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Abstract

Finding the Optimal Shape of an Object Using Design-By-Morphing

by

Sahuck Oh

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Philip S. Marcus, Chair

We present a new design method, which we call design-by-morphing, for the optimal
design of the shape of an object. The surface of one or more objects (or the sub-objects
from which it is composed) is represented as a truncated series of exponentially-convergent
spectral basis functions multiplied by spectral coe�cients. A morphed object or sub-object is
obtained from a new set of spectral coe�cients, which are a weighted average of the spectral
coe�cients of the original objects or sub-objects from which it is morphed. Optimized
designs are created by choosing the weights such that a cost function of the new morphed
shape is minimized. The boundaries of an object and the interfaces between sub-objects
can be forced to satisfy geometric constraints on their shapes, slopes, curvature, etc. With
these constraints, sub-objects can be seamlessly attached to each other to create a complex
object. Because design-by-morphing has the flexibility to adjust independently the weights
of sub-objects, users or an automated algorithm can choose some subset of sub-objects to
be optimized while preserving or restricting the changes of other sub-objects. Our design-
by-morphing method can be automated and is computationally e�cient, so it requires much
less human input than traditional design methods and is therefore not only inexpensive but
also free from human bias in finding optimal designs that are radical and non-intuitive.

We have applied optimization via design-by- morphing to aircraft and a turbine-99 draft
tube, and reduced drag-to-lift ratio and maximized mean pressure recovery factor by 23.1%
and 10.9%, respectively. We believe that this optimization method is applicable to a wide
variety of engineering applications in which the performance of an object depends on the
aerodynamic or hydrodynamic properties of its shape.
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Chapter 1

Introduction

1.1 Background

In many engineering fields, there is a need to design products with optimal shapes to enhance
their hydrodynamic, aerodynamic, thermal, structural, or mechanical properties since the
performance of many objects are e↵ected by their own shapes. For example, minimizing drag
force of vehicles such as airplanes, trains and automobiles have been an significant issues to
engineers to e�ciently operate them and the shape of a wave energy collector in the ocean
has been studied for a long time to maximize energy extraction [37, 38]. People have also
tried to find the optimal shape of wind turbine blades in terms of the twist angle, chord
length, shape of airfoils and thick of a blade to generate more electricity from wind [10, 27]
and reduce noise [39].

There are many factors ones should consider in optimizing the shapes of products. For the
design to be practical, it needs to be inexpensive to manufacture and maintain, and appeal
to a consumer, but here we assume that the main concern is performance. We further assume
that performance can be quantitatively computed in terms of a cost function and the cost
function can be numerically computed. For example it might be the drag-to-lift ratio of
an airplane, the pressure recovery factor in a turbine draft tube, or the drag of a train. In
fact, these three example objects and their cost functions are what we use to illustrate our
optimization.

To obtain the performance-based optimized shape of an object, design variables which
modifies the shape of an object need to be defined and cost functions of new shaped objects
created by varying design variables should be able to compute. In addition, optimization
scheme to predict optimum weights generating the best performed shape of an object is
also required. The commonly used optimum design process in industry incorporating all
of these requirements are shown in Figure 1.1. The START in the figure assumes that
the manufacturer needs a totally new design and that the first attempt at a new design is
provided. Then, design process starts with this initially designed object which is considered
as the first attempt of a new design. In preparing an initial design process and in subsequent
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Figure 1.1: Flowchart of current engineering design process.

iterations of the design process, mesh should be generated for CFD simulation. Once the
mesh is generated, the designer uses CFD tools to simulate performance of a given object
and compute the cost function. If the cost function is not su�ciently low, designer uses
optimization scheme to compute values of optimum design variables expected to induce a
better performed object and then a new shaped object is created with optimum design
variables. This process is repeated until the cost function becomes su�ciently small. To
have successfully working optimization process, although all of these steps should work well,
our research focused on how to create a new shaped object e�ciently. The definition of an
e�cient way of creating a new design is altering the shape of an object with fewer design
variables but encouraging creative shape change which can bring radical shape change from
an initially designed object called a baseline object.

However, there are currently two major problems in creating a new shaped object. First,
when an existing design under-performs and needs to be improved, there is no systematic
way of modifying the design. For example, engineers face the di�culty of trying to decide
whether a surface should be made more concave or convex, whether another piece should be
lengthened or shortened, or whether a part should be more circular or more elliptical, etc.
Further vexing the engineers is the fact that once an approach for improving the design is
adopted, creating the new design with existing CAD/CAM tools is often time-consuming and
problematic if the design change is a radical departure from an baseline design. The latter is
true because many commonly used push-pull tools that are used to change the shape of an
object work only locally. A piece of a surface’s shape can be represented locally by splines
[23] and changes can be made by pushing or pulling points on the original surface closer
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to or farther away from selected control points. Not only are the changes made with these
tools confined to a small part of the overall surface of an object, thereby prohibiting radical
changes, but also these modest changes often lead to shapes that are problematic when
used with other computer packages such as mesh generators. In particular, often surfaces
generated with push-pull packages are not watertight. That is the mesh points along the
newly designed surface are interpreted by some computer packages to be multiple, disconnect
surfaces rather than a single continuously connected surface.

Our design-by-morphing methodology addresses both of these problems. First, it system-
atically improves a design by searching over a finite parameter space subject to weights of
given baseline objects and other imposed geometric constraints, but the changes in shape are
not just local but can be global. Our new design method is so robust, proposed objects (or
sub-objects) are not limited to interpolation among multiple existing designs; the proposed
object can be extrapolated away from existing designs so that a radical new design can be
created. This is significantly important because the characteristics of the existing designs
can be enhanced, weakened or removed for the proposed design.

The essential idea of design-by-morphing is to reduce the e↵ectively huge amount of
dimensional parameters related to the vertices or control points of the shape of an object to
a more manageable, but carefully chosen, reduced number of design parameters consisting
of N existing shapes or the sub-objects of the existing shapes. New morphed shapes are
created by assigning N weights to the N existing shapes of objects or sub-objects. The
weights could all be positive and less than unity, which would create morphed shapes that
are interpolations of the existing shapes, or the weights could be negative or much greater
than unity, which would create morphed shapes that are extrapolations of the existing shapes.
The cost function of the optimal design problem is implicitly a function of the N values of
the weights. A optimization method such as a gradient method or genetic algorithm coupled
with an artificial neural network for creating a response surface can then be used to find
the optimal values of the weights that minimize the cost function. This methodology allows
for a systematic way of finding the optimal shape with a↵ordable amount of computational
cost.

One key advantage of our method is the way in which shapes are represented. Rather than
representing a shape as a mesh of points, each shape or each sub-object from which a shape is
made in our method is represented as a truncated spectral sum of basis functions multiplied
by spectral coe�cients. Because spectral methods are so e�cient [9] the truncated sum
representing the shape converges exponentially fast so that with only a few thousand terms
the truncated sum can spatially resolve a surface with high accuracy. Furthermore, when
the object is represented with its basis function, geometric properties such as shape, slope
and curvature at the boundary of the object is controlled to satisfy geometric constraints of
the design problems or to join sub-object with no discontinues in shape, slope or curvature
where they are joined. This joining sub-object makes our method flexible enough to keep
some sub-objects of the original design fixed or force the sub-object be a specific shape while
radically changing others, which allows to have the more wide range of shape alteration, and
make breakthrough performance improvements of the object.
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The main purpose of our research is to propose a new way to design and optimize an
object which minimizes the cost function or maximizes the performance of the design prob-
lem. The cost or performance function we have considered is computational fluid dynamic
(CFD) related quantities such as drag, lift and pressure over the objects. The optimized
object is the shape of the new design improved their performance compared to the existing
objects. Compared to other design method, our method is not only easy to automated, but is
also explores wide shape alteration with less design variables, therefore, finding radical new
designs that significantly improve current performance of the object. We believe our method
can be applied various engineering objects and produce admirable performance improvement
which has not been founded by other design methods.

1.2 Related work

Current methodology for design and shape optimization

The common way to make a change in shape in optimal design problem is to deform the
shape using free-form deformation (FFD) or variants originated from it. [1, 2]. With FFD,
a user chooses the locations of certain number of control points. The volume enclosed by
these control points is parameterized and represented as an analytical function. The geom-
etry wanted to be redesigned is embedded in the volume, and then, by moving the control
points formed the volume, the geometry inside the enclosed volume are indirectly deformed.
A number of the shape optimization researches implemented based on this approach. For
example, Poole et al. [40] optimized the shape of the two dimensional airfoil to minimize
the drag force by deforming control points on the airfoil surface. Lyu et al. [30] carried
out the shape optimization of the Common Research Model wing respect to minimum drag
coe�cient by considering 720 FFD control points as design parameters. However, as com-
mented by Anderson et al. [2] and as seen in own experience with volumetric deformation,
FFD-based deformation techniques are not easy and intuitive to handle, and require many
design variables to achieve reasonable shape modification.

Another widely used way in inducing shape modification to find the optimum shape
of an object is using parametric based deformation. In parametric based deformation, the
shape deformation of an object is described by parametric variables such as height, thickness,
angle and etc. Then, optimization is implemented by computing optimum values of these
parameters. For example, Agnew draft tube is parameterized in terms of its height and
angle [48] and Long et al. used four geometric variables, main chamber diameter,height,
and attachment angles for the inlet and outlet arms, to parameterize the shape of a pulsatile
ventricular assist device [29]. These parameterization enables to variate the shape with a few
design variables, but creating designs which cannot be obtained by incrementally varying
design parameters is impossible.

It should be noted that Kang [26] attempted to optimize the shapes of ships using a
method similar to our design-by-morphing method. Kang developed new ship designs by
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morphing among di↵erent ships, but the shapes of the ships were represented on triangular
meshes rather than as a truncated spectral sum. Furthermore, Kang did not impose any
geometric constraints. Although Kang demonstrated a capability to morph multiple objects,
he did not report the results of his shape optimization. Besides, the shape editing method
[6, 59, 60] have great attributes in allowing creative shape exploration to be sought. However,
the shape editing method has not been automated with CFD simulation nor has they been
used to optimize a shape.

Current methodology for stitching objects

In our design method, a shape can be represented by many sub-objects as well as one whole
object. If the shape is represented as many parts, each sub-object is stitched together with
constraints such that the shape, slope or curvature at the joints should be matched. To
implement these constraints, we solve partial di↵erential equation (PDE) whose boundary
conditions are defined as the constraints what we want to impose on an sub-object. we call
this process stitching.

The most relevant work to our stitching approach is found in creating blending objects
based on solving PDE. Similar to our method, [51, 57, 58] solve a fourth-order partial di↵er-
ential equation in creating C1 continuous blending objects where the objects’ boundaries are
controlled by the boundary conditions of PDE. In their work, they show various examples of
blended objects, but surface shapes of examples are simple or analytically defined; therefore,
they are inapplicable when it comes to designing engineering objects. Besides of them, [4]
developed a software which creates generic aircraft shapes from a numbers of curves defining
the shapes of aircrafts and showed various aircraft configurations by adjusting parameters
related with boundary conditions of PDE. Although they showed many di↵erent generations
of aircrafts, their method requires many control curves to create complex shaped aircrafts,
which makes it di�cult.

In design-by-morphing, stitching method is used to connect sub-objects with respect to
matching shape, slope and curvature at a joint as well as to impose geometric constrains on
an object. Creating a new object by stitching sub-objects is very beneficial in creating a
variety of innovative objects because it allows to collect advantages or remove disadvantages
of baseline objects by choosing optimum weights of sub-objects of them. For example, when
we consider to morph a spoon with a fork, if the tip of a fork is stitched to the spoon whose
tip is removed, it creates a sfork that possesses all pros of a spoon and fork. We believe
morphing and stitching sub-object by sub-object helps in creating a new types of objects
that can possess all good properties of baseline objects.

Funkhouser et al. [15], Kalogerakis et al. [25] and Schulz et al. [47] have conducted similar
approach where a new shape is created by synthesizing components from existing shapes,
which is usually called design-by-example. However, ways that components from existing
shapes are composed together are somewhat di�cult to be applied to an engineering design
problem. One way to stitch two di↵erent components in their studies is connecting them by
specifying where a component is attached to the other without high derivative continuity
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conditions. Or, components are smoothed by a user by introducing fillet at the joint. Both
methods are not suitable for engineering purpose because stitching method is required to
preserve prescribed geometric constraints in terms of location, slope and curvature. For
example, back of a first car of a train is demanded to exactly satisfy specified shape, slope or
curvature to be followed by a passenger train without degrading aerodynamic performance.
Dealing these conditions with their methods is di�cult, while it is straightforward in design-
by-morphing.

Current methodology for morphing

A common way in spectrally representing and morphing objects is using eigenfunctions
of Laplace-Beltrami operator of an object as well described in [14, 43]. In fact, spheri-
cal harmonics, which are chosen as one of our spectral basis functions, are a special case
of eigenfunctions of Laplace-Betrami operator when it applied to a sphere. As Lévy [28]
showed, eigenfunctions of Laplace-Betrami operator works well in reconstructing geometries
and transfer pose of objects. However, it cannot be utilized in optimum design process
because computing those eigenfunctions not only requires huge calculation time, but eigen-
functions should be also recalculated as a new shaped object is proposed during optimization
process. In design-by-morphing, instead using eigenfunctions of Laplace-Beltrami operator,
we accomplish spectral representation of an object relying on our spectral basis functions.
Our basis functions need much less computing time and are so independent of the shape of
an object to represent that the basis functions unnecessary to be recalculated in optimiza-
tion process. The idea of enabling to use our spectral basis functions is representing and
morphing simple shaped objects that our spectral basis functions easy to handle. A complex
shaped object is segmented into simple shaped sub-objects and the the surface of sub-objects
are approximated and morphed by our spectral basis functions, and then, the sub-objects
are stitched together to reconstruct an entire object. Due to our stitching method allowing
sub-objects are easily connected, our approach can be expended to a complex shaped object.
The more detail knowledge about our spectral basis function and the quantitative compar-
ison to represent the shape of an object using our basis function to using eigenfunctions of
Laplace Beltrami operator are described in Chapter 2.

In most commercial morphing packages, the 2D surface of a 3D object is represented by
a set of points or vertices of a triangular mesh. Morphing between two objects works best
when there is a one-to-one correspondence between the vertices of the two objects that are
being morphed. If that identification can be made, the vertices on the morph’s surface is
created by interpolating between each pair of corresponding vertices of the two surfaces that
are being morphed. If a one-to-one correspondence is not known or does not exist because
the two surfaces have an unequal number of vertices, the software, or more commonly the
user must make a one-to-one correspondence by providing a script. It is easy to imagine the
strange morph between the shapes of two humans that would occur if the vertex at the tip
of one human’s nose was incorrectly paired with the vertex at the tip of the other human’s
toe. Yet, that type of incorrect pairing occurs regularly in commercial software. Figure 1.2
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Figure 1.2: Autodesk Maya fails to morph a cube into a sphere.

is an example of a failed morph between a cube and a sphere that was carried out with
the Autodesk Maya package. Similarly bad results are obtained with the Houdini morphing
software. However, both Houdini and Maya give excellent morphs when the user provides
them with scripts on how to carry out the morph. Unfortunately, a software package that
attempts to produce optimal designs by morphing shapes together must be able to carry
out the morphing in an automated manner without relying on human intervention. We have
found that when the shapes of objects are represented by truncated sums of spectral basis
functions multiplied by spectral coe�cients, a morph between two or more shapes can be
carried out by creating a new truncated spectral sum with new spectral coe�cients that are
the weighted averages of the spectral coe�cients of the shapes being morphed. We have
found that morphing with this method always creates sensible shapes and the procedure
never breaks down, so it can be fully automated.

Usage of spherical harmonics

The most popular basis function among our basis functions is spherical harmonics, which
have been applied to represent an object in various fields, from biological molecules [45],
heads and brains [5, 55, 56], and medical images of tissue obtained by MRI [19]. However,
not all of these works preserve the exponential convergence of the truncated series and are
using the fast transform method. In our study, well-established methods [7, 9, 21, 32, 46] are
used for obtaining the transforms required for e�ciently computing the spectral expansion
coe�cients used in the truncated series. These well-known, unitary transforms are not only
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Figure 1.3: Morphing from a cube to a sphere using our morphing method

fast, but are a much more accurate way to compute the spectral expansion coe�cients than
using a least squares method, as many of the authors cited here have done. Similarly, we
use well-established methods for choosing the spectral basis functions in which to expand
a function. Usually, one chooses the basis functions to be eigenmodes of a Sturm-Liouville
equation [31]. This choice generally allows the imposition of boundary conditions without
destroying the exponential convergence of the truncated spectral sum.

1.3 What do we mean by spectral representation?

In this section, we illustrate what we mean by a spectral representation by considering the
pedagogical case of the 1-dimensional boundary of a 2D object in a flat 2D world. Consider
a flat, 2D starfish as shown in Figure 5.2a. Its boundary lies in a plane. Using a polar
coordinate system (r, ✓) with the origin in the center of the starfish, the starfish’s shape can
be described by the radius r(✓) of its boundary. This representation breaks down if r(✓)
is not a single-valued function of ✓, and we consider those cases later. Objects in which
r(✓) is [not] a single-valued function of ✓ are known as [non-]star-shaped objects. In non-
spectral representations, the curve r(✓) would be represented traditionally by placing a large
number of points or vertices on the curve and then approximating the shape of the starfish by
connecting those points with straight lines or low-order polynomials. In a spectral method,
r(✓) is approximated as a truncated Fourier series as a function of azimuthal angle ✓:

r(✓) '
MX

m=�M

am eim ✓. (1.1)

Spectral methods have the advantage that if the shape of the object is su�ciently smooth,
the series converges exponentially. In practical terms, exponential convergence means that
to represent the boundary to a given amount of accuracy, the number of spectral coe�cients
am needed in the truncated sum is much smaller than the number of traditional vertices
needed on the boundary. If an object is not star-shaped, it is still often possible to use
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Figure 1.4: Schematic of a 2D star-shaped object. The radius of the object, r, is a function
of azithumal angle ✓.

a truncated spectral sum to represent r(✓) by mapping from ✓ to a new variable (say, the
arc-length of the boundary [52]) such that r is single-valued in the new variable and the
object is star-shaped with respect to the new mapped variable. However, not all mappings
leave the expansion exponentially convergent and in those cases many of the advantages of
spectral methods are lost.

Spectral representations of shapes easily extend to 2D boundaries of 3D, star-shaped
objects. One of the simplest methods, and the most common in the literature, uses spherical
harmonic functions Y m

l (✓,�) as the spectral basis functions so that the spherical radius
R(✓,�) (denoting the distance of the boundary at spherical coordinates (✓, �) from the
coordinate system origin inside the object) is

R(✓,�) '
LX

l=0

lX

m=�l

aml Y m
l (✓,�), (1.2)

where Y m
l (✓,�) is the spherical harmonic function of degree l and orderm, L is the truncation

degree of the spherical harmonics, and aml is the (l,m) spectral coe�cient. For non-star-
shaped objects, some researchers (c.f., [8]) have developed mappings for ✓ and � that turn
non-star-shaped 3D objects into star-shaped ones, but the mappings are complex and do not
always preserve the exponential convergence of the truncated series.

Sometimes it is necessary to impose constraints on shapes. For example, it may be
necessary for a bubble to attach itself to a wall such that the 2D region of attachment has a
prescribed shape or such that the contact angle at each point is constrained to have a certain
value. We refer to problems in which there is one region where constraints are imposed as a
1-hole problem. The radial distance r is represented as a double truncated sum in terms of
Jacobi polynomials and Fourier expansions,
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r(✓,�) '
LX

l=0

NX

m=�N

aml u
|m|P (0,|m|)

l (2u2 � 1)eim�, (1.3)

where

u =
2✓

⇡
(1.4)

and P (↵,�)
l (s) is Jacobi polynomials. Some researchers have tried to represent the shape

of a constrained 1-hole problem with spherical harmonics, various types of hemispherical
functions, or shifted associated Legendre polynomials coupled with a Fourier expansion [17],
but these methods have not been very successful in that they are not very flexible, do not
have exponential convergence, fail to satisfy accurately the imposed boundary conditions,
and/or have very large shape distortions near the imposed boundary.

Sometimes it is necessary to impose constraints on a shape at two locations. An example
of this would be a neck that connects a head and a torso. The boundary of the neck must
be constrained at the points of attachment to the head and at the points of attachment to
the torso. We refer to this as the 2-hole problem. Using a cylindrical coordinate system
(r, z,�) in which the “neck” is centered and aligned with the z-axis, the surface of the neck
is located at the radial distance r(z,�) from the z-axis. The radial distance r is represented
as a double truncated sum in terms of Chebyshev polynomials Tj(z) in z and Fourier modes:

r(z,�) '
LX

j=0

MX

m=�M

amj Tj(z) e
im�. (1.5)

Patches such as a sheet of a paper cab be represented in a Cartesian (x, y) domain by
having their heights z approximated as a double Chebyshev series in x and y:

z(x, y) '
LX

l=0

MX

m=0

alm Pl(x)Pm(y), (1.6)

where Pl(x) and Pm(y) are respectively the lth and mth Chebyshev polynomials, and where
�1  x  1 and �1  y  1. To produce the patch outside of these domains, the x and
y coordinates should be appropriately mapped. All of these basis functions show spectral
accuracy in representing their own objects.

In summarizing the previous work on representing the shapes of objects as truncated
spectral sums, the main di�culty is that there appears to have been a trial-and-error ap-
proach. This is surprising because truncated spectral sums have been used for over a few
decades in computational fluid dynamics (CFD) to represent fluid flows. Therefore a large
body of applied mathematics has been developed to assure that truncated spectral sums
are both exponentially convergent and satisfy boundary constraints [7, 21]. For example,
well-known unitary transforms, which are not only fast, but are a much more accurate way
to compute the spectral expansion coe�cients than using a least squares method as many
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of the authors cited here have done, were used. Further, one chooses the basis functions to
be eigenmodes of a Sturm-Liouville equation to allow the imposition of boundary conditions
without destroying the exponential convergence of the truncated spectral sum, which is key
in creating e�cient and robust design-by-morphing method.
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Chapter 2

Basis Functions and morphing an
object

In design-by-morphing, an object is classified by the number of its open boundaries and
spectral basis functions used to approximate the surface of an object are determined by a
type of an object. Topologically, an object belonging to a sphere with no boundaries is called
a 0-hole object. An object belonging to a sphere with one boundary such as a drinking glass
is defined as a 1-hole object, and an object belonging to a sphere with two boundaries is
defined such as a drinking straw is defined as a 2-hole object. If an object has four boundary
components, such as sheet of paper, it is called a patch. Simple examples of a 0-, 1- and
2-hole objects and a patch are shown in Figure 2.1. The surfaces of 0-, 1-, 2-hole objects
and a patch are represented by their own spectral basis functions. In this chapter, we will
describe basis functions what we have used for a 0- 1- and 2-hole objects and a patch, and
operators related to those basis functions, which will be used in solving PDEs to impose
geometric constraints. When we approximate the surface of an object using our spectral
basis functions, we will write mapping parameters as u and v as a general expression. Here,
u and v mean parameters to map the surface of an object into spectral basis functions’
functional domain. For a star-shaped object, it can be respectively ✓ and � as expressed in
Equation 1.2 or can be respectively z and � and x and y as expressed in Equations 1.5 and
1.6. For a non-star shaped object u and v are special mapping like arc-length of an object.

(a) (b) (c) (d)

Figure 2.1: Simple examples of n-hole objects and patches: (a) 0-hole object, (b) 1-hole
object, (c) 2-hole object, (d) patch. The boundaries of objects are pointed out.
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2.1 0-hole Object

Representation

When an object has no boundary components, an object is classified as an 0-hole object.
The spherical radius of 0-hole objects, which can be mapped as a function of the latitude
angle and azimuthal angle of the surface, is approximated with the spherical harmonics with
their coe�cients

r(u, v) =
LX

l=0

lX

m=�l

aml Y
m
l (u, v), (2.1)

where Y m
l (u, v) is spherical harmonic of degree l and order m, defined as

Y m
l (u, v) = Pm

l (cosu)eimv, (2.2)

and aml are spectral coe�cients and Pm
l are the associated Legendre polynomials. Here, if a

0-hole object is star-shaped, u and v are latitude angle ✓ and azimuthal angle � of a 0-hole
object, respectively. Spherical harmonics are orthonormal basis function over a sphere and
show orthogonality

Z 2⇡

0

Z ⇡

0

Y m
l (u, v)Y k

n
⇤
(u, v)sinududv = �ln�mk (2.3)

Due to the orthogonality property of the spherical harmonics, spherical harmonics coe�cients
aml is obtained by multiplying Y k

n
⇤
(u, v)sinu in Equation 2.3 and integrating respect to u

and v over 0 to ⇡ and 0 to 2⇡, respectively,

aml =

Z 2⇡

0

Z ⇡

0

r(u, v)Y m
l

⇤(u, v)sin✓dudv (2.4)

To use the fast spherical transform, Equation 2.2 is rewritten

aml =

Z 2⇡

0

fm
l (v)e�imvdv (2.5)

where

fm
l (�) =

Z ⇡

0

r(u, v)Pm
l (cosu)sinudu (2.6)

Equation 2.6 is calculated with the use of the Gauss-Legendre quadrature, then it is obtained
by

fm
l (v) =

N
uX

k=1

r(uk, v)P
m
l (cosuk)!k (2.7)

where uk and !k are Legendre-Gauss points and weights, respectively. Once the fm
l (v) are

calculated from 2.7, the values of aml can be obtained using inverse fast Fourier transform
over m in Equation 2.5.



CHAPTER 2. BASIS FUNCTIONS AND MORPHING AN OBJECT 14

2.2 1-hole Object

Representation

When an object has one boundary, an object is classified as an 1-hole object. The radius of
a 1-hole object, which can be mapped as a function of parameterization variables u and v, is
approximated with the one-sided Jacobi polynomial with Fourier series with their coe�cients.
The spherical radius of a 1-hole objects can be expressed as,

r (u, v) =
LX

l=0

NX

m=�N

aml W
m
l (u, v), (2.8)

with spectral coe�cients aml , where

Wm
l (u, v) = V m

l (u)eimv (2.9)

and V m
l (u) is defined as

V m
l (u) = u|m|P (0,|m|)

l (2u2 � 1), (2.10)

where P (↵,�)
l (s) is Jacobi polynomials. We call V m

l (u) as one-sided Jacobi polynomials. Note
that here the radius of a 1-hole object can be spherical radius or cylindrical radius. Let’s
define s as s = 2u2 � 1, where s is Legendre-Gauss points. Then, parameterization variable
u is defined as

u =

r
s+ 1

2
(2.11)

whose the range is 0  u  1. The parameter v is equally spaced from 0 to 2⇡. Any
mappings can be used in u and v, but if an object is a star-shaped object and spherical
radius of a 1-hole object is approximated, a linear mapping between u and latitudinal angle
✓, defined as,

✓ =
⇡

2
u (2.12)

and equal azimuthal angle works well for v.

Calculation of Jacobi polynomials

The one-sided Jacobi polynomials is calculated by the three term recursion relation

2l(l + ↵ + �)(2l + ↵ + � � 2)P (↵,�)
l (s)

= (2l + ↵ + � � 1){(2l + ↵ + �)(2l + ↵ + � � 2)s+ ↵2 � �2}P (↵,�)
l�1 (s)

� 2(l + ↵� 1)(l + � � 1)(2l + ↵ + �)P (↵,�)
l�2 (s)

(2.13)

with the initial starting values

P (↵,�)
0 (s) = 1, P (↵,�)

1 (s) =
1

2
{(↵� �)(↵ + � + 2)s} (2.14)
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In our 1-hole object basis function, ↵ and � are chosen as ↵ = 0 and � = |m| because
Matsushima and Marcus [36] showed spectral accuracy of these functions and derived e�cient
linear operators, which we can use in solving PDEs later. In other words, by choosing the
same values of ↵ and � with Matsushima and Marcus [36], we will use well developed
transformation and linear operators described in [36]. Under this setting, ↵ and � can be
substituted to 0 and |m|, respectively. Then, Equations 2.13 and 2.14 become

2l(l + |m|)(2l + |m|�2)P (0,|m|)
l (s) =

(2l + |m|�1){(2l + |m|)(2l + |m|�2)s�m2}P (0,|m|)
l�1 (s)

� 2(l � 1)(l + |m|�1)(2l + |m|)P (0,|m|)
l�2 (s)

(2.15)

and

P (0,|m|)
0 (s) = 1, P (0,|m|)

1 (s) = � |m|(|m|+2)s

2
(2.16)

Equation 2.15 can be rewritten as

P (0,|m|)
l (s) =

(2l + |m|�1)(2l + |m|)s
2l(l + |m|) P (0,|m|)

l�1 (s)

�
(2l + |m|�1)m2P (0,|m|)

l�1 (s) + 2(l � 1)(l + |m|�1)(2l + |m|)P (0,|m|)
l�2 (s)

2l(l + |m|)(2l + |m|�2)

(2.17)

with simple mathematical expansion. This is a three-term recursion relation of Jacobi poly-
nomials P (↵,�)

l (s) when ↵ = 0 and � = |m|. The first two terms start from Equation 2.16
and then last terms are obtained from this three-term recursion relation.

Transformation of 1-hole basis functions

In obtaining spectral coe�cients of an 1-hole object, orthogonal property of 1-hole basis
functions are used. Polynomials V m

l have the orthogonality such that

Z 1

0

V m
l (u)V m

n (u)udu = hlm�ln, (2.18)

where

hlm =
1

4l + 2m+ 2
. (2.19)

If we multiply uW k
n
⇤
(u, v) in Equation 2.3 and integrating respect to u and v over 0 to 1 and

0 to 2⇡, where superscript ⇤ means complex conjugate, it gives

Z 1

0

Z 2⇡

0

r(u, v)W k
n
⇤
(u, v)udvdu =

Z 1

0

Z 2⇡

0

aml V
m
l (u)V k

n (u)e
i(m�k)vudvdu. (2.20)
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Rearranging the right hand side term of Equation 2.20 allows to have

Z 1

0

Z 2⇡

0

r(u, v)W k
n
⇤
(u, v)udvdu = aml

Z 1

0

V m
l (u)V k

n (u)
⇣Z 2⇡

0

ei(m�k)vdv
⌘
udu. (2.21)

Since Z 2⇡

0

ei(m�k)vdv = 2⇡�mk, (2.22)

Equation 2.21 can be rewritten as

Z 1

0

Z 2⇡

0

r(u, v)Wm
n

⇤(u, v)udvdu = 2⇡aml

Z 1

0

V m
l (u)V m

n (u)udu. (2.23)

Since the integral of the right hand side of Equation 2.23 is equal to hlm�ln, we can finally
obtain

aml =
1

2⇡hlm

Z 2⇡

0

Z 1

0

r(u, v)Wm
l

⇤(u, v)ududv. (2.24)

To use the fast spherical transform, Equation 2.24 is rewritten

aml =
1

2⇡hlm

Z 2⇡

0

fm
l (v)e�imvdv, (2.25)

where

fm
l (v) =

Z 1

0

r(u, v)V m
l (u)udu. (2.26)

Once Equation 2.26 is calculated with Legendre-Gauss quadrature method, Equation 2.25 is
computed with fast Fourier transform.

Derivatives of 1-hole basis functions

For the later usage, here, we want to derive the first and second derivatives of 1-hole ba-
sis functions. To derive derivative formulas for 1-hole basis functions, we start from the
derivative relation of one-sided Jacobi polynomial, given as

dk

dsk
P (↵,�)
l (s) =

�(l + k + ↵ + � + 1)

2k�(l + ↵ + � + 1)
P (↵+k,�+k)
l�k (s), (2.27)

where �(n) = (n� 1)!. After substitute s into 2u2� 1, expanding Equation 2.27 for the first
derivative of Jacobi polynomials gives

d

du
P (↵,�)
l (2u2 � 1) = 2u(l + ↵ + � + 1)P (↵+1,�+1)

l�1 (2u2 � 1) (2.28)

Di↵erentiating Equation 2.28 respect to u gives
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d2

du2
P (↵,�)
l (2u2 � 1) = 4u2(l + ↵ + � + 1)(l + ↵ + � + 2)P (↵+2,�+2)

l�2 (2u2 � 1)

+ 2(l + ↵ + � + 1)P (↵+1,�+1)
l�1 (2u2 � 1).

(2.29)

By substituting respectively ↵ and � to 0 and |m|, Equations 2.28 and 2.29 are simplified as

d

du
P (0,|m|)
l (2u2 � 1) = 2u(l + |m|+1)P (1,|m|+1)

l�1 (2u2 � 1) (2.30)

d2

du2
P (0,|m|)
l (2u2 � 1) = 4u2(l + |m|+1)(l + |m|+2)P (2,|m|+2)

l�2 (2u2 � 1)

+ 2(l + |m|+1)P (1,|m|+1)
l�1 (2u2 � 1)

(2.31)

Since Wm
l (u, v) is defined as

Wm
l (u, v) = u|m|P (0,|m|)

l (2u2 � 1)eimv, (2.32)

the first derivative of Wm
l (u, v) can be obtained by di↵erentiating Equation 2.32 respect to

u,

d

du
Wm

l (u, v) =
⇣
|m|u|m|�1P (0,|m|)

l (2u2 � 1) + u|m| d

du
P (0,|m|)
l (2u2 � 1)

⌘
eimv. (2.33)

Putting Equation 2.30 into Equation 2.33 gives

d

du
Wm

l (u, v) =
⇣
|m|u|m|�1P (0,|m|)

l (2u2�1)+u|m|+1(l+|m|+1)P (1,|m|+1)
l�1 (2u2�1)

⌘
eimv. (2.34)

Similarly, di↵erentiating Equation 2.32 twice respect to u allows to derive the second deriva-
tive of Wm

l (u, v)

d2

du2
Wm

l (u, v) =
⇣
|m|(|m|�1)u|m|�2P (0,|m|)

l (2u2 � 1)

+ |m|u|m|�1 d

du
P (0,|m|)
l (2u2 � 1) + u|m| d

2

du2
P (0,|m|)
l (2u2 � 1)

⌘
eimv.

(2.35)

Then, substituting Equation 2.30 and 2.31 into Equation 2.35 gives

d2

du2
Wm

l (u, v) = u|m|�2
⇣
|m|(|m|�1)P (0,|m|)

l (2u2 � 1) + (|m|+2)u2(l + |m|+1)P (1,|m|+1)
l�1 (2u2 � 1)

+ 4u4(l + |m|+1)(l + |m|+2)P (2,|m|+2)
l�2 (2u2 � 1)

⌘
eimv

(2.36)

Here, polynomials P (1,|m|+1)
l�1 (2u2 � 1) and P (2,|m|+2)

l�2 (2u2 � 1) can be calculated from the
three-term recursion relationship of Jacobi polynomials.
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Linear Operators of 1-hole basis functions

Suppose any function g can be represented with one-hole basis function with spectral coef-
ficients cml , written as

g(u, v) =
LX

l=0

NX

m=�N

cml W
m
l (u, v). (2.37)

Let’s consider any linear operator L can be defined as

Lg(u, v) =
LX

l=0

NX

m=�N

dml W
m
l (u, v) (2.38)

What we want to do in this moment is finding dml in terms of cml at specified operator L.
First, let’s consider when L = r2 where r2 is defined as

r2 =
1

u

@

@u
(u

@

@u
) +

1

u2

@

@v2
. (2.39)

This operator will be used to impose geometric constraints on an 1-hole object. Taking r2

in Equation 2.37 gives

r2g(u, v) =
LX

l=0

NX

m=�N

cml r2Wm
l (u, v). (2.40)

In [53], Verkley showed

r2Wm
l (u, v) =

l�1X

n=0

4(m+ 2n+ 1)(l � n)(n+m+ l + 1)Wm
n (u, v) (2.41)

By substituting 2.41 into 2.40, we obtain

r2g(u, v) =
LX

l=0

NX

m=�N

4cml

l�1X

n=0

(m+ 2n+ 1)(l � n)(n+m+ l + 1)Wm
n (u, v) (2.42)

By changing summation range of indexes, Equation 2.42 can be rewritten as

r2g(u, v) =
LX

n=0

NX

m=�N

4(m+ 2n+ 1)
NX

l=n+1

(l � n)(n+m+ l + 1)cml W
m
n (u, v). (2.43)

Without loss the generality, we can exchange index l and n in Equation 2.43, giving

r2g(u, v) =
LX

l=0

NX

m=�N

dml W
m
l (u, v), (2.44)
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where

dml = 4(m+ 2l + 1)
NX

n=l+1

(n� l)(l +m+ n+ 1)cmn . (2.45)

Therefore, r2g of any function g is easily obtained from spectral coe�cients of g using
Equation 2.45.

If we consider when L = u2, recurrence formula in [36],

dml =
l(l +m)

(2l +m� 1)(2l +m)
cml�1+

✓
1 +

m2

2(2l +m)(2l +m+ 2)

◆
cml +

(l + 1)(l +m+ 1)

(2l +m+ 3)(2l +m+ 2)
cml+1,

(2.46)
are utilized to compute u2g(u, v), which is approximated as

u2g(u, v) =
LX

l=0

NX

m=�N

dml W
m
l (u, v), (2.47)

where g is an arbitrary function defined in Equation 2.37.

2.3 2-hole object

Transformation of 2-hole basis functions

When an object topologically belongs to a sphere with two open boundaries, an object is
classified as a 2-hole object. The cylindrical radius of 2-hole objects mapped as a function of
parameterization variables u and v is approximated with Chebyshev polynomial with Fourier
series with their coe�cients. The cylindrical radius of 2-hole objects can be expressed as,

r(u, v) =
LX

l=0

NX

m=�N

aml Tl(u)e
imv (2.48)

Here, Tl is the Chebyshev polynomials. For a star-shaped object, simple parameterization
such that u is linear mapping of the height of an object and v is the azimuthal angle works
well. To compute spectral coe�cient aml , multiply Equation 2.48 by Tn(u)e�ikv 1p

1�u2 and
integrate respect to u and v over -1 to 1 and 0 to 2⇡, and then, it gives

Z 2⇡

0

Z 1

�1

r(u, v)Tn(u)e
�ikv 1p

1� u2
dudv

=

Z 2⇡

0

Z 1

�1

LX

l=0

NX

m=�N

aml Tl(u)Tn(u)
1p

1� u2
ei(m�k)vdudv

(2.49)

By rearranging terms, Equation 2.76 can be rewritten as
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LX

l=0

NX

m=�N

aml

Z 1

�1

Tl(u)Tn(u)
1p

1� u2
du

Z 2⇡

0

ei(m�k)vdv

=

Z 2⇡

0

⇣Z 1

�1

r(u, v)Tn(u)
1p

1� u2
du
⌘
e�ikvdv

(2.50)

It should be noticed that Z 2⇡

0

ei(m�k)vdv = 2⇡�mk (2.51)

and Z 1

�1

Tl(u)Tn(u)
1p

1� u2
du = cl�ln (2.52)

where

cl =

⇢
⇡, l = 0
⇡
2 , l 6= 0

(2.53)

Equations 2.51 and 2.52 allow to deduce Equation 2.50 further. By using these relations, we
finally obtain aml , defined as

aml =
1

2⇡cl

Z 2⇡

0

fl(v)e
�imvdv, (2.54)

where

fl(v) =

Z 1

�1

r(u, v)Tl(u)
1p

1� u2
du (2.55)

Once Equation 2.55 is calculated from Chebyshev-Gaussian quadrature rule, aml is obtained
in Equation 2.54 using fast Fourier transform.

Derivatives of Chebyshev polynomials

The first derivative of Chebyshev polynomials is derived from its definition. The lth order
Chebyshev polynomial is defined as

Tl(u) = cos(l✓), (2.56)

where u = cos(✓). If Tl(u) is di↵erentiated in u, it is written as

d

du
Tl(u) = l

sin(l✓)

sin✓
. (2.57)

Due to the fact that sin(l✓) can be decomposed into

sin(l✓) = sin((l � 1)✓)cos(✓) + cos((l � 1)✓)sin(✓), (2.58)
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if we use Equation 2.58 repeatedly, the right hand side of Equation 2.57 can be decomposed
into summations of low order terms. If we generalize the decomposed terms, Equation 2.57
can be classified into two cases depending on whether l is even or odd, given as

l
sin(l✓)

sin✓
= 2l

⇣
cos[(l� 1)✓] + cos[(l� 3)✓] + · · ·

⇢
+cos(3✓) + cos(✓), l even
+cos(4✓) + cos(2✓) + 1

2 , l odd

⌘
(2.59)

From the definition of Chebyshev polynomials, Equation 2.59 becomes

l
sin(l✓)

sin✓
= 2l

⇣
Tl�1(u) + Tl�3(u) + · · ·

⇢
+T3(u) + T1(u), l even
+T4(u) + T2(u) +

1
2 , l odd

⌘
. (2.60)

It is straightforward to show that Equation 2.60 is equivalent with

dTl(u)

du
= 2l

l�1X

l+p=odd
p=0

Tp(u)↵p, (2.61)

where

↵p =

⇢
1
2 , p = 0
1, otherwise

(2.62)

If we define an arbitrary function f(u) approximated by Chebyshev polynomials, a function
f(u) can be written as

f(u) =
NX

l=0

clTl(u). (2.63)

Then, the first derivative of f(u) respect to u is

df(u)

du
=

NX

l=0

cl
dTl(u)

du
(2.64)

Substituting Equation 2.61 into Equation 2.64 gives

df(u)

du
=

NX

l=0

cl
⇣
2l

l�1X

l+p=odd
p=0

Tp(u)↵p

⌘
(2.65)

By rearranging indexes and changing their ranges, we obtain

df(u)

du
=

NX

p=0

⇣
2↵p

NX

l=p+1
l+p=odd

lcl
⌘
Tp(u) (2.66)

After index l and p are interchanged, the spectral coe�cient cml of a function f(u) is related
with the the spectral coe�cient dml of the first derivative of f(u) such that
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df(u)

du
=

NX

l=0

dlTl(u), (2.67)

where

dl = 2↵l

NX

p=l+1
p+l=odd

pcp. (2.68)

With the matrix representation, a matrix d = [d0, d1, · · · , dN ]| is obtained by d = Dc, where
c = [c0, c1, · · · , cN ]| and (i, j)� th components of D, defined as Dij, is calculated from

Dij = ↵i

NX

j=i+1
i+j=odd

j, (2.69)

where i = 0, 1, · · · , N + 1 and j = 0, 1, · · · , N + 1. This matrix D is called di↵erentiation
matrix of Chebyshev polynomials.

Linear operator of 2-hole basis functions

Suppose any function g can be represented with 2-hole basis function with spectral coe�-
cients cml , written as,

g(u, v) =
LX

l=0

NX

m=�N

cml Tl(u)e
imv (2.70)

Also, let’s consider any linear operator L which can be defined as

Lg(u, v) =
LX

l=0

NX

m=�N

dml Tl(u)e
imv (2.71)

Then, we want to find a relation between coe�cients cml and dml . If we consider L = r2,
defined as

r2 =
@2

@u2
+

@2

@v2
, (2.72)

r2g(u, v) becomes

r2g(u, v) =
LX

l=0

m=NX

m=�N

cml

⇣ @2

@u2
�m2

⌘
Tl(u)e

imv. (2.73)

If we equate Equation 2.71 and Equation 2.73, we can seek a relation between spectral
coe�cients of a 1-hole object, given as

dml = (D2
lk �m2�lk)c

m
k , (2.74)

where Dlk is a (l, k)th component of the di↵erentiation matrix defined in Equation 2.69.
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2.4 3-hole Object

Representation

When an object has four boundaries, an object is classified as a patch. The height of an
object z which is a function of u an v is represented as

z(u, v) =
LX

l=0

NX

m=0

aml Tl(u)Tm(v), (2.75)

where u and v are Chebyshev-Gauss Lobatto points and aml is spectral coe�cients of dou-
ble Chebyshev polynomials. To compute double Chebyshev coe�cients aml , we multiply
Tn(u)Tk(u)

1p
1�u2

1p
1�v2

to Equation 2.75 and integrate respect to u and v over -1 to 1. Then,
it gives

Z 1

�1

Z 1

�1

z(u, v)Tn(u)Tk(u)
1p

1� u2

1p
1� v2

dudv

=

Z 1

�1

Z 1

�1

LX

l=0

NX

m=0

aml Tl(u)Tn(u)
1p

1� u2
Tm(u)Tk(u)

1p
1� v2

dudv

(2.76)

Due to the orthogonality of Chebyshev polynomials, spectral coe�cients aml are calculated
from

aml =
1

4⇡2clcm

Z 1

�1

fl(v)Tm(v)
1p

1� v2
dv, (2.77)

where

fl(v) =

Z 1

�1

r(u, v)Tl(u)
1p

1� u2
du (2.78)

Here, the definition of cl and cm is equal to the one shown in Equation 2.53.

Chebyshev di↵erentiation matrix for collocation method

When a patch is parameterized by double Chebyshev polynomials, it is mapped to a square
domain. When geometric constraints are imposed on a patch whose surface is mapped into
a square domain, constraints should be physically reasonable. For example, let say a patch’s
height is mapped by its functional parameters (u, v), where u, v are Chebyshev grid points
ranging from �1  u, v  1. Further suppose the heights of a path are demanded to be
f±1(v) when u = ±1 and g±1(u) when v = ±1 respectively. Then, f±1(±1) should be equal
to g±1(±1) because a patch should have the same height at the corners. Besides the height
matching conditions at the corner, if we consider higher derivative constraints such as slope
and curvature, there are more dependent constraints which have to be considered at the
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corner. Without considering these conditions at the corners, solving PDE with arbitrary
geometric constraints can be an over-constrained problem.

When PDEs are solved to impose geometric constraints on a patch, both tau method and
collocation method can be used. However, we focus more on collocation method than tau
method because collocation method has an advantage in dealing with an over-constrained
problem. Since tau method is so global, a constrained shape becomes blows-up or very
oscillatory when an over-constrained problem is faced. However, if collocation method is
used in solving PDEs, oscillation is only confined near the corners of a patch, and then,
manipulating the shape to remove the oscillation is quite easy. Thus, in this work, we will
use collocation method in solving PDEs for imposing constraints on a patch. Here we will
describe how to obtain a di↵erentiation matrix for a collocation method and describe how
to solve PDEs based on collocation method in the next chapter.

Suppose p(x) is a given function and p = [p0, p1, · · · , pN ]| is a column matrix whose
components are values of p(x) on Chebyshev grid points, defined as,

xk = cos
⇣k⇡
N

⌘
, j = 0, 1, · · · , N. (2.79)

Further suppose q(x) is derivative of p(x) respect to x and q = [q0, q1, · · · , qN ]| is a column
matrix whose components are values of q(x) on Chebyshev grid points. Then, we want to find
a di↵erentiation matrix Dp for a collocation method, which satisfies the following equation.

q = Dpp. (2.80)

Here, Dp is (N + 1) ⇥ (N + 1) and column matrices p and q are (N + 1) ⇥ 1. When
N = 1, Chebyshev grid points become x0 = 1 and x1 = �1, and then, Lagrangian form of
polynomial passing points (1, p0) and (�1, p1) are

p(x) =
1

2
(1 + x)p0 +

1

2
(1� x)p1 (2.81)

The derivative of Equation 2.81 respect to x becomes

q(x) =
1

2
p0 �

1

2
p1, (2.82)

Therefore, di↵erentiation matrix when N = 1 is

Dp =


1
2 �1

2
1
2 �1

2

�
(2.83)

When N = 2, collocation points x0 = 1, x1 = and x1 =, and then, Lagrangian form of
polynomial passing points (1, p0), (0, p1) and (1, p2) are

p(x) =
1

2
x(x+ 1)p0 + (1 + x)(1� x)p1 +

1

2
x(x� 1)p2 (2.84)
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The derivative of Equation 2.84 respect to x becomes

q(x) =
⇣
x+

1

2

⌘
p0 � 2xp1 +

⇣
x� 1

2

⌘
p2, (2.85)

Therefore, di↵erentiation matrix when N = 2 is

Dp =

2

4
3
2 �2 1

2
1
2 0 �1

2
�1

2 2 �3
2

3

5 (2.86)

If we generalize it, we can finally obtain the di↵erentiation matrix Dp, given as

Dp = [dij] =

8
>><

>>:

dij =
c
i

c
j

(�1)i+j

(x
i

�x
j

) , 0  i, j  N, i 6= j

dii = � x
i

2(1�x2
i

)
, 1 5 i 5 N � 1

d00 = �dNN = 2N2+1
6

(2.87)

2.5 Morphing objects

Spectral morphing

When the surfaces of two or more 0-, 1-, 2-holed objects, sub-objects or patches are repre-
sented by a truncated spectral sum, morphing is particularly easy and robust. A morphed
object, sub-object or patch is created from N baseline objects, patches or sub-objects by
creating a new set of spectral coe�cients from the baseline coe�cients. For example, spectral
coe�cients of a morphed 0-hole object bml from N baseline 0-hole objects is calculated by

bml =
NX

k=1

!k (aml )k, (2.88)

where !k is the weight of the kth baseline 0-hole object and (aml )k is spectral coe�cients of
the kth 0-hole object. Then, the radius of a morphed 0-hole object, rm(u, v), is computed
from

rm(u, v) =
LX

l=0

lX

m=�l

bml Y
m
l (u, v). (2.89)

It is often useful, but not necessary to make the sum of the weights equal to unity. For
N = 2, if 0  !1  1 and !2 = 1 � !1, the morph is an interpolation between the two
objects (or patches or sub-objects). If !1 < 0 or !1 > 1, the morph is an extrapolation. The
definitions of interpolation and extrapolation can be extended to the case N > 2. Because
this method of morphing is so robust, extrapolation can easily be done without the method
breaking down. Extrapolations are particularly useful for creating radical new designs of
objects, as shown in Figure 2.2.
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(a) (1,0,0) (b) (0,1,0) (c) (0,0,1)

(d) (0.5,0,0.5) (e) (0,0.5,0.5) (f) (-2,0,1) (g) (0,-2,1)

Figure 2.2: Morphing of golf balls: (a) the baseline circular dimpled golf ball, (b) the baseline
hexagonal dimpled golf ball, (c) the baseline smooth golf ball. A morphed interpolation of
one of the dimpled baseline balls and the smooth ball will produce a ball with shallower
dimples, as shown in (d). A morphed extrapolation of one of the dimpled balls and the
smooth ball will produce a ball with deeper dimples as shown in (e) and a ball with bumps,
rather than dimples, as shown in (f) and (g). Weights of each golf ball are given in its own
subcaption.

In the figure, three baseline golf balls, plotted in (a), (b) and (c) , whose shapes are
represented as truncated sums of 0-hole objects are morphed. Among them, two baseline
golf balls are dimpled, and one is smooth. The morphed golf balls are shown in panels
from (d) to (g). Two morphed golf balls, shown in (d) and (e), that are interpolations of
the baseline shapes are dimpled and two morphed golf balls, shown in (f) and (g), that are
extrapolations of a dimpled golf ball and a smooth golf ball do not have dimples, rather they
have bumps.

Another example of morphed objects is presented in Figure 2.3. Three actual train
engines (without the wheels and undercarriages), which are 0-hole objects and plotted in (a),
(b) and (c), are represented with truncated spherical harmonics. We use these as the three
baseline objects in our morphing. An example of morphed train engine made by interpolation
among the 3 baseline trains is plotted in (d) and two examples of morphed train engines
made by extrapolation of the baseline trains are plotted in (e) and (f). As illustrated in
Figures 2.2 and 2.3, design-by-morphing works well for extrapolation of baseline objects as
well as for interpolation.
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(a) (1,0,0) (b) (0,1,0) (c) (0,0,1)

(d) (0.5,0.5,0) (e) (-0.2,0.8,-0.4) (f) (1,0.5,-0.5)

Figure 2.3: Morphed train engines (i.e., the first car of a high-speed train). In (a) (b) and
(c), three baseline train engines are represented as truncated sums of 0-hole objects. The
morphed shape (d) is created by interpolating the three baseline objects, while the morphed
shapes in (e) and (f) are extrapolations of the baseline objects. Weights of each train engin
are given in its own subcaption.

Representation comparison of spherical harmonics and
eigenfunctions of Laplace-Betrami operator

One main reason we introduce and use these basis functions in design-by-morphing is to
represent the surface of an object accurately but e�ciently, and to take advantages of ex-
ponential convergence rate and fast forward and backward transform of our spherical basis
functions. These basis functions have advantages over currently using spherical basis func-
tions with respect to representation accuracy and computation time to obtain basis functions.
To show these advantages, we calculate the representation accuracy and computation time
in representation the surface of a synthetic object and compare these values between one of
our basis function, spherical harmonics, to currently commonly used spectral basis function,
eigenfunctions of Laplace-Beltrami operator. The surface of a synthetic object is given as

x2

a2s(z)2
+

y2

b2s(z)2
+

z2

c2
= 1, (2.90)
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Figure 2.4: A Synthetic object

where a = 0.8, b = 0.9, c = 1.0 and

s(z) = 1� 0.7cos
h⇡
2

⇣z
c
+ 0.2

⌘i
(2.91)

To quantitatively compare the representation accuracy, we define error E, given as,

E =
h 1

Nv

N
vX

i=1

⇣ x̃i
2

a2s(z̃i)2
+

ỹi
2

b2s(z̃i)2
+

z̃i
2

c2
� 1
⌘2i 1

2
, (2.92)

where Nv is number of vertices of the synthetic object and x̃i, ỹi, and z̃i are positions of
vertices approximated by using spherical harmonic or eigenfunctions of LBO. To compute
eigenfunctions of LBO, we use knowledge and algorithm described in [44].

The comparison results are presented in Table 2.1. The representation accuracy is slightly
better (at N = 8, 16, 32) when the surface of the synthetic object is approximated by using
eigenfunctions of LBO than using spherical harmonics, but both basis functions show spectral
accuracy. The reason the representation accuracy using eigenfunctions of LBO is trapped
around the order of 10�6 at high number of modes used (at N = 64, 128) is due to the fact
eigenfunctions of LBO are calculated under the single precision accuracy. Thus, the order of
10�6 accuracy is the highest representation accuracy we can expect from using eigenfunctions
of LBO.

The more important fact is huge discrepancy of calculation time between two methods. As
an example, we represent the surface of a hexagonal dimpled golf ball (shown in Figure 2.5b)
by using two methods and compare the calculation time. The calculation time required to
compute spherical harmonics and eigenfunctions of Laplace-Betrami operator are presented
in Table 2.2 and the shape of a golf ball approximated by these two basis functions are
plotted in Figure 2.5. As Figure 2.5 shows, it is obvious to claim that the number of modes
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N
error

spherical harmonics eigenfunctions of LBO
8 1.47⇥ 10�2 9.10⇥ 10�3

16 1.17⇥ 10�3 3.02⇥ 10�4

32 1.29⇥ 10�5 5.98⇥ 10�6

64 2.44⇥ 10�9 1.79⇥ 10�6

128 7.22⇥ 10�14 .

Table 2.1: Representation comparison of a synthetic object using spectral harmonics and
eigenfunctions of Laplace-Betrami operator in terms of represetation error and computation
time. Here, LBO means Laplace-Beltrami operator

N
computation time

spherical harmonics (sec) eigenfunctions of LBO (sec)
16 0.886 1.897⇥102

32 0.931 3.306⇥102

64 1.041 5.436⇥103

128 2.033 1.508⇥105

Table 2.2: Representation comparison of a hexagonal golf ball, shown in Figure 2.2b, using
spectral harmonics and eigenfunctions of Laplace-Betrami operator in terms of computation
time. Here, LBO means Laplace-Beltrami operator

to be used to capture the shapes of small dimples of the golf ball should be equal to or higher
than N = 128. However, the amount of time required to compute eigenfunctions of LBO
of the hexagonal golf ball so rapidly increases as N grows that approximately 42 hours are
needed to obtain them, while spherical harmonics only needs approximately 2 seconds. Due
to this huge computation time, spectral representation using eigenfunctions of LBO cannot
be applied to optimization process where hundreds of di↵erent shapes of objects should be
represented.
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(a) SH, N = 32 (b) SH, N = 64 (c) SH, N = 128

(d) LBO, N = 32 (e) LBO, N = 64 (f) LBO, N = 128

Figure 2.5: As a function of N , the shapes of golf balls represented by spherical harmonics
are presented in (a), (b) and (c), while the shapes of golf balls represented by Laplace-
Betrami operator are presented in (d), (e) and (f). Here, SH and LBO mean representation
using spherical harmonics and eigenfunctions of Laplace-Beltrami operator, respectively. The
original shape of the golf ball is plotted in Figure 2.2 (b).
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Chapter 3

Imposing geometric constraints on an
object

3.1 Di↵erential equation

No geometric constraints are imposed on the morphed object so far. However, in many
cases, a morphed object needs to be constrained to meet certain pre-described geometric
conditions. At this point, we want to define the terms unconstrained object and constrained
object. We use the term unconstrained object to refer to the shape of an n-hole object or a
patch before constraints are imposed on the boundaries and constrained object to refer to
the shape of an n-hole object or a patch after constraints are imposed on the boundaries.
We impose geometric constraints on an object by spectrally solving the partial di↵erential
equation with boundary conditions that are incorporated with geometric constraints. In this
chapter, we will describe how to impose geometric constraints on n-hole objects and a patch.
We will explain for a 2-hole object first and move onto for a 1-hole object and a patch.

Governing equation to impose geometric constraints on 1- and
2-hole objects

To impose geometric constraints on a 2-hole object, let’s consider a hyperdi↵usion-like partial
di↵erential equation

@r(u, v)

@t
= µ1r2r(u, v), (3.1)

where µ1 is dynamic di↵usivity, r(u, v) is cylindrical radius of a 2-hole object and r2 is a
Laplace operator defined as

r2 =
@2

@u2
+

@2

@v2
. (3.2)

Because Equation 3.1 has a time-derivative term, we assume that a constrained surface can
be created by marching the solution in time. If backward Euler method is used to discretize
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in time, the surface of a constrained object can be obtained by solving

(1� ⌫1r2)rc(u, v) = ru(u, v), (3.3)

where ⌫1 is defined as the kinematic di↵usivity and rc(u, v) and ru(u, v) respectively represent
the cylindrical radius of the unconstrained and constrained object. For simplicity, we will
refer to the kinematic di↵usivity, ⌫1, as di↵usivity (not µ1) in the rest of the paper.

Solving the second order equations only allows shape constraints to be imposed on an
object. To deal with higher order derivatives, for example, to achieve Cn continuity, a higher
order PDE needs to be solved. If we generalize a governing equation enabling to impose nth

order geometric constraints, the generalized governing equation can be rewritten as

@r(u, v)

@t
=

nX

i=0

(�1)iµi+1r2(i+1)r(u, v) (3.4)

Similarly, the time discretized governing equation is easily re-derived from Equation 3.4,
given as

⇣
1�

nX

i=0

(�1)i⌫i+1r2(i+1)
⌘
rc(u, v) = ru(u, v) (3.5)

We tested the equation up to the second order geometric constraints (n = 2) and ascertained
that shape, slope and curvature constraints are well imposed on an object.

In design-by-morphing, Equation 3.5 is solved spectrally. Due to the fast transform [46]
and fast solver in the spectral method [21], we can solve this parabolic PDE e�ciently.

Governing equation to impose geometric constraints on a patch

Unlike imposing geometric constraints on 1- or 2-hole objects which parabolic PDE is solved
to impose geometric constraints, elliptical PDE is solved to impose constraints on a patch.
The reason we used elliptical PDE is that a @2

@v2
@2

@u2 term generated from parabolic equation
requires huge computational work in our mathematical approach. Removing this term via
considering elliptical PDE allows to solve governing equation e�ciently. To impose shape
constraint on a patch whose height z is parameterized by mapping variables (u, v), we solve

@z(u, v)

@t
= µ

✓
@2

@u2
+

@2

@v2

◆
z(u, v). (3.6)

If we define zu as the height of an unconstrained patch and zc as the height of a constrained
patch, using the implicit first order time stepping scheme gives

zc(u, v)� ⌫

✓
@2

@u2
+

@2

@v2

◆
zc(u, v) = zu(u, v). (3.7)
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Equation 3.96 can be expanded to higher governing equation to impose shape, slope or
curvature constraints. To imposed up to nth order geometric constraints, governing equation
is given as

@z(u, v)

@t
=

nX

i=0

(�1)iµi+1

✓
@2(i+1)

@u2(i+1)
+

@2(i+1)

@v2(i+1)

◆
z(u, v). (3.8)

Similarly, using implicit first order time stepping scheme allows to obtain

zc(u, v)�
nX

i=0

(�1)i⌫i+1

✓
@2(i+1)

@u2(i+1)
+

@2(i+1)

@v2(i+1)

◆
zc(u, v) = zu(u, v). (3.9)

3.2 Imposing geometric constraints on a 2-hole object

Boundary conditions

To solve Equation 3.5, boundary conditions should be defined. This indicates that if ones
define boundary conditions to be equivalent to geometric constraints that they want to apply
on objects, the geometric constraints can be imposed on the objects. For example, suppose
a 2-hole object whose cylindrical radius r(u, v) is approximated by

r(u, v) =
LX

l=0

NX

m=�N

aml Tl(u)e
imv, (3.10)

is parameterized be the bottom and top ends when u = �1 and u = 1, respectively. Fur-
ther, suppose the radius of a 2-hole object should be f 0(v) and g0(v) at the bottom and
top, respectively, where f 0(v) and g0(v) are given functions, and f 0(v) and g0(v) can be
approximated by a truncated Fourier series as a function of v, given as

f 0(v) =
NX

m=�N

f̂ 0
me

imv (3.11)

and

g0(v) =
NX

m=�N

ĝ0me
imv. (3.12)

Here, f̂ 0
m and ĝ0m are respectively Fourier coe�cients of the functions f 0(v) and g0(v). Since

when u = �1 and u = 1, the radius of a 2-hole object should be equal to f(v) and g(v),
the right hand sides of Equations 3.11 and 3.12 can be equated with Equation 3.10 when
u = �1 and u = 1. In other words, when u = �1, the following condition should be obeyed.

LX

l=0

NX

m=�N

aml Tl(�1)eimv =
NX

m=�N

f̂ 0
me

imv (3.13)
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Similarly, when u = 1, the following condition also should be obeyed.

LX

l=0

NX

m=�N

aml Tl(1)e
imv =

NX

m=�N

ĝ0me
imv. (3.14)

Rearranging Equation 3.13 gives

NX

m=�N

eimv
⇣ LX

l=0

aml Tl(�1)� f̂ 0
m

⌘
= 0. (3.15)

Without loss generality, to satisfy Equation 3.15 for all m modes, the parenthesis in the
equation should be zero, can be written as

LX

l=0

aml Tl(�1) = f̂ 0
m. (3.16)

Similarly, when u = 1, we can obtain

LX

l=0

aml Tl(1) = ĝ0m. (3.17)

For the higher order of geometric constraints, similar conditions can be derived. For
example, if ith derivative of radius respect to u is required to be equal to f i(v) at the bottom
and ith derivative of radius respect to u is required to be equal to gi(v) at the top, where
functions f i(v) and gi(v) are known and approximated by Fourier series with their own
Fourier coe�cients, f̂ i

m and ĝim, these conditions can be written as

f i(v) =
NX

m=�N

f̂ i
me

imv, (3.18)

and

gi(v) =
NX

m=�N

ĝime
imv, (3.19)

it is straightforward to derive the following conditions.

LX

l=0

aml
@iTl(u)

@ui

���
u=�1

= f̂ i
m (3.20)

LX

l=0

aml
@iTl(u)

@ui

���
u=1

= ĝim. (3.21)

Equations 3.20 and 3.21 are boundary conditions of a 2-hole object in solving Equation
3.4. When Equation 3.4 is spectrally solved, these boundary conditions are imposed by
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substituting a few highest modes of l at each m mode, which is well known as tau method.
More detail knowledge on how to solve it is described in the following subsection.

Solving PDE with geometric conditions

To explain how to solve PDE spectrally, we first focus on the second order di↵usion equation,
which is written in Equation 3.3, and then, we will move onto solving high order di↵usion
equation. Imposing shape constraint on a 2-hole object can be implemented by solving
di↵usion-like equation

@r(u, v)

@t
= µr2r(u, v), (3.22)

where

r2 =
@2

@u2
+

@2

@v2
. (3.23)

Let’s define ru as the cylindrical radius of an unconstrained 2-hole object and rc as cylindrical
radius of a constrained 2-hole object. We represent ruand rc by truncated sum of Chebyshev
polynomials and Fourier expansions, which can be written as

ru(u, v) =
NX

l=0

NX

m=�N

bml Tl(u)e
imv (3.24)

and

rc(u, v) =
NX

l=0

NX

m=�N

aml Tl(u)e
imv, (3.25)

where aml and bml are spectral coe�cients of rc and ru, respectively. Using the backward
Euler method in resolving Equation 3.22 in time allows to impose geometric constraints by
assuming that geometric constraints can be imposed on an object by marching the equation
one time step in time, which gives

(1� ⌫r2)rc(u, v) = ru(u, v), (3.26)

where ⌫ = µ�t and �t is time-step of backward Euler scheme. Substituting Equations 3.24
and 3.25 into 3.26 gives

NX

l=0

NX

m=�N

(1� ⌫r2)aml Tl(u)e
imv =

NX

l=0

NX

m=�N

bml Tl(u)e
imv. (3.27)

If we rearrange Equation 3.27 and express the rearranged equation as the matrix form, we
obtain

NX

m=�N

[(I� ⌫(D2 �m2I)a(m)� b(m)]eimv = 0, (3.28)
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where a(m) = [am0 , a
m
1 , · · · , amN ]

T , b(m) = [bm0 ,, b
m
1 , · · · , bmN ]

T , I is an identity matrix and D
is a di↵erentiation matrix of Chebyshev polynomials. Without loss of generality, in order to
satisfy Equation 3.28 independent of v, the terms inside the parenthesis should be equal to
zero at every m. Therefore, Equation 3.28 can be rewritten as

⇥(m)a(m) = b(m), (3.29)

where ⇥(m) = I� ⌫(D2�m2I). Equation 3.29 cannot be solved because ⇥(m) is a singular
matrix. To solve it, boundary conditions should be imposed on ⇥(m) and b(m), which are
given at Equations 3.16 and 3.17. By defining a matrix ⇥⇤(m) to be equal to ⇥(m) except
the two most bottom rows which are replaced with boundary conditions and a column vector
b⇤(m) to be equal to b(m) except the two bottom most rows which are also replaced with
boundary conditions.

⇥?(m)a(m) = b?(m) (3.30)

Once Equation 3.30 is solved at each m-th mode, we can finally obtain all coe�cients , aml ,
of constrained geometries.

If ones have to constrain an object higher than C0 geometric constraints, higher order of
PDEs than the second order should be considered. For example, if shape and slope conditions
are demanded to be imposed on an object, a fourth order PDE should be solved, while an
object is constrained with shape, slope and curvature constraints, a sixth order PDE should
be solved. For a fourth order di↵usion equation, from Equation 3.4, we need to solve

@r(u, v)

@t
= ⌫1r2r(u, v)� ⌫2r4r(u, v), (3.31)

Similar to solving a second order di↵usion equation, we obtain the following equation

�
1� ⌫1r2 + ⌫2r4

�
rc = ru, (3.32)

and it can be represented like Equation 3.29 as a matrix form, where ⇥(m) = (1 +m2⌫1 +
m4⌫2)I + ⌫2D4 � (⌫1 + 2m2⌫2)D2. After, the four most bottom rows of the ⇥(m) matrix
and b(m) column vector are replaced with boundary conditions, spectral coe�cients of a
constrained object can be obtained.

Similarly, for a sixth order di↵usion equation, we need to solve

@r(u, v)

@t
= ⌫1r2r(u, v)� ⌫2r4r(u, v) + ⌫3r6r(u, v), (3.33)

As we did to solve second and fourth order PDEs, backward Euler time-stepping method
allows to obtain the equation specified by the radius of an unconstrained and constrained
objects �

1� ⌫1r2 + ⌫2r4 � ⌫3r6 )rc = ru. (3.34)
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Equation 3.34 also can be represented a matrix form given in Equation 3.29, where ⇥(m) =
(1+m2⌫1+m4⌫2+m6⌫3)I�⌫3D6+(⌫2+3⌫3m2)D4� (⌫1+2m2⌫2+3m4⌫3)D2. After, the six
most bottom rows of the ⇥(m) matrix and b(m) column vector are replaced with boundary
conditions, spectral coe�cients of a constrained object can be obtained.

As described so far, the surface of a constrained object can be obtained by inverting the
matrix ⇥?. However, this approach is ine�cient and induces considerable numerical error
because the condition number of the matrix ⇥ is big especially when a higher order PDE
is solved. The better way is using a trick allowing to diagonalize the matrix ⇥? and obtain
even and odd modes of spectral coe�cients separately from the diagonalized matrix. Here,
we will be described this method with a fourth-order PDE as an example. Suppose we define
pth derivative of rc respect to u as

dprc

dup
=

NX

l=0

NX

m=�N

(aml )
(p) Tl(u)e

im�, (3.35)

where aml
(0) is equal to aml . Due to the definition of r2 and r4, Equation 3.32 can be

rewritten as

h
1� ⌫1

⇣ @2

@u2
+

@2

@v2

⌘
+ ⌫2

⇣ @4

@u4
+ 2

@2

@u2

@2

@v2
+

@4

@v4

⌘i
rc(u, v) = ru(u, v) (3.36)

By substituting Equation 3.35 into Equation 3.36, we obtain

⌫2 (a
m
l )

(4) �
�
2⌫2m

2 + ⌫1
�
(aml )

(2) +
�
⌫2m

4 + ⌫1m
2 + 1

�
aml = bml (3.37)

The boundary conditions of Equation 3.37 are obtained from Equations 3.20 and 3.21, given
as

LX

l=0

aml Tl(�1) = f̂m (3.38)

LX

l=0

aml Tl(1) = ĝm (3.39)

LX

l=0

aml
@Tl(u)

@u

���
u=�1

= f̂ 1
m (3.40)

LX

l=0

aml
@Tl(u)

@u

���
u=1

= ĝ1m (3.41)

Since Tl(�1) = (�1)l and Tl(1) = 1, adding Equations 3.38 and 3.39, and subtracting
Equation 3.38 from Equation 3.39 respectively give
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NX

l=0
l even

aml =
ĝm + f̂m

2
(3.42)

NX

l=1
l odd

aml =
ĝm � f̂m

2
(3.43)

Similarly, since @T
l

(u)
@u

���
u=�1

= (�1)l+1l2 and @T
l

(u)
@u

���
u=1

= l2, adding Equations 3.40 and 3.41,

and subtracting Equation 3.40 from Equation 3.41 respectively give

NX

l=1
l odd

l2aml =
ĝ1m + f̂ 1

m

2
(3.44)

NX

l=0
l even

l2aml =
ĝ1m � f̂ 1

m

2
(3.45)

It should be noticed that there is a well-known three term recursion relation between a(p)

and a(p�1) at each m [9]

cl (a
m
l )

(p) �
�
aml+2

�(p)
= 2(l + 1)

�
aml+1

�(p�1)
, l = 0, (3.46)

where

cl =

(
2, l = 0

1, l > 0
(3.47)

Equation 3.46 is used to derive a formula to solve Equation 3.32 e�ciently. After defining
p = 4 in Equation 3.46, substituting Equation 3.46 into Equation 3.37 gives

(aml )
(3) = A (aml )

(1) � 1

2l

⇥
B
�
cl�1a

m
l�1 � aml+1

�
� P

�
cl�1b

m
l�1 � bml+1

�⇤
, (3.48)

where

A =
2⌫2m2 + ⌫1

⌫2

B =
⌫2m4 + ⌫1m2 + 1

⌫2
(3.49)

P =
1

⌫2
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The highest derivative term of Equation 3.48 is one order lower than that of Equation 3.37.
By repeating the same calculation procedure until every high derivative term becomes to
zeroth derivative term, we finally obtain

↵l�4a
m
l�4 �

✓
A

B
Dl�2 + �l�2

◆
aml�2 +

✓
1 + AEl

B
+ �l

◆
aml

�
✓
A

B
Fl+2 + �l+2

◆
aml+2 + ✏l+4a

m
l+4 = Km

l , 4 5 l 5 N,

(3.50)

where

Km
l =

P

B

�
↵l�4b

m
l�4 � �l�2b

m
l�2 + �lb

m
l �Gl+2Ll+2b

m
l+2 +Gl+4✏l+4b

m
l+4

�

↵l�4 = cl�4Dl�2Dl�4

�l�2 = Dl�2(El�2 + El)

�l = Dl�2Fl + E2
l + Fl+2Dl

Ll+2 = (El + El+2)Fl+2

✏l+4 = Fl+2Fl+4 (3.51)

Dl =
1

4(l + 1)(l + 2)

El =
1

2l(l � 1)(l + 1)

Fl =
1

4l(l � 1)

Gl =

(
1, l 5 N

0, l > N

Here, note that even and odd modes can be obtained independently because even and odd
modes of Equation 3.50 are uncoupled. For example, for even modes, the structure of it
looks like
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where x means non-zero elements of the matrix, which can be calculated from Equations
3.49, 3.50 and 3.51. The first and second rows are replaced by boundary conditions we have
derived in Equations 3.42 and 3.45. This penta-diagonal matrix can be e�ciently solved
with a LU decomposition in O(N) operations.

E↵ect of di↵usivities

The shape of a constrained object is a↵ected by di↵usitivies, as well as the shape of an
unconstrained object and imposed geometric constraints. To study the e↵ect of di↵usivities,
we introduce a simple two-hole object constraint problem. In this problem, a cylinder is
demanded to have constraints such that the shape of the cylinder must be a rectangle (or
star or heart) with a perpendicular slope to the horizontal plane maintained at the upper
end, while the cylinder must be unchanged in terms of its shape and slope at the bottom end.
To accomplish this, fourth-order PDEs are solved with boundary conditions incorporating
these requirements. The constrained cylinders are presented in figure 3.1, where the color
indicates the strength of deformation before and after imposing constraints, defined as

C(u, v) =

p
(Rc(u, v)�Ru)2

|Rc(u, v)�Ru|1
(3.52)

Here, Rc(u, v) is the radius of the constrained cylinder, Ru is the radius of the unconstrained
cylinder, and C(u, v) is the color in Figure 3.1, where red indicates high deformation and
blue indicates small deformation. The first row of the figure shows constrained cylinders
with a weak di↵usivity e↵ect, while the bottom row shows a constrained cylinder with a
strong di↵usivity e↵ect. The boundary layer, defined as the depth of shape deformation
propagating from one end to the other end (in this case from the top end to the bottom
end), is thicker when di↵usivities are strong than in the weak di↵usitivies case. In addi-
tion, the constrained object more smoothly obeys imposed constraints when di↵usitivies are
strong. Thus, di↵usivities are associated with a smoothing e↵ect, thereby determining the
smoothness of constrained objects near the boundaries. This is consistent with the physical
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Figure 3.1: The di↵usivity e↵ect of constrain solver: A cylinder is required to be square
(leftmost), star (middle), and heart-shaped (rightmost) at the top end and unchanged at the
bottom end. The slope at both ends are required to be straight along the vertical direction.
The di↵usivities applied to objects in the first row is smaller than the di↵usivities applied to
objects in the bottom row. Here, color demonstrates the degree of deformation, where red
indicates strong deformation and blue indicates weak deformation.

meaning of di↵usitivy, quantifying the transfer rate of thermal and fluidic quantities from
one area to another.

So far, we have dealt with constant di↵usitivies in space. However, non-constant di↵u-
sivities in space can be used instead. By employing varying di↵usivities, users are able to
adjust the deformation of an object over the space. For example, if the upper and bottom
end of a two-hole object are mapped to u = 1 and u = �1, respectively, the non-constant
viscosity

⌫ = ⌫̄ + a(u+ 1)2, (3.53)

where ⌫̄ is the constant di↵usivity and a is positive constant, assists in deforming the upper
end with minimized the shape change near the bottom end.

Objects connected by a neck

We have applied the constraint solver to various examples to connect two or more separate
objects through a neck. The neck here is named after a neck of human because neck splices
di↵erent objects as the human neck connects a head an body. When objects are connected
by a neck, geometric constraints should be imposed on a neck to force a neck stitch objects
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smoothly in terms of matching shape, slope or curvature at joints. To impose those geometric
constraints, shape, slope or curvature at joints should be numerically computed. To do
this, diagnostic objects at the joint are needed to be considered. The purpose of creating
diagnostic objects are just to numerically compute shape, slope or curvature of connected
objects at joints. Once these values are computed, diagnostic objects are no longer necessary.
For easy understanding of diagnostic objects, diagnostic objects are colored by purple in this
subsection, while shapes of an unconstrained and constrained objects are presented as green.
For example, the object colored by purple in Figure 3.2 is a diagnostic object. The diagnostic
object is part of a connected object ( in this case, it is a part of horse hindquarters) whose one
of the boundaries becomes the joint of a constrained problem (in this case, lower boundary is
the joint of the constrained problem). The surface of this diagnostic object is approximated
by our 2-hole basis functions. Due to the fact that one of the boundaries of a diagnostic
object is the joint of the constrained problem whose surface is approximated by spectral
basis functions, shape, slope or curvature at the joint can be easily obtained from spectral
calculation.

We applied creation of neck approach to stitch a two or more objects in various shaped
objects. For example, Figure 3.3 shows creation of a centaur by stitching upper human body
to horse hindquarters thorough a neck. To create a centaur, we first consider the shape of a
human and the shape of a horse, which are presented in Figure 3.3a and 3.3b. The boxes here
mean the these objects are sliced by a flat plane. To slice them, we used a software called
Netfabb. The sliced objects will be connected by imposing geometric constraints, assuring
upto C2 continuity at the joints, on a unconstrained neck, shown as a blue object in Figure
3.3c. A way how to create an unconstrained neck may be debatable, but choosing the shape
of lower belly of a human as a unconstrained neck works well in this case. The constrained
neck are obtained as follows.

Let’s define XN(u, v) = [xN(u, v), yN(u, v), zN(u, v)]| as position functions of an uncon-
strained neck and XHD(u, v) = [xHD(u, v), yHD(u, v), zHD(u, v)]| as position functions of a
diagnostic object for the hindquarters of the horse, where all objects are mapped to be the
bottom of objects at u = �1 and the top of objects at u = 1. Here each of position functions’
component is approximated by 2-hole basis function. For example, xN(u, v) is approximated
as

xN(u, v) =
NX

l=0

NX

m=�N

(x̂N)
m
l Tl(u)e

imv, (3.54)

where (x̂N)ml is spectral coe�cients of xN . Similarly, if we define (ŷN)ml and (ẑN)ml as spectral
coe�cients of yN(u, v) and zN(u, v) respectively, generalized spectral approximation of an
unconstrained object’ positions can be written as

XN(u, v) =
NX

l=0

NX

m=�N

(X̂N)
m
l Tl(u)e

imv, (3.55)
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where (X̂N)
m
l = [(x̂N)ml , (ŷN)

m
l , (ẑN)

m
l ]

|. A constrained neck XC
N(u, ⌧) can be obtained by

solving

(1� ⌫1r2 + ⌫2r4�⌫3r6)XC
N(u, ⌧) = XN(u, ⌧), (3.56)

where r2 = @2

@u2 +
@2

@v2 , with the following boundary conditions.

Xc
N |u=1 = Xu

N |u=1 (3.57)

Xc
N |u=�1 = XHD|u=1 (3.58)

dXc
N

du
|u=1 =

dXu
N

du
|u=1 (3.59)

dXc
N

du
|u=�1 = kN

dXHD

du
|u=1 (3.60)

d2Xc
N

du2
|u=1 =

d2Xu
N

du2
|u=1 (3.61)

d2Xc
N

du2
|u=�1 = k2

N

d2XHD

du2
|u=1, (3.62)

where kN is constant and XHD(u, v) = [xHD(u, v), yHD(u, v), zHD(u, v)]| is position func-
tions of a diagnostic object whose surface is represented by 2-hole basis functions with spec-
tral coe�cients (X̂HD)

m
l = [(x̂HD)ml , (ŷHD)ml , (ẑHD)ml ]

| where (x̂HD)ml , (ŷHD)ml and (ẑHD)ml
are spectral coe�cients of xHD(u, v), yHD(u, v) and zHD(u, v) respectively. We assume that
Equations 3.57, 3.59 and 3.61 are su�cient conditions to retain C2 continuity at the upper
joint since the unconstrained neck was brought from the original geometry of the human
sharing the same geometric characteristics with the connected human object at the joint.
The reason why we multiply kN and k2

N in Equations 3.60 and 3.62 is that they assist to
control the boundary layer of the constrained neck, while it does not violate C2 continuity
geometric conditions.

This imposing constraint process is graphically summarized in Figure 3.3. In the figure,
it shows how we have made a centaur by connecting two unconstrained one-holed sub-
objects together via a neck that are constrained to join smoothly to the open boundaries
of the 1-holed sub-objects. A centaur is created from the head, arms and upper torso (an
unconstrained 1-hole sub-object) that are detached from a human in Figure 3.3a, and the
hindquarters of a horse (another unconstrained 1-hole sub-object) that is detached from
a horse in Figure 3.3b. These two sub-objects, shown in Figure 3.3c, are then connected
to each other by a lower torso of another human (a 2-hole sub-object) that is constrained
at both of its open end boundaries to match the shape, slope, and curvature at the open
boundaries of the 1-hole sub-objects to which they are attached.
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(a) (b) (c)

Figure 3.2: Unconstrained and constrained necks with the diagnostic object for a centaur.
Unconstrained neck, shown in (a), is constrained to be equal to the shape, slope and curvature
with those of the diagnostic object, colored as purple, at the attachment. Upper human body
and horse hindquarters are then smoothly connected by the constrained neck, which is shown
in (c).

Figure 3.4 is a repeat of the centaur construction shown in Figure 3.3 with one change.
In Figure 3.4a only the shape, but not the slope or curvature of the 2-holed lower torso is
constrained to match the open boundaries of the human upper torso and the hindquarters of
the horse. In Figure 3.4b, the shape and slope, but not curvature of the 2-holed lower torso
is constrained to match the open boundaries of the human upper torso and the hindquarters
of the horse. The centaur in Figure 3.4c is identical to the one in Figure 3.3e where the
shape, slope, and curvature of the 2-holed lower torso is constrained to match the open
boundaries of the human upper torso and the hindquarters of the horse. The constrained
2-holed lower torso in Figure 3.4a was computed using Equation 3.56 with ⌫2 = ⌫3 = 0.
This is a second, rather than sixth-order equation, so imposing the shapes at the boundaries
is su�cient. Similarly, the centaur in Figure 3.4b was computed using Equation 3.56 with
⌫3 = 0, and this fourth-order equation only requires imposing the shapes and slopes at the
two boundaries. The purpose of this figure is to show how the increased order of the partial
di↵erential equation and the increased number of constraints makes the joints between the
sub-objects smoother.

Besides of a centaur object, two more examples are presented in Figures 3.5, and 3.6.
In Figure 3.5, an animal is made up of a horse head (an unconstrained 1-hole sub-object)
that is removed from a horse and the headless body (an unconstrained 1-hole sub-object) of
Batman which is detached from its head as shown in Figure 3.5a. An unconstrained neck (a
2-hole sub-object) is placed between the Batman body and the horse head in Figure 3.5b.
The neck is then constrained at both ends to match the shape, slope, and curvature of the
horse head and Batman body (Figures 3.5c, d, and e).

Figure 3.6 shows a hand in which each fingertip is replaced by a smaller version of the
original hand. In this case, the original hand in Figure 3.6a, which is a 1-hole sub-object
with the hole being the open boundary at the wrist, has its five fingertips sliced o↵ creating
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(a) (b)
(c)

(d) (e)

Figure 3.3: Creation of a centaur. The upper human body (a) and hindquarters of the horse
(b) are detached creating two unconstrained 1-hole sub-objects. (c) An unconstrained lower
torso (a 2-holed sub-object and shown in blue) is placed between the upper human body and
horse hindquarters. (d) The (blue) 2-holed sub-object is then constrained at both ends so
that its open boundaries match the shapes, slopes, and curvatures of the open boundaries
of the upper human body and horse hindquarters. (e) Same as (d) but with a grey palette
and with a blow-up showing the constrained lower torso.
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(a) (b) (c)

Figure 3.4: Re-creation of the centaur in Figure 3.3 with di↵erent constraints. (a) The lower
torso that connects the upper human body to the horse’s hindquarters is constrained to
match the shapes of the open boundaries of the hindquarters and the upper human torso.
(b) Same as (a) but the slopes are also constrained to match. (c) Same as (b) but the
curvatures are also constrained to match. The regions where the lower torso is attached to
the horse and human are much less visible in (c).

a 6-hole sub-object (Figure 3.6b). Five smaller duplicates of the original hand in Figure 3.6a
are then placed near the five sliced fingers of the original hand as in Figure 3.6c. Each of the
five duplicate hands are then attached to sliced fingers via a connecting knuckle, rather than
a neck, which is an unconstrained 2-holed sub-object (Figure 3.6d). The five knuckles are
then constrained at each end to match the positions, and slopes of sliced fingers and wrists
(Figure 3.6d, e and f).

3.3 Imposing geometric constraints on an 1-hole
object

A way of imposing geometric constraints on a 1-hole object is similar to the way of imposing
geometric constraints on a 2-hole object. The only di↵erence is the definition of Laplace
operator, r2, and formulas to solve governing PDEs resulted from the usage of di↵erent
basis functions. In this section, we will re-derive boundary conditions of a 1-hole object and
show how governing PDEs are solved for a 1-hole object.
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(a) (b) (c)

(d) (e)

Figure 3.5: Horse head attached to a Batman body. (a) the horse head and Batman body
are detached to create two 1-holed sub-objects. (b) An unconstrained 2-holed neck (blue) is
placed between the horse head and body. (c) The neck is constrained to match the shapes,
slopes and curvatures of the open boundaries of the head and body. (d) Same as (c) but
shown with a grey palette. (e) Same as (d) but from a di↵erent point of view. In panels
(b) – (e) the full animal is shown in the upper row and a blow-up of the head and neck
region are shown in the lower row.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: A hand in which the fingertips are replaced by hands. (a) The original 1-holed
hand with the open boundary at the wrist. (b) The fingertips are sliced o↵ creating holes.
(c) Duplicate smaller 1-holed hands are placed near the severed fingers with unconstrained
2-holed knuckles (blue) between them. (d) the knuckles are constrained at both ends to
match the shapes, slopes and curvatures of the open boundaries of the five sliced fingers and
five wrists. (e) Same as (d) but with a grey palette. (f) Same as (e) but from a di↵erent
point of view.

Imposing boundary conditions

As described in Section 3.2, imposing shape constraint on an object can be implemented by
solving a di↵usion-like PDE with boundary conditions. Let consider the following di↵usion
equation

@r(u, v)

@t
= µr2r(u, v), (3.63)

where r(u, v) is a cylindrical radius of a 1-hole object, µ is dynamic di↵usivity and

r2 =
1

u

@

@u

✓
u
@

@u

◆
+

1

u2

@2

@v2
. (3.64)

Here, r(u, v) is approximated by Equation 2.48. The ranges of u and v are respectively
0  u  1 and 0  v  2⇡, and the south or north pole of a 1-hole object is parameterized
to be u = 0, while the equator of a 1-hole object is parameterized to be u = 1. Suppose the
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radius of a 1-hole object is demanded to be a known function f(v) at the equator. If f(v) is
approximated by Fourier series, f(v) can be written as

f(v) =
NX

m=�N

f̂me
imv. (3.65)

By equating Equation 3.63 at the equator with Equation 3.65, we obtain

LX

l=0

NX

m=�N

aml W
m
l (1, v) =

NX

m=�N

f̂me
imv. (3.66)

Since Wm
l (1, v) = V m

l (1)eimv, by substituting V m
l (1)eimv into Wm

l (1, v) and factoring eimv

out, Equation 3.66 becomes

NX

m=�N

⇣ LX

l=0

aml V
m
l (1)� f̂m

⌘
eimv = 0. (3.67)

Then, it is obvious to claim that inside of the parenthesis of Equation 3.67 should be equal
to zero at each m, giving

LX

l=0

aml V
m
l (1) = f̂m. (3.68)

For the high derivative geometric constraints, the same process allows to derive boundary
conditions for them. If we suppose that ith derivatives of r(u, v) respect to u are demanded
to be f i(v) at the equator and f̂ i

m is defined as mth Fourier coe�cients of f i(v), boundary
conditions of PDEs for geometric constraints imposition of a 1-hole object are

LX

l=0

aml
@iV m

l

@ui

���
u=1

= f̂ i
m (3.69)

Solving PDE with geometric conditions

Suppose we define ru as radius of an unconstrained 1-hole object and rc as radius of a
constrained 1-hole object. The approximations of ruand rc with truncated sum of Wm

l (u, v)
can be expressed as

ru (u, v) =
NX

l=0

NX

m=�N

bml W
m
l (u, v) (3.70)

rc(u, v) =
NX

l=0

NX

m=�N

aml W
m
l (u, v) (3.71)
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By using the implicit first order Euler method in Equation 3.63, we can obtain
�
1� ⌫r2

�
rc=ru (3.72)

where ⌫ = µ4t,4t is artificial time step. Substituting Equations 3.70 and 3.71 into Equation
3.72 gives

NX

l=0

NX

m=�N

⇥
(1� ⌫r2)aml � bml

⇤
Wm

l (u, v) = 0 (3.73)

If we use Equation 2.45 to expand r2 in Equation 3.73, we obtain

NX

l=0

NX

m=�N

" 
I� 4k(m+ 2l + 1)

NX

n=l+1

(n� l)(l +m+ n+ 1)

!
amn � bml

#
Wm

l (u, v) = 0,

(3.74)
where I is an identity matrix. Without loss of generality, in order to satisfy Equation 3.74
independent on u and v, the terms inside the parenthesis should be equal to zero at every l
and m. Therefore,

 
I� 4⌫(m+ 2l + 1)

NX

n=l+1

(n� l)(l +m+ n+ 1)

!
amn � bml = 0 (3.75)

should be satisfied. The matrix form of Equation 3.75 at mth mode can be represented by

⇥(m)a (m) = b (m) , (3.76)

where ⇥(m) = I� ⌫A (m), a matrix A(m) is

A(m) = [A(m)ij] =

(
4(m+ 2i+ 1)(j � i)(i+m+ j + 1), i 5 j � 1

0, otherwise
(3.77)

a(m) = [am0 , a
m
1 , · · · , amN ]

T and b(m) = [bm0 ,, b
m
1 , · · · , bmN ]

T . Equation 3.76 cannot be solved
because ⇥(m) is a singular matrix. To solve it, boundary conditions should be imposed
on ⇥(m) and b (m). We impose boundary conditions by replacing the bottom most row of
matrix ⇥(m) with V m

n (1) and the highest mode of b(m) with f̂m, derived at Eq.(3.68). By
defining a matrix ⇥?(m) to be equal to ⇥(m) with the bottom most row replaced and a
column vector b?(m) to be equal to b(m) with the highest mode replaced, we can obtain
the boundary condition imposed equation

⇥?(m)a(m) = b?(m) (3.78)

Once Equation 3.78 is solved at each m-th mode, we can finally obtain all coe�cients , aml ,
of constrained geometries.
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(a) (b)

Figure 3.7: Morphing hemispherical golf balls. Two di↵rent types of golf balls are morphed
at the mid-plane with C1 continuity: (a) a smooth ball is morphed with a hexagonal golf
ball, (b) a circular golf ball is morphed with a hexagonal golf ball.

Solving 2nd order PDE with the shape constraint can be easily extended in solving higher
order PDE with shape, slope or curvature geometric constraints. For example, to impose
shape and slope geometric constraints, the following 4th order PDE is solved.

�
1� ⌫1r2 + ⌫2r4

�
rc=ru (3.79)

Equation 3.79 also can be rewritten as the matrix form, given as

H(m)a (m) = b (m) , (3.80)

where H(m) = I � ⌫1A (m) + ⌫2A2 (m). To impose the boundary conditions on H, the

most bottom two rows of matrix ⇥(m) are replaced with V m
l (1) and

@V m

l

(u)

@u

���
u=1

, and the two

highest modes of b(m) are replaced with f̂m and f̂ 1
m, respectively. Defining a matrix H?(m)

to be equal to H(m) with the two bottom most rows replaced and a column vector b?(m)
to be equal to b(m) with two highest modes replaced gives

H?(m)a(m) = b?(m) (3.81)

By solving Equation 3.81 at every mth mode, a constrained object assuring satisfaction of
shape and slope constraints at the equator can be obtained.

Our method of imposing boundary constraints is quite versatile. It can be utilized to
create new types of objects from existing objects. For example, Figure 3.7 shows the surface
of a hybrid golf ball. In Figure 3.7 (a), the top half of the hybrid ball is the top half of
the baseline hexagonally-dimpled golf ball shown in Figure 2.2 (b). The bottom half of the
hybrid ball is the bottom half of a smooth golf ball in Figure 2.2 (c). The halves are joined at
the equator by making the bottom half of the hybrid golf ball, which is a 1-hole sub-object,
constrained so that its boundary at the equator has the same radial location, slope, and
curvature at the equator as the unconstrained top half of the hybrid golf ball , which is also
a 1-hole sub-object. In Figure 3.7 (b), the top half of this hybrid ball is still the top half
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of the baseline, hexagonally-dimpled golf ball shown in Figure 3.7 (b), but the bottom half
of the hybrid is now the the bottom half of the baseline, round-dimpled golf ball shown in
Figure 3.7 (a). They are joined at the equator by the same way how the hybrid golf ball in
Figure 3.7 (a) is joined.

3.4 Imposing geometric constraints on a patch

To explain how to impose geometric constraints on a patch, we first explain a way in solving a
fourth order elliptical PDE. Then, we will describe a fourth order PDE to impose constraints
on a patch. Although we focused our explanation here to a fourth order PDE, it can be
easily modified to second or six order PDEs according to geometric constraints ones have to
imposed on a patch.

Solving elliptical equation with basis functions for a patch

Suppose the following 4th order elliptical PDE is needed to be solved in a rectangular domain
whose ranges of u and v are �1  u, v  1

d4z(u, v)

du4
+

d4z(u, v)

dv4
= F (u, v) (3.82)

with the following Dirichlet and Neumann boundary conditions

z(±1, v) = zcu=±1(v)

z(u,±1) = zcv=±1(u)
@z
@u(±1, v) = scu=±1(v) (3.83)
@z
@v (u,±1) = scv=±1(u)

By choosing the Chebyshev-Gauss-Lobatto collocation points [9], Equation 3.82 can be
rewritten as

@z4(ui, vj)

@u4
+

@z4(ui, vj)

@v4
= F (ui, vj) (3.84)

where = 0, · · · , N and j = 0, · · · , N . In a matrix form, Equation 3.84 can be expressed as

D4
pz+z

�
D4

p

�T
=F (3.85)

Dp, z and F are (N + 1) by (N + 1) matrices, where Dp is a di↵erentiation matrix defined
in Equation 2.87. The components of z and F are

z =

2

6664

z00 z10 · · · zN0

z01 z11 · · · zN1
...

...
. . .

...
z0N z1N · · · zNN

3

7775
, F =

2

6664

F00 F10 · · · FN0

F01 F11 · · · FN1
...

...
. . .

...
F0N F1N · · · FNN

3

7775
(3.86)
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Here, we used notation zij and Fij instead of z(ui, vj) and F (ui, vj), respectively, for conve-
nience. Then, let define E = D4

p, which makes Equation 3.85

Ez+ zET = F (3.87)

Solving Equation 3.87 is well explained in [9]. Let’s assume a modified version of Equation
3.87 can be written as

⇥?z? + z?⇥?T = F? (3.88)

where z? is an interior matrix (2  i, j 5 N � 1) of z and ⇥? and F? are matrices which
can be obtained from Equation 3.87 by doing some calculation after boundary conditions
are incorporated to the equation. To solve Equation 3.88 e�ciently, ⇥? is diagonalized by
decomposing ⇥? into

⇥? = PQP�1 (3.89)

where P and Q are eigenvector and eigenvalue matrices of ⇥?, respectively. Substituting
Equation 3.89 into Equation 3.88 and multiplying P�1 give

Qẑ+ ẑ⇥?T = F̂ (3.90)

where ẑ = P�1z? and F̂ = P�1F?. After transposing Equation 3.90, the kth column vector
can be represented as

(⇥? + �kI)ẑ
T
k = F̂T

k , k = 0, · · · , N � 3 (3.91)

where �k is k-th eigenvalue of ⇥?. Thus, for each kth column, the ẑk can be calculated. Once
r̂ is calculated, z? can be easily obtained from

z? = Pẑ (3.92)

Imposing geometric constraints

To impose shape and slope constraints on three hole objects, we solve

@z(u, v)

@t
= µ1r2z(u, v)� µ2Lz(u, v), (3.93)

where µ1 and µ2 are dynamic di↵usivities. Here, r2 is defined as

r2 =
@2

@u2
+

@2

@v2
, (3.94)
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and L is defined as

L =
@4

@u4
+

@4

@v4
. (3.95)

If we substitute Equations 3.94 and 3.95 in to Equation 3.96, we obtain

@z(u, v)

@t
= v1

✓
@2

@u2
+

@2

@v2

◆
z(u, v)� v2

✓
@4

@u4
+

@4

@v4

◆
z(u, v) (3.96)

Define zu as height of an unconstrained patch and rc as height of a constrained patch. Using
the implicit first time step method gives

zc(u, v)� ⌫1

✓
@2

@u2
+

@2

@v2

◆
zc(u, v) + ⌫2

✓
@4

@u4
+

@4

@v4

◆
zc, (u, v) = zu(u, v) (3.97)

where ⌫1 and ⌫2 are di↵usitivies.
Similar to previous study, as a matrix form, Equation 3.97 can be written as

(I+ E) zc + zcET = zu, (3.98)

where E = �⌫1D2
p+ ⌫2D4

p. Each matrix in Equation 3.98 is a N +1 by N +1 matrix. After
imposing shape and slope constraints on Equation 3.98 and diagonalizing in u, we finally
obtain

(⇥? + (�k + 1)I)ẑTk = F̂T
k (3.99)

as a counterpart of Equation 3.91. It can be e�ciently solved with the same procedure which
described in Subsection 3.4.
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Chapter 4

Construct and optimize complex
non-star-shaped objects

We have explained how simple a star-shaped object is represented as 0, 1, 2-hole object
or a patch with our basis functions and how geometric constraints are imposed on those
objects. Our method can be easily applied to represent a complex non-star shaped object.
Our philosophy in representing a complex non-star shaped object is avoiding a complex
mapping and join several constrained sub-objects together. In other words, a complex object
is constructed by several sub-objects and the sub-objects are constrained to have the equal
shape, slope and/or curvature at the joints. In this chapter, we will describe the way how
a non-star shaped object is represented, how non-star shaped objects are morphed and
eventually how a morphed non-star shaped object is created. To assist our understanding,
we will present specific examples of a non-star shape objects. What we choose as examples
is two di↵erent shaped airplanes, an SR-71 and one that assembles the shape of a Naboo
Cruiser in the Star Wars movie, which is not real but imaginary airplane. These two airplanes
are presented in Figure 4.2.

(a) (b)

Figure 4.1: The 3D shapes of an (a) SR-71 and (b) Naboo fighter.
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Figure 4.2: An SR-71 can be made by joining several constrained sub-objects. (a) An SR-
71 airplane is made from fifteen sub-objects, each shown with a di↵erent color. (b) The
wiring diagram for the SR-71. Only the center and left half of the airplane is depicted in
the wiring diagram. The number n, or letter “P” or “M” inside the circles in the wiring
diagrams indicate that the sub-objects are an n-hole object, a Patch, or a Multi-hole object,
respectively.

4.1 Construction of non-star shaped objects

In our method, a complex object is constructed by stitching several constrained sub-object
together by matching shape, slope or curvature at the interfaces. The structure of a complex
object shows how the object is reconstructed from sub-objects. This structure is plotted
as a wiring diagram where sub-objects are presented as circles and lines connecting circles
means joints of two or more sub-objects. The numbers or letter “P“ inside of circles indicates
that sub-objects are represented as n-hole objects or patches respectively. For example, an
SR-71 we considered is created by joining 15 constrained sub-objects together. The left
panel of Figure 4.2 (a) shows 15 constrained sub-objects of an SR-71 illustrated by di↵erent
colors. The wiring diagram presented in the right panel of Figure 4.2 (b) shows types of
primitives used for each sub-object. At each joint, every sub-object is stitched to assure C1

continuity except the joint where intake and engine are connected. At that joint, we believe
C0 continuity is good enough. Here, it should be mentioned that only half of an SR-71 is
shown in the diagram because the airplane has the same connectivity at the other half.

Another complex shaped object example is presented in Figure 4.3. The left panel of
Figure 4.3 shows a hand that was created by joining 11 constrained sub-objects together.
The constrained open boundaries make the shape and slope of the hand continuous at all
locations. The wiring diagram of the hand shown in the right panel of Figure 4.3 shows that
the hand was made up of a multi-holed palm joined to five fingers with each finger made
up of a constrained 2-holed part joined to a constrained 1-holed fingertip. Here, multi-holed
palm is created by stitching two patches.

The number and type of sub-objects needed to represent an object and how they are
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Figure 4.3: A hand can be made by joining several constrained sub-objects. (a) A hand is
made from eleven constrained sub-objects. Each sub-object has a di↵erent color. (b) The
wiring diagram that shows what each sub-object is and how it is connected to the other
sub-objects.

wired together are not unique and somewhat arbitrary. The rule of thumb that we have
adopted is to try to have as few sub-objects as possible. For example, it might seem more
natural to represent a finger with three sub-objects because a finger has three joints, but
breaking the finger into only two pieces gives an adequate representation. One motivation for
choosing a particular wiring diagram for a complex object made of sub-objects is that at the
current time, a necessary condition for us to morph between or among two or more objects
is that all of objects have the same wiring diagram. Once all objects have the same wiring
diagram, morphing of a whole object is implemented by morphing each sub-object with its
correspondence object. For example, we can animate a hand by morphing a straight hand,
shown at the leftmost figure of Figure 4.4, with a curved hand, shown at the rightmost figure
of Figure 4.4. Morphing of these hands is implemented by morphing each sub-object with its
correspondence object. In this case, it is essential that the hands with the straight and bent
fingers should have the same wiring diagrams. Similarly, Figure 4.5 shows an SR-71 airplane
morphing into a fictional Naboo cruiser airplane from the movie Star Wars. Since these two
airplanes have identical wiring diagrams, morphing occurs each sub-object is morphed wit
its correspondence object.

The fact that morphing of sub-objects is implemented by morphing them with their
correspondence sub-objects is the biggest limitation in our morphing methodology because
we are currently unable to morph two or more objects that are made up of sub-objects unless
all of the objects have the same wiring diagram. For example, a hand with four fingers has
a di↵erent wiring diagram than one with five fingers. Therefore in general, it would not
be possible to morph a four-fingered hand into a five-fingered hand. One possible way to
overcome this di�culty might be to have a more general wiring diagram that could represent
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Figure 4.4: A hand with straight fingers (leftmost) bending its fingers. The hand is made of
11 constrained sub-objects like the hand in Figure 4.3 (a).

Figure 4.5: An SR-71 (leftmost panel) made up of 15 constrained sub-objects as in Fig-
ure 4.3 (b) is morphed into a Naboo cruiser (rightmost panel). The three airplanes between
the SR-71 and Naboo cruiser are shown at various stages of the morphing.

both types of hands (with one of the fingers vestigial in the four-fingered hand). In general,
the question of how to break an object e�ciently into sub-objects and create a sensible wiring
diagram is di�cult although there has been some recent progress in this area, such as the
skeleton-based and convex-based segmentation methods [41, 42]. Our future work will focus
on robust methods for breaking up an objects into sub-objects where those sub-objects are
specifically n-hole constrained sub-objects and constrained patches.
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4.2 Optimization of an airplane by morphing an
SR-71 and Naboo cruiser

Imposition of geometric constraints on sub-objects of an airplane

With the representation of airplanes described in Section 4.1, we implemented shape opti-
mization of an airplane by morphing an SR-71 and Naboo cruiser to maximize its lift-to-drag
ratio, L/D, where L and D are lift and drag force of an airplane, respectively. A way of
morphing an SR-71 and Naboo cruiser is morphing each sub-object of an SR-71 with its
correspondence sub-object of a Naboo cruiser. When each sub-object is morphed, if we use
an independent weight per sub-object, a morphed airplane before geometric constraints are
imposed, which is called an unconstrained morphed airplane, may have very di↵erent shape
at interfaces. For example, Figure 4.6 shows an example of an unconstrained airplane in
the left panel. As this figure illustrate, an unconstrained morphed airplane may have very
distinctive shape per sub-object, therefore, simply connecting these sub-objects creates an
airplane that under-performs due to phenomenons such as flow separation, flow recirculation
and stress concentration at discontinuous locations. However, if we impose geometric con-
straints on sub-objects by using constraint solvers described in Section 3, we can obtain a
constrained airplane whose interfaces of sub-objects are seamlessly connected. An example
of a constrained airplanes is plotted in the right panel of Figure 4.6. In this section, before we
explain design variables, simulation conditions and results of the shape optimization problem
of an airplane, we first want to how each part of a morphed airplane is approximated by
our spectral basis functions and how shape and slope of a morphed airplane be continuous
at all joints. To help our understanding, we painted a diagnostic objects as purple, while
unconstrained and constrained objects are painted as green.

Cockpit

The surface of a morphed unconstrained cockpit is a 2-hole object. If we define XCP =
[xCP (u), yCP (u, v), zCP (u, v)]| as morphed position functions of a morphed unconstrained
cockpit (green object in Figures 4.7a and 4.7b), it can be written as

XCP (u, v) =
NX

l=0

N�1X

m=�N

⇣
X̂CP

⌘m
l
Tm
l (u)eimv, (4.1)

where (X̂CP )
m
l = [(x̂CP )ml , (ŷCP )ml , (ẑCP )ml ]

| and (x̂CP )ml , (ŷCP )ml and (ẑCP )ml are respec-
tively (l,m)-th spectral coe�cients of xCP (u), yCP (u, v) and zCP (u, v), and u is Chebyshev-
Gauss-Lobatto grid in Chebyshev domain and maps the surface of the cockpit in x-direction
by

xCP (u) =
xCP,e � xCP,s

2
u+

xCP,e + xCP,s

2
. (4.2)
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(a) (b) (c)

x

y

z

Figure 4.6: An SR-71 shown in (a) and Naboo cruiser shown in (b) are decomposed to one-
hole, two-hole objects and patches. The corresponding objects of an SR-71 and a Naboo
fighter are morphed each other. A nose (yellow) is one hole object. The cockpit (brown),
stablizer and engines (plume) are two hole objects. Main fuselage (black) and wing (blue)
are represented as upper and lower patches. The decomposed airplane in (c) is created by
morphing an SR-71 and Naboo cruiser.

Here, xCP,s is the left most value of xCP , which is mapped to u = 1, and xCP,e is the right
most value of xCP , which is mapped to u = �1. The value v is equally spaced from 0 to 2⇡
in Fourier domain and is parameterized with azimuthal angle, �, given by

� = v � sin(2v)

2
. (4.3)

To demand XCP have the same shape and slope at u = �1 with those of main fuselage on the
interface, we create a 2-hole diagnostic object, shown as a purple object in Figure 4.7. We de-
fine position functions of this diagnostic object asXFD(u, v) = [xFD(u), yFD(u, v), zFD(u, v)]|.
Similarly, XFD(u, v) is represented by 2-hole basis functions with the following parameteri-
zation.

xFD(u) =
xFD,e � xFD,s

2
u+

xFD,e + xFD,s

2

yFD(u, v) =
yFD,e(u)� yFD,s(u)

2
cos v +

yFD,e(u) + yFD,s(u)

2
,

(4.4)

where xFD,s is the left most value of xFD, xFD,e is the right most value of xFD, yFD,s(u) is the
lowermost value of yFD at each u and yFD,e(u) is the uppermost value of yFD at each u. The
height of the diagnostic object zFD(u, v) is correspondence positions on points (xFD, yFD).
With the representation of a morphed unconstrained cockpit and a diagnostic object for the
cockpit, a morphed constrained cockpit can be created by solving 4th order PDEs, given as
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(a)
(b) (c)

Figure 4.7: The shape of the cockpit (green object) with its diagnostic object (purple ob-
ject). (a) overall shape of cockpit and its diagnostic object (b) unconstrained cockpit with
diagnostic object (c) constrained cockpit with diagnostic object. The diagnostic object is
removed after the constrained cockpit is obtained.

(1� ⌫1r2 + ⌫2r4)XC
CP (u, v) = XCP (u, v), (4.5)

where r2 is defined as

r2 =
@2

@u2
+

@2

@v2
(4.6)

and XCP (u, v)
C is position functions of a morphed constrained cockpit. The boundary

conditions of Equation 4.29 inducing C1 continuity at the joint are given as

XC
CP |u=�1 = XFD|u=1

XC
CP |u=1 = XCP |u=1

dXC
CP

du
|u=�1 = kCP

dXFD

du
|u=1

dXC
CP

du
|u=1 =

dXCP

du
|u=1

(4.7)

Therefore, by solving Equation 4.29 with boundary conditions in Equation 4.7, a morphed
constrained cockpit can be obtained.

Nose

If position functions of a morphed unconstrained nose, defined asXN(u, v) = [xN(u), yN(u, v), zN(u, v)]|

in Cartesion coordinate, is approximated by 1-hole object basis functions, which can be writ-
ten as

XN(u, v) =
NX

l=0

N�1X

m=�N

⇣
X̂N

⌘m
l
Wm

l (u, v), (4.8)
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where (X̂N)
m
l = [(x̂N)ml , (ŷN)

m
l , (ẑN)

m
l ]

| are spectral coe�cients’ functions of the nose and
(x̂N)ml , (ŷN)

m
l and (ẑN)ml are respectively (l,m)-th spectral coe�cients of xN(u), yN(u, v)

and zN(u, v), and

Wm
l (u, u) = V m

l (u)eimv. (4.9)

Here, V m
l (u) = ⇠|m|P (0,|m|)

l (s), s = 2u2 � 1 and s is Chebyshev grid points. Since the range

of is �1  s  1, the range of u becomes 0  u  1. The function P (0,|m|)
l (s) is one set

of Jacobi polynomials, P (↵,�)
l (s), where ↵ and � are set to be ↵ = 0 and � = |m|. When

the surface of the nose is approximated by 1-hole basis functions, it is parameterized to be
a pole when u = 0 and to be the bottom of the nose when u = 1. Further, u linearly maps
x coordinate of the surface of a morphed unconstrained nose, given as

xN(u) = (xN,e � xN,s)u+ xN,s, (4.10)

where xN,s and xN,e are rightmost and leftmost values of the nose. For v, we use the same
parameterization which is used to represent the cockpit, written in Equation 4.3. To obtain
a constrained morphed nose, we solve

(1� ⌫1r2
u + ⌫2r4

u)X
C
N(u, v) = XN(u, v), (4.11)

where XC
N is position functions of a morphed constrained connector and r2

u is defined as

r2
u =

1

u

@

@u

✓
u
@

@u

◆
+

1

u2

@2

@v2
. (4.12)

The boundary conditions of Equation 4.29 are

XC
N |u=1 = XC

CP |u=1

dXC
N

du
|u=1 = kN

dXC
CP

du
|u=1.

(4.13)

It should be noticed that only two boundary conditions are needed instead of four because
when u is zero, the object is forced to be located on the pole. Both unconstrained and
constrained morphed noses are presented in Figure 4.8 with the constrained cockpit, shown
in Figure 4.8a. After solving Equation 4.11 with boundary conditions given in Equation
4.13, the unconstrained nose, shown in Figure 4.8b, is constrained. After constraints are
imposed, its surface is seamlessly stitched with the constrained cockpit.

Fuselage

We define the surface of a fuselage represented in Figure 4.9a as Xp
F = [xp

F , y
p
F , z

p
F ]

|, where
p = 1 or 2 indicates upper and lower patch of the fuselage, respectively. Then, the fuselage
Xp

F is decomposed into main fuselage Xp
MF , shown as a gray object in Figure 4.9b, and two
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(a)
(b) (c)

Figure 4.8: The shape of the nose (green object) with constrained cockpit (blue object). The
overall shape of the nose and the constrained fuselage are presented in (a). After solving
Equation 4.11 with boundary conditions given in Equation 4.13, the unconstrained nose,
shown in (b), is constrained and modified to the constrained nose as shown in (c).

connectors, shown as green objects in Figure 4.9b. The position functions of a connector
in Cartesion coordinate is defined as XCN(u, v) = [xCN(u, v), yCN(u), zCN(u, v)]|. Here, a
connector is made by stitching the green colored upper and lower patches in Figure 4.9b so
that a connector XCN is a 2-hole object. Since a SR-71 plane is mirrored along y plane,
we only consider one connector. If we summarize our definition so far, mathematically, Xp

F ,
Xp

MF and XCN have the following relation:

X1
F [X2

F ⌘ X1
MF [X2

MF [XCN [ (XCN)
MIR, (4.14)

where (XCN)
MIR is the mirrored surface of XCN respect to y-plane. The surface of the

connector XCN(u, v) is represented by Chebyshev polynomial and Fourier series, using the
same parameterization withXFD(u, v). Thus, parameterization forXCN(u, v) can be written
as

yCN(u) =
yCN,e � yCN,s

2
u+

yCN,e + yIW,s

2

xCN(u, v) =
xCN,e(u)� xCN,s(u)

2
cos v +

xCN,e(u) + xCN,s(u)

2
,

(4.15)

where yCN,s and yCN,e are the lowermost and uppermost values of yCN , and xCN,s(u) and
xCN,e(u) are the leftmost and rightmost values of xCN at each u, respectively. Then, zCN(u, v)
is the height of the object at the correspondence positions on (xCN , yCN). With this pa-
rameterization, the surface of a morphed unconstrained connector is approximated as a
summation of our 2-hole basis functions multiply spectral coe�cients,

XCN(u, v) =
NX

l=0

N�1X

m=�N

⇣
X̂CN

⌘m
l
Tm
l (u)eimv, (4.16)

where (X̂CN)
m
l = [(x̂CN)ml , (ŷCN)ml , (ẑCN)ml ]

| and (x̂CN)ml , (ŷCN)ml and (ẑCN)ml are respec-
tively (l,m)-th spectral coe�cients of xCN(u, v), yCN(u) and zCN(u, v).
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(a) (b) (c)

Figure 4.9: The shape of the fuselage and connectors. A fuselage, shown as a gray object in
(a), is decomposed into a main fuselage and two connectors as shown and colored as green
in (b). The cross-section of an engine is shown in (c). Here, “ABba” is the location where a
connector is asked to be joined with the engine.

To demand XCN have the same shape and slope at the interface, we create a 2-hole
diagnostic object, shown as a purple object in Figure 4.10. The cross-sectional view of a
diagnostic object by the x-plane is plotted in Figure 4.9c. We define position functions of
this diagnostic object as XIWD(u, v) = [xIWD(u), yIWD(u, v), zIWD(u, v)]|. The surface of
a diagnostic object XIED(u, v) is then represented by Chebyshev polynomials and Fourier
series, mapped to be on ”a-b” plane at u = 1 and on ”A-B” plane at u = �1. Since the
shape and slope of a morphed unconstrained connector are required to be equal to those
of a diagnostic object at the interface, we can define the following boundary conditions as
geometric constrains of a morphed unconstrained connector,

XC
CN |u=�1 = XCN |u=�1

XC
CN |u=1 = XIED|u=�1

dXC
CN

du
|u=�1 =

dXCN

du
|u=�1

dXC
CN

du
|u=1 = kCN

dXIED

du
|u=�1,

(4.17)

where XC
CN is position functions of a morphed constrained connector. Then, the surface of

a morphed constrained connector can be obtained by solving

(1� ⌫1r2 + ⌫2r4)XC
CN(u, v) = XCN(u, v), (4.18)

with boundary conditions, given in Equation 4.17, where r2 is defined in Equation 4.6.
Figure 4.10 shows a constrained connector from the unconstrained connector. It should
be noticed that here a diagnostic object is created to calculate geometric constraints for a
morphed unconstrained connector. After geometric constraints are obtained, the diagnostic
object is no longer necessary.
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(a) (b)

Figure 4.10: The shape of the unconstrained and constrained connectors. An unconstrained
connector in (a) is constrained and the constrained connector is shown in (b). A diagnostic
object in (a) is created to calculate geometric conditions at the interface of the connector
and engine.

Wing

Imposing constraints on a morphed unconstrained wing, shown in Figure 4.11a, is similar
with imposing constraints on the fuselage. Similar to representing the surface of the fuselage,
we define position functions of the wing in Cartension coordinate as Xp

W = [xp
W , ypW , zpW ]|,

shown as a gray object in Figure 4.11a, where p is 1 or 2 indicates the upper or lower patch
of the wing, respectively. Then, Xp

W is divided to a morphed unconstrained main wing Xp
MW

and a morphed unconstrained wingtip XWT which are shown as a green and gray objects in
Figure 4.11b, respectively. Again, remember that Xp

W are patches, while XMW is a 2-hole
object. The surface of the main wing is approximated by our 2-hole basis functions where
its position functions are mapped with the same parameterization what have been used to
represent the fuselage. So, if we define the surface positions of a morphed unconstrained
main wing as Xp

MW = [xMW , yMW , zMW ]|, it is approximated by our 2-hole basis functions,

XMW (u, v) =
NX

l=0

N�1X

m=�N

⇣
X̂MW

⌘m
l
Tm
l (u)eimv, (4.19)

where (X̂MW )ml = [(x̂CN)ml , (ŷMW )ml , (ẑMW )ml ]
| and (x̂MW )ml , (ŷMW )ml and (ẑMW )ml are re-

spectively (l,m)-th spectral coe�cients of xCN(u, v), yCN(u) and zMW (u, v). To demand
XMW have the same shape and slope at the interface, we create a 2-hole diagnostic object,
shown as a purple object in Figure 4.11. We define position functions of this diagnostic
object as XOED(u, v) = [xOED(u), yOED(u, v), zOED(u, v)]|. The surface of a diagnostic ob-
ject XOED(u, v) is then represented by Chebyshev polynomials and Fourier series, mapped
to be on ”c-d” plane at u = �1 and on ”C-D” plane at u = 1 in Figure 4.9c. Since the
shape and slope of a morphed unconstrained connector are required to be equal to those
of a diagnostic object at the interface, we can define the following boundary conditions as
geometric constrains of a morphed unconstrained main wing,
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(a) (b) (c) (d)

Figure 4.11: The shape of the unconstrained and constrained main wings, wingtip and
engine. The wing, shown as a gray object in (a), is decomposed into the unconstrained main
wing and wingtip which are plotted as green and gray objects in (b). To impose geometric
constraints on the unconstrained main wing, a diagnostic object is created in (c). As a result
of constraints imposition, the unconstrained main wing in (c) is changed to the constrained
main wing plotted in (d).

XC
MW |u=�1 = XOED|u=�1

XC
MW |u=1 = XMW |u=1

dXC
MW

du
|u=�1 = kMW

dXOED

du
|u=�1

dXC
MW

du
|u=1 =

dXMW

du
|u=1,

(4.20)

where XC
MW (u, v) is position functions of a morphed constrained main wing. By solving

the following equation with boundary conditions, given in Equation 4.20, we can obtain the
surface of a morphed constrained main wing

(1� ⌫1r2 + ⌫2r4)XC
MW (u, v) = XMW (u, v), (4.21)

where r2 is given in Equation 4.6. The shape of the constrained main wing with the
constrained main fuselage is presented in Figure 4.12. As a result of the imposition of
geometric constraints , the fuselage, engine and wing are smoothly connected maintaining
C1 continuity.

Stablizer

A morphed unconstrained stablizer can be treated as a 2-hole object. We define surface of
the morphed unconstrained stablizer as XS and unit normal vector at the bottom plane of
the stablizer as n̂s. Also, suppose we define rotation matrix, R, which makes unit normal
vector n̂s be ẑ and rotated shape of XS by R as XR

S . Here, we define surface of the rotated
stablizer as XR

S (u, v) = [xR
S (u, v), y

R
S (u, v), z

R
S (u)]

|. We first parameterize zRS and xR
S (u) with

Chebyshev polynomial grid point u and equally spaced (from 0 to 2⇡) Fourier grid points v
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(a) (b)

Figure 4.12: Deformation of the main fuselage and main wing after geometric constraints
are imposed. The unconstrained main fuselage and main wing presented in (a) become the
constrained main fuselage and main wing as presented in (b) after the imposition of geometric
constraints. After they are constrained, the fuselage, engine and wing are smoothly connected
by maintaining C1 continuity at the interface.

zRS (u) =
zRS,e � zRS,s

2
u+

zRS,e + zRS,s
2

xR
S (u, v) =

xR
S,e(u)� xR

S,s(u)

2
cos v +

xR
S,e(u) + xR

S,s(u)

2
,

(4.22)

where zRS,s and zRS,e are the lowermost and uppermost values of zRS , and xR
S,s(u) and xR

S,e(u)
are the leftmost and rightmost values of xR

S at each u. Then, yRS (u, v) is represented as the
correspondence positions of rotated stablizer in y on (xR

S , z
R
S ). Under the this parameteriza-

tion, the stablizer is required to be connected with the engines when u = �1. Once XR
S (u, v)

is obtained, XS(u, v) can be easily calculated from

XS(u, v) = R|XR
S (u, v) (4.23)

Then, position functions of XS, defined as XS(u, v) = [xS(u, v), , yS(u, v), , zS(u, v)]|, are
approximated as a summation of 2-hole basis functions multiplies by spectral coe�cients

XS(u, v) =
NX

l=0

N�1X

m=�N

⇣
X̂S

⌘m
l
Tm
l (u)eimv, (4.24)

where (X̂S)
m
l = [(x̂S)ml , (ŷS)

m
l , (ẑS)

m
l ]

| and (x̂S)ml , (ŷS)
m
l and (ẑS)ml are respectively (l,m)-th

spectral coe�cients of xS(u, v), yCN(u, v) and zS(u, v).
To insert a stablizer to engine by matching the shape and slope at the interface, we first

create a rotated diagnostic object. Suppose we define XR
SD,B(v) as the projected bottom

shape of the rotated stablizer onto z-plane, which can be written as

XR
SD,B(v) = [xR

S (�1, v), yRS (�1, v), 0]| (4.25)
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Also, let define a center point of XR
SD,B(v) as X

R
SP,C = [xSD,C , ySD,C , 0]|. Then, we create a

rotated diagnostic object whose position functions are defined as XR
SD = [xR

SD, y
R
SD, z

R
SD]

|

as follows. We parameterize xR
SD and yRSD of the rotated diagnostic object as

xR
SD(u, v) =

⇣ks � 1

2
u+

ks + 1

2

⌘
(xR

S (�1, v)� xR
SD,C) + xR

SD,C

yRSD(u, v) =
⇣ks � 1

2
u+

ks + 1

2

⌘
(yRS (�1, v)� yRSD,C) + yRSD,C ,

(4.26)

where ks is a scale factor. Since the surface of the rotated diagnostic object is defined,
defining the surface of the engine rotated by the same rotation matrix makes the calculation
easy. If XR

E = [xR
E, y

R
E , z

R
E ]

| is defined as the position functions of the engine rotated by R,
zRSD(u, v) can be obtained by interpolating z values on grid (xR

SD(u, v), y
R
SD(u, v)) from XR

E.
Since XR

SD(u, v) is computed, the diagnostic object for the stablizer can be easily obtained
from

XSD(u, v) = R|XR
SD(u, v), (4.27)

where XSD(u, v) is position functions of a diagnostic object for a morphed unconstrained
stablizer. To assure C1 continuity conditions at the interface, the following constraints should
be imposed on a stablizer,

XC
S |u=�1 = XSD|u=�1

XC
S |u=1 = XS|u=1

dXC
S

du
|u=�1 = kSD

dXSD

du
|u=�1

dXC
S

du
|u=1 =

dXS

du
|u=1,

(4.28)

when the following PDE is solved

(1� ⌫1r2 + ⌫2r4)XC
S (u, v) = XS(u, v), (4.29)

where XC
S (u, v) is position functions of a morphed constrained stablizer and r2 is given in

Equation

4.3 Shape optimization of airplanes

In Section 4.2, ways of how morphed sub-objects are parameterized and constrained are
explained. In this section, based on predescribed ways, we will try to find the optimum
shape of an airplane by morphing an SR-71 and Naboo cruiser to maximize lift-to-drag
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(a) (b) (c)

Figure 4.13: The shape of a stablizer, shown as a green object, and its diagnostic object,
shown as a blue object. An unconstrained stablizer, presented in (a), is constrained to match
the shape and slope of a diagnostic object where they are joined. A constrained stablizer,
presented in (b), is smoothly inserted into the top of an engine, as shown in (c).

ratio. The main purpose of this optimization is to demonstrate the flexibility of our design-
by-morphing method so that any physical constraints related in designing airplanes such as
a supersonic area rule have not been considered in finding the optimal shape of an airplane.

When a SR-71 is morphed with a Naboo cruiser and the morphed airplanes are simulated
to find the optimum shape of an airplane, although each sub-object can have independent
weights, we do not consider 15 di↵erent weights to optimize the shape of airplanes. Rather,
we divide the sub-objects into three groups, roughly modifying shapes of the fuselage plus
engines, the cockpit plus nose and the wings. Every sub-object in the same group always
have the same weight. Therefore, there are only three independent weights. We define !1,
!2, and !3 as weights of the fuselage plus engines, the cockpit plus nose, and wings of the
SR-71, respectively, while 1 � !1, 1 � !2, and 1 � !3 are defined as weights of those of the
Naboo cruiser. The optimization problem we solve in this example is defined as follows:

minimize � L

D
0  !1  1

0  !2, !3  1.25,

(4.30)

where L and D are the lift and drag force of the morphed airplane, respectively. The ranges
of weights are chosen to prevent from creating morphed airplanes having ridiculous shapes
like very thin wings which cannot endure drag force while they fly. The procedure creating
a morphed airplane is graphically presented in Figure 4.14.

The adjustment of the morphed airplane shape by these three weights are presented in
Figure 4.15. Since the values of three weights are independent, the geometry features at the
interfaces are not matched at the beginning. However, by solving PDEs, these geometric
discrepancies at the interfaces are removed, and seamlessly connected morphed airplanes are
finally obtained. Some of the morphed airplanes along with their weights and lift-to-drag
ratios are shown in Figure 4.17. The lift-to-drag ratios were computed when the airplane flies
at a speed of Mach 1.4 and at 4-degree angle of attack. Our optimization scheme maximized
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Figure 4.14: Procedures showing how a morphed airplane is created (top view).
Sub-objects of an SR-71 and Naboo cruiser are morphed with their own corresponces,
which creates morphed unconstrained airplane. The morephd unconstrained airplane is
segmented further to have connectors and wingtips, and then, sub-objects are stitched
continously to construct a morphed airplane.

!1

!2

!3

Figure 4.15: Three design groups of an airplane painted by di↵erent colors. The airplane here
is before constrained, thus, sub-objects of the airplane are not matched geometric features
at the attachment. Several examples of constrained airplanes are plotted in Figure 4.16.
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: The shapes of morphed airplanes. Weights of morphed airplanes are (a)
[0.5, 0.5, 0.5] (b) [0.77, 0.87, 0.71] (c) [0.36, 0.19, 0.51] (d) [0.75, 0.25, 0.5] (e) [1, 0, 0] (f) [0, 1, 1]
where weights are ordered [!1,!2,!3].

the lift-to-drag ratio, and the optimal weights were found based on the optimization process
that we used in optimizing the shape of a first car of a train. The results of the optimization
are shown in Figure 4.18. The optimized airplane has a lift-to-drag ratio that is 23.12%
greater than the ratio of the SR-71 and 51.73% greater than the ratio of a Naboo cruiser. In
this optimization example, resolution of the simulation is low to avoid heavy computation
work related to high resolved mesh. Due to this setting, values of the cost function may
have low fidelity. However, through this study, it is shown that our design-by-morphing is
so robust that it works well even an object undergone huge shape change and deformation
at the interfaces.
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!1 = 1.000
!2 = 0.833
!3 = 1.250
L
D = 4.130

!1 = 0.000
!2 = 0.833
!3 = 0.000
L
D = 2.359

!1 = 0.500
!2 = 0.416
!3 = 0.416
L
D = 3.959

!1 = 1.000
!2 = 0.000
!3 = 0.416
L
D = 2.619

!1 = 0.500
!2 = 0.000
!3 = 0.833
L
D = 3.819

!1 = 0.500
!2 = 0.416
!3 = 0.833
L
D = 4.231

!1 = 0.500
!2 = 0.833
!3 = 0.000
L
D = 3.955

!1 = 1.000
!2 = 0.833
!3 = 0.833
L
D = 3.658

!1 = 1.000
!2 = 1.250
!3 = 1.250
L
D = 3.870

Figure 4.17: Examples of morphed airplanes created by morphing an SR-71 and Naboo
cruiser. The weights and lift-to-drag ratios are also presented with the configurations of the
morphed airplanes.

!1 = 1.000
!2 = 1.000
!3 = 1.000
L
D = 3.888

!1 = 0.000
!2 = 0.000
!3 = 0.000
L
D = 3.155

!1 = 0.656
!2 = 0.636
!3 = 1.250
L
D = 4.787

Figure 4.18: The SR-71 (left), naboo cruiser (middle), and the optimized airplane (right)
are presented with their weights and lift-to-drag ratios.
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Chapter 5

Shape Optimization of a Turbine-99
Draft tube

We applied design-by-morphing method to find the optimal shape of a turbine-99 draft
tube to maximize its mean pressure recovery factor. We conducted this optimization in
cooperation with NUMECA USA, INC.

5.1 Related work

The role of a draft tube in hydro-power plants is converting dynamic pressure of flow into
static pressure by decelerating the velocity of the fluid at the runner passing through the draft
tube. The influence of a draft tube becomes more significant at Kaplan turbine draft tubes
[3] because entire performance of hydro-power plants is highly e↵ected by the performance
of the draft tubes. For example, a turbine-99 draft tube, which is installed at the exit of the
runner of a Kaplan turbine and has been utilized in many hydro-power plants (about 20 were
installed in Swedish power stations), is estimated to generate 3 ⇠ 4 TWh more electricity per
year if 0.3�2.3% performance improvement of the draft tube is accomplished [3]. According
to Andersson [3], this is the equal amount of electricity generation about 5% of the total
Swedish hydropower production. However, a turbine-99 draft tube were simply created based
on human intuition and simple analytic method. The shape of a turbine-99 draft tube has a
sharp heel across the sections and is far away from the optimal configuration, which makes it
underperformed for a long time. Therefore, simulating flow in the draft tube and optimizing
the shape of it are significantly important in perspective of e�ciently generating, converting
and managing energy.

Several researchers have been carried out the shape optimization of a turbine-99 draft
tube. The most common way related to redesigning this sharp heel draft tube is removing
a sharp heel by introducing radius R of the heel to create a rounded heel draft tube. In
fact, in 1970’s, Gubin [22] reported that 0.3 � 2.3% e�ciency loss takes place due to the
sharp heel of a turbine-99 draft tube. About two decades later, Dahlbäck [12] performed
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model tests to measure the turbine e�ciency improvement with two redesigned draft tubes
having rounded heels at three di↵erent blade angle opening conditions. With the shape
chosen from the model tests, Dahlbäck carried out a prototype test and achieved in order
of 0.5% improved turbine e�ciency. Based on this work, Marjavaara and Lundström [34]
attempted to compute the optimum radius R of the heel that induces maximum mean
pressure recovery factor or minimum energy loss coe�cient. They chose six di↵erent radius R
for initial design of experiment, constructed individual cubic response curves of two objective
functions and computed optimum radius using the constructed response curves. However, the
improvements rates of mean pressure recovery factor and energy loss coe�cient are smaller
than their simulation uncertainty. It indicates either their computational modeling of fluid
flow is not good enough to reflect e↵ects of a rounded heel turbine-99 draft tube or a rounded
heel turbine-99 draft has no e↵ects compared to a sharp heel turbine-99 draft tube in terms
of pressure recovery factor and energy loss coe�cient. In the later work of Marjavaara et al.
[33], instead of optimizing the shape of a turbine-99 draft tube, they optimized the simplified
draft tube to maximize mean pressure recovery factor at two di↵erent operating modes. The
simplified draft tube they considered is a 3D extension of a cone section of a turbine-99
draft tube which is connected directly to a simplified di↵user with the exclusion of an elbow
section. They took this simplified draft tube into account because the simplified draft tube
makes CFD easier and less computation work is needed to simulate the flow. Although, with
five design parameters, pressure recovery factor was improved about 14.4% and 8.9% at each
operation mode, the exclusion of an elbow part causes huge flow field discrepancy with the
one of a turbine-99 draft tube, so that, the result obtained from the simplified draft tube
cannot be applied and compared to a turbine-99 draft tube.

As described so far, ways of optimizing a turbine-99 draft tube have been very limited.
There is no big di↵erence even we broaden the scope to shape optimization of other types
of draft tubes. For a Francis turbine draft tube, Marjavaara and Lundström [35] optimized
the shape of it with three design parameters (left, right and upper end di↵user wall angles)
based on CFD simulation by using standard k � ✏ model with wall function and surrogate
based optimization technique. However, in their study, improvement rate resulting from
the redesigning is not that impressive. Recently, Shojaeefard et al. [48] maximized the
pressure recovery factor and minimized the energy loss coe�cient for a draft tube of Agnew
microhydro turbines using the Pareto solution [20] by adjusting cone angle and the height
of the draft tube.

The most interesting work may be implemented byCoelho [11]. In their work, they
proposed a new draft tube of a bulb turbine having the same inlet and outlet area ratio
and approximately the same e�ciency, but whose length is significantly reduced. This is
meaningful achievement because people can more economically manufacture the draft tube
than before.



CHAPTER 5. SHAPE OPTIMIZATION OF A TURBINE-99 DRAFT TUBE 75

(a) (b)

Figure 5.1: The shape of a turbine-99 draft tube. (a) the 3D shape of a turbine-99 draft
tube (b) cross sectional view of a turbine-99 draft tube at the mid-plane.

5.2 Proposed design method

What do we mean by morphing?

The new proposed design method here, design-by-morphing, is based on morphing tech-
niques. Although morphing technique is not unique, morphing should be robust, automated
without human interaction to be used in optimization process. Since geometric constraints,
for example shapes at certain locations are requested to be predetermined shapes, are often
demanded to be imposed on a newly designed object, a way to impose geometric constraints
is also needed in morphing technique. In our design-by-morphing, all of these requirements
are reflected. It is so robust that do not break down and automated which does not re-
quire human intervention. Furthermore, any geometric constraints such as shape, slope or
curvature constraints can be easily imposed on the boundaries of an object.

To explain how we morph an object, we will first illustrate how to represent 1D boundary
of a 2D object, shown in Figure 5.2a. Using a polar coordinate system (r, ✓) with the origin
in the center of the object, the object’s shape can be described by the radius r(✓) of its
boundary. We approximated r(✓) as a truncated Fourier series as a function of azimuthal
angle ✓, which can be expressed as

r(✓) '
MX

m=�M

am eim ✓. (5.1)

This method has the advantage that if the shape of the object is su�ciently smooth, the
series converges exponentially, which is called spectral representation.

Spectral representations of shapes can be easily extended to 3D space. Consider a cylin-
drical object as shown in Figure 5.2b. The shape of this object can be described by the
cylindrical radius r(u, ✓) of its surface along the centerline of the object, where u is mapping



CHAPTER 5. SHAPE OPTIMIZATION OF A TURBINE-99 DRAFT TUBE 76

from the bottom to top boundaries of the object along the centerline. The radius r(u, ✓) is
approximated by

r(u, ✓) '
LX

l=0

MX

m=�M

almTl(u)e
im✓, (5.2)

where Tl(u) is Chebyshev polynomial order of l and alm is the (l,m) spectral coe�cient.
Our design-by-morphing method treats multiple baseline objects and a morphed object is

created by linearly combining baseline objects with di↵erent weights. When the surfaces of
objects are represented by a truncated spectral sum, morphing is implemented by computing
a new set of spectral coe�cients that are weighted averages of the spectral coe�cients of
the baseline objects. For example, a morph created from N baseline objects where the kth

baseline object has spectral coe�cients alm(k) has

r(u, ✓) '
LX

l=0

MX

m=�M

Alm Pl(u) e
im ✓, (5.3)

where

Alm ⌘
KX

k=0

!k alm(k). (5.4)

Here, !k is the weight of the kth baseline object. It is often useful, but not necessary to make
the sum of the weights equal to unity. For example, when K = 1, !1 is dependent on !0 by
!1 = 1� !0. Some examples of morphed draft tubes when K = 1 with weights’ summation
dependency are presented in Figure 5.3. As the figure shows, by varying !0 from zero to
unity, shapes of morphed draft tubes translates from one baseline object to the other. This
is called interpolation morphing because morphed objects are shaped between two baseline
objects.

As Equation 5.4 shows, the shape of a morphed object is e↵ected by weights and spectral
coe�cients of baseline objects. Since spectral coe�cients of baseline objects are quantities
related to how baseline objects look like, once baseline objects are chosen, spectral coe�cients
of baseline objects are no longer changed. As a result, the shape of a morphed object is only
e↵ected by weights of baseline objects; thereby, the optimal shape of an object can be found
by seeking the optimum values of weights which produces the best performed object.

Imposition of geometric constraints

Often, new designed objects are demanded to obey geometric constraints. For example,
a back of a leading car of a train is requested to be a certain predescribed shape to be
connected by a following car of a train. A leading car of a train may be also needed to
have certain slope and curvature at the back to seamlessly connects a following car of a
train in order to avoid any unnecessary aerodynamic features such as flow separation and
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(a) (b)

Figure 5.2: Schematic to illustrate an arbitrary shape of a (a) 2D object (b) 3D object. The
radius of a 2D object is approximated by Fourier expansion while the cylindrical radius of a
3D object is approximated by Chebyshev polynomials and Fourier expansion.

recirculation at the connection. To deal with these requirements, our new design method
should have a capability of imposing geometric constraints on an object. We handle it by
solving high order PDEs with the proper boundary conditions where boundary conditions
are incorporated with geometric constraints what we want to impose on an object. By
solving PDEs, regardless of satisfactory of geometric constraints of an unconstrained object,
a constrained object is forced to obey all imposed geometric constraints. Simple example
shapes of constrained objects are illustrated in Figure 5.4. Initially, each object was a right
circular cylinders. Boundary conditions are then imposed at the top and bottom of each
cylinder where top of the cylinder is constrained to be a square and bottom is constrained
to be remained as a circle as it was and the slopes of the boundaries are constrained to
be vertical. The di↵erence between the shapes of Figures 5.4a and 5.4b are the values of
the di↵usivities where hte values are smaller in Figures 5.4a than the values in Figure 5.4b.
The comparison of Figures 5.4a and 5.4b shows that the smaller values of di↵usivities create
thinner boundary layers. The fact the thickness of boundary layer is adjustable in design-
by-morphing allows it to have more freedom in shape exploration since the thickness of a
boundary layer determines how smoothly geometric constraints are imposed on objects and
the surface of a constrained object is modified to obey imposed geometric constraints.

5.3 Morphing of draft tubes

In this section, as a preliminary step of finding the optimal shape of a turbine-99 draft tube,
we will explain which parts of a turbine-99 draft tube are redesigned and how, and what
geometric constraints are demanded to be imposed on the redesigned draft tubes. Then, we
will show a variety of morphed draft tubes as examples.

When a turbine-99 draft tube is optimized, we did not redesign the shape of an inlet
cone section of a turbine-99 draft tube. In fact, what we optimized is the shape of a nose
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(a) (b)

(c) (d)

Figure 5.3: Morphed draft tubes from two baseline objects shown in (a) and (d). The weight
of the original draft tube in (a) ,is defined as !1 and the weight the draft tube in (d), is
defined as 1 � !1. The weights of morphed draft tubes from (a) to (d) are 0, 0.333, 0.667
and 1, respectivly.

(a) (b)

Figure 5.4: A cylinder constrained with geoemtric requirements. A cylinder is required to be
a square at the top end and unchanged at the bottom. The slope at both ends are required to
be straight along the vertical direction. The di↵usivities applied to objects in (a) is smaller
than the di↵usivities applied to object in (b).
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Six baseline draft tubes create from morphing. The weights of these draft tubes
from (a) to (f) are respectively defined as !0, !1, · · · , !5.

cone as well as the shapes of elbow and di↵user sections of a turbine-99 draft tube. Strictly
speaking, ones may argue that a nose cone is not a part of a draft tube (rather it is a part of
Kaplan turbine), but we assume that the interior shape of a turbine-99 draft tube is defined
by the shape of a nose cone because the dented shape of an ingress part of a draft tube is
defined by the configuration of a nose cone. In this sense, morphing was carried out twice;
(1) to create the exterior shape of a draft tube and (2) to create the interior shape of a draft
tube defined by the shape of a morphed nose cone.

Morphing to define the exterior shape of a draft tube

The new exterior shape of a draft tube is defined by the surfaces of morphed elbow and
di↵user sections. To obtain the morphed exterior shape of a draft tube, we considered six
baseline draft tubes and treated them as baseline draft tubes. These six baseline draft tubes
are presented in Figure 5.5. The one shown in Figure 5.5a is an original turbine-99 draft
tube, whose weight is defined as !0. We refer the original turbine-99 draft tube as a zeroth
baseline draft tube. The other five baseline draft tubes shown in Figure 5.5b to Figure 5.5f
are created base on intuition. For example, the shapes of these baseline draft tubes are
defined by the accumulation of 2D cross-sectional boundaries. These 2D shapes are either
perfect circles or ellipses whose radii or major and minor radii are a function of u which
is a mapping parameter of each baseline draft tubes in its streamline direction. Also, each
baseline draft tube has its own profile in streamline direction. It should be noticed that
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the shape of the baseline draft tube represented in Figure 5.5c is invented by mimicking the
shape of the draft tube installed at Yngeredsforsen hydro-power plant in Sweden [35], which
has a deeper elbow section than other baseline draft tubes. The weights of baseline draft
tubes shown in Figure 5.5b to Figure 5.5f, which are respectively called the first and fifth
baseline draft tubes, are defined as !1 to !5.

When baseline draft tubes are morphed, we demanded that a sum of the weights should
be equal to unity, therefore, the weight of the fifth baseline draft tube, !5, can be obtained
from

!5 = 1�
4X

k=0

!k. (5.5)

Then, the exterior surface of a morphed draft tube is created by calculating a new set of
spectral coe�cients of spectral basis functions. If we define spectral coe�cients of the kth

baseline draft tube as alm(k), where double summations of alm(k) multiplied by spectral basis
functions approximates the radius of elbow and di↵user sections of the kth baseline draft tube,
radius of elbow and di↵user sections of a morphed draft tube, R, can be computed from

R(u, ✓) =
LX

l=0

NX

m=�N

AlmTl(u)e
im✓, (5.6)

where

Alm =
5X

k=0

!kalm(k). (5.7)

Here, we want to remind that !5 is slaved to other weights by Equation 5.5 so that a new
exterior shape of a draft tube is created from five independent parameters.

Several examples of morphed draft tubes are presented in Figure 5.7 with the weights.
Since all weights in Figures 5.7a and 5.7b are positive, the morphed draft tubes shown in these
figures are created from interpolation morphing. However, the morphed draft tubes shown
in Figures 5.7c and 5.7d are created from extrapolation morphing because some of their
weights are negative. Due to extrapolation morphing in design-by-morphing, characteristics
of baseline draft tubes can be strengthened or weakened based on values of weights. One
factor should be noticed here is that the shapes and slopes at egresses of the morphed draft
tubes vary according to the values of weights used to create morphed draft tubes, which
shows the necessity of geometric constraints impositions.

Morphing to define the interior shape of a draft tube

The new interior shape of a draft tube is defined by the surface of a nose cone. To obtain
a morphed interior shape of a draft tube, we considered three di↵erently shaped nose cones,
which are presented in Figure 5.6. The nose cone shown in Figure 5.6a is the one of an
original turbine-99 draft tube, which is called an original nose cone, while the others are
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(a) (b) (c)

Figure 5.6: Six baseline draft tubes cover for morphing. The weights of these draft tube
cover from (a) to (c) are defined as !c1, !c2 and !c3.

invented from intuition. For example, the nose cone shown in Figure 5.6b is created by
linearly connecting 2D profile of the original nose cone at the top to the bottom, while the
nose cone shown in Figure 5.6c is made up from a part of an ellipsoid. By respectively
treating the nose cones presented in Figure 5.6a to 5.6c as zeroth baseline nose cone to the
second baseline nose cone, we define weights of these nose cones as !c

0,!
c
1 and !c

2, respectively
and demand a sum of the weights be equal to unity. Here, we slaved the weight of a zeroth
baseline nose cone to the others, which can be written as

!c
0 = 1�

2X

k=1

!c
k. (5.8)

Similar to creating the morphed exterior surface of a draft tube, the morphed interior
surface is created by calculating a new set of spectral coe�cients. However, for the morphing
of a nose cone, we introduce one more design parameter which adjusts the height of a morphed
nose cone. Then, if we define spectral coe�cients of the kth baseline nose cone as aclm(k),
where double summations of aclm(k) multiplied by spectral basis functions approximates the
radius of the kth baseline nose cone, radius of a morphed nose cone, Rc, can be computed
from

Rc(z(u), ✓) =
LX

l=0

NX

m=�N

Ac
lmTl(u(z))e

im✓ (5.9)

where

Ac
lm =

2X

k=0

!c
ka

c
lm(k), (5.10)

and

z = !h
Hu

2
. (5.11)

Here, H is the height of the original nose cone and !h is the weight to control the height of
a morphed nose cone. Since !c

0 is subordinated to !c
1 and !c

2 as written in Equation 5.8, the
number of independent parameters in determining the interior shape of a draft tube is three.
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(f) (b)

(c) (d)

Figure 5.7: Several examples of morphed draft tubes. The morphed draft tubes in (a) and
(b) are created by interpolating baseline draft tubes, while the morphed draft tube in (c) and
(d) are created by extrapolating baseline draft tubes. Weights of all morphed draft tubes
from !1 to !6 are (a) (0.54, 0.12, 0.02, 0.18, 0.05, 0.09) (b) (0.14, 0.22, 0.28, 0.08, 0.12, 0.16)
(c) (0.09, 0.34, 0.61, -0.18, 0.29, -0.15) (d) (0.69, -0.24, 0.17, -0.29, 0.58, 0.09).

Geometric constraints

In redesigning the shape of a turbine-99 draft tube, shapes and slopes at ingress and egress of
a morphed draft tube and a morphed nose cone are demanded to be unchanged from those
of the original draft tube to avoid any installation issues of a newly designed draft tube
or mismatch between the new draft tube and other components of a hydro-power plant.
Therefore, morphing should be carried out subject to imposition of geometric constraints at
the ingress and egress of a new draft tube and nose cone.

To deal with the demanded constraints, a morphed draft tube and a morphed nose cone
are imposed with the given geometric constraints. Examples of morphed draft tubes after
imposition of geometric constraints are presented in Figure 5.8. The draft tubes shown in
Figure 5.8 have the same weights with the ones shown in Figure 5.7, but the draft tubes
in Figure 5.8 are the shapes after geometric constraints are imposed on them. Unlike the
unconstrained draft tubes in Figure 5.7, the shape and slope at the boundaries of the con-
strained morphed draft tubes are always kept unchanged from those of the original draft
tube. Similarly, several examples of morphed nose cones after imposition of geometric con-
straints are presented in Figure 5.9. Due to the imposition of geometric constraints, shape
and slope at the ingress of the draft tube is always identical to those of the original draft
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(a) (b)

(c) (d)

Figure 5.8: The morphed draft tubes presented in Figure 5.7 are constrained with geometric
constraints.

Figure 5.9: Several examples of morphed nose cones. Weights of all morphed nose cones
from !c

1, !
c
2 to !c

h are (a) (0.78, 0.39, 1.31) (b) (�0.35, 0.53, 1.07) (c) (0.25, 0.48, 0.77).

tube.

5.4 Simulation and validation

Computational simulation

To carry out computational simulation, three dimensional Reynold-Averaged Navier-Stokes
(RANS) equation is solved with hexagonally constructed grids inside a draft tube. To sim-
ulate flow, we used Numeca’s multi-physics simulation software, FineOpen [24]. The second
order time stepping scheme is used to evolve flow in time and turbulence is modeled and
resolved by applying k � ✏ with extended wall function. The flow was simulated under the
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T operational mode of a turbine-99 draft tube and the inlet boundary conditions were used
provided in [18]. At the outlet, an averaged static pressure boundary condition was applied.

There are two significant quantities in measuring the performance of a turbine-99 draft
tube. One is mean pressure recovery factor, Cpm, and the other is energy loss coe�cient, ⇣.
These two quantities are defined as

Cpm =
1
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where p is static pressure, pt is total pressure, ⇢ is density, Ain is area at inlet, Aout is area at
outlet and Q is mass flow rate, u is flow velocity and n is unit normal vector. Mean pressure
recovery factor shows that the degree of energy conversion from kinetic energy at the exit of
the runner into pressure energy at the outlet of the draft tube. On the other hand, energy
loss coe�cient indicates the total energy loss of the flow by passing the draft tube. We
believe these two quantities are highly correlated each other, which will be quantitatively
shown in Section 5.6.

Grid sensitivity study and simulation verification

To simulate the flow in a draft tube, non-uniformly distributed mesh was generated. Many
grid points cluster around the inlet, inlet cone and elbow sections of a draft tube where 70 ⇠
80% of mean pressure recovery occurs [16, 34] as well as near the boundary of a draft tube. To
obtain grid resolution free results, grid sensitivity test was conducted. Three di↵erent meshes
- low, intermediate and high resolved meshes- were created and mean pressure recovery factor
was computed at each case. Then, we defined the mean pressure recovery factor disparity,
which can be written as

�Cpm(i) =
���
(Cpm)i � (Cpm)3

(Cpm)3

���⇥ 100. (5.14)

Here, (Cpm)1, (Cpm)2 and (Cpm)3 are respectively mean pressure recovery factors computed
from simulation results with low, intermediate and high resolved meshes. The grid sensitivity
test results are presented in Table 5.1. As the resolution of the mesh increases from low to
intermediate, disparity of the mean pressure recovery factor is reduced approximately from
0.5% to 0.07%. These results imply the simulation results in terms of the pressure recovery
factor is not sensitive to the grid resolution and the values of mean pressure recovery factor
is converging the a certain value as the numbers of cells of meshes increase. To compromise
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(a) (b)

Figure 5.10: Normalized pressure recovery factors at mid-plane. (a) Normalized pressure
recovery factor along upper mid-plane wall (b) Normalized pressure recovery factor along
lower mid-plane wall.

Mesh resolution Cpm Number of cells �Cpm(%)
Low 0.8989 1870216 0.4981

Intermediate 0.9027 2879054 0.0675
High 0.9034 3717977 -

Table 5.1: E↵ects of resolution of the grids. As resolution of simulation increases, mean
pressure recovery approaches a certain value.

the e�ciency and accuracy of the simulation, we use the intermediate mesh for the further
simulation.

In addition, we plotted normalized pressure recovery factor as a function of the distance
along the upper centerline wall in Figure 5.10a and the lower centerline wall in Figure 5.10b.
Then, our results are compared to the data from experiments and the results from other
computation simulations as shown in Figure 5.10. Although the normalized pressure recovery
factors from our simulation slightly more variate around sharp heel region compared to other
simulation results, but our simulation results generally well agree with experimental data
and other CFD simulation results. In fact, any simulation results have not been validated
near the sharp heel region due to the absence of experimental data at that region.

5.5 Optimization

In the proposed method, the optimum shape of an object is found by determining the
optimum weights of baseline objects, which maximizes the performance of the object. To find
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design parameters lower bound upper bound
!0 (1) 0 1
!1 (0) 0 1
!2 (0) 0 1
!3 (0) �0.5 0.5
!4 (0) �0.5 0.5
!c
1 (0) �0.5 1.5

!c
2 (0) �0.5 1.5

!c
h (1) 0.5 1.5

Table 5.2: Eight design parameters with their ranges. The values in the parentesis indicate
the weights for the original draft tube.

optimum weights, morphing method is incorporated with artificial neural network and genetic
algorithm in the optimization process which basically consists of simulating, predicting and
searching processes [49, 54].

Figure 5.11 shows the overall optimization procedure in design-by-morphing. First, sim-
ulation is implemented at the initial selected points and cost functions are computed at
each selected point, called design of experiment. Then, artificial neural network constructs
a surrogate model for the prediction of cost functions. Once the surrogate model is con-
structed, genetic algorithm searches optimum weights and then morphing algorithm creates
an estimated optimum object with the found optimum weights. After that, simulation is
implemented for the estimated optimum object and cost functions is obtained. Then, by
adding newly computed cost functions to design of experiment, surrogate model is updated.
This process is repeated until cost functions become su�ciently small or iteration reaches
a specified maximum iteration number. We used this process to find the optimal shape of
a turbine-99 draft tube to maximize mean pressure recovery factor. The optimal shape is
found by seeking values of eight design parameters where five of them are the weights to
obtain a morphed exterior shape of a draft tube and the rest three are the weights to obtain
a morphed interior shape of a draft tube. The ranges of design parameters were defined as
shown in Table 5.2.

Design of Experiment

The design of experiment is conducted to construct a surrogate model to predict a cost
function as a function of input design variables. There are di↵erent method to perform DOE
such as factorial, Plackett-Burmann and cubic face centered [50], but we used a discrete level
method [24] generating user-defined sampling variables over the design space. To create as
accurately approximated surrogate model as possible, many number of initially selected
points is required. However, it causes huge amounts of simulation work. As a compromise,
we selected initial 500 sampling points in the design space to build surrogate model. This
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Figure 5.11: Flow chart of the optimization process.

may not be enough number of sampling points to construct accurate surrogate model for
eight design variables optimization problem because only two or three sample layers are
distributed at each design variable. However, this is moderate number to deal with the eight
dimensional optimization problem with limited computation time and resources.

Artificial Neural Network

An artificial neural network is utilized to estimate a cost function which is e↵ected by input
design parameters. An artificial neural network is built by several layers and each layer
consists of a number of neurons. The numbers of input, hidden and output layers used in
optimizing the shape of a turbine-99 draft tube are given in Table 5.2. The high quality of
artificial neural network with these numbers of layers is validated in [13]. To investigate the
accuracy of artificial neural network in our design problem, we defined the normalized error
measuring discrepancy of mean pressure recovery factor obtained from CFD simulation and
artificial neural network, given as
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Figure 5.12: Correlation between mean pressure recovery factor and energy loss coe�cient
at the first several points among initially selectd 500 points. These two factors show highly
negative correlation. The correlation coe�cient of these two parameters is C(Cpm, ⇣) =
�0.9296.

E =

vuut
PJ

j=1

⇣
Cpm,j � CANN

pm,j

⌘2

J
, (5.15)

where Cpm,j and CANN
pm,j are a jth experimental mean pressure recovery factor computed from

the CFD simulation and predicted from artificial neural network, respectively, and J is a
number of initial selected points, in our case J = 500. The normalized error of the initial
five hundred design of experiment is E = 0.0072. It indicates that artificial neural network
is well trained by a design of experiment and is expected to predict mean pressure recovery
factor with acceptable accuracy.

5.6 Results

As mentioned in subsection 5.4, mean pressure recovery factor and energy loss coe�cient are
significant quantities which should be considered to evaluate the performance of a turbine-99
draft tube. Although Pareto front method can be applied by defining double valued cost
functions for both pressure recovery factor and energy loss coe�cient, we only take account
of maximizing pressure recovery factor based on the assumption that pressure recovery factor
and energy loss coe�cient are inversely correlated. As the verification of our assumption,
we plotted mean pressure recovery factor and energy loss coe�cient of the first several
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Name !0 !1 !2 !3 !4 !c
1 !c

2 !c
h Cpm

baseline DT 0 1 0 0 0 0 0 0 1 0.903
baseline DT 1 0 1 0 0 0 0 0 1 0.945
baseline DT 2 0 0 1 0 0 0 0 1 0.965
baseline DT 3 0 0 0 1 0 0 0 1 0.922
baseline DT 4 0 0 0 0 1 0 0 1 0.903
baseline DT 5 0 0 0 0 0 0 0 1 0.904

best DT among ISP 0 0 1 0.5 �0.5 1.5 1.5 1.5 0.986
ODT 0 0.6 1 0.337 �0.407 �0.3 0.778 1.5 0.994

ODT with EPR 0.096 0.267 0.801 0.522 �0.500 0.572 0.719 2.015 1.001

Table 5.3: Weights, mean pressure recovery factor of the baseline, best draft tube among
initial 500 selected points and the optimal draft tubes. Here, “DT”, “ISP” and “ODT” stand
for draft tube, initial selected points and the optimal draft tube, respectively.

points of initially selected 500 points in Figure 5.12. If we define Cpm,j and ⇣j as the mean
pressure recovery factor and energy loss coe�cient at the jth design of experiment, correlation
coe�cient of mean pressure recovery factor and energy loss coe�cient, C(Cpm, ⇣), which
measures linear dependency of them is given as

C(Cpm, ⇣) =
1

J � 1

JX

j=1

✓
Cpm,j � µ1

�1

◆✓
⇣j � µ2

�2

◆
, (5.16)

where J is number of points and µ1 and �1 are the mean and standard deviation of mean
pressure recovery factor of the several points among initially selected 500 points, respectively,
and µ2 and �2 are the mean and standard deviation of energy loss coe�cient of them,
respectively. As a result of computing the correlation coe�cient, we obtained C(Cpm, ⇣) =
�0.9296, which indicates that mean pressure recovery factor and energy loss coe�cient are
very negatively correlated. Therefore, by maximizing mean pressure recovery factor, we can
expect to minimize energy loss coe�cient as well, justifying our assumption.

Simulation and optimization results are shown in Table 5.3. In the table, weights, mean
pressure recovery factors and energy loss coe�cients of baseline draft tubes and the optimal
draft tube are presented. Compared to the original draft tube, mean pressure recovery factor
of the second baseline draft tube showing the highest mean pressure recovery factor among
baseline draft tubes is 6.95% better. Other baseline draft tubes also performs better (at least
similar) than the original draft tube in terms of mean pressure recovery factor. The fact
that the original draft tube is worse than baseline draft tubes which are created without any
preliminary studies and simulations of the flow but only based on physical intuition shows
that high necessity of a turbine-99 draft tube’s optimization.

Among 500 initial experiments, we found the best draft tube whose mean pressure recov-
ery factor is improved 9.17% respect to mean pressure recovery factor of the original draft
tube. After optimization was carried out, the optimum draft tube was found and mean
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(a) (b)

(c) (d)

Figure 5.13: The shape of the optimal draft tubes. (a) the optimal draft tube without
extended parameter ranges (b) the optimal draft tube with extended parameter ranges

pressure recovery factor was improved upto 10.11%. Since some of the optimum weights
are negative, the optimum draft tube was created from extrapolation morphing. One factor
should be noticed here is that some of the weights of the best draft tube among 500 initial
experiments and the optimal draft tube are on the bounds of weights. Then, ones can imag-
ine that better draft tubes may be obtainable by extending ranges of design parameters so
that optimum weights are located inside (not on the boundaries of) design space. For this
purpose, we defined new ranges of design parameters extended to the directions where the
averaged values of each weights of the best draft tube among 500 initial experiments and the
optimized draft tube are close to the their upper or lower bounds. We extended the ranges
if the averaged weights deviate more than ±20% from the mean value of the ranges. The
new defined design parameter ranges are shown in Figure 5.14.

With the newly defined ranges of design parameters, another 500 initial experiments were
conducted. Then, we added these experiments to previously conducted 500 experiments with
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Figure 5.14: Ranges of design parameters. Here “EPR” means extended parameter ranges.

narrow ranges of design parameters, and so total experiments become a thousand. With the
thousand experiments, we constructed the surrogate model using artificial neural network
and carried out thirty optimized loops. As a result of the optimization, we achieved a new
optimal draft tube which shows 10.92% improvement rate respect to the original draft tube.
We will refer this optimal draft tube as the optimal draft tube with extended parameter
ranges. Due to the extension of design space, approximately 0.8 percentage point more
improvement was obtained.

The optimal draft tubes with and without extended parameters ranges are presented in
Figure 5.13 with the shapes of their nose cones. As illustrated by Figure 5.13, configurations
of the two optimized draft tubes are quite distinguishable. This configuration discrepancy
results from the weights of these draft tubes which were converged to di↵erent values with
respect to di↵erent ranges of design parameters. It indicates that several local maximums
exist over the design space and the maximum value can be e↵ected by defined ranges of
design parameter. To obtain the global maximum independent on upper and lower bounds
of design parameters, parameters ranges should be properly defined to include the weights
producing the global maximum.

The static pressure, magnitude of velocity and dynamic pressure at the mid-plane of
the original draft tube and the optimized draft tubes with and without extended parameter
ranges are represented in Figure 5.15. The high static pressure region near a sharp heel of
the former is apparently removed at the optimal draft tubes. Simply removing a sharp heel
does not help in getting rid of the high pressure region. The static pressure contour carried
out on a smoothed heel turbine-99 draft tube by Marjavaara and Lundström [34] does not
show any high pressure region removal. Further, as shown in Figure 5.15, the fourth and
fifth baseline drafts which do not have a sharp heel in the elbow section still have high static
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(a) (b)

Figure 5.15: Flow contour plots of several draft tubes at the mid-plane : (a) static pressure
(b) magnitude of velocity. From the first row to sixth rows, contour plots show the flow of
the zeroth to fifth baseline draft tubes, respectively. The contour plots shown in the first and
second rows from the bottom are respectively from the optimal draft tube with and without
the extended parameter ranges. The color maps of all static pressure and magnitude of
velocity contour plots are identical.



CHAPTER 5. SHAPE OPTIMIZATION OF A TURBINE-99 DRAFT TUBE 93

pressure regions. Removing high pressure region and improving the performance of a draft
tube result from all combination of the factors such as shape of the cross section, the depth
of elbow and shape of di↵user not just smoothing sharp heel of a draft tube.

5.7 Discussion

We proposed a new method of shape optimization to find the optimal shape of an object and
applied the new method in optimizing the shape of a turbine-99 draft tube to maximize a
mean pressure recovery factor. Using our method, the surfaces of baseline draft tubes were
spectrally represented and a morphed draft tube was created by combining baseline draft
tubes with di↵erent weights. After optimization was carried out, we found the optimal draft
tubes whose pressure recovery factors are increased more than 10% compared to the original
turbine-99 draft tube. The flow field analysis showed that the high static pressure region of
the original turbine-99 draft tube is significantly reduced in the optimal draft tubes, and the
flow is smoother and more uniform than it was. We believe that this optimization method is
applicable to many engineering applications in which the performance of an object depends
on its shape.
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Chapter 6

Conclusion

In design-by-morphing, we represent the surface of an object or sub-object as a truncated
sum of spectral basis functions multiplied by spectral coe�cients. An object or sub-object is
classified by the number of its boundaries. Depending upon the number of boundaries of the
object has, an object or sub-object belongs to a 0-, 1-, 2-hole object or a patch and the surface
of the object is approximated by spherical harmonics, one-sided Jacobi polynomials and
Fourier expansion, Chebyshev polynomials and Fourier expansion, and double Chebyshev
polynomials, respectively. A morphed object is created from one or more baseline objects by
finding new spectral coe�cients that are weighted averages of the spectral coe�cients of the
baseline objects. An optimum shape of an object is created by finding weights of baseline
objects which minimizes a cost function or maximizes a performance function.

The weights of baseline objects can be not only between zero to unity, which means
a morphed object is created by interpolating given baseline objects, but the ranges of the
weights can be also greater than unity and less than zero, which means a morphed object
is created by extrapolating the baseline objects. With this range of weights, design-by-
morphing is encouraged to explore an innovative new design shape, which may bring high
performance improvement compared to other design methods.

Shape constraints are easily imposed on the boundaries of objects and sub-objects by
solving a second order parabolic PDE with the boundary conditions which are defined by
shape geometric constraints demanded to be imposed on the objects and sub-objects. By
solving higher order PDEs, higher geometric constraints such as slope and curvature con-
straints can be also imposed on the boundaries of objects and sub-objects. When geometric
constraints are imposed, boundary layer meaning the healing distance from the boundaries
where the constraints are imposed to the location where the influence of the imposed con-
straints disappear are adjustable by the values of di↵usitivies. Therefore, final shape of a
constrained object is determined by the values of di↵usitivies as well as shape, slope or cur-
vature geometric constraints imposed on the object. A complex object can be also made up
of many sub-objects whose geometries are constrained such that the overall object is smooth
with a continuous shape, slope, and curvature. For a complex object, design-by-morphing
works by morphing several baseline objects together sub-object by sub-object and choos-
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ing the weights of the sub-objects so that the morphed object minimizes a cost function or
maximizes a performance function.

Our design-by-morphing is very flexible, and it can produce radical or conservative (or
partially radical or partially conservative) shape changes by adjusting weights of objects and
sub-objects. Further, morphing can occur part by part so that only one or a few parts can be
replaced with morphed objects while the other parts are maintained. In addition, geometric
constraints can be imposed easily on new designed shapes, and every optimization process
is automated, making it an inexpensive way to implement optimum design.

We applied this optimization method to an airplane and to a turbine draft tube to
maximize their performances. In both cases, the optimized shapes improved performance by
more than 10%, whereas typical design improvements of the draft tube found by conventional
methods are less than 1%. Design-by-morphing is a robust method and often produces
optimized designs that are radically di↵erent from current designs. We believe that design-
by-morphing can be used in a wide variety of engineering applications and achieve significant
improvements of under-performed designs.

One limitation in design-by-morphing methodology is the fact that currently we are
unable to morph two or more objects that are made up of sub-objects unless all of the
objects have the same wiring diagram. Therefore, to morph two objects which have di↵erent
wiring diagrams, the objects should be intentionally split the objects to make them have the
same wiring diagram, but this process is quite tedious and need human intervention. One
possible way to overcome this di�culty is inventing more general way of shape representation
which is not e↵ected by the structure of wiring diagrams. Besides of the wire diagram related
issue, the question of how to break an object e�ciently into sub-objects is di�cult although
there has been some recent progress in this area, such as the skeleton-based and convex-based
segmentation methods[41, 42]. Our future work will focus on robust methods for breaking
up an objects into sub-objects where those sub-objects are specifically n-hole constrained
sub-objects and constrained patches.
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