | +2(M1 — Ag) Yij—5- ),
24 q+1<6<2q 24

and

1 1
¢ = 2qM (Y(q+1)j - 2—) +2(M — A2) (Yej - 2—) :
1 1<0<g ?

Using the Taylor series expansion of log(1 + w), there exists a constant W' > 0 such that when
lw| < W,

2

log(1 4+ w) —w + w? < |w]? 4.1.1)
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is always true. If we take D sufficiently large such that when d > D, |\| < d~2 is small enough to

make

< 6g[Al < W.

|a;| =

1 1
20 (Y - z—q) LECREODY (Y - 2—q)

q+1<4<2q

Therefore
2

as
’EUU ~E (aj - é)' < Elad| < 216¢°|\]° < 216¢%d 2.

On the other hand, we have the explicit formula

= A —2¢°0
1
= 2A; — -1
2
= [aMwn +a(N = X))za] — 20°A7 (u—g_q) 6 N2(A1 — A) (wn— %)

Taken together, two previous results establish the first estimate

|E(Uy;) — [g\iz, + a(A] — A3) 2|

< 216¢°d7% + 262\ P | — 0| 4 623 (1A + el ‘w" - Z—
q q
< 240¢%d2
- "g—Z < 1 and ’wn = g—; < 1. Similarly the second and third estimates of this
lemma turn out to be true by noticing
b2
E(b — -2
(-3)
= N — 2q2@
IT
= 20\, — 72
_ dat Dy (Q(Q+ )A2+ >\2>
q —1 q

q 2q —
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and

c?
E <Cj — é)

IT
- 2A3 - 73
= —q\ix, — (A3 —3)\3)z, — 2¢° AT\, (wn — g—n) .
q
In order to complete this proof, it suffices to consider covariances by means of the analogous
analysis:
(1) whenz =1

Var(Uy;) = EUfj — (EUy,)?
= Ed; +O(I\[*)
= I, — 2A; + O(|\( )

= 2qN2z, + 2¢(N2 — AD)z, + O(d"2);

(2) when2 < <gq
Var(U;;) = Eb +O(|M]?)
- HQ - 2A2 + O(’)\1’3)

= 20X%, 4+ 29(\2 = A2)z, + O(d2);

(3) wheng+1<1:<2q
Var(U,) = Ec+0(nf)
= II3 — 205 + O(I\ %)
= 2q\x, +2q(\2 — A2z, + O(d_%)§
(4) when 2 < i < ¢, by noting that EZ, Z; = EZ?,
Cov(Uy;,U;;) = EU,U; — (EU)(EU;)
= Ea;b; + O]\ %)
= Iy — A — Ay + O\ )
2q 2q

= _q——l)\%x" - q——l()\% + (g = 1)A3)z, + O(d™2);
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(5) when ¢+ 1 < < 2¢, by noting that EZ, Z; = EZ?,

Cov(Uy;,Ui;) = Eajc; +O(IM[?)
= I3 — A — As + O(J\ )

= 2903z, +O(d3);
(6) when2 <11 < q <19 <2q

Cov(Uyj,Usj) = Ebjc; +O(I\°)
== Hﬁ — A2 - A3 + O<|>\1|3)

= 2\2z, + O(d " 2)

(7) when2 <1y <1y < gq

Cov(Uy;,Usy) = T5—2As + O(I\]?)
2 3
= - qqu(Af + (= 1Az + O(d7);

(8) wheng+1 <1 <19 <2¢

COV(UZ'M', Uin) = H? - 2A3 + O(|/\1|3)

2q 2q _3

Define two 2¢ dimensional vectors 11 = (;1;)2% and v = (1;)3? by

( (

q ifi=1, q ifi =1,
po=q -4 2 <i<q, and v =1 ¢ if2<i<q,
[ —¢ ifg+1<i<2q \—3q ifg+1<i<2q.
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In addition, X(U) = (2;;(U))2gx2q and (V') = (£;;(V'))24x2, denote 2¢ x 2¢ symmetric positive

semi-definite matrices with

2q if 1 = j,
¥i(U) = —qZ_—ql if i # j are in the same category,
(0 if 2 and 5 come from different categories
and
.
2q if i = j,
2i;(V) =19 2¢ if i # j are in the same class,
[ —2¢ if 7 and j are from different classes.
Let s = d\}(x, + z,) and t = —d\3z,. Under results of the preceding estimates, we construct a

multivariate Gaussian distribution (V[fl)fq given by W, = syu; 4+ /sU; + tv; + +/tV;, where {Ui}fq
and {V;}7? are two sequences of independent normal random variables with expectations 0 and
covariance matrices >(U) and (V) respectively. Next define a 2¢-variable function

et

2?11 e’

w(wl, Ce ,U)Qq) =

which is positive, analytic and bounded by 1 and

Fs.0) = Bo(Wi,. .. Wo)— L —p_ o L
) - 1y--+> 2q 2(] - Z?il eWi 2q

Then the proposition 4.2 in [3] established by using Central Limit Theorem, Gaussian approxima-

tion and Portmanteau Theorem, leads to the following lemma.

Lemma 4.1.2. For each € > 0 there exists a D = D(e, q) such that for all n when d > D,
| X1 — 9(dAI X, AN Z,)| < e,
| Zps1 — MdN X, dN3 Z,)| <e,

and

|Zps1 — fANI X, dN3Z,)| < e
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Since 0 < X,, <1— % and 0 < 7, < %}, we will focus on the behavior of f(s,t) in the area

o] <o)

Lemma 4.1.3. The functions f(s,t), g(s,t) and h(s,t) have the continuous partial derivatives

with respect to s € <0, 1— ﬂ andt € <0, %J respectively, in addition, f(s,t) is increasing of s

and t separately.

Proof. In view of the similar definition of f, g and h, it suffices to verify the differentiability of f
with respect to s and the rests would follow similarly. When s > 0,

Wh
0 e €

Js Js

29 W;—Wq (OW; _ 9Wh
Elo WVZEZ 2¢ I/I(/~W2 )
332;& ‘ (Do, eV
< 8W 8W1
o +U Uy
= 1
\/_
< o0

Therefore f is differentiable with respect to s, as desired.

Nextitis in turn to show the monotonicity of f(s,t). Firstlet (Uy,Us, ..., Us,) and (V{, V3, ..., V5 )
be an independent copy of (Uy, Us,...,Usy,) and (Vi, Vo, ..., Va,) respectively. Then when 0 <

s’ < sand 0 < t' < t, we can construct the equivalent distributions such as
V(U1 Us, ..., Usy) ~ V&' (U1, Us, ..., Usg) + Vs — s'(U, U, .., Up);
VE(VA, Vo, o Vag) ~ VE (Vi Vo Vag) +VE= (VL VY, V).

Next we will focus on the discussion of the monotonicity with respect to s, since the case of

t could be handled similarly. It is obviously that (U] — Uy,U; — Uy, ..., Uy, — Uj) is also a

multivariate gaussian distribution with mean y' = (0, ..., 0) and variances such as
( . .
0 ifi=1,
Var(U — U]) ={ 4 if2<i<gq,

4q ifg+1<:<2g.



It is well known that if T is distributed as N (1, 02), the expectation of the exponential random
variable could be estimated as
Ee" = et 7, (4.1.2)
based on which, we are allowed to evaluate the conditional expectation given {U;}3% and {V;}3%:

E [exp(V5' (Ui = U3) + Vs = /(U] = U}) + t(v; — ) + VAV = ) | {U3 AV Y|

(

1 ifi=1,

= exp(Vs' (Ui — Uy) + 2L (s — &) + t(y; — ) + VIV, — V1)) if2<i<q,

q—1

\ exp(Vs' (U — Uy) + 2q(s — 8') + t(v; — 1) + VEHV; — V) ifg+1<i<2q.

Then we can apply Jensen’s inequality, plus noting that the function —— is convex, to derive

1+x
exp(spy + +/sUp + vy + V) 1

s,t) = S
fs,1) ?il exp(sp; + /sU; +ty; +VtV;)  2q

= E

2q
1+ Zexp <s(ui — 1) + Vs (U; — Uy) + Vs — s'(U — UL
i—2

1

(v — 1) + VAV — VQ)] o o

E{l—l—E

s =) + VIV = W) U (GE] L - o

2q

Zexp (s(,uz- — ) + V(U = Uh) + Vs — (UL = U7)

=2

v

q 2 2
2q°s 2 ,
= E 1—|—ZZ:2:GXP (_qq_l +\/;(Ui_Ul)—i_qgl(s_s)"‘t(Vi_Vl)"i‘ﬂ(‘/z‘—vl)>
2q -1 1
+ Z exp (—qu + Vs (U; = Uy) 4 2q(s — §') + t(vi — 1) + VEH(V; — V1)> - =
i=q+1 2(]
q 2q28l
- E 1—|—Zexp (_q—l +\/;(Ui_Ul)‘i‘t(Vi_Vl)‘i‘\/E(‘/i_‘/l))
=2
2q -1 1
+ Z exp (—2qs' + Vs (U; — Uh) + t(v; — 1) + V(i — V1)> - —
1=q+1 2q
= f(sl7t>7
as desired. [
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4.2 Taylor expansions of f(s,t), g(s,t) and h(s,?).

The Taylor expansions of g(s,t) and h(s,t) in the small neighborhood of the origin (0,0) would

. . W o _ 2q W;
be of interest to us. By takinga = e,y =2gandz = ) ;" e

4 i—1 4
a - Lax = a
— E S | s i I i ,
r+y ( =) Y ) (=1) vt +y

i=1

— 2q in the identity

we have
4 _ . | 1
fo) - Byt et =2 (B e g e )1
| (ay Cot T )
q(2¢ —5) , 9 2q2(q2—10q+17) N Q(q_6)q2 ) )
= s+t+ ———5 +2¢st — 2qt° + P 2T oy Y2y
2a=1) 3(q —1)? g—1
204>
4—;§+OM+#%

where we use the formula (4.1.2) and facts of

2(] Wi _ 2 4
E (Zz:l c q) = O(s" +t%)

2q
and
eM
0< —— < 1.
> it ei
Similarly,
(¢ —3) » *(2¢° —21q+39) 5, 2¢°(a—5) 5, , 5 4
g(s,t) = s+q_—13 + 2gst + 3 —1) s” + = st —4q st + O(s" +t7)
and
2 2 2
q 2 >, ¢(g—5) 4 29" 5, , 20q° 3 4 44
h(s,t) = t — 2qt — t+ ——1 O th).
(s,t) +2(q—1)8 q +3(q—1)25 1 +— U+ (s"+ 1)

4.3 Proof of Theorem 1.3.2.

Lemma 4.3.1. When q = 2, for all (s,t) € [O, 1-— %] X [O, %}} \ (0,0), we have
f(s,t) < s+t
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Proof. When q = 2,

2 ifi =1, 2 ifi =1,
i =94 —6 ifi =2, Vvi=14 2 ifi =2,
[ -2 ifi=34, | -6 ifi=34,
( . . .
4 ifi =7,
3ij(U) =1 —4  ifi+ j are in the same category,
(0 if 7 and 7 are in different categories,
and
)
4 ifi = j,
Yii(V) =14 4 if 7 # j are in the same category,
—4 if 2 and 7 are in different categories.

\

By examining the preceding results, it is obtained that for ¢ # j in the same category,
E(U; + U;)* = 2EU? + 2EUU; = 0,
which implies that U; = —U; a.s., and similarly we can conclude that V; = Vj a.s. from
E(V; -V’ =EV? + EV? —2EV;EV; = 2 + 2¢ — 2 x 2 = 0,
whereas if ¢ and j belong to different classes, we have
E(V;+V;)? =EV + EV? + 2EV,EV; = 2¢ + 2¢ — 2 x 2¢ =0,
which gives V; = -V} a.s.

Therefore it is convenient to reduce the random variables in the expectation of f as

1
F(s,1) exp(sp1 + /sUy + tvy + VW)

Sty exp(sp + /sU + ty; + ViV;) 2
1

1 4+ e—8s+vs(—2U1) 4 e—4s++/5(Us—U1)—8t+Vt(—2V1) + e—4s+/3(=Us—U1)—8t+Vt(—2V1)
59
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where Uy, Us and V) are independent and identical normal random variables with mean 0 and

variance 4. For the rest part of the proof, we could refer to Mathematica. [

Proof of Theorem 1.3.2. Suppose d\* = max{d\},d\3} < 1. By means of (2.5.2) and (2.5.3),

taking € = 1 (1 — dA?) > 0 there exists a constant § = 0(g, €) such that suppose z,, < 0 then

Tn+1 = XnJrl_'_ZnJrl

IN

(dX3 + €)X, + (dX5 + €)Z,,
< (dN+e)(X,+ Zy)
= (1—e€)x, <,
in addition, induction in tandem with 0 < 1 — ¢ < 1 implies lim,, ., x,, = 0 and thus there is

non-reconstruction. So here it suffices to find some m such that z,, < §. Otherwise assume all

x, > 6. Next define ¢ = $ming,>5(s +t — f(s,t)). Since s + ¢ — f(s,t) is continuous and
positive in the compact set [0, 1— ﬂ X [O, %J (\{s+t > 4}, which is bounded away from the

origin, we can conclude € > 0 by Lemma 4.3.1.

Then by Lemma 4.1.2 there exists a D = D(e, q) > 0 such that when d > D,

Tpi1 < fANX,,dN3Z,) + ¢

IN

[( X, Zy,) + €

IN

= Tp —E,
where the second inequality is from Lemma 4.1.3, say, f(s,t) is increasing with respect to s and

t simultaneously. So here if we choose N large enough to make N > ¢!, a2y — Ne < 0, a

contradiction to z,, > 0 for all n. O
In Theorem 1.3.2, by taking A\; = Ay, i.e. p; = po, our model becomes the 4-state symmetric

Potts model, which was left as an unsolved problem in [3].

Proposition 4.3.2. For the symmetric channel corresponds to the 4-state Potts model on the tree,
there exists a D such that for d > D the Kesten-Stigum bound is sharp for both the ferromagnetic

and antiferrmagnetic channels.
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CHAPTER 5

ASYMMETRIC BINARY CHANNELS

In this chapter, we will focus on the asymmetric binary channel

1 1+6 1-0 ~1 1
= +A
1-6 1+6 ~1 1

M =

where the parameter A describes the deviation from the symmetric model. Obviously it should
have some restriction, such as

0] + Al <1

to make this matrix well-defined. Furthermore it is clear that the second eigenvalue of the channel
M is 6. Recall that |©| < d~2 is the exact threshold for non-solvability, which had not been known

until [13], though.

Theorem. For all d > 2, there exists a Ay > 0 such that for all |A| < A, the reconstruction

problem for M on the d-ary tree T is not solvable if d9* < 1, that is, d©? = 1.

But this theorem has just established the existence of A, without estimating the range to keep
Kesten-Stigum bound tight. In this chapter we will establish the critical condition of A to keep
d©? = 1. In light of the specified approaches engaged in previous chapters, we will only give the
brief discussion for most similar results in the following context. Since df? > 1 always guarantee

the reconstruction, it suffices to consider % < d#* < 1 in this chapter.

5.1 Preliminary Works.

First notice that the stationary distribution 7 = (7, m2) of M is given by

1A I BN
Mo ey M T T o —g)
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Next according as the posterior functions in Chapter 1, define
XT=X*(n) = fu(l.o'(n));

X~ =X"(n) = fu(2,0%(n)),
and for 1 < 5 </,

Y; =Y(n) = full,05(n + 1)),

where the random variables {Y }1<,<4 are independent and identical in distribution. Furthermore,

it is apparent that E(X;) = m; and E(X») = m,. Last denote similarly the objective quantities
Ty = E(XJr(n) - 71-1) = Efn(1> O-l(n)) —T1

and

zn = E(XT(n) —m)? = E(fu(1,0'(n)) — m)>
Next let’s introduce some analogous identities as developed in Section 2.2 and 2.3.

Lemma 5.1.1. We have that

1
r, +m =EXT = —E(X?)
T
and
1
2n = —B(X; —m)2 =E(X*(n) - m)? + 2E(X " (n) — )% > 2, > 0.
1 1

Proof. By Bayes’ rule, we have
EXT = Ef.(1,0'(n))

= > fuLLAPo(n) =A|0,=1)
_ %ZP@ — 1| o(n) = AP(o(n) = A)f.(1, A)

— LY (1L, AP (o) = 4)

T
La

1
= —E(X7
) ( 1)

and similarly,

EX~ =Ef, (2,6°(n)) = iE(Xg).

Uy
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Then it follows
1 1
= (B(X) —7?) = ~B(X, - m)?

™ ™

from the fact of E(X;) = ;. Last we illustrate the relation between x,, and z,, by Total Probability

Formula,
1
Ty = —E(Xl — 7T1)2
T
1
= o [P(Up = 1)E((X1 - 7"1)2 | Op = 1) + P(Up = Q)E((X2 - 7T2)2 | Op = 2)}
1
1
= — [7T1E<X+(TL) — 7T1)2 + mE(X (n) — 7T2)2}
1
— E(X*(n)—m)*+ %E(X‘(n) )
1
> Zn,
as desired. O]

Proposition 5.1.2. For each 1 < 57 < d, we have
E(Y; —m) =0z,

and

E(Y; —m)? =0z, + m(1 — 0)z,.

Proof. If o} = 1, Y; is distributed according to X (n), while to 1 — X~ (n given ol =2
Uj J g Uj

Therefore Lemma 5.1.1 yields

EY;—-m) = P(O'thj =1DEX"(n) —m) + P(O’}Lj =2)E(1—-X"(n) —m)
= Myz, — M122$n
T2

= 9$n,
as well as,

E(Y; -m)? = P(o,, = DEXT(n) —m)’ +P(o,, = 2)E(l = X~ (n) —m)*

= MpuE(XT(n) —m)®+ MpE(X (n) — m)?
- Mllzn + M12E($n - Zn)
2

= 0z, +m(1—0)z,.
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5.2 Recursive Formula.

To determine the reconstruction, it suffices to research the asymptotic behavior of x,, when n is
large enough, because the non-reconstruction is equivalent to lim,, ., x,, = 0 as showed in Lemma

3.1.1. Then from the Markov random field property, we have

m Ty |2 (1 Ay) + 22,2, 4))]
m Ty (2 (1, Ay) + 222 £u(2, 4))] 4+ ma TT, [22 (1, A)) + 222 (2, 4))]
m Ty |1+ £l A7) = )

) m H;lzl [1 + %(fn(l,Aj) — 7?1)} + T H;.lzl [1 _ %(fn(l,Aj) B 71-1)} : (5.2.1)

fn+1(17 A) =

Next conditioning the root to be 1 and setting A = o'(n + 1), it can be expressed as

X*(n+1) = #Z;Z?
where
:ﬁ[ O a1 ay) - ﬂ:ﬁﬁ+%mw—m]
and
7 ﬁ{ (1, 4) ﬂzgﬁ—%mw—m]

By means of the identity (2.5.1), we still focus on the main expansion of x,,., as before

Tpy1r = EXT(n+1)—m

™4
= E(ﬂ-lzl) - E[W121<7TIZ1 + 77222 - 1)] + E |:(7T1Z1 -+ 7T2Z2 — 1)2ﬁ:| — .
141 242

Next estimate preceding terms one by one as showed in Lemma 2.5.2 and it is remarked that the

following R;s denote the remainder terms bounded by O, (x2):

EZ, = Eﬁ [1 + i(Y;- —m)}

df dd—1)T6 2
= 1+ —EY,—m)+ ( >{—E(Y1—7T1)} + Ry
T 2 st
do? d(d—1)6*
= 1+ Ty + ( >—2I'31—|-R1,
48! 2 m



EZ? = Ef[ {1+ i(Yj —m)r

5 T
Jj=1
- 2
0 2 d(d—1) 0 2
= 14+d{E|1+—Y1—m)| —1,+ E(l+—Y1—m)| —1; + Ry
T ] 2 1
62 g 1 d(d—1) [62 g 17
= 1+d|—3-0 ~ ~—(3-0 = :
+ [M(S )xn—i—ﬁ%zn_-l— 5 Lﬁ(?) )xn—f—ﬁ%zn] + Ry;

EZZ, = Eﬁ{ui(lfj—m)} :1—ﬁ(Y}—7r1)]

i 1 )
1 —2 3 —1 1 —2 3
= 1+d{¢92<—+9 )xn— f zn}er(d ){92<—+9 )xn— 0 zn] + Rs.
m Ty T 2 T Ty T 7o
Consequently taken together, the preceding results yield
E7I'121(7T121 + 71'222 - 1)
= mEZ} +mmEZZ, — mEZ,
= 7 d(d 1) {9—(3 —0)x, + e—an] + T dd—1) {92 (— + 0 ) Ty — i zn}
2 T e 2 T Ty SKID
d(d—1)6*
2 ™1
Now treating Z» in the similar way as before yields
d 0
EZ, = E 1——(Y; —
|
df dd—1) [0 ?
= 1——E<Yi-7’(’1)+ ( ) |:—E()/1—7T1):| +R5
Ty 2 Up)
db? d(d—1) 6
o 2 75
and
d 9 2
EZ? = EH {1 — W—Q(YJ - m)}
7=1
6 2 d(d—1) 6 2 7
= 1+d{E[1——(Y1—m)] —1}+ {E[l——(iﬁ—m)} —1} + Rg
Up) 2 2
62 63 d(d—1) [ 6? G
= 1+d{— |:E<1—6)—21 xn+—22n}+ ( ) {— |:E<1—6)—21 xn+—22n} +R6.
Ty | T 5 2 Ty | o 5



Therefore

E(ﬂ'lzl + WQZQ — 1)2

= mE(Z}) + mE(Z7) 4+ 2mmE(Z,7,) — 2mE(Z)) — 2mE(Z:) + 1

1 2 3 2 1 2 3 2
T

2 T 1 2 Ty [ T2

1 -2 g 7° g g+
+mimed(d — 1) {92 (— + > T, — zn} —d(d—1)—22 —d(d —1)—2> + R;.

Uy 2 172 ™ Uy

The purpose of the following lemma is to describe how close the linear term in the recursive

expansion approaches to z,, 1.

Lemma 5.2.1. For any € > 0, there exists a constant § = 6(m, €) such that for all n, if x,, < ¢ then
|Tni1 — dO*z,| < ex,,.

. T Z . .
Proof. 1t is natural that 71, Z; > 0, and thus 0 < m < 1. Next substitute the preceding

results into the expression of x,, 1 and then get

Tyt — dO*z,|
T2

2 a - dbPa,
7T121—|—7T222 ™ .

= E(7T1Z1) — E7T1Z1(7rlZl + 7T2Z2 — ].) + E(ﬂ'lZl + WQZQ — 1)2

S ‘E(?lel) - E7T121(7T121 + 7T2Z2 - 1) — 1 — d(92513n’ + E(7T1Z1 + WQZQ - 1)2
S lelfi + ng’i
< &y,

where C'} = Cy(7) and Cy = Cy(m) depend only on 7, the second last inequality follows from the

fact 0 < z, < x,, and the last holds if x,, < § for § = §(, €) small enough. O

Referring to Lemma 3.2.2, it is known that fixed finite different vertices far away from the
root can effect the root little, based on which, it is possible to exploit the concentration analysis.
Although the blueprint of the proof is similar to Lemma 3.2.2, it is still worth illustrating afresh

due to some qualitative changes caused by differences of models.
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Lemma 5.2.2. For any € > 0 and positive integer k there exists M = M (m, e, k) such that for any

collection of vertices vy, . .. ,vx € L(M),

sup |P(0p:1]avj:ij,lgjgk)—m’§€

Ul yeenylk

Proof. Denote the transition matrices at distance s by
Us = Mf,la Vs = M25,2
and it is natural to see that M7, =1 — U, and M5, =1 — V. As aresult, it follows that

Us =M 1Us—y + My o(1 — Vi)
Vo= Ms1(1 —Us1) + MaoVsy

which yields a second order recursive formula
Us—(14+0)Us_y +0Us_5 =0
with the initial conditions Uy = 1 and U; = M; 1 = m + m20. Then the general solutions are
Us,=m +m0° and V, = my + m6°. (5.2.2)
Consequently under the condition of df? < 1 we have
T — ng’s/Q < Mf’l <m + WQd’S/Q;

Ty — md % < M3y < mo+ md %2
Ty — mod %% < M1572 < m+ 7r2d_5/2;
7 —mdS? < Mil < 7y + md 2.

For fixed 7, d and k, define

T + 7T2d78/2 To + 7T1d78/2 1+ dis/2
B(s) = max

T™ — 7T2d_8/2, Ty — 7T1d_8/27 1—d—s/?

and let v be a sufficiently large integer such that

B*(y) <1+e¢
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s/2

since d~*/* — 0 implies B(s) — 1 as s — oo.

According as the procedure of Lemma 3.2.2, it is convenient to skip the rest analogous steps.

By Bayes’ Rule and the Markov random field property, for any iy, ..., ¢,, € C, we have
Plo,=1]0ow, =i;,1<j <ny)
Po, =2 0w, =i;,1<j <ny)
m Pow, =14;,1 <j<ng|o,=1)

T P(oy, =i;,1 < j <ng|o,=2)

T Zhl,...,hneecP(Vj Ow; = i | Vj Ow; = hj)P(vj Ow; = hj | Op = 1)
EZhl,...,hneeCP(Vj Tw; = 1 | V) Ow; = h;)P(Vj ow; = hy | 0p=2)
m Zhl,...,hneec P(Vj o, =h;|o,=1) H?i1 Mf;yjij

7r_22h1,...,hneec P(Vj o, = h; |0, =2) H?i1 M;ij’j
Zhl,.‘.,hnZECP(vj 0w, = h; o, =1)

T
< Zpm(y) ,
2 Zhl,m,hneec P(VJ Ow; = hj | o, = 2)
T k
< =B
< L0
< ﬂ(1+5)7
T2

which implies that
m—e<Plo, =10y, =i;,1 <j<ny) < +e.
To the end, since 0, is conditionally independent of the collection o, , . . ., 0y, gIVeN 04y, . . ., Oy, s
it is concluded that

sup |P(o, =10, =i;,1<j<k)—m|

U1yeesy U

IN

sup [P0, =10y, =i;,1 <j<ng)—m]

Ulyeeny ine

E.

IN

]

Before the concentration lemmas, it is necessary to verify that z,, does not drop from a very

large value to a very small one as discussed in Lemma 3.2.1, but with the distinct approach.
Lemma 5.2.3. If 0 # 0, then x,, > 0 holds for all n > 0. Consequently, under the assumption of

lim,, o0 7,, = 0 and d6? > %, there exists a constant 0 < v = ~(d, ) < 1 such that for all n > 0

Tpg1 = Vp.
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Proof. In Lemma 5.1.1 we have proved that z,, > 0, so here it suffices to exclude the equality.

Applying the contradiction, assume x,, = 0 for some n > 1. By Lemma 5.1.1, it follows that

1
—E(X; —m)’ =2, =0

Therefore X(n) = m and thus X,(n) = 79 a.s., and thus by Bayes’ rule for any configuration

combination A on the nth level, we always have

P(o(n)=Alo,=1) = %P(O'p =1]o(n)=A)P(c(n) = A)
= P(o(n) =A)
_ %P(o—p — 2| o(n) = A)P(o(n) = A)

= P(o(n)=A]o,=2).
Denote the leftmost vertex on the nth level by v, (1), and the preceding formula implies
P(Uvn(l) =1 Op = 1) = P(Uvn(l) =1 Op = 2).

Therefore from the formula (5.2.2), we have X,, = 1 — Y,,, which further implies ¢ = 0, a

contradiction.

Under the assumption of df? > % and lim,,_ .. x,, = 0, it is concluded that the less df? is, the

faster x,, approaches to 0, and thus there exists a large N = N(7) > 0 such that when n > N,

— = < = < —, 5.2.3
Tpi1 dO?x,, + O (22) — %d@%n 9de? — 9 ( )

Since here 6 # 0 implies z,, > 0, it is feasible to define a positive function

9 zp,
'@, d, ) = min § —, Tmt1
200 x,,

:OSmSN}.

Now fix d and 7, from the construction of x,, it is natural that x,, is continuous for the parameter

6, so is I'. Based on the assumption, we have 4/ %%z < 0| < \/g, that is, 6 ranges in a compact

set, and then there exists a f € [— \/g, —/ 33l U v/ 33 \/g] such that Ty, = (6, d, ), where

F(g, d, ) > 0 follows from the first part of this lemma. Finally choosing v(d, ) = F(g, d,m) >0

completes the proof. O
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w1 Z1+meZ2 and

With the previous Lemmas, we are able to obtain the concentration estimates of

== after Lemma 3.2.4 and Lemma 3.2.6 respectively, when z,, is small.

Lemma 5.2.4. Assume lim, .. x, = 0. Then for any ¢, > 0 there exist constants C' =

C(m,e,a) and N = N(m, e, ) such that when n > N,

°(

Proof. Next fix k an integer with £ > «. In Lemma 5.2.2 choose M to hold with bound /2. Then

T2

———— — T
7T121+7TQZQ !

>€) < Cxz;

let vy, ..., vL(an) denote the vertices in L(A/) and define
W(0) = frrroa(Lobn + 1))

where o (n + 1) denotes the spins of vertices in T, N L(n + 1). Then W (v) would be distributed
as
Xt(n+1-M) ifol =1,
W(v) ~ (5.2.4)
1-X"(n+1-M) ifol =2.
Repeating recursion formula (5.2.1) yields a function

SV

HWh, - W) = full.0 (04 1) = ——= =

where W; = W(v;) for 1 < ¢ < |L(M)|. Based on the discussion in Lemma 3.2.4, it is
known that if x,, is sufficiently small, W (v) should be close enough to 7y, which implies that
H(Wh, ..., W) is sufficiently around ;. Therefore by Lemma 5.2.2 if there are at most k
vertices in L(M) such that W (v) # m; then

|H(W1, ceey VV|L(M)\) — 7'[‘1| < 5/2
Since H is a continuous function for all W, there exists some § = d(¢) > 0 such that if
#{ve L(M): W) —m| >0} <k

then

|H(W1,...,VV|L(M)|) —7T1| < E.
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Next by Chebyshev’s inequality and relying on (5.2.4), the following holds,

P(W)—m|>0) < 6EBX n+1-M)—m)2+EX (n+1—M)—m)]
572

—F—~ Tnt+l-M-
min {1, ;r—f}

As random variables, |W (v) — m| for distinct v are conditionally independent given o (M), and

<

therefore there exist suitable constants C(m, £, ) and N (7, €, ) such that whenever n > N,
™4
P < 121 > 5)

T2 + Tl -

< P(#A{ve L(M): W) —m|>d} >k)
= ZP(# {ve L(M): W) —m| >0} >k|o(M)=A)P(c(M) = A)
A
572
< Y P|B||L(M)|, ——awn-um | > k| P(o(M) = A)
A min {1, :—f}
< /IszM
< Cuxj
where we use the fact £ > « and the last inequality comes from (5.2.3). 0

Lemma 5.2.5. Assume lim,,_,o, ©, = 0. For any ¢ > 0, there exist N = N(m,e) and 6 = §(m,¢)

such that if n > N and x,, < 6,

Zn
__7'['1
n

<e.

Proof. Taking a = (Z, — Zy)*,r = (712, + 7275)?> — 1 and s = 1 in the identity (2.5.1) yields

2
7T1Z1
w1 = B/ -

el (7T121 + T Lo 7Tl)

_ 22 (2, — Z»)°

172 1+(7T121—|—7T2Z2)2—1
= mm{E(Z — Z,)? = E(Z) — Z)*[(m1Z1 + m225)" — 1]
(Zy — Zy)?

(71'121 + 7T2Z2)2 .

+E[(7T121 + WQZQ)2 — 1]2

Next let’s estimate these expectations term by term and we remark that C;s and O, -constants in
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the following context only depend on 7. Then
E(Z1 - Z2)2 == E(le + Z22 - 2leg>

2 3 2 3
= 1+d[9—(3—9)wn+0—2zn} +1+d{9— [2(1—9)—2} xn+6—22n}
7T

1 6-2 63
—2{1+d{92 (—+ ):cn— zn}}+0w(:vi)
1 9 T
1-46 0
— d92 n n Oﬂ' 2
(e ) + e

and

E(Z) — Zo)*[(m1 21 + T Z5)* — 1 = Ox(22),

n

. ., . . —_ 2 .
in addition, relying on W%W%(ngi_’_—fj)zz)g < 1, we could come up with
(Z, = Zy)°

W%W%E[(’/lel + 7r222)2 - 1]2

E[(TF1Z1 + 7r222)2 — 1]2 = Oﬂ-(ﬂji)

(121 + maZs)?

Therefore the recursion of z,,.; would be expressed as

Zny1 = dO?[m (1 — 0) 3, + 02,]) + Ox(22).

12
s
Tn4+1

Lemmas 5.2.1 implies ‘fﬂ% — 1‘ < (O)-2-, and thus if let N; = N,(7) be the constant in the

proof of Lemma 5.2.3 to guarantee (5.2.3), when n > Ny,

il [m(l —0)+ ez—”}

Tn+1 Tn
= | T [m(1—9>+92—] +'< ° —1) [mu—e)wz—]
Tn41 Tn41 n Tn+1 Tn
x2 x2
< Cp——+ 03—
Tn+1 Tn+1
S C4xn+17

where the second term of the first inequality comes from the fact of 0 < 2= < 1. Forany k € N,

iterating the preceding inequality £ times yields
k

<

(=1

k
< Dl
(=1
k

< Gy |0 rae.

=1

_ —¢*n+L — — Zn4L—-1
7r1(1—6k e)+9k £ ~n+ —7r1(1—9k £+1)_9k 041 *n+
Ln+e Tn40-1

“ntl {m(l _ 0) i 6%%—1} ’

T4 Tnte-1

s LA {71(1 — %) + ekz—”]

Tn+k Tn
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For fixed k, by Lemma 5.2.1 there exists a 6 = §(m, k) such that if x,, < J, z,, < 26 for any
1 < ¢ < k. Therefore based on the fact of |0| < d—z < \/%, taking k = k(e) large enough and

d = d0(m, e, k) = 0(m, e) sufficiently small, we obtain

k
n 1— |0k
z+k—m_gwﬁ+2aa§:ww4=ww+zan 9] <e,

Ttk — 1 - ‘6‘
where the first inequality relies on |2 — | < 1. Finally, by choosing N' = N(m,e) > N; +

k, plus noting that if z,, < & then z,_, < (2)*z, < (2)*§ from (5.2.3), the previous result

completes the proof. 0

5.3 Condition for Reconstruction.

Theorem 5.3.1. Assume lim,, .o x,, = 0. When A* > (1 — 0)?, there exist N = N(r) and
d = 0(r) such that ifn > N and x,, <,

1(1— d(d—1
Tpa1 = do?z,, + —( 6mima) d( )941’2.

3 2
Proof. First let’s review the recursion formula

SV

Tny1 = B(mZ1) — EmZi(mZy + 792y — 1) + BE(mZ) + T9Zs — 1)27r 7y + 192y
121 + Moy

7.

For any € > 0, suppose that N’ = N'(m,¢) and C' = C(m, ¢) are constants from Lemma 5.2.4,

when n > N’, combining Cauchy-Schwartz inequality and Lemma 5.2.4 gives

A
E(lel -+ 7TQZQ — 1)271'Z7Tlﬁ — 7T1E(7T121 -+ 7T2Z2 — 1)2'
141 242
7T121
< E(mZ Zy—1)? | ———— —
< E(mZ, +mZ, ) A 1
< €E(7T121 + 7T2Z2 — 1)2 + E(ﬂ'lZl + 7T2Z2 — 1)21 < 7T1—Z1 — M| > 8)
T2 + Mol
1
A 2 1
< eE(mZy+mZy — 1)+ P ( Wzmﬁ — | > 8) [E(m1 2y + w92 — 1)*]
141 2472
< eB(mZ, +mZy, — 1)+ Cxl.
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Now it is in turn to estimate

E(ﬂ'lZl) — E7TlZ1<7T121 + 7T2Z2 — 1) + 7TlE(7TlZl + 7T2Z2 — 1)2

d(d —1 2 2 2
= W1+d02$n+L94Ii{(———) — Ty {34—i (ﬁ —Wl)}
2 T o T \Tn

1 2 0 [z, 2
+myme(m — m2) pra sl e m

1— 67T17T2 d(d — 1)
73 2

0'22 + S+ R

where R = O, (z2) and S = O, (

= — 7r1) x%) By means of Lemma 5.2.5 and the assumption,
plus choosing sufficiently small € = £(r), there exists a constant N = N(7) > N" and § = ()

such that if n > N and z,, < ¢, then

11— 6mmd(d—1)

€E(7T121 + 71'222 — 1)2 + CZE?L + |S| + ’R| S - 3 Q4[L‘721
2 mms 2
Finally, combining all the results above together gives
1(1—-6 d(d—1
Tpp1 > dO%x, + —( 7T217T2) ( )6’4xfl,
TS 2
as desired. ]

Proof of Theorem 1.3.3. To accomplish the proof, it suffices to show that when df? is close
enough to 1, x,, does not converge to 0. Referring to contradiction, assume lim,,_,. z, = 0 for
any % < df#? < 1, under which Theorem 5.3.1 and Lemma 5.2.3 are activated simultaneously.

Consequently there is a y = y(d, ) > 0 such that
Tpt1 = VTn

for all n. Furthermore, since the initial point is o = 1 — m; = 79, then
Tp > Ty

Next take /N and ¢ in Theorem 5.3.1 such that if n > N and z,, < 9, then

1(1—- dd—1
Tni1 2 d‘92xn + _( 67T17T2) ( )

0422, 5.3.1
7Tl7T§ 2 Tn ( )
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Thus define ¢ = min{myy",dv} > 0, and then by Lemma 5.2.3 and ; = T, it follows that
x, > ¢ whenn < N. Because of A% > %(1 — 60)?, namely, 1 — 6m;m > 0, by choosing suitable

0] < d~z, it is feasible to make

1(1— 1
62 + 5( f:fz) d<d2 Jgie > 1, (5.3.2)
172

since ¢ is independent of 6. Therefore, suppose x,, > ¢ for some n > N. If x,, > &7, then by

Lemma 5.2.3, 7,41 > vy, >c. If e <z, <~ 'e <4, by (5.3.1) and (5.3.2), then

1 (]. - 67T17T2) d(d - ].)

" > d02 " - 94 2
Tntl = Tn F 2 3 2 n
1(1-6 did—1
2 T d02+_( 7T217T2) ( )945
2 mm 2
> Xy
> €.

Finally show by induction that z,, > ¢ for all n, a contradiction to our initial assumption. Therefore

lim,, o 2, # 0 holds for some df? < 1, that is, the Kesten-Stigum bound is not tight. ]

5.4 Large Degree Asymptotics.

Imitating the way of handling the large degree asymptotics in Chapter 4, define

0 0
U; = log [1 + W—(Y] — Wl)] and V; =log [1 ——(Y; - 7T1):|
1

T2

with1 < 5 < d.
Lemma 5.4.1. There exist constants C' = C(m) and D = D(w) such that whenever d > D

2
’ do < cdt:

YS!

’ 1+ 7y < Od-t

2

‘ d6?

dVar(U;) — —z,| < Cd"%;

™

’dVar(Vj) — DLdo’e,| < Cd 3

UL
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dCov(U;,V;) + —ax,| < Cd 7.

d?
Uy

Proof. Since |Y; — m| < 1 and d#* < 1, if we take d large enough, i.e., find a large D such that

whenever d > D, %(Y] — 1) is small enough to guarantee (4.1.1). Then

EU. i < E|U Q(Y )+1 9(Y )2
i — —x,| < e O S — | =, =
Tom R ! 2 |m Y !
0 116 e
E—(Y;,—m)—E= |—(Y;, — -,
+BL (Y~ m) ~ By | £ - m)| -5
(93 5 3
= Wiﬂ,| J 7T1| —|—2ﬂ_%|2 7T1$|
63 63
< a4~
- o 2n?
< C(n)d 2,

for some constant C' = C'(7), where the third inequality follows from 0 < z,, < z, < 1. The rest

inequalities follow similarly. [

Under results of the preceding estimates, define a 2-dimensional vector p = (p1, p2) with

H1 = 37
1479
MQ om2
2
and 2 X 2-covariance matrix X with
1 _ 1
T T2
_1 m
T

which is a positive semi-definite symmetric 2 x 2-matrix. Next Let (G, G2) have a Gaussian
distribution N (p, X2).

Next define
mett

w(wl,wz) =

)
T eWl + moet?
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and then we have the expression in terms of 1) as

mZ1
7T121 -+ 7TQZQ

T €Xp (Zjﬂ Uj)
1 eXp (2?21 Uj> + g exXp (Z?:l VJ>

d d
= Ey (Z@l)@) — 7.
j=1 j=1

Now if (Wy, W) has a Gaussian distribution N(0, ), then (sp; + +/sWi, spia + /sWs) is dis-

Tn+1 m

= E

tributed according to N(su, sX). Last denote

g(s) = E(sp + VsWi, s + \/sz) — T
7"'163,“1+\/§W1

= E — 7.
7Tl€su1+\/§W1 + 71-268#2+\/§W2

Again by Proposition 4.2 in [3] the following lemma comes immediately.

Lemma 5.4.2. For arbitrary ¢ > 0 there exists a D = D(e, ) such that whenever d > D,

Tyl — g(d@%n)‘ <e.

In order to estimate x,1, it suffices to research the property of g(s) in the interval [0, 5] in

virtue of 0 < z,, < 79 and df? < 1.

Lemma 5.4.3. The function g(s) is continuously differentiable and increasing on the interval

(0, 7'('2].

Proof. When s > 0,

o 7Tlesul+\/§VVl 0 1
3 e VI etV | BT B A
™
72 ps(p2—p1)+v/s(Wa—Wh) Wo — W-
- E|—©& g(uz—uw%)
(1 + ﬂes(uzfm)Jr\/E(Wz*Wl)) \/g
™1
1 Wy — Wi
< -E — — <
= gt + 2/ oo
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2 0t
1

where we use the fact that 5
()

< 1 holds for any ¢ € R. Then we establish the differentia-

bility with respect to s.

Now let (W7, W3) be an independent copy of (W, Ws). Thus if 0 < s’ < s, it is feasible to

construct the equivalent distributions such as
\/E(Wl, WQ) ~ \/Q(Wl, WQ) +vs— S/(Wll7 Wé)

Because of (W, Ws) ~ N(0, %), we get E(Wy — W;) = 0 and

1 1 1
Var(Wy, — W1)? = EW3 +EW? - 2EW, Wy = — + g (——) =—,

T 7T§ T2 Ty

which implies that W5 — W, and W3 — W/ are both distributed as N(0, a) with a = —L.

T

Next by (4.1.2), we are allowed to estimate the conditional expectation given W; and W as

E [exp(\/;(Wg —Wh) + Vs — s (Wy —W))) | {7, Wg}] = exp [\/;(Wl —Wh) + g(s — ).

1

Then we can apply Jensen’s inequality, plus noting that the function is convex and piy — i1 =

14z
_1;:%2 - ﬁ = _27ri7r§ = _%’ to get
g(S) o 1+ T2 os(p2—p1)++/s(Wa—W1) M
™1
T U me e tEW W e s W)
1
1
Z E — 1
1+ 2~ 5 E |eVs (Wa-W)+Vs—s (Ws—W]) | {Wy, Wa)}
1
1
= E as’ -7
14 2= % EeVs' (W2=W1)
™1
1
o El + Qes’(uz—u1)+\/87(W2—W1) M
™1
= g(s),
as desired. U]

Next let’s turn to the Taylor expansions of g(s) in the small neighborhood of s = 0.

78



Lemma 5.

4.4. For small s > 0, we have

1—6mmy , 1 —24mmy + 907373 3

2 4
O,

— 4
g(s) =5+ P +O(s).

Proof. Now define W = s(uz — u1) + +/s(Wo — W), and based on the calculations in Lemma

5.4.3,itis

moments:

apparent that W ~ N (—%, as). Then there is no difficulty in evaluating the following

E(eW—l):e_;SJ“%—l:eo—l:O;

E("V —1)? :6“5—1:a5+$+$+0(34);

E(e" — 1) = & — 3¢ + 2 = 3a%s? + 4a®s® + O(s*);

E("V — 1) = €% — 4¢3 4 6e* — 3 = 3a®s* + 19a%s* + O(s%);

E(e" —1)° = !9 — 55 1 10e%* — 10e™ + 4 = 30a’s* + O(s*);

E(e" —1)% = ¢! — 61098 4 15¢0% — 203% 4 15¢* — 5 = 15a%s* + O(s);
E(V —1)7 = e — 7e'% 1 21199 — 35595 4 35637 — 21e™ + 6 = O(s%).

1 1
— -1 n—1, W 1 n__ 7 W _ 1 7
1+7T2(€W—1> ;( ) (6 ) 7'('2(6 ) 1+7T2(6W_1)7
plugging in previous results yields
g(s)+m _ iE m exp(spr + /sWh)
T 1 7 exp(spy + /sW1) + moexp(spg + +/sWa)
1
N 1+ 7TQ(€W — 1)
6
1
- E -1 n_n/ W 1 n__ 7 W _ 1 7
;( ) 7TQ<€ ) 7T2(€ ) 1+7T2(€W—1)
1 1-6 1—24 90?73
= 14+ — <$ + 7T127T2 2 Wrﬁt Tl gy 0(54)) :
m 2my s 6mims
that is,
1 —6mmy o 1 —24mmy+ 907?%7% 3 4
= @)
g(s) =s+ D3 6o 574+ 0(s")
as desired. O
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5.5 Asymptotic Estimation of the Reconstruction Threshold.

Following is the proof of Theorem 1.3.5 and indicates the approach to the reconstruction threshold.

Theorem 5.5.1. When A? > 1(1 — 6)?, define
w* = inf{w : there exists a 0 < s* < my such that g(ws*) = s*}.

Then 0 < w* < 1 and for any 6 > 0 there exists a D = D(w, ) such that if d > D then the model
has reconstruction when d0? > w* 4 § but does not have reconstruction when d9* < w* — 4. In

other words,

dlim de? = w*.

Proof. By Lemma 5.4.4,

1—-6 1—24 90272
T o 7r17T2—|:1 W1W233+O(s4),

2 2
2m Ty Oy,

9(s) = s+
soif s > 0 is small enough then ¢g(s) > s. Thusforany 0 < w < 1, theset {0 < s < 7 : g(ws) > s}

is a compact set bounded away from 0. From the continuity of g(s), builded in Lemma 5.4.3,

{0<s<m:g(w's)=s}= ﬂ {0 <s<my:g(ws) > s}

wk<w<1

is still nonempty compact. Next take s* € {0 < s < 73 : g(w*s) = s} and df? = w* + 4, then
g [(w* +9) (S* )] =g(s'w") =s" > s"

Take d large enough to make Lemma 5.4.2 hold with 0 < ¢ < s* — s* w‘;’jrd. When z,, > s* wi’ia,

* *

W
W+

w* + 6

Tpy1 > glw' +0)x,| —¢

> g[(w +5)(s w*+5)] (s Sw*+5>

*

w

*

S
w* + 0

and hence inf,, z,, > s*w‘;’—M establishes reconstruction.

Last when df? < w*, we have g(df*s) < iifs. Take ¢ = 1 (1 — w*) > 0 from Lemma 5.2.1

there exists a constant 6 = J(m, £) such that for all n, if z,, < § then

1
Tpp1 < dOz, +ex, < 3 (1 + w*) z,,
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where % (1+w*) < 1 implies lim,, .o, z,, = 0 and thus there is non-reconstruction. So here it

suffices to find some m such that x,,, < J. Otherwise assume all x,, > 9. Then using Lemma 5.4.2

again with d sufficiently large gives that for ¢ > 0 small enough such that ¢ < % < — %"2> J, we
have

Tni1 < g(d0Pr,) +e < dwijxn +e< % <1 + Cffj) Ty,
where % <1 + Cff) < 1 that implies x,, — 0 as n — 00, a contradiction to x,, > ¢ for all n. OJ

Referring to Mathematica, we are able to establish the following result.

Lemma 5.5.2. When A? < (1 —0)?, forall 0 < s < m, we have
g(s) < s.

Proof of Theorem 1.3.4. For df* < 1, taking = 1 (1 — df®) > 0 in Lemma 5.2.1, there exists a
constant 6 = ¢(m, n) such that if z,, < ¢ for some n, then

Tpi1 < (dO® + )z, = (1 — )z, < 6.
Then it is possible to apply induction, in tandem with 0 < 1 — 1 < 1, to conclude lim,, .oz, = 0
and thus non-reconstruction.

So here it suffices to find some m such that x,,, < d. Otherwise assume x,, > ¢ for any positive
integer n. Next define ¢ = 1 min,>s(s — g(s)). Since s — g(s) is continuous and positive in [4, 7],
it follows € > 0 by Lemma 5.5.2. Then by Lemma 5.4.2, there exists a D = D(e, ) > 0 such that
whend > D,

|Tpi1 — g(d@Q:cn)\ <&,

and then

Tpp1 < g(do*z:,) +e

IN

g(wn) ¢

< z,—2e+e<x,—c¢,

where the second inequality is from Lemma 5.4.3, say, ¢(s) is increasing in [0, 75]. Thus if choose

1

N large enough to make N > ¢7, xy — Ne < 0 would be true, a contradiction to x,, > 0 for all

n. O]
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