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0.01) by metagenomeSeq and edgeR, respectively. . . . . . . . . . . . . . 187

B.1 Marginal densities of λ1 are numerically evaluated at the central and
tail areas for the Dir-HS prior, Dir-Laplace, and HS with different values
of aϕ, aϕ = 2, 1/2, 1/20. The Dir-HS, Dir-Laplace and independent HS
distributions are in black, red and blue, respectively. . . . . . . . . . . . 194

xiii



B.2 Scatter plots of λ = (λ1, λ2) are shown. λ are generated from three dif-
ferent prior distributions: Dir-HS in the leftmost column, Dir-Laplace in
the middle column, and independent HS priors in the rightmost column.
The values of aϕ used for the plots are 2, 1/2, and 1/20 for the top, mid-
dle, and bottom plots, respectively. The contour plots of the empirical
joint densities are shown in red on a logarithmic scale. . . . . . . . . . 195

B.3 [Distribution of an OTU’s Count] The probability distribution of an
OTU’s count is computed from a rounded kernel method with log-normal
distributions. For panels (a)-(c), a single log-normal distribution is used,
and for panels (d)-(f), a mixture of two log-normals with a constraint in
(B.11) is used. The detailed specifications are in § B.2. . . . . . . . . . . 198

B.4 [Distribution of Counts of a Pair of OTUs I] The joint distribution of
counts of a pair of OTUs is computed for a rounded kernel method with
bivariate log-normals, log-N2(µ̃, Σ̃). Different combinations of µ̃ and Σ̃
are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.5 [Distribution of Counts of a Pair of OTUs II] The joint distribution of
counts of a pair of OTUs is computed for a rounded kernel method with
a mixture of bivariate log-normals in (B.13). να is fixed at 1.5 and 0.5 for
two OTUs, while the mixture weights and locations vary. The detailed
specifications are in § B.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B.6 [Simulation 1] The upper right and lower left triangles of a heatmap
illustrate the estimates ρ̂mm

′
jj′ of correlations and their truth, respectively.

The horizontal and vertical lines are to divide the groups. The estimates
in panels (a)-(c) are from REBACCA, COAT and Zi-LN. . . . . . . . . 212

B.7 [Simulation 2] The upper right and lower left triangles of a heatmap
illustrate the estimates ρ̂mm

′
jj′ of correlations and their truth, respectively.

The horizontal and vertical lines are to divide the groups. The estimates
in panels (a)-(c) are from REBACCA, COAT and Zi-LN. . . . . . . . . 213

B.8 [Simulation 3] The upper right and lower left triangles of a heatmap
illustrate the estimates ρ̂mm

′
jj′ of correlations and their truth, respectively.

The horizontal and vertical lines are to divide the groups. The estimates
in panels (a)-(f) are from Sp-BGFM, MOFA, SPIEC-EASI, REBACCA,
COAT and Zi-LN, respectively. . . . . . . . . . . . . . . . . . . . . . . . 215

B.9 [Simulation 3] Posterior predictive estimates of the marginal distribution
of log-transformed counts for three arbitrarily chosen OTUs, OTUs 67
and 118 of group 1 and OTU 47 of group 2 for model checking. Crosses are
log-transformed observed counts after normalization based on a posterior
estimate of the scale factors rim. . . . . . . . . . . . . . . . . . . . . . . 216

B.10 [Simulation 4] The upper right and lower left triangles of a heatmap
illustrate the estimates ρ̂mm

′
jj′ of correlations and their truth, respectively.

The horizontal and vertical lines are to divide the groups. The estimates
in panels (a)-(c) are from Sp-BGFM, MOFA and SPIEC-EASI. . . . . . 218

xiv



B.11 [Simulation 4] The posterior mean estimates of rim are plotted against
the logarithm of the total counts, Ñim = log(
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Abstract

Flexible Bayesian Modeling of Multivariate Count Data

by

Shuangjie Zhang

The analysis of multivariate count data presents significant statistical challenges due to

its discrete nature, excess zeroes, over-dispersion, and high dimensionality, which are

often encountered in practical applications. These challenges are further complicated

by the presence of covariates. Traditional methods frequently struggle with these com-

plexities, potentially leading to inferior performance in estimating feature abundance

and their dependencies. This thesis develops flexible Bayesian statistical methodologies,

particularly for cases where the distribution of a multivariate random vector exhibits

non-Gaussianity, heterogeneity, and heteroscedasticity, using count table data from mi-

crobiome studies as motivating examples. First, we propose a Bayesian zero-inflated

rounded log-normal kernel method that infers feature interdependencies through the

covariance between features measured in counts. We employ a factor model that as-

sumes a lower-dimensional structure for the covariance matrix, and impose joint sparsity

on its factor loadings using a Dirichlet-Laplace (Dir-Laplace) prior. This sparse spiked

covariance structure reduces the number of parameters and robustifies the estimation in

high-dimensional settings. A regression model is used to characterize changes in mean

feature abundance with covariates, and a Bayesian nonparametric approach is adopted

to handle large variability across samples. For problems involving multiple count ta-

xix



bles obtained from different groups, we extend the sparse factor model and develop a

Bayesian group factor model that infers within-group and across-group feature inter-

dependencies. We incorporate a flexible infinite mixture of log-normal rounded kernels

through the Dirichlet process prior directly for count vectors and construct a Dirichlet-

Horseshoe (Dir-HS) shrinkage prior for factor loadings to more efficiently induce joint

sparsity for the greater number of features in a multiple group setting. Lastly, we de-

velop a covariate-dependent factor model that flexibly estimates heteroscedasticity in

the covariance matrix due to covariates, addressing the problem of the mean and co-

variance structure of a multivariate count vector varying with covariates. Our approach

employs covariance regression through linear regression on the lower-dimensional factor

loading matrix. This formulation, combined with joint sparsity imposed by the Dir-HS

prior, provides robust estimation of covariate-dependent covariance in high-dimensional

settings. For all developed models, we carefully explore their properties and perform ex-

tensive simulation studies to examine their performance. In addition, real data examples

from microbiome studies are used for illustration.
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Chapter 1

Introduction

In the realm of statistical analysis, multivariate count data presents unique

challenges and opportunities. This data type, characterized by observations that are

discrete and typically represent counts of occurrences, is pervasive in various fields such

as genomics (Schloissnig et al., 2013), epidemiology (Papoz et al., 1996), social sciences

(Böhning et al., 1997), and marketing (Ravishanker et al., 2016). The complexity in-

creases exponentially when dealing with high-dimensional data, where each observation

consists of counts across numerous variables. Traditional statistical methods often falter

under these complexities due to the discrete nature and the high dimensionality of the

data. Over a long history of tackling the discreteness obstacle, adding a small pseudo-

count plus a transformation is a common strategy, such as square root transformation

(Bartlett, 1936) and log transformation (Sokal and Rohlf, 1995) among many others.

The primary purpose of the transformation is to let transformed data meet the assump-

tions required for statistical methods for continuous data, such as linear regression,
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ANOVA, and t-tests. The generalized linear model(GLM) (Myers and Montgomery,

1997) is another popular approach which utilizes Poisson distribution or negative bino-

mial distribution for the count data. GLM generalizes linear regression by allowing the

linear model to be related to counts via a link function. However, multivariate Poisson

distribution or multivariate negative binomial distribution still requires more founda-

tion for practical use. Alternatively, copula models can be used as a statistical tool for

modeling multivariate count data(e.g. Safari-Katesari et al. (2020)). A copula allows

for modeling of dependencies between random variables, regardless of their marginal

distributions. This is particularly useful in multivariate settings where traditional mod-

els struggle with capturing complex dependencies. Some common choices are modeling

each count variable with an appropriate marginal distribution (e.g., Poisson(Cook et al.,

2010), Negative Binomial(Shi and Valdez, 2014), Zero-Inflated models(Alqawba and

Diawara, 2021)) while using the copula to flexibly capture the complex dependencies

between them.

High-dimensional count data often exhibit intricate patterns of covariance that

need to be accurately captured to make meaningful inferences. Ignoring these depen-

dencies can lead to biased estimates of mean structure and suboptimal model fit. The

dependence structure itself is also of interest for inference. Additionally in the high-

dimensional setting, the number of features exceeds the number of samples, further

making traditional estimates of covariance biased and unstable. Dimensionality re-

duction techniques offer a solution by transforming the high-dimensional data into a

lower-dimensional space, and regularization approaches have been proposed for large co-
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variance estimation. Wu and Pourahmadi (2003); Bickel and Levina (2008b) construct

covariance estimators via banding the sample covariance matrix directly and banding

the Cholesky factor matrix of the precision matrix. Bickel and Levina (2008a); Rothman

et al. (2009) combine thresholding with shrinkage and study generalized thresholding

of the sample covariance matrix in high dimensions. Among those, factor analysis

is a commonly used method in Bayesian inference to access multivariate dependence

(Rummel, 1988). The factor model identifies a smaller number of unobservable latent

variables, known as factors, that account for the covariance among the observed vari-

ables. The basic premise of factor analysis is that many variables are influenced by

common underlying latent factors, which can significantly simplify the data structure

without losing essential information. Bernardo et al. (2003) propose the Bayesian factor

model to reduce dimensionality in two ways: the number of latent factors smaller than

dimension and the factor loadings matrix having a lot of zeros. This structure is well

motivated in many biomedical applications. To further induce sparsity on the factor

loading matrix, a variable selection-type mixture prior has been designed for loadings

(Lucas et al., 2006; Carvalho et al., 2008). Heavy-tailed default prior (Ghosh and Dun-

son, 2009), multiplicative gamma process shrinkage prior (Bhattacharya and Dunson,

2011) and Dirichlet-Laplace prior (Bhattacharya et al., 2015) are also developed for

efficient shrinkage and robust estimate of large covariance matrix. Recently, extended

methodologies of factor model such as group factor analysis (Klami et al., 2014; Virtanen

et al., 2012a), multi-study factor analysis (De Vito et al., 2019) and perturbed factor

analysis (Roy et al., 2021) are built for different analyze goals. Although Schiavon et al.
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(2022) proposes generalized factor models for binary data, it still calls for statistical

methods modeling high-dimensional multivariate count tables with added complexity.

In addition, factor models have been used to address the problem of het-

eroscedasticity. The assumption of homoscedasticity, constant variance across all levels

of the covariates, is fundamental for the validity of many statistical techniques, including

all methods mentioned above. However, in real-world applications, this assumption is

often violated when dealing with the phenomenon where the variance-covariance matrix

varies across different combinations of covariates. It presents a new significant challenge

to traditional statistical methods. The implications of heteroscedasticity in univariate

settings have been extensively studied and are well-documented. The development of

a linear or generalized linear model with a link function on the variance can be found

in Carroll and Ruppert (1982); Rutemiller and Bowers (1968); Smyth (1989). Multi-

variate heteroscedasticity, especially in high-dimensional count data, further adds up to

the complexity of estimation with an exponentially increasing number of parameters.

Direct modeling of each element of the covariance matrix, such as in a log scale to

ensure non-negativity (Chiu et al., 1996; Pourahmadi, 2011; Battey, 2017), is hard to

extend in high-dimensional setting. More recently, researchers incorporate covariates

into the dimensionality reduction technique, allowing the lower-dimensional structure

varying with covariates. Pourahmadi (1999) and Hoff and Niu (2012) relate covariates

to the Cholesky decomposition and factor analysis, respectively. Fox and Dunson (2015)

further build a flexible Bayesian nonparametric covariance regression model by putting

a Gaussian process prior on the factor loading matrix. There is very few literature
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addressing the multivariate heteroscedasticity in high-dimensional count data; careful

and thoughtful designs are still needed.

One of the motivating applications of multivariate count data in this thesis is

microbiome data which comprises the collective genomes of microorganisms in experi-

mental subjects (Marchesi and Ravel, 2015). Contemporary studies have demonstrated

that microbes, such as bacteria, viruses and fungi, play an important role in the process

of disease infection and illness recovery (Lloyd-Price et al., 2019; Verbanic et al., 2020).

Through high-throughput sequencing (HTS) sequencing or shotgun metagenomic se-

quencing technologies, it generates multivariate Operational Taxonomic Units (OTUs)

for downstream analysis. OTU tables are multivariate count tables, where each vari-

able represents the abundance of an OTU in a sample. Analyzing OTU tables, such as

inferring interaction between microbes, helps to understand the mechanism of micro-

bial ecology and interactions between microbes. Besides the aforementioned statistical

challenges in modeling multivariate count vectors, there are additional complexities due

to compositionality; the raw counts do not reflect absolute abundance but rather are

relative abundance compared to the other counts, due to the experimental artifacts such

as the sequencing depth. To make counts more comparable across samples, a normal-

ization is required. For example, SparCC (Friedman and Alm, 2012) normalizes raw

counts by adding pseudo counts and then dividing by the sample’s total counts. It

models log-transformed ratios of these normalized counts to infer correlations between

OTUs through sparse networks. Similarly, CCLasso in Fang et al. (2015) uses ℓ1 penalty

to estimate the correlation network of log-transformed counts. Kurtz et al. (2015) devel-
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ops SPIEC-EASI first applying the centered log-ratio (clr) transformation to raw OTU

counts. It then uses graphical lasso (Friedman et al., 2008), a popular penalized method

outputting the association of undirected graphs, to obtain a robust precision matrix es-

timate. See REBECCA (Ban et al., 2015), COAT (Cao et al., 2019), MOFA (Argelaguet

et al., 2018) and ZI-MLN (Zhang et al., 2023a) for more. Copula-based methods such

as SparseDOSSA(Ma et al., 2021) fit a penalized multivariate Gaussian copula model

with a zero-inflated log-normal distribution on the absolute count abundances. Deek

and Li (2023) proposes using copula models with a zero-inflated beta marginal to es-

timate covariance between taxa using normalized microbial relative abundance data.

Although several methods exist for inferring microorganism interactions in microbiome

studies, there is still a need for comprehensive approaches to address all aforementioned

challenges.

The contribution of this work is the development of Bayesian modeling tech-

niques for multivariate count data, focusing on methods that effectively manage dis-

crete high dimensionality and intricate covariance structures. Bayesian methods offer

a robust framework for incorporating prior knowledge and uncertainty, making them

particularly suitable for complex data structures (Gelman et al., 1995). In the context

of multivariate count data, Bayesian models can effectively handle the intricacies of dis-

crete distributions and allow for the explicit modeling of covariance structures through

hierarchical models and latent variable approaches. The proposed methods can uncover

underlying relationships between variables, providing insights that might be missed by

simple models. In addition, they carefully address other complexities commonly arising

6



from count table data analysis; excess zeros, over-dispersion and large variability across

samples, using flexible Bayesian nonparametric methods.

We begin first by constructing a Bayesian zero-inflated log-normal rounded

kernel model in Chapter 2. The rounded kernel model (Canale and Dunson, 2011)

introduces latent multivariate log-normal variables to model the interaction between

counts. We put a sparse factor model with Dirichlet Laplace prior (Bhattacharya et al.,

2015) on the factor loading matrix and induce sparsity on the covariance matrix of the

multivariate log-normal kernel. The model also performs model-based normalization es-

timation and estimates the differential abundance of count features associated with co-

variates through a log-linear regression. The zero-inflation proportion and heavy-tailed

log-normal distribution account for zeros and over-dispersion in count data. Simula-

tion studies show the proposed model identifies count abundance differences and yields

covariance estimates with favorable accuracy compared with the alternatives. The pro-

posed model is applied to analyze two real datasets: skin microbiome data and human

gut microbiome data.

Chapter 3 describes a sparse Bayesian group factor model for the analysis of

multiple multivariate count data to obtain desired inferences among multiple sources of

count tables. This approach uses Bayesian nonparametric mixtures of rounded multi-

variate log-normal kernels to obtain a flexible joint distribution of count vectors. An-

other primary novelty of this method is constructing a new Dirichlet-Horseshoe (Dir-HS)

shrinkage prior on the joint sparsity of factor loadings. We carefully study the property

of the new prior and compare it to existing priors. The nonparametric approach flexibly
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addresses excess zeros and heterogeneity issues. Extensive numerical studies indicate the

model’s superior recovery of the underlying data-generating process of multiple count

tables. We apply the model to analyze multi-domain skin microbiome data. The model

outputs valuable abundance estimates for different types of microbes and reveals the

associations among domains.

We build a Bayesian covariate-dependent rounded kernel model in Chapter 4

to provide insight into covariate effects on interactions in a count vector. The model

follows the covariance regression strategy with a graceful multiplicative effect on the

factor loading matrix, allowing the covariance to vary with general covariates. The para-

metric construction gains computational efficiency in estimating the high-dimensional

covariance matrix of each sample, significantly reducing the number of parameters to

estimate. A flexible Dirichlet process mixture (DPM) model is used for the count dis-

tribution, helping to address the aforementioned challenges of count data. A regression

formulation is used on the mean abundance to detect covariate effects on the count

abundance. Thus, this method simultaneously explores covariate effects on the mean

and the covariance of the count. We use our model to analyze a mice gut microbiome

dataset.

Finally, chapter 5 summarizes the main contributions of this thesis, and con-

cludes with some possible future extensions.

8



Chapter 2

Bayesian Modeling of Interaction

between Features in Sparse Multivariate

Count Data with Application to

Microbiome Study

2.1 Introduction

High-throughput sequencing (HTS) technologies in microbial ecology gener-

ate multivariate count data to characterize and analyze microbial communities from a

variety of habitats such as human body sites, soil and water. Widely used sequenc-

ing methods in microbiome research include 16S ribosomal RNA (rRNA) sequencing

and shotgun metagenomic sequencing (Jovel et al., 2016). 16S rRNA gene sequencing

utilizes PCR to target and amplify some portions of the bacterial 16S rRNA subunit
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gene for sequencing. The sequence reads are then clustered based on their similarity

into operational taxonomic units (OTUs), which represent bacteria types. Following

some initial preprocessing procedures, 16S rRNA sequencing data is summarized into a

large count matrix (referred to as an OTU table) for downstream analyses, where the

columns represent samples, and the rows contain multivariate count vectors of sequences

corresponding to OTUs in the samples. Different from marker gene-based community

profiling, shotgun metagenomic sequencing sequences a sample’s entire metagenome

and offers finer resolution at a higher cost. After some bioinformatic preprocessing, it

also produces multivariate count table data that has structure and properties similar

to those of an OTU table for downstream analyses. 16S rRNA sequencing datasets

are used for illustrations of the statistical method developed in this work, but it can

be considered for analysis of the data generated by either sequencing technique. We

note that their analysis units are different, and the resulting statistical inferences may

have different biological interpretations. In the human gut microbiome data, one of our

real data examples in § 2.4.2, 16S rRNA sequencing data was collected to study how

the composition of the gut microbiome is associated with inflammatory bowel disease

(IBD) such as Crohn’s disease (CD) or ulcerative colitis (UC) (Lloyd-Price et al., 2019).

Understanding how the composition of the human gut microbiome is associated with

covariates such as disease status and age is important to provide insights on its role

in human health and disease. Also, detecting and investigating the structure of mi-

crobial interactions is critical to better characterize microbial communities. Accurately

accounting for the interactions can further improve the quantification of covariate effects
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on microbial abundances.

HTS sequencing data in microbiome study presents various challenges for sta-

tistical analysis due to high dimensionality and some added complexity. Total OTU

counts vary in samples due to experimental artifacts such as the sequencing depth, and

raw counts do not reflect actual microbial abundances (called compositionality). Conse-

quently, normalization of OTU counts is needed for meaningful comparison across sam-

ples. In addition, the high-dimensional structure with excess zeros and over-dispersion

further complicates the analysis of an OTU table and calls for flexible statistical mod-

els. While various statistical models have been proposed for microbiome data analysis,

most existing methods focus on either inference on the effects of environmental fac-

tors (i.e., covariate) on microbial abundances or their absence/presence or inference

on associations between microbes. For studying associations with covariates, general-

ized regression models are popular. For example, Poisson or negative binomial (NB)

regression models are one of the common approaches, where covariates are related to

expected counts through a log-linear regression framework. Those models include sam-

ple size factors for normalization. Zero-inflated (ZI) Poisson or ZI-NB models are also

utilized to address excess zeros. Under a ZI model, a count is distributed as a mix-

ture, a component of which is the distribution with a point mass of one at zero. See

Li et al. (2017), Zhang et al. (2017), Jiang et al. (2021), Shuler et al. (2021a) among

many others, for examples of using Poisson or NB regression models. Another common

regression approach uses multinomial or ZI multinomial models, where a similar log-

linear regression framework is used to relate covariates to (unconstrained) occurrence
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probability vectors, e.g., Xia et al. (2013), Wadsworth et al. (2017), Ren et al. (2017),

Tang and Chen (2019) and Grantham et al. (2020) among many others. In particular,

Grantham et al. (2020) proposed a Bayesian multinomial regression model that assumes

a mixed effects model for unconstrained occurrence probabilities and uses a latent factor

model for the covariance matrix of the prior distribution of the unconstrained proba-

bilities. However, the implication of the covariance among unconstrained probabilities

for microbial interactions is not clear due to the fixed total count constraint under the

assumed multinomial distribution. Approaches of using a Dirichlet-tree multinomial

model were also proposed to exploit the tree structure information via a phylogenetic

tree, e.g., Wang and Zhao (2017), Mao et al. (2020) and Wang et al. (2021). They

assume potential associations between microbes that have similar sequences but do not

attempt to infer microbial interactions. Alternatively, Paulson et al. (2013) assumed

a univariate log-normal distribution for individual counts after adding a pseudo count

to observed counts and used regression to relate covariates to OTU abundances. For

inferences on microbial interactions, correlations between pairs of microbes based on

some transformed OTU counts are commonly used as a measure. The task of estimat-

ing correlations between microbes is complicated due to the aforementioned challenges.

Centered-log-ratio (clr) transformation is usually applied to raw counts prior to analy-

sis for compositionality, and small pseudocounts are added to avoid numerical issues of

excess zeros. To address high dimensionality, an additional structure such as sparsity

through ℓ1 penalty is often imposed on the covariance matrix or precision matrix for

reliable inference. For example, SparCC in Friedman and Alm (2012) normalizes raw
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counts by sample total counts after adding pseudo counts and models log-transformed

ratios of the normalized counts to infer correlations between OTUs. CCLasso in Fang

et al. (2015) models log-transformed counts and provides a least squares estimate of a

correlation matrix with ℓ1 penalty under some constraint for compositionality of micro-

biome data. SPIEC-EASI in Kurtz et al. (2015) builds an undirected graphical model

for clr transformed data and yields inference on an association network between OTUs

through a precision matrix. Sparsity is assumed for the underlying association network.

Schwager et al. (2017) uses a Bayesian log-normal graphical model for unconstrained

counts. A LASSO prior is used for the precision matrix. Similarly, Prost et al. (2021)

developed a likelihood-based zero-inflated log-normal graphical model (Zi-LN) that ap-

propriately accounts for excess zeros in microbiome data. Graphical LASSO (Friedman

et al., 2008) is used for estimation of the precision matrix. While existing methods can

provide useful insights on microbial communities, methods that jointly infer associations

between microbes and their associations with covariates are still lacking. Furthermore,

statistical methods that carefully address excess zeros, compositionality and high di-

mensionality are needed for accurate inference on the associations.

To obtain a better understanding of the underlying biological processes, we

develop a Bayesian rounded kernel regression model with zero inflation. The model

enables a direct assessment of interrelationships between OTUs and their associations

with covariates. The developed method directly models raw counts and simultaneously

performs model-based normalization through random sample scale factors for composi-

tionality. Specifically, we use a multivariate log-normal distribution as the kernel and
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define multivariate count responses Y = (Y1, . . . , YJ) of J OTUs in terms of multivariate

log-normal latent variables Y⋆ = (Y ⋆
1 , . . . , Y

⋆
J ) using fixed thresholds. We then relate

covariates x to the mean vector µ of the distribution of Y⋆ through regression and use

the covariance matrix Σ to characterize interrelationship among OTUs. µ also includes

sample size factors for normalization. For Σ, we assume joint sparsity to reliably learn

a high dimensional covariance structure with a small sample size. Sparsity assumption

is commonly used in the covariance matrix estimation when p ≫ n (e.g., Cai et al.

(2016), Pati et al. (2014), Gao and Zhou (2015), Xie et al. (2018)). Specifically, we de-

velop a joint sparse latent factor model for Σ, where we let the number of factors much

smaller than the number of OTUs (features), and a majority of OTUs can have factor

loadings close to zero, i.e., feature selection. The model greatly reduces the number

of parameters to estimate and provides a simple interpretation of the interrelationship

structure. The representation of the model with independent latent factors also allows

introducing zero inflation in a convenient manner. The model appropriately accounts

for excess zeros due to the absence of an OTU or the undersampling of a rare OTU,

and Σ provides inferences on the interrelationship structure among OTUs present in a

sample. In addition, overdispersion is accommodated through random effects, resulting

in further improvement in the inference.

In the remainder of this chapter, we describe the model and its applica-

tions. § 2.2 describes the zero-inflated multivariate log-normal kernel model (called

“ZI-MLN”), and § 2.3 has results of simulation studies to evaluate the performance of

our method. § 2.4 has results from the model applied to two real datasets, and § 2.5
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concludes with some discussion of the results and areas of future research.

2.2 Statistical Model

2.2.1 Sampling Distribution and Prior Specification

Consider multivariate count data obtained for J OTUs in a microbiome study.

We let Yi = (Yi1, . . . , YiJ) denote a J-dimensional random count vector of OTU counts

of sample i = 1, . . . , N taken from subject gi ∈ {1, . . . ,M}, where Yij ∈ N0 is the

count of OTU j = 1, . . . , J in sample i. We let nm be the number of samples taken from

subject m and have N =
∑M

m=1 nm. In addition, data may include a set of P covariates,

xi = (xi1, . . . , xiP ). Our skin microbiome dataset in § 2.4.1 consists of observed counts

of 187 OTUs in 20 samples, one sample from each of 20 subjects. The dataset does

not have covariates besides the subject factor. Human gut microbiome data in § 2.4.2

includes 67 samples collected from multiple biopsy sites of 37 patients. 107 OTUs are

included with covariates such as disease phenotype and age for analysis. The model

simultaneously infers the interaction structure of OTUs and the differential abundance

of OTUs by covariates. It can also be easily simplified if no covariate is available, as we

will show later.

We consider a Bayesian rounded multivariate log-normal kernel model for Yi

in Canale and Dunson (2011). We first introduce continuous latent variables Y⋆
i =
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(Y ⋆
i1, . . . , Y

⋆
iJ) with Y

⋆
ij ∈ R+, i = 1, . . . , n and j = 1, . . . , J , and assume

Y⋆
i | µi,Σ

indep∼ log-NJ(µi,Σ), (2.1)

where parameters µi = (µi1, . . . , µiJ)
′ ∈ RJ and Σ > 0. In (2.1), we have the

mean E(Y ⋆
ij | µi,Σ) = exp(µij +

1
2Σjj), the median Q0.5 = exp(µij) and covariance

Cov(Y ⋆
ij , Y

⋆
ij′) = exp{µij+µij′+1

2(Σjj+Σj′j′)}{exp(Σjj′)−1} = E(Y ⋆
ij)E(Y

⋆
ij′){exp(Σjj′)−

1}. We next use a threshold function to relate Y ⋆
ij to Yij by letting Yij = yj if

yj ≤ Y ⋆
ij < (yj + 1). The multivariate log-normal density is zero for a vector with

negative values, and the kernel defines a valid multivariate distribution for Y. We

further let Ỹ⋆
i = (Ỹ ⋆

i1, . . . , Ỹ
⋆
iJ) with Ỹ

⋆
ij = log(Y ⋆

ij) ∈ R and have

P(Yi = yi | µi,Σ) =
∫
A(yi)

fy⋆(y⋆ | µi,Σ)dy⋆

=

∫
Ã(yi)

ϕJ(ỹ
⋆ | µi,Σ)dỹ⋆,

(2.2)

where fy⋆ represents the density function of the J-dimensional log-normal distribution

with parameters µi and Σ, and ϕJ the density function of a J-dimensional normal distri-

bution. The regions of integration are A(yi) = {y⋆ | yi1 ≤ y⋆1 < yi1 + 1, . . . , yiJ ≤ y⋆J <

yiJ+1} and Ã(yi) = {ỹ⋆ | log(yi1) ≤ ỹ⋆1 < log(yi1+1), . . . , log(yiJ) ≤ ỹ⋆J < log(yiJ+1)}.

The properties of the distribution of Yij ’s such as their means and covariances can be

easily computed from (2.2). For example, we find E(Yij | µij ,Σjj) =
∑∞

b=0 bP(Yij = b |

µij ,Σjj) with P(Yij = b | µij ,Σjj) = Φ1(log(b+1) | µij ,Σjj)−Φ1(log(b) | µij ,Σjj), where

Φd(· | a,B) is the cdf of the d− variate normal distribution with mean a and (co)variance
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B. A large value of µij thus implies high abundance of OTU j in sample i. We express µi

as a function of covariates, sample-size factor and OTU-size factor. The factors account

for differences in sample total counts and variability in baseline OTU abundances. We

will give a regression model for µi below. We can also compute variances and covariances

of the counts. In particular, Cov(Yij , Yij′ | µi,Σ) =
∑∞

b=0

∑∞
b′=0 bb

′P(Yij = b, Yij′ = b′ |

µi,Σ)−E(Yij | µij ,Σjj)E(Yij′ | µij′ ,Σj′j′). P(Yij = b, Yij′ = b′ | µi,Σ) can be computed

with a bivariate normal distribution in a way similar to P(Yij = b | µij ,Σjj). Under

(2.2), the counts of OTUs j and j′ are dependent if Σjj′ ̸= 0. That is, Σ characterizes

microbial interactions with a straightforward interpretation. In addition, overdispersion

is known to be common in sequencing data and can be properly accommodated through

heavy tails of a log-normal distribution.

We next build a prior distribution for Σ. The number of OTUs J is often

much greater than the sample size N in microbiome studies, i.e., J ≫ N . In a high-

dimensional setting, the sample covariance matrix is singular and provides an unstable

estimate for Σ. To overcome the difficulty, it is common that structural assumptions

are imposed on Σ (Cai et al., 2016). For example, Friedman et al. (2008), Bien and

Tibshirani (2011) and Cai et al. (2011) consider the sparsity assumption that most of

the elements in Σ (or Σ−1) are zero or negligible for marginal independencies between

features (or conditional independencies). In particular, ℓ1 penalty is used to shrink

the elements of Σ (or Σ−1) to zero. Alternatively, a low-rank structure is considered,

sometimes jointly with the sparsity assumption (called joint sparsity). For example, see

Cai et al. (2015); Bhattacharya et al. (2015) and Xie et al. (2018). The joint sparsity
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structure allows to achieve good theoretical properties, such as faster minimax rate of

convergence and tighter posterior contraction rate for estimating a covariance matrix

(Cai et al., 2015; Xie et al., 2018). Taking the latter approach, we first decompose Σ as

Σ = ΛΛ′ + σ2IJ , (2.3)

where λj = [λj1, . . . , λjk]
′ and Λ = [λ′

1, . . . ,λ
′
J ]

′ is a J ×K factor loading matrix with

K ≪ J . The model assumes most of the covariance structure between OTUs is explained

by a small number of factors to obtain a more accurate and reliable estimate of Σ in the

case of N ≪ J . We assume an isotropic noise and consider a conditionally conjugate

prior distribution σ2 ∼ inv-Ga(aσ, bσ) with fixed aσ and bσ for easy computation. If

needed, independent idiosyncratic noise can be considered by letting Σ = ΛΛ′+diag(σ2j )

and σ2j
iid∼ inv-Ga(aσ, bσ). We introduce joint sparsity on Σ by considering a Dirichlet-

Laplace prior in Bhattacharya et al. (2015),

τk | aτ , bτ
iid∼ Ga(aτ , bτ ),

ϕ = (ϕ1, . . . , ϕJ) | aϕ ∼ Dir(aϕ, . . . , aϕ), (2.4)

λjk | ϕj , τk
indep∼ DE(ϕjτk),

where DE(a) represents the double-exponential (Laplace) distribution with scale pa-

rameter a, and Ga(a, b) is the gamma distribution with shape parameter a and scale

parameter b (so mean a/b). Under the model in (2.4), a small value of ϕj shrinks λjk
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toward zero for all k, and Σjj′ tends to have small values for all j′. That is, ϕj induces

joint sparsity for Σ together with K. OTUs with a small value of ϕj may be those

less interacting with other OTUs. The model provides an easy interpretation of the

interrelationships between OTUs and reliable inference even for cases with N ≪ J .

The double-exponential distribution for λjk has heavier tails and a more pointed center

than the normal distribution that is a convenient choice, and facilitates sparsity in λjk,

resulting in sparsity in Σ. Theorem 3.1 of Bhattacharya et al. (2015) proves that when

aϕ is set to be J−(1+b) for any b > 0, the posterior contraction rate of λjk achieves the

minimax rate. However, our simulation studies show that the model with aϕ = 1/J

tends to overshrink λjk even when only a small number of OTUs interact, and we fix

aϕ = 1/2 with soften conditions for the contraction rate. We fix the factor dimension K

at a reasonably large value for computational convenience. If desired, an exponentially

decaying prior such as a Poisson distribution can be placed on K to attain optimal pos-

terior contraction rate (Pati et al., 2014). Pati et al. (2014) used the Dirichlet-Laplace

prior for vectorized loadings vec(Λ) in a Bayesian factor model for a multivariate normal

outcome vector with mean zero and did not attempt to induce a joint sparsity structure.

Xie et al. (2018) used a spike-and-slab prior for ϕj and developed a matrix spike-and-slab

LASSO prior under the Gaussian sampling distribution assumption. However, placing

spike-and-slab priors for individual matrix elements may cause computational difficul-

ties, especially for large J . Similar to Bhattacharya and Dunson (2011) and Xie et al.

(2018), we do not place any constraints on Λ such as orthogonality of the columns nor

attempt to interpret latent factors since the primary interest of inference is on Σ.
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We re-write the model in (2.1) and (2.3) by introducing a latent normal vector

ηi
iid∼ NK(0, IK);

Ỹ ⋆
ij | µij ,λj ,ηi, σ2

indep∼ N1(µij + λ
′
jηi, σ

2). (2.5)

By integrating over ηi, we obtain the normal distribution with covariance matrix Σ

in (2.3) for Ỹ⋆
i . The conditional independence between Ỹ ⋆

ij given ηi in (2.5) greatly

facilitates the posterior computation. Furthermore, it enables easy implementation of

a zero-inflated model. Excess zeros in microbiome data are very common. If excess

zeros are not compatible with the distribution in (2.2), the resulting inferences can be

distorted. For a zero-inflated model, we introduce binary indicators δij that represent

the absence/presence of OTUs, and assume δij | ϵij
indep∼ Ber(ϵij), where ϵij is the

probability of OTU j being absent in sample i. We let δij = 1 indicate the absence of

OTU j in sample i, so Yij = 0. Given δij = 0, we assume, for y = 0, 1, 2, . . .,

P(Yij = y | µij ,λj ,ηi, σ2, δij = 0) = Φ1(log(y + 1) | µij + λ′
jηi, σ

2)

−Φ1(log(y) | µij + λ′
jηi, σ

2).

(2.6)

Given the presence of an OTU, the model in (2.6) generates counts, some of which can

be zero. Given δi = (δi1, . . . , δiJ), a vector of Ỹ ⋆
ij with δij = 0 follows a multivariate

normal distribution, and its mean vector and covariance matrix are a subvector of µi

omitting the elements with δij = 1 and a submatrix of Σ omitting the rows and columns

with δij = 1, respectively. That is, µi and Σ provide inferences on the mean abundance
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and interrelationship structure even when the zero inflation component is added to the

model. We relate covariates xi to the probability of δij = 1 by using a probit link

function,

ϵij = Φ1(κj0 + x′
iκj | 0, 1), (2.7)

where κj0 and κj = (κj1, . . . , κjP )
′ are parameters that quantify the effects of xi on ϵij .

We consider a normal distribution for the prior of κjp, κjp
iid∼ N(κ̄p, u

2
κ), p = 0, . . . , P .

With a high proportion of zero counts, adding subject specific random effects into ϵij

may produce unstable model fitting (Agarwal et al., 2002). Thus, the model in (2.7)

does not include subject specific random effects.

Lastly, we relate covariates xi and subject-specific group factors gi to the mean

OTU abundances through µij ;

µij = ri + αj + x′
iβj + sgi,j . (2.8)

ri and αj are sample size factors and OTU size factors, respectively. The observed

OTU counts are a product of both the library size (total number of reads) and the OTU

baseline abundance. ri’s normalize OTU counts across samples, and αj ’s account for

variability in OTU baseline abundances. We let ri and αj random. Thus, the model

performs model-based normalization and addresses compositionality. We will specify

priors of ri and αj below. In (2.8), regression coefficients βjp quantify the change in
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the abundance of OTU j from the mean abundance by xip (so-called a factor effects

model in an ANOVA setting). Under the formulation, choosing a reference category

for a categorical covariate is not required, and an implicit assumption of the presence

of an OTU under the arbitrarily chosen reference category is not needed to infer the

effects of the other categories. When any covariate is categorical, xi in (2.8) is different

from that in (2.7) due to a different parameterization of the covariate. An example

will be illustrated in § 2.3.2. When no covariate is available as in Simulation 1 in

§ 2.3.1 and the skin microbiome data in § 2.4.1, we simply drop the regression terms

x′
iκj and x′

iβj from (2.7) and (2.8), respectively, and use the simplified model to infer

OTU interaction structure. sgi,j ’s in (2.8) are random effects to account for between-

subject heterogeneity and induce dependence among the samples collected from the

same subject. We assume normal priors βjp
iid∼ N(0, u2β) with fixed u2β. In addition,

we place a sum-to-zero constraint on the prior of βjp’s corresponding to the categories

of a categorical covariate, and the model ensures meaningful inference on βjp. If de-

sired, a joint prior distribution of κj and βj can be consider. For example, we assume

(κ′
j ,β

′
j)

′ iid∼ N(0,V ), and V accommodates potential association between covariates’

effects on presence/absence of an OTU and their effects on the abundance of the OTU.

We let sgi,j | u2s
iid∼ N(0, u2s) and u

2
s ∼ Ga(as, bs). Due to sgi,j , the marginal covariance

matrix of Ỹ⋆
i is Ω = Σ+u2sIJ , and the marginal correlations between OTUs j and j′ are

ρjj′ = {Σjj′+u2s1(j = j′)}/
√

(Σjj + u2s)(Σj′j′ + u2s) ∈ (−1, 1). While any of parameters,

Σ, Ω and ρjj′ , can be considered as a measure of dependence between OTUs, we use

ρjj′ for easy interpretation in the simulation studies and real data analyses illustrated
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later.

Recall that the mean and median of Y ⋆
ij are proportional to exp(ri + αj),

implying that ri and αj are not identifiable. To circumvent potential identifiability

issues, we follow Li et al. (2017) and use the mean-constrained prior with a mixture of

mixture of normals on ri and αj ;

ri | ψr,ωr, ξr
iid∼

Lr∑
l=1

ψrl

{
ωrlN(ξ

r
l , u

2
r) + (1− ωrl )N

(
vr − ωrl ξ

r
l

1− ωrl
, u2r

)}
,

αj | ψα,ωα, ξα
iid∼

Lα∑
l=1

ψαl

{
ωαl N(ξ

α
l , u

2
α) + (1− ωαl )N

(
vα − ωαl ξ

α
l

1− ωαl
, u2α

)}
,

(2.9)

where vr and vα are prespecified mean constraints for the distributions of ri and αj ,

respectively. u2r and u2α are fixed. Different from a multinomial model that conditions

on sample total counts, our model assumes E(Y ⋆
ij | µij ,Σ) ∝ exp(µij) = exp(ri +

αj + x′
iβj + sgi,j) in (2.8), and simultaneously performs model-based normalization

through random ri’s. It flexibly accounts for compositionality in microbiome data and

improves the inference on parameters of primary interest compared to a model using

plug-in empirical estimates for normalizing factors (Shuler et al., 2021a). To specify

the value of vr, we obtain sample scale factor estimates by the cumulative sum scaling

(CSS) normalization method in Paulson et al. (2013), and fix vr at the average of those

estimates. Specifically, we let vr = 1
N

∑N
i=1 log(

∑J
j=1|Yij≤qi Yij), where qi is set as the

largest quantile such that the difference in quantiles across samples is small enough.

Then we set vα = 1
NJ

∑N
i=1

∑J
j=1 log(Yij+0.01)−vr. Lee and Sison-Mangus (2018) and

Shuler et al. (2021a) showed that overall means ri+αj can be well estimated under the
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mean-constrained prior and their posterior inference is not sensitive to the choice of vr

and vα. To complete the specification of the mean-constrained prior, we place Dirichlet

priors for ψχ = (ψχ1 , . . . , ψ
χ
Lχ) and beta priors for ωχl , χ ∈ {r, α}, ψχ ∼ Dir(aχψ, . . . , a

χ
ψ)

and ωχl
iid∼ Be(aχω, b

χ
ω), where the hyperparameters aχψ, a

χ
ω and bχω are fixed. Finally, we

set ξχl
iid∼ N(ξ̄χ, v2χ) with fixed ξ̄χ and v2χ. With random mixture weights, ωχl and ψχl ,

and random locations ξχl , the mixture models in (2.9) flexibly capture various shapes

of distributions, while keeping their means at vχ and provide reasonable estimates of

ri + αj .

2.2.2 Posterior Computation

Let θ = {λjk, ϕj , τk, κjp, δij , ηi, σ2, ri, αj , βjp, sgi,j , u2s, ωαl , ψαl , ξαl , ωrl , ψrl , ξrl } be

a vector of all random parameters. We use Markov chain Monte Carlo (MCMC) methods

to draw samples from the posterior distribution of θ. We write a Laplace distribution

in (2.4) as a normal scale mixture to facilitate the posterior computation, and introduce

latent mixture indicators for easy computation in updating ωχl , ψ
χ
l and ξχl , χ ∈ {r, α}.

Given the latent variables, all parameters except for ϕj and ω
χ
l are in standard conjugate

forms and can be easily updated through a data augmented Gibbs step. Details of the

posterior computation are given in Appendix § A.1. We examined the mixing and

convergence of the Markov chains using trace plots and autocorrelation plots and did

not find evidence of poor mixing or bad convergence for both the upcoming simulation

examples and the real data analyses. The open-source code that implements the model

is available online at https://github.com/Zsj950708/ZI-MLN. The detailed instructions
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of implementation are in Appendix § A.2.

2.3 Simulation Studies

2.3.1 Simulation 1

We performed simulation studies and assessed the performance of the zero-

inflated multivariate log-normal kernel model (ZI-MLN). For Simulation 1, we consid-

ered a case where no covariate is included, and each subject has one sample. We fitted

a simplified model that has µij = ri + αj + sgi,j and ϵij = Φ1(κj0 | 0, 1). The simplified

model is useful in estimating the interactions between OTUs for data without covariates.

We let J = 150 OTUs and N = 20 samples, a sample from each ofM = 20 subjects. For

joint sparsity, we set Ktr = 5 and generated ejk
iid∼ Ber(g) with sparsity level g = 0.8.

We then let λtrjk = 0 if ejk = 1 and otherwise, simulated λtrjk
iid∼ Unif(−3, 3). We let Σtr =

ΛtrΛtr,′+σ2,trIJ with σ2,tr = 1. We also simulated random effects strgi,j
iid∼ N(0, u2,trs ) with

u2,trs = 1, sample size factors rtri
iid∼ Unif(3, 7) and OTU size factors αtrj

iid∼ Unif(0, 2). We

then simulated Y⋆,tr
i

indep∼ log-NJ(r
tr
i 1J +α

tr+ stri ,Σ
tr). For excess zeros, we generated

κtrj0
iid∼ Unif(−1, 0) and simulated δtrij | ϵtrj

indep∼ Ber(ϵtrj ) with ϵtrj = Φ1(κ
tr
j0 | 0, 1). We

then let Yij = 0 if δtrij = 1 and otherwise, let Yij = ⌊Y ⋆,tr
ij ⌋. It yielded approximately 40%

of Yij being 0. The lower left triangle of the heatmap in Fig 2.1(a) illustrates the true

marginal correlation matrix ρtrjj′ = {Σtr
jj′ + u2,trs 1(j = j′)}/

√
(Σtr

jj + u2,trs )(Σtr
j′j′ + u2,trs ).

Empirical correlation estimates ρemjj′ are computed using transformed raw counts and

illustrated in Appendix Fig A.2(a). It shows that naive correlation estimates are noisy
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and do not capture the true interrelationship between OTUs.

To fit the model, we set the fixed hyperparameters as follows; For the mean-

constrained priors of ri and αj , we let Lr = 5, Lα = 10, arψ = aαψ = 1, and arω = brω =

aαω = bαω = 5. The values of the mean constraints vr and vα were specified through the

empirical approach described in § 2.2.1. We set the prior mean and variance of κj0,

κ̄0 = 0 and u2κ = 3. Also, we set aσ = bσ = 3 and as = bs = 1. Lastly, we set K = 10,

aϕ = 1/2, aτ = 1 and bτ = 1/50. We simulated posterior samples through MCMC

described in § 2.2.2. We discarded the first 15,000 draws for burn-in and kept the next

15,000 draws for posterior inference. It took 25 minutes for every 5,000 iterations on a

M1 Mac. Assessment of MCMC simulation convergence is discussed in Appendix § A.3.

We also checked the posterior distributions of τk to examine if a greater value of K

is needed. The posterior distributions of some τk’s are greatly concentrated close to

zero, indicating that K = 10 is sufficiently large for the dataset. We also performed

sensitivity analyses to the specification of aϕ and bτ to examine the robustness of the

model in estimating Σ.

Posterior inference on the marginal correlations ρjj′ is illustrated in Fig 2.1.

The heatmap in panel (a) compares posterior mean estimates ρ̂jj′ in the upper right

triangle to their truth ρtrjj′ in the lower left triangle. Panel (b) shows a histogram of the

differences ρ̂jj′−ρtrjj′ , j < j′. In the histogram, the differences are tightly centered around

0, indicating that the method provides good estimates of the correlations. Our method

identifies the truly inactive OTUs successfully, and the true OTU interrelationship struc-

ture is reasonably well captured even when the sample size is much smaller than the
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(a) ρtrjj′ versus ρ̂jj′ (b) ρ̂jj′ − ρtrjj′

Figure 2.1: [Simulation 1] The upper right and lower left triangles of the heatmap in
panel (a) illustrate posterior estimates of correlations ρ̂jj′ and their true values ρtrjj′ ,

respectively. Panel (b) has a histogram of differences between ρ̂jj′ and ρ
tr
jj′ .

number of OTUs (N = 20 and J = 150), and excess zeros are present. Appendix Fig A.3

compares posterior mean estimates of baseline abundances ri + αj and probabilities ϵij

of an OTU being absent to their truth. In the figure, the absence/presence of OTUs

and OTU baseline abundances are well estimated, which provides a crucial basis for the

estimation of the parameters of primary interest, such as Σ. We performed posterior

predictive checking to examine model fit under ZI-MLN. Fig 2.4(a) compares posterior

predictive median estimates ŷ
pred
ij of OTU counts to the observed counts yij and shows

that our model provides a good model fit to the data.

For comparison, we applied SparCC (Friedman and Alm, 2012), SPIEC-EASI

(Kurtz et al., 2015), CCLasso (Fang et al., 2015) and Zi-LN (Prost et al., 2021) that are

briefly described in § 2.1. The comparators infer dependence structure between OTUs

through the estimation of covariance or precision matrix under some sparsity assump-

tions and yield correlation estimates ρ̂jj′ . The tuning parameter for sparsity in SparCC,
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(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

Figure 2.2: [Simulation 1: Comparison] The upper right and lower left triangles of each
heatmap illustrate estimates ρ̂jj′ of correlations between OTUs and their true values
ρtrjj′ , respectively. Panels (a)-(d) are for SparCC, SPIEC-EASI, CCLasso and Zi-LN,

respectively.

Table 2.1: [Simulation 1: Comparison] RMSEs are computed for correlations ρjj′ , j < j′,
binary indicator δij of an OTU being absent in a sample and mean abundance µij under
ZI-MLN and comparators.

Model ρjj′

ZI-MLN 0.130

SparCC 0.258

SPIEC-EASI 0.167

CCLasso 0.166

Zi-LN 0.173

Model δij µij
ZI-MLN 0.084 0.453

ZI-MLN without Λ 0.088 0.543

MetagenomeSeq 0.095 1.717

(a) ρjj′ (b) δij and µij
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SPIEC-EASI and Zi-LN is chosen by cross-validation. ρ̂jj′ under the comparators are

compared to the true values ρtrjj′ in Fig 2.2. Fig 2.3 illustrates histograms of differences

ρ̂jj′ − ρtrjj′ . Root mean square error (RMSE) for ρjj′ , j < j′ for the models including ZI-

MLN is shown in Tab 2.1(a). ZI-MLN outperforms in recovering the dependence struc-

ture between OTUs. Poor performance of the comparators can be because they do not

account for overdispersion and/or excess zeros and/or they lack flexible normalization

for compositionality. In addition, we compare our method to ZI-MLN without Λ, a sim-

pler version of our ZI-MLN, and metagenomeSeq in Paulson et al. (2013) for comparison

of the estimation of µij and δij . We simplified our ZI-MLN by letting Σ = σ2IJ and kept

the remaining model components including zero-inflation and subject-specific random

effects the same. We call it “ZI-MLN without Λ.” MetagenomeSeq is a likelihood-based

model that uses transformed counts log2(yij + 1) and assumes a zero-inflated normal

mixture model separately for individual OTUs, where the mean has a regression func-

tion of covariates, a sample size factor fixed at estimates by CSS normalization method

and an OTU size factor similar to ZI-MLN. Under metagenomeSeq, the zero inflation

probabilities of y are common for all OTUs in a sample and regressed on the sample

total counts through a logit link. An EM algorithm is used to estimate unknown pa-

rameters. The additional comparators do not account for the interrelationships between

OTUs and do not provide any inference on OTU interaction. We compared parameter

estimates of µij and δij under each of the three models, including ZI-MLN, to the truth

and computed RMSE for the parameters, summarized in Tab 2.1(b). The table shows

that our model outperforms the comparators in the estimation of OTU mean abun-
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dances and absence/presence. Especially, comparison to ZI-MLN without Λ indicates

that ignoring the dependence structure among counts when it is present can deteriorate

the inference on the other parameters, including µij . It is also indicated from posterior

predictive checking under ZI-MLN without Λ shown in Fig 2.4(b). Comparison of mean

abundance estimates µ̂ij by metegenomSeq to observed counts in Fig 2.4(c) also shows

potential model misfit under metagenomeSeq.

(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) ZiLN

Figure 2.3: [Simulation 1: Comparison] A histogram of differences between ρ̂jj′ under
SparCC, SPIEC-EASI, CCLasso and Zi-LN and ρtrjj′ , in panels (a)-(d), respectively.

2.3.2 Simulation 2

We conducted Simulation 2 for a case having covariates. We examined the es-

timation of covariate effects on OTU abundances and their presence/absence in addition

to the estimation of Σ. We set the number of OTUs J = 150 and assumed two samples

from each of M = 35 subjects under two experimental conditions. We thus have the

number of samples N = 70 and gi ∈ {1, . . . ,M} with ngi = 2 for all gi. The remaining

setup is similar to that of Simulation 1. We set Ktr = 5, σ2,tr = 1 and u2,trs = 1,

and simulated λtrjk, r
tr
i , α

tr
j and strgi,j , as done in Simulation 1. We included a binary

covariate that represents the experimental conditions using a pair of dummy variables

30



(a) ZI-MLN (b) ZI-MLN without Λ (c) MetagenomeSeq

Figure 2.4: [Simulation 1] Scatter plots of observed log(yij+0.01) versus log(ŷpredij +0.01)
estimated by ZI-MLN with Λ and ZI-MLN without Λ are shown in panels (a) and (b),

respectively. ŷpredij is the median estimate of the posterior predictive distribution. Panel
(c) is the scatter plots of observed log(yij + 0.01) versus log(µ̂ij + 0.01), where µ̂ij are
mean abundances of OTUs estimated by metagenomeSeq.

(xi1, xi2) ∈ {(1, 0), (0, 1)}. The corresponding coefficients βj1 and βj2 thus quantify

changes in mean abundance by a condition compared to the overall mean abundance

rtri + αtrj . In addition, we included a continuous covariate, xi3 generated from N(0, 1),

so we have xi = (xi1, xi2, xi3)
′ with P = 3. For the coefficients, we set βtrjp

iid∼ N(0, 1)

for p = 1, . . . , P . For ϵij , we let x̃i = (xi2, xi3)
′ with Pκ = 2 using xi1 as a refer-

ence category, and simulated κtrjp
iid∼ Unif(−0.5, 0), p = 0, . . . , Pκ. We finally generated

counts Yij as follows; we simulated Y⋆,tr
i

indep∼ log-NJ(r
tr
i 1J+α

tr+x′
iβ

tr+stri ,Σ
tr), with

Σtr = ΛtrΛtr,′ + σ2,trIJ and βtr being a J × P matrix of βtrjp. We also generated binary

indicators δtrij | ϵtrij
indep∼ Ber(ϵtrj ) with ϵ

tr
ij = Φ(κtrj0 + κtr,′j x̃i | 0, 1). We then let Yij = 0 if

δtrij = 1, and let Yij = ⌊Y ⋆,tr
ij ⌋, otherwise. The simulated dataset has approximately 40%

of counts being zero. Fig 2.5(a) and Appendix Fig A.5(a) illustrate the true marginal

correlations ρtrjj′ and their naive empirical estimates ρemjj′ using transformed counts after

the normalization, respectively.
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(a) ρtrjj′ versus ρ̂jj′ (b) ρ̂jj′ − ρtrjj′

Figure 2.5: [Simulation 2] The upper right and lower left triangles of the heatmap in
panel (a) illustrate posterior estimates of correlations ρ̂jj′ and the true values of the
correlations ρtrjj′ , respectively. Panel (b) has a histogram of differences between ρ̂jj′ and

ρtrjj′ .

We specified the fixed hyperparameter values similar to those in Simulation

1. We set Lr = 8 due to a larger sample size. We set u2β = 25 for the prior of βjp

and placed the sum-to-zero constraint for βj1 and βj2 for identifiability. We set κ̄p = 0

for all p and u2κ = 3. The MCMC simulation was run over 30,000 iterations, with the

first 15,000 iterations discarded as burn-in. A discussion on the chain’s convergence and

mixing is in Appendix § A.3.2. It took 0.7 hours on average for every 5,000 iterations

on a M1 Mac.

Fig 2.5 illustrates posterior mean estimates ρ̂jj′ of marginal correlations be-

tween OTUs j and j′, j ̸= j′. The figure shows that the underlying interrelationships

between OTUs are well captured even with small sample size and excess zero counts.

The histogram in panel (b) shows the differences ρ̂jj′−ρtrjj′ are close to zero. Figs 2.6(a)-

(b) and Appendix Figs A.6 (a)-(c) compare regression coefficient estimates, β̂jp and κ̂jp
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(a) ̂βj1 − βj2 versus βtrj1 − βtrj2 (b) β̂j3 versus βtrj3

(c) ZI-MLN with Λ (d) ZI-MLN without Λ

Figure 2.6: [Simulation 2] Panels (a) and (b) compare posterior estimates of regression

coefficients ̂βj1 − βj2 and β̂j3 to the truth βtrj1 − βtrj2 and βtrj3, respectively, where the
vertical lines represent 95% credible intervals. Panels (c) and (d) compare posterior
predictive median count estimates to their observed counts on the logarithm scale,
log(yij+0.01) versus log(ŷpredij +0.01). ZI-MLN with Λ and ZI-MLN without Λ are used

in panels (c) and (d), respectively.

to their true values. From Figs 2.6(a)-(b), posterior mean estimates of βj1 − βj2 and

βj3 are close to the true values. Here, βj1 − βj2 quantifies the difference in the mean

abundances between two categories of the binary covariate. Their posterior 95% credi-

ble intervals capture the truth well. Appendix Figs A.7 shows that posterior estimates

r̂i + αj and ϵ̂ij are also close to their true values. To check the model fit, we compare
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(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

Figure 2.7: [Simulation 2: Comparison] The upper right and lower left triangles of each
heatmap illustrate estimates ρ̂jj′ of correlations between OTUs and their true values
ρtrjj′ , respectively. Panels (a)-(d) are for SparCC, SPIEC-EASI, CCLasso and Zi-LN,

respectively.

(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

Figure 2.8: [Simulation 2: Comparison] A histogram of differences between ρ̂jj′ under
SparCC, SPIEC-EASI, CCLasso and ZiLN and ρtrjj′ , in panels (a)-(d), respectively.

median estimates ŷ
pred
ij of the posterior predictive distributions to the observed counts.

Fig 2.6(c) provides evidence for a good model fit under ZI-MLN.

For comparison, we applied the four comparators that provide estimates of

associations between OTUs, SparCC, SPIEC-EASI, CCLasso and Zi-LN, to the simu-

lated data. The heatmaps in Fig 2.7 and histograms in Fig 2.8 compare their estimates

ρ̂jj′ to the truth ρtrjj′ . RMSE for ρjj′ are computed for comparison between the models

including ZI-MLN. Tab 2.2(a) shows that ZI-MLN outperforms the comparators in esti-

mating the dependencies between OTUs. Note that the comparators do not account for

covariate effects, potentially resulting in poor performance. Also, we applied three other

comparators, ZI-MLN without Λ, metagenomeSeq and edgeR (Robinson et al., 2010)
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Table 2.2: [Simulation 2: Comparison] RMSEs are computed for ρjj′ , j < j′, δij , µij ,
βj2 − βj1, βj3 and κjp under ZI-MLN and comparators.

Model ρjj′

ZI-MLN 0.064

SparCC 0.176

SPIEC-EASI 0.158

CCLasso 0.155

Zi-LN 0.157

Model δij µij βj2 − βj1 βj3 κj0 κj1 κj2
ZI-MLN 0.096 1.096 0.597 0.385 0.215 0.184 0.334

ZI-MLN without Λ 0.123 1.172 0.750 0.426 0.234 0.191 0.361

MetagenomeSeq 0.130 1.962 1.409 0.843 - - -

EdgeR - 2.205 0.902 0.585 - - -

(a) ρjj′ (b) δij , µij , βj2 − βj1, βj3 and κjp

and compared the abundance and absence/presence related model parameters. EdgeR

is a likelihood-based method that uses a negative binomial generalized linear regression

approach for the analysis of HTS data. It uses the normalization factors estimated by an

empirical Bayes strategy and does not account for excess zeros. Similar to ZI-MLN with-

out Λ and metagenomeSeq, edgeR does not account for the dependence structure among

OTUs and does not provide inferences on the relationship among OTUs. Metagenome-

Seq and edgeR require selecting a category of a discrete covariate as a reference category,

and their βjp’s estimate changes in the mean abundance relative to that in the refer-

ence category. We chose xi1 as the reference for those methods. Appendix Figs A.6

(d)-(f) and A.8 compare estimates of βjp and κjp under the comparators to the truth.

RMSE for each of the four models, including ZI-MLN, is computed and summarized

in Tab 2.2(b). RMSE of κjp is not computed for metagenomeSeq since it has a logit

regression of ϵij on the total sample count, but not on covariates. The results show that

our model outperforms the comparators in the estimation of the parameters, δij , µij ,

βjp and κjp. We also performed posterior predictive checking for ZI-MLN without Λ
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by comparing ŷ
pred
ij under the model to the observed counts. As shown in Fig 2.6(d),

ZI-MLN without Λ provides a poor fit to the data. Their posterior mean estimates of

σ2 and u2s are greatly inflated compared to their true value. Estimates σ̂2 and û2s are

3.86 and 0.77, respectively, while their true values are σ2,tr = 1 and u2,trs = 1. The

comparison of the inference under ZI-MLN to that under ZI-MLN without Λ shows the

necessity of modeling the dependence structure between OTUs to enhance the inference

on the other parameters such as covariate effects when the interactions between OTUs

are present. Estimates of the mean abundances under metagenomeSeq and edgeR are

compared to the observed counts in Appendix Fig A.9.

Additional Simulations We conducted additional simulation studies, Simulations

3-5 to examine the performance of our model under various settings. In Simulation

3, we first generated correlated mean vectors µ̃tr
i = (µ̃tri1, . . . , µ̃

tr
iJ) from a multivariate

normal distribution and simulated OTU counts from zero-inflated Poisson distributions

with means exp(µ̃trij ). The simulation results show that our model provides reasonable

estimates of the parameters even when the simulation truth is different from the assumed

model, showing the robustness of the model. Importantly, the OTU interaction structure

is also reasonably well reconstructed even when the dependency is embedded in the mean

abundances, and the sampling distribution is incorrectly specified. In Simulation 4, we

kept the simulation setup the same as in Simulation 2, but let Σtr = σ2,trIJ , i.e., OTU

counts are independent given the mean parameters. Although the simulation truth is

closer to the assumption made under ZI-MLN without Λ, the results show that ZI-MLN
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performs almost the same as well. For Simulation 5, we used SparseDOSSA in Ma et al.

(2021) to simulate a dataset. SparseDOSSA takes a real microbiome dataset as an

input, estimates some input parameters of their data-generating model, and generates

a realistic microbiome dataset that has a dependence structure between OTUs using

the estimates. We used the skin microbiome dataset in § 2.4.1 as an input dataset.

An open-source software, SparseDOSSA2 is provided by the authors. SparseDOSSA

estimates a precision matrix, one of the input parameters, with ℓ1 penalty for sparsity.

The sparsity assumption is similar to that under some of the comparators, SPIEC-EASI

and CCLasso. It simulates count vectors from a multinomial distribution conditioning

random total counts. The dataset in the scenario was thus simulated from a model

significantly different from ZI-MLN. The results greatly demonstrate the robustness of

ZI-MLN. The model-based normalization appropriately accounts for differences in total

counts. More importantly, the model does a good job of capturing the dependence

between OTUs in the truth and recovers the truly underlying between-OTU structure

reasonably well. In all simulation studies, the results also show that our model compares

very favorably relative to the comparators for estimation of covariate effects and of

dependence structure between OTUs. More details of Simulations 3- 5 are in Appendix

§ A.3.3-A.3.5, respectively. In addition, we assumed a different sparsity level for Λtr

by generating ejk
iid∼ Ber(g) with g = 0.5, and reran analyses under the settings of

Simulations 1-4. The results show that ZI-MLN recovers the truth well with a lower

sparsity level and works better than the comparators under the comparison metrics.
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2.4 Real Data Analyses

2.4.1 Skin Microbiome Data

We applied our ZI-MLN to a subset of the chronic wound microbiome data

in Verbanic et al. (2020). The study was conducted to investigate the effect of de-

bridement on the wound microbial community. Skin swab samples were collected under

three conditions, healthy skin, pre-debridement, and post-debridement conditions. The

skin microbiome dataset was analyzed Shuler et al. (2021a), which showed changes in

the community-level microbial richness and abundance diversity by the experimental

conditions. For an illustration of ZI-MLN without covariates, we used a subset of the

data that consists of N = 20 healthy skin samples collected from M = 20 subjects and

investigated the interaction structure between OTUs in the healthy skin samples. We

removed OTUs that have zero counts in more than 50% of the samples, leaving J = 187

OTUs for analysis. The threshold of 50% was chosen so that each OTU has at least

10 nonzero counts, and the model parameters such as αj can be reliably estimated.

Manual inspection of the curated OTU list indicated that the threshold chosen did not

eliminate OTUs of major biological importance. In addition, we performed sensitivity

analysis to the specification of the threshold. We found that any reasonable choice has

little impact on the posterior inference, showing robustness of our model. Details of the

sensitivity analysis are summarized in Appendix § A.4.1. Fig 2.9(a) shows empirical

correlation estimates ρemjj′ computed using log(yij + 0.01) after normalization with CSS

sample size factor estimates. To fit ZI-MLN, the values of the fixed hyperparameter
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(a) ρ̂jj′ versus ρ
em
jj′ (b) ρ̂jj′ for some selected OTUs

Figure 2.9: [Skin Microbiome Data] Posterior correlation estimates ρ̂jj′ (lower left tri-
angle) and empirical correlation estimates ρemjj′ (upper right triangle) are shown in panel

(a). Panel (b) have the OTUs having |ρ̂j,j′ | ≥ 0.40 for any j′ ̸= j.

(a) ZI-MLN (b) ZI-MLN without Λ (c) metagenomeSeq

Figure 2.10: [Skin Microbiome Data: Comparison] Panels (a) and (b) have scatter plots

of observed log(yij +0.01) versus log(ŷpredij +0.01) under ZI-MLN and ZI-MLN without
Λ, respectively. Panel (c) is the scatter plots of observed log(yij + 0.01) versus mean
abundance estimates log(µ̂ij + 0.01) by metagenomeSeq.

values were set similar to those of Simulation 1 in § 2.3.1. The MCMC simulation was

run over 30,000 iterations, with the first 15,000 iterations discarded as burn-in. It took

25 minutes for every 5,000 iterations on a M1 Mac.

Fig 2.9(a) illustrates posterior mean estimates ρ̂jj′ of the marginal correlations

for all OTUs. From panel (a), correlation estimates are overall small for most of (j, j′),
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implying weak interactions between OTUs. Compared to ρemjj′ , ρ̂jj′ ’s are shrunken to-

ward zero for many OTUs. The overall weak correlations among OTUs in the skin

samples are consistent with previous analysis. Specifically, Bashan et al. (2016) ana-

lyzed data from the Human Microbiome Project and the Student Microbiome Project,

and compared samples from the gut and oral microbiome to those from the skin mi-

crobiome. They reported that, while the gut and mouth microbiome samples appeared

to exhibit universal dynamics of inter-species interactions, the extent of such interac-

tions in the skin microbiome samples was relatively low. Fig 2.9(b) presents ρ̂jj′ for the

OTUs that have |ρ̂jj′ | ≥ 0.40 for any j′ ̸= j, where the value of 0.4 is arbitrarily chosen

to make the estimates readable. Taxonomic information of the OTUs in Fig 2.9(b) is

given in Appendix Tab A.4. From panel (b) and the Appendix Tab A.4, OTUs 43 and

88 belonging to genera Porphyromonas and Peptoniphilus, respectively, are estimated

to be positively correlated with ρ̂ = 0.37. Interestingly, they were found to co-occur

in a large sample of genitourinary microbiome samples (Qin et al., 2021) as well as

vaginal samples (Xiaoming et al., 2021) and were suggested to be ‘keystone’ species,

i.e., strongly interacting species that help define their ecological system. These species

are also found to co-occur in skin samples (Chattopadhyay et al., 2021), where they are

more abundant in patients with diabetic foot ulcers (Park et al., 2019). OTUs 43 and

48 having correlation estimate ρ̂ = 0.40 belong to genera Porphyromonas and Campy-

lobacter, respectively, that are both potentially pathogenic. Porphyromonas is a known

pathogenic genus in periodontitis and is a risk factor in inflammatory bowel disease,

while Campylobacteri is a known gut and oral pathogen with a role in inflammatory
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bowel disease. Their positive correlation estimate may reflect a tendency to co-occur,

as both are observed in inflammatory bowel disease (Cai et al., 2021). From Appendix

Tab A.4, OTUs that have a large positive value of ρ̂j,j′ tend to be phylogenetically

closely related. For example, OTUs 41 and 42 having ρ̂ = 0.47 belong to the same

order Micrococcales. Similarly, OTUs 46 and 47 with ρ̂ = 0.45 having are in family

Chitinophagaceae. On the other hand, some OTUs are estimated to have a positive

association with phylogenetically distant OTUs. For example, the correlation estimates

between OTU 153 and OTUs 41 and 42 are ρ̂ = 0.44 and 0.41, respectively, but OTU

153 is not phylogenetically closely related to OTUs 41 and 42. Interestingly, OTU 153

has similar interaction patterns with OTUs 41 and 42 in the same genus. Fig 2.10(a) has

a scatter plot comparing the posterior predictive median estimates ŷ
pred
ij to the observed

counts. The posterior predictive checking indicates a good model fit by ZI-MLN.

We also applied the comparators, SparCC, SPIEC-EASI, CCLasso and Zi-LN

to the skin microbiome data for comparison. Their correlation estimates ρ̂jj′ are il-

lustrated in Fig 2.11 with the naive estimates of the correlations. SPIEC-EASI and

CCLasso produce ρ̂jj′ very close or equal to zero for most OTU pairs, while SparCC

has nonzero estimates for a majority of ρjj′ . In addition, ZI-MLN without Λ and

metagenomeSeq are applied for further comparison. In Fig 2.10(b), the posterior pre-

dictive median estimates ŷ
pred
ij under ZI-MLN without Λ are compared to the observed

counts. In panel (c), mean abundance estimates under metagenomeSeq are compared to

the observed counts. A comparison of those plots to that in panel (a) indicates that our

ZI-MLN provides a better model fit, possibly because our model accounts for microbial
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(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

Figure 2.11: [Skin Microbiome Data: Comparison] Correlation estimates ρ̂jj′ (lower left
triangle) and empirical correlation estimates ρemjj′ (upper right triangle) are shown. The
estimates in panel (a)-(d) are obtained by SparCC, SPIEC-EASI, CCLasso and Zi-LN,
respectively.

interactions.

2.4.2 Human Gut Microbiome Data

We analyzed the microbiome dataset available from the inflammatory bowel

disease (IBD) multi-omics database (https://ibdmdb.org/) with our ZI-MLN. Crohn’s

disease (CD) and ulcerative colitis (UC) are the most prevalent forms of IBD and are

characterized by chronic inflammation of the gastrointestinal tract. As part of the

Integrative Human Microbiome Project (iHMP), Lloyd-Price et al. (2019) conducted

an integrated study of multiple molecular features of the gut microbiome to investigate

host- and microbiome-specific taxonomic and molecular features related to IBD and

how they vary over time. In the study, biopsies were taken during the initial screening

colonoscopy from the participants who were recruited from multiple medical centers

and sequenced using 16S rRNA gene amplicon sequencing. For an illustration of our

statistical model, we used part of their 16S rRNA sequencing data. In particular, we

included the samples obtained from 37 pediatric participants from two recruitment sites,

42

https://ibdmdb.org/


Cincinnati Children’s Hospital and Massachusetts General Hospital (MGH) Pediatrics.

For some subjects, two samples were collected from different biopsy locations, resulting

in a total of 67 samples. In addition to biopsy locations, we included one continuous

covariate, age and five categorical covariates such as sex, race, recruitment site and

disease phenotype. Disease phenotype is a trinary covariate taking a value of UC,

CD or non-IBD, and the others are binary, resulting in P = 12 after adding dummy

variables to indicate the categories of the discrete covariates. Appendix Tab A.5 lists

all covariates with their supports. We removed OTUs having zero count in more than

80% of the samples or average counts smaller than five. J = 107 OTUs are left after the

preprocessing. With the threshold of 80%, each OTU has approximately 13.4 nonzero

counts, similar to that in the skin microbiome data analysis, to ensure reliable estimates

of κjp, βjp and Σ. We specified hyperparameters similar to those in § 2.3.2. The MCMC

simulation was run over 30,000 iterations, with the first 15,000 iterations discarded as

burn-in. It took 0.75 hours for every 5,000 iterations on a M1 Mac.

Posterior mean estimates ρ̂jj′ of the marginal correlations (lower left triangle)

are illustrated with naive empirical correlation estimates ρemjj′ (upper right triangle) in

Fig 2.12(a). The figure shows relatively rich microbial interactions in the gut micro-

biome samples as reported in Bashan et al. (2016). Fig 2.12(b) reports ρ̂jj′ for the

OTUs having |ρ̂jj′ | > 0.5 for any j′ ̸= j, where the value of 0.5 is chosen to make the

estimates in the figure readable. Taxonomic information of the OTUs in panel (b) is in

Appendix Tab A.6. In panel (b), a group of OTUs 31, 37, 39, 44, 56, 93 and 96 that

are positively correlated with each other, are taxa that are found to indicate dysbiotic
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(a) ρ̂jj′ versus ρ
em
jj′ (b) ρ̂jj′ for some selected OTUs

Figure 2.12: [Human Gut Microbiome Data]: Posterior marginal correlation estimates
ρ̂jj′ (lower left triangle) and empirical correlation estimates ρemjj′ (upper right triangle)

are shown in panel (a). Panel (b) illustrates the OTUs having |ρ̂jj′ | > 0.5 for any j′ ̸= j.

(a) βage (b) βRectum − βIleum (c) βCD − βnon−IBD

Figure 2.13: [Human Gut Microbiome Data] Posterior inference of regression coefficients
βage, βRectum − βIleum, and βCD − βnon−IBD, where the posterior mean estimates are
denoted by dots, and the 95% credible estimates with vertical lines. The intervals that
do not contain zero are marked.

microbiota from gastrointestinal diseases. For example, OTUs 31 and 39 that belong to

family Erysipelotrichaceae are observed to be related to gastrointestinal inflammatory

disorders (Kaakoush, 2015). And some species in Escherichia (OTU 93) (e.g., E. Coli

(Mirsepasi-Lauridsen et al., 2019)) and Clostridium (OTUs 31 and 96) (e.g., C. difficile

(Nitzan et al., 2013)) are known to be related to the development of IBD. Another
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group of OTUs that are positively associated with each other includes genera, Bac-

teroides (OTU 59), Faecalibacterium (OTU 30), and Ruminococcaceae (OTU 85). The

group of those genera contains species that were found active in metabolic processes and

can produce short-chain fatty acids (Parada Venegas et al., 2019). These species might

interact though exchanging metabolic products; for example, Bacteroides thetaiotaomi-

cron and Faecalibacterium prausnitzii were found metabolically complementary, where

the former is an acetate producer, and the latter is acetate consumer and butyrate pro-

ducer (Wrzosek et al., 2013). Furthermore, such metabolic functions might be part of a

complex interplay between the microbiota and disease states. For example, butyrate is

an anti-inflammation promoter, and the decrease of butyrate producers might also indi-

cate dysbiotic gut microbiota (Andrade et al., 2020). Interestingly, the OTUs in those

two groups are negatively associated. The correlation patterns between the groups indi-

cate how gut microbiota may shift from dysbiosis and may suggest further investigation

through experiments. From taxonomic information in Appendix Tab A.6, the OTUs

in the groups belong to different families and orders, indicating that phylogenetically

distant OTUs interact in gut microbiota.

Fig 2.13 and Appendix Figs A.39 (a)-(b) illustrate posterior mean estimates

β̂jp and κ̂jp of the regression coefficients, respectively, with their 95% credible intervals

for some selected covariates. Dots represent point estimates and vertical lines interval

estimates. In the figures, βjp and κjp that do not contain zero in their 95% credible

interval are marked. In addition, Appendix Tabs A.7 and A.8 provide taxonomic in-

formation of the OTUs whose abundance or presence/absence is statistically associated
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(a) ZI-MLN (b) ZI-MLN without Λ

Figure 2.14: [Human Gut Microbiome Data: Comparison]: Panels (a) and (b) have

scatter plots of observed log(yij + 0.01) versus log(ŷpredij + 0.01) under ZI-MLN and

ZI-MLN without Λ, respectively.

with change in covariates. Overall, the covariate effects are statistically significant for a

small number of OTUs. From panel (c), the effect of having condition CD compared to

non-IBD βCD − βnon−IBD is statistically significant for 14 OTUs. The effect estimates

are negative for those except for OTU 84, which implies that their abundance is lower

for a subject with CD than for a subject with non-IBD. Also, among those, 13 OTUs

belong to phylum Firmicutes and order Clostridiales. Significant decrease in abundance

of phylum Firmicutes (Clostridium leptum and Clostridium coccoides groups) in active

IBD subjects compared to that in non-IBD subjects is reported in Sokol et al. (2009),

Vester-Andersen et al. (2019) and Alam et al. (2020). Lloyd-Price et al. (2019) also re-

ported a statistically significant decrease in abundance of Clostridium leptum in active

IBD subjects. We compare posterior predictive median estimates of OTU counts to the

observed data in Fig 2.14(a) to access the model fit. The figure shows that the model

fits the data well.
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For comparison, we applied the comparators, SparCC, SPIEC-EASI, CCLasso

and Zi-LN to the gut microbiome data. Fig 2.15 illustrates ρ̂jj′ under the comparators.

Also, additional comparators, ZI-MLN without Λ, metagenomeSeq and edgeR were ap-

plied. The first set of the comparators does not account for covariate effects, and the

second set does not infer the dependence structure between OTUs. SPIEC-EASI yields a

very sparse estimate, whereas the other comparators produce very dense estimates. Ap-

pendix Figs A.39(c)-(d) and A.40 illustrate posterior estimates of regression coefficients

βjp and κjp obtained by the second set of the comparators. While ZI-MLN without

Λ yields similar estimates, the estimates under metagenomeSeq and edgeR are greatly

different from those under ZI-MLN. Specifically, under metagenomeSeq, the effects of

covariate age are positive and statistically significant for most OTUs. A similar pattern

is also observed from edgeR. For ZI-MLN without Λ, we further examine posterior pre-

dictive distributions of OTU counts (shown in Fig 2.14(b)). Compared to the fit under

ZI-MLN, ZI-MLN without Λ yields a poor fit, especially for large counts. Appendix

Fig A.41 compares mean abundance estimates under edgeR and metagenomeSeq to the

observed counts and indicates poor model fit under those models.

2.5 Discussion

We have presented a Bayesian zero-inflated rounded log-normal kernel model

to analyze multivariate count data with excess zeros. Different from most existing mod-

els, the model directly infers interrelationships between counts and produces reliable
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(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

Figure 2.15: [Human Gut Microbiome Data: Comparison] Correlation estimates ρ̂jj′ by
SparCC, SPIEC-EASI, CCLasso and Zi-LN (lower left triangle) and empirical correla-
tion estimates ρemjj′ (upper right triangle) are shown in panel (a)-(d), respectively.

inference on microbial interaction with a small sample size. It offers a straightforward

interpretation of microbial dependence structures. Furthermore, the model simultane-

ously incorporates covariates and accounts for excess zeros. The simulations showed

that the developed model compares very favorably in parameter estimation and model

fit to a model that ignores between-OTUs’ dependence structure and some popular

alternatives that do not model covariate effects and/or dependence structure.

ZI-MLN can be further extended to accommodate more complex data struc-

tures. Specifically, Lloyd-Price et al. (2019) collected multi-omics data to obtain a com-

prehensive understanding of the IBD microbial ecosystem. Multi-omic measurements

from the same subject may be interrelated, and joint analysis of bacterial sequencing

data with other types of sequencing data such as viral sequencing data can be useful.

In general, latent factor models provide a convenient way to model complex interrela-

tionship structures in multivariate data and can be extended to accommodate multiple

coupled observation matrices, e.g., a group factor model (Zhao et al., 2016). In that

vein, our ZI-MLN can be extended to jointly analyze multiple correlated count matrices

from a multi-omics study using an approach of a group factor model. Another possible
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extension is to incorporate phylogenetic information into the model. Investigating po-

tential interactions between phylogenetically related microbes is biologically interesting,

e.g., see Faust et al. (2012); Connor et al. (2017); Kamneva (2017). Similar to Lo and

Marculescu (2018), phylogenetic information can be utilized in building a prior model

of Σ.
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Chapter 3

Sparse Bayesian Group Factor Model

for Feature Interactions in Multiple

Count Tables Data

3.1 Introduction

3.1.1 Motivation and Multi-Domain Microbiome Data

Statistical methods that capture correlations in different responses can be help-

ful in the multiple output case. For example, canonical correlation analysis (CCA) and

inter-battery factor analysis (IBFA) are useful tools that combine two multivariate re-

sponses and provide inference on cross-covariance between the responses (Browne, 1979;

Bach and Jordan, 2005; Klami et al., 2013). Group factor analysis extends traditional

factor analysis to infer joint variability between two or more multivariate responses
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(Virtanen et al., 2012b; Klami et al., 2014; Zhao et al., 2016). However, they may not

be suitable for the analysis of multiple intercorrelated multivariate count variables be-

cause those methods consider continuous responses and assume a multivariate normal

distribution.

Motivated by a high-throughput sequencing dataset from the multi-domain

chronic wounds microbiome study in Verbanic et al. (2020, 2022); Zhang et al. (2023a),

we develop a Bayesian group factor model that accounts for the discreteness of data

with multiple count responses. Microorganisms, including bacteria, viruses, fungi, and

archaea, coexist in diverse communities and form polymicrobial communities within the

human body (Peters et al., 2012). Polymicrobial infection is one of the leading im-

pediments to chronic wound healing. Appropriately inferring the intricate interactions

among microorganisms, both within a specific domain and across different domains,

as well as their associations with the environment, is crucial to a better understand-

ing of the healing of chronic wounds. The dataset consists of multiple count tables,

with each count table representing a specific microorganism domain. In these count ta-

bles, the counts correspond to the abundances of microbial operational taxonomic units

(OTUs), which are commonly used as a proxy for microbial species. The motivating

study investigated bacteria and bacteriophages (bacterial viruses) in the wound micro-

biome. Bacteriophages play a role in regulating bacterial abundance and influencing

their metabolism and fitness. They are essential components of the wound microbiome.

However, the interaction between bacterial and viral communities in wound microbiomes

has received relatively limited attention. Verbanic et al. (2020) and Zhang et al. (2023a)
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(a) Log-transformed normalized OTU counts (b) Empirical correlation estimates

Figure 3.1: [Multi-domain skin microbiome data] Panel (a) has a heatmap of the log-
transformed normalized OTU counts. The counts are normalized using cumulative sum
scaling. A pseudocount of 0.01 is added for log transformation. Panel (b) illustrates
empirical correlation estimates using the log-transformed normalized OTU counts. The
OTUs are rearranged within a domain.

focused on the bacterial fraction of the microbial community in the dataset and exam-

ined its taxonomic associations with debridement - a common treatment for chronic

wounds, whereas Verbanic et al. (2022) explored the viral content of wound surfaces in

the same dataset but did not analyze it together with bacteria. To gain a comprehen-

sive understanding of wound microbiomes and their association with treatment, it is

essential to consider both bacteria and bacteriophages.

More specifically, the study collected wound swabs from 20 patients attending

an outpatient wound care clinic. Samples were obtained from chronic wounds before

and after a treatment event, as well as from a control site on the skin. This resulted

in a dataset of 60 samples from 20 subjects, along with a categorical covariate with

three levels: healthy, pre-treatment and post-treatment. The abundance of bacteria in
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the samples was measured by high-throughput sequencing of the V1–V3 loops of 16S

rRNA genes, and the abundance of viral contents by high-throughput sequencing of

DNA from virus-like particles (VLPs) isolated from the samples. Counts of bacterial

OTUs (bOTU) were aggregated at the genus level, and counts of viral OTUs (vOTUs)

at the host level. To ensure reliable inference, we removed OTUs having extremely

low counts on average or having zero counts in a significant number of samples. The

preprocessing details are described in § 3.4. After preprocessing, the dataset comprises

counts of 75 bOTUs and 39 vOTUs in the two domains, bacteria and viruses, for the 60

samples. Fig 3.1(a) shows a heatmap of the log-transformed normalized OTU counts.

The counts are normalized using cumulative sum scaling (CSS) in Paulson et al. (2013).

CSS normalization involves summing the OTU counts up to a pre-specified quantile of

a sample and generating normalized counts by dividing the counts by the sum. The

sample medians are used for the illustration. It corrects potential bias introduced by

total-sum normalization (TSS) in differential abundance analysis. To avoid problems

with the log transformation of zero counts, a pseudocount of 0.01 is added. From the

figure, the bOTUs exhibit higher richness in the healthy skin samples than in the wound

samples. On the other hand, the vOTUs are more enriched in the wound samples than

in the healthy skin samples. Fig 3.1(b) illustrates empirical correlation estimates using

the log-transformed normalized counts from all 60 samples obtained under the three

different experimental conditions. Also, empirical correlation estimates are computed

separately for each condition and presented in Fig B.15. The figures indicate potential

interactions between OTUs within and across different domains.
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3.1.2 Statistical Challenges

Besides discreteness, microbiome data presents several challenges for statistical

modeling, including compositionality, excess zeros, high dimensionality and large inter-

sample variability. Typically, microbiome data is represented as a table of counts, where

the total number of reads can vary between samples due to experimental artifacts such as

sequencing depth. Raw counts in an OTU table thus represent only relative abundances

in a sample (i.e., compositionality), and it requires appropriate normalization of raw

counts for modeling. Fig B.16 illustrates histograms of the logarithm of the total counts

in the skin microbiome dataset. The total counts greatly vary across samples, with the

variability differing according to the domain. In addition, OTU count tables contain

excess zeros because of the absence of OTUs and/or limited sequencing depth, with

counts of an OTU greatly varying due to a large amount of inter-subject or inter-sample

variability. Fig 3.1(a) reveals a substantial degree of variability in OTU counts among

samples even after taking into account the difference in sample total counts through

normalization. The figure also illustrates excess zeros in the dataset. Furthermore, in

the presence of environmental factors, the underlying data-generating structure becomes

even more complicated. These make statistical analysis challenging, and any method

that does not address them appropriately may produce erroneous inferences such as

spurious estimates of correlations between microorganisms.
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3.1.3 Current Approaches and Limitations

Various statistical methods have been developed to explore the associations

among microorganisms, mainly with a focus on a single domain (i.e., a count table of

a single group). Typically, a covariance or precision (i.e., inverse covariance) matrix

is utilized to infer the associations. Most of these methods use a penalized estima-

tion method after normalizing and/or transforming raw counts. The graphical lasso

in Friedman et al. (2008) is one of the popular penalized methods for estimating the

precision matrix Σ−1 that forms an undirected graph in a high-dimensional setting.

In a Gaussian graphical model, the off-diagonal values of zero and non-zero in Σ−1

represent conditional independence or dependence between the OTUs. The ℓ1 penalty

encourages sparsity in Σ−1. Examples of the graphical model based approach include

SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Infer-

ence) (Kurtz et al., 2015), Zi-LN (Zero-inflated Log-Normal model) (Prost et al., 2021),

Comp-gLASSO (Compositional graphical LASSO method) (Tian et al., 2023) and Phy-

loBCG (Phylogenetically-informed Bayesian Copula Graphical model) (Chung et al.,

2022) among many others. All these methods are designed for single-domain micro-

biome data analysis. Specifically, SPIEC-EASI first applies the centered log-ratio (clr)

transformation to raw OTU counts to account for the compositionality and discrete-

ness. It then assumes a Gaussian distribution with mean zero and precision matrix

Σ−1 for the clr transformed data and estimates Σ−1 with the ℓ1 penalty to obtain an

interaction graph. This method was later extended to allow for multi-domain analysis
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by applying the clr transformation separately to an OTU table from each domain and

estimating the precision matrix using a concatenated transformed composition vector

(Tipton et al., 2018). Other penalized estimation methods of the covariance matrix Σ

include REBECCA (Regularized Estimation of the Basis Covariance Based on Com-

positional Data) (Ban et al., 2015) and COAT (COmposition-Adjusted Thresholding

Method) (Cao et al., 2019) that are developed for single group data analysis. Alter-

natively, low-rank approximations can be used for the estimation of Σ. For example,

see MOFA (Multi-Omics Factor Analysis) (Argelaguet et al., 2018) and ZI-MLN (Zero-

inflated Multivariate Log-normal Kernel Model) (Zhang et al., 2023a). In particular,

MOFA builds a Bayesian group factor model for clr-transformed multi-group count ta-

ble data. The data is recentered by subtracting the sample mean for each OTU, and

subsequently it assumes a normal distribution with mean zero and covariance Σ. Σ is

estimated by a factor model that assumes two-level sparsity priors for factor loadings to

obtain fast computation and robust estimation. While there are several methods avail-

able for inferring microorganism interactions across multiple domains, a need remains

for more robust approaches to address the aforementioned challenges.

We take the low-rank approximation approach and develop a sparse Bayesian

group factor model (Sp-BGFM) for the analysis of multiple multivariate count data

to obtain desired inferences on within-domain and across-domain OTU interactions.

Sp-BGFM extends the applicability of a conventional group factor model that handles

continuous responses by assuming a Gaussian model with a fixed mean at zero. It

directly constructs a discrete distribution for count vectors and simultaneously mod-
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els mean and variance of a count vector. Specifically, using the approach in Canale

and Dunson (2011), Sp-BGFM builds nonparametric mixtures of rounded multivariate

continuous kernels using a Dirichlet process (DP) prior to obtain a flexible joint dis-

tribution of count vectors. A mean-constrained mixture of log-normals is used as the

kernel to capture the location of the count distribution without identifiability problems.

A novel prior distribution, the Dirichlet-Horseshoe (Dir-HS) distribution, is constructed

as a joint prior on factor loading vectors to efficiently induce joint sparsity and pro-

vide reliable inferences on a high-dimensional interaction structure within and across

domains, even with a small sample size. The semiparametric formulation flexibly ac-

commodates excess zeros and inter-subject or inter-sample variability in OTU counts

and further improves the estimation of OTU interaction. Moreover, the mean func-

tion of the kernel is extended through regression to accommodate covariates. Also,

our model simultaneously performs model-based normalization for proper uncertainty

quantification. Extensive numerical studies show that Sp-BGFM recovers the underly-

ing data-generating process including within- and cross-domain interaction reasonably

well and performs very competitively compared to various comparators. The method is

then applied to analyze real multi-domain skin microbiome data.

The rest of this chapter is organized as follows. § 3.2 details the development of

Sp-BGFM and describes the prior specification and posterior computation. In § 3.3, we

evaluate the performance of Sp-BGF under different simulation settings and compare it

to several popular alternatives. § 3.4 demonstrates the application of our method to the

multi-domain skin microbiome dataset. Finally, § 3.5 provides a brief discussion and
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conclusion.

3.2 Model and Posterior Inference

3.2.1 Sampling Distribution and Prior Specification

Consider random count vectors ofM different groups (or domains). Let yim =

(yim1, . . . , yimJm)
′ denote a Jm-dimensional vector of group m of sample i, i = 1, . . . , N

and m = 1, . . . ,M . Each yimj ∈ N0, j = 1, . . . , Jm, is a non-negative integer that

represents an unnormalized abundance of OTU j of group m in sample i. We stack yim

and construct a table Ym of size N×Jm, a subset of data corresponding to groupm. We

assume that yi1, . . . ,yiM in sample i are obtained from subject si, where si ∈ {1, . . . , S}.

Also, data may have a vector of P covariates, xi = (xi1, . . . , xiP ) that may be associated

with yi1, . . . ,yiM .

We concatenate the vectors yim of sample i and construct yi = (y′
i1, . . . ,y

′
iM )′

a J-dim count vector of OTUs in M different groups for sample i, where J =
∑M

m=1 Jm

is the total number of OTUs. Taking the rounded kernel approach for count data in

Canale and Dunson (2011), we introduce a continuous random vector y⋆i ∈ RJ
+ and

build a flexible model for y⋆i . For sample i from subject si, we assume

y⋆i | ri,αsi ,Σ
indep∼ log-NJ(y

⋆ | αsi + ri,Σ), i = 1, . . . , N, (3.1)

αsi | G
iid∼ G(α), si ∈ {1, . . . , S}. (3.2)
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We will let G a random probability measure with a DP prior to flexibly accommodate

variability in counts across m, s, and j. We will discuss a prior distribution for G later.

We use a rounding function and obtain the distribution of yi as follows;

P(yi = y | ri,αsi ,Σ) =
∫
A(y)

fy⋆(y⋆ | αsi + ri,Σ) dy
⋆, (3.3)

where the region of integration A(y) = {y⋆ | y11 ≤ y⋆11 < y11 + 1, . . . , yMJM ≤ y⋆MJM
<

yMJM + 1} and fy⋆(·) is a pdf of a J−dim log-normal distribution with parameters

αsi + ri and Σ. αsi = [αsi1, . . . ,αsiM ]′ is a J−dim vector of OTU abundances, where

a subvector αsim = (αsimj), j = 1, . . . , Jm is for group m. It is shared by all sam-

ples from subject si, and dependence among those samples is induced. ri is a vec-

tor of sample scale factors, ri = [ri11J1 , . . . , riM1JM ]′. From (3.1), exp(αsimj + rim)

is the median of y⋆imj and explains the location of the distribution of yimj (i.e, raw

OTU abundance). exp(rim) scales the location for all OTUs in group m of sample

i, and rim’s account for difference in total counts across (i,m) due to experimental

artifacts. αsimj thus represents a normalized baseline abundance of OTU j of group

m in a sample taken from subject si. The dependence structure of the counts can

be inferred through a J × J covariance matrix, Σ > 0. Let Σmm
′

jj′ denote the ele-

ment of Σ corresponding to the covariance between OTU j of group m and OTU j′

of group m′. Letting µimj = αsimj + rim, we have E(y⋆imj) = exp(µimj + Σmmjj /2)

and Cov(y⋆imj , y
⋆
im′j′) = E(y⋆imj)E(y

⋆
im′j′)

{
exp(Σmm

′
jj′ )− 1

}
, m,m′ ∈ {1, . . . ,M}, j ∈

{1, . . . Jm} and j′ ∈ {1, . . . Jm′}. That is, Σmm and Σmm
′
with m ̸= m′ describe the
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within-group and across-group interaction structures, respectively. We will later extend

the model to accommodate xi through regression in µimj .

We next build a prior probability model for Σ, the parameter of primary in-

terest. To overcome difficulties due to the high dimensionality, we assume that most

pairs do not interact and consider joint sparsity, a structural assumption on Σ (also

known as sparse spiked covariance structure) (Cai et al., 2016; Xie et al., 2018). The

joint sparsity assumption allows to obtain a faster minimax rate of convergence for a

frequentist estimator and improve posterior convergence for a Bayesian estimator. We

first decompose a J ×J covariance matrix Σ into Σ = ΛΛ′+V . Here, Λ = [Λ′
1, . . . ,Λ

′
m]

′

is a J×K factor loading matrix with J ≫ K, where Λm = [λmjk] is a Jm×K matrix. V

is a J-dim diagonal matrix, where diagonal submatrices V mm = v2mIJm and off-diagonal

submatrices V mm′
= 0Jm×Jm′ , m ̸= m′. The within-group and cross-group covariances

are then Σmm = ΛmΛ
′
m + V mm and Σmm

′
= ΛmΛ

′
m′ , m ̸= m′. Under factor models,

Λ are only identifiable up to orthogonal transformations. Our interest is primarily in

the estimation of Σ, and this issue is not of great practical importance. We construct

a Dirichlet-Horseshoe (Dir-HS) prior for columns λk of Λ to efficiently induce joint

sparsity; for each k, k = 1, . . . ,K,

τk | aτ , bτ
iid∼ Ga(aτ , bτ/J),

ϕk = (ϕ11k, . . . , ϕMJMk) | aϕ
iid∼ Dir(aϕ, . . . , aϕ),

ζmjk
iid∼ C+(0, 1), m = 1, . . . ,M, j = 1, . . . , Jm,

λmjk | ϕmjk, τk, ζmjk
indep∼ N(0, ζ2mjkϕmjkτk),

(3.4)
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where C+(0, 1) represents the half-Cauchy distribution for R+ with location and scale

parameters 0 and 1, and Ga(a, b) is the gamma distribution with mean a/b. For V , we

assume v2m | av, bv
iid∼ inv-Ga(av, bv) with fixed av and bv. In (3.4), ϕk chooses active

features (OTUs) for factor k. On the other hand, τk’s globally control individual factors,

and a small value of τk indicates that factor k is negligible in explaining dependence

among the OTUs. The Dir-HS distribution can be derived by integrating ϕk and ζmjk

out. The Dir-HS density function lacks an analytic form, and the following theorem

finds tight bounds for the marginal density of λmjk under the Dir-HS.

Theorem 3.2.1. Let J = 2. Assume ϕ1 ∼ Be(aϕ, aϕ) and let ϕ2 = 1 − ϕ1. Assume

the Dir-HS distribution in (3.4) as a joint distribution for λ = (λ1, λ2) ∈ R2 given τ .

Without loss of generality, let τ = 1. The marginal density ΠDir-HS(λ1) of λ1 satisfies

the following: (a) limλ1→0ΠDir-HS(λ1) = ∞. (b) For λ1 ̸= 0,

22aϕ−
5
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

4

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 4

λ21

)
< ΠDir-HS(λ1)

< 22aϕ−
3
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

2

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 2

λ21

)
,

(3.5)

where pF q is the generalized hypergeometric function, pF q(α1, . . . , αp;β1, . . . , βq;x) =∑∞
t=0

(α1)t...(αp)t
(β1)t...(βq)t

xt

t! . Especially when aϕ = 1
2 ,

1√
2π5

{
sinh−1(2/|λ1|)

}2
< ΠDir-HS(λ1) <

√
2

π5

{
sinh−1(

√
2/|λ1|)

}2
, (3.6)

where the inverse hyperbolic sine function sinh−1(x) = log(x+
√
x2 + 1).
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Figure 3.2: Scatter plots of (λ1, λ2) simulated from Dir-HS, Dir-Laplace and independent
HS are illustrated in panels (a), (b) and (c), respectively. The contours represent their
empirical density on the logarithmic scale.

A proof is given in Appendix B.1. From the theorem, the marginal density of λmjk has an

unbounded spike at zero for any value of aϕ similar to a HS prior (Carvalho et al., 2009).

It thus obtains severe shrinkage for λmjk when needed, while having tail robustness, and

can achieve improved performance at handling unknown sparsity with a small number

of large signals compared to other joint shrinkage priors such as the Dirichlet-Laplace

(Dir-Laplace) prior (Bhattacharya et al., 2015). Fig 3.2(a) has a scatterplot of (λ1, λ2)

simulated from the Dir-HS with aϕ = 1/20 and τ = 1. For comparison, panels (b)

and (c) have scatterplots from the Dir-Laplace distribution and an independent HS

distribution, respectively. Specifically, for the Dir-Laplace, we assume ϕ1 ∼ Be(aϕ, aϕ),

let ϕ2 = 1 − ϕ1 and λj | ϕj
indep∼ DE(τϕj), j = 1, 2, where DE(b) is the Laplace

distribution with mean 0 and variance 2b2. For independent HS distributions, we assume

λj | ζj
indep∼ N(0, ζ2j /2) and ζj

iid∼ C+(0, 1), j = 1, 2, to match the scale parameter with

that under the Dir-HS. Comparing panel (a) to panel (b), the Dir-HS has heavier tails,

leading to greater robustness to large signals. Appendix Proposition B.1.1 examines the
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tails of the marginal densities ΠDir-HS(λ1) and ΠDir-Laplace(λ1) of λ1 under the Dir-HS

and Dir-Laplace and shows that limλ1→±∞ΠDir-Laplace(λ1)/ΠDir-HS(λ1) = 0. Also, note

that ΠDir-Laplace(λ1) is bounded at 0 given τ when aϕ > 1. The Dir-HS has a higher

density along the axes than the independent HS in panel (c) and enables joint sparsity.

Appendix Figs B.1 and B.2 plot joint and marginal densities of the distributions in the

central origin and tail regions with various values of aϕ.

Previously, Zhao et al. (2016) built a group factor model with mean fixed at

zero for continuous responses. They constructed a ‘global-factor-local shrinkage’ prior

for the elements in a factor loading matrix for structured sparsity. Their prior was built

with a hierarchical structure that includes global, factor-specific and element-specific

hyperparameters. Note that their prior does not induce joint sparsity. Pati et al. (2014)

built a factor model with a fixed mean at zero for a continuous response in a single group

and considered the Dir-Laplace distribution on the vector constructed by concatenating

factor loading vectors.

From (3.1)-(3.3), the marginal distribution of yi can be obtained by integrating

α with respect to mixing distribution G. It is critical to improving the estimation of

Σ that the model adequately accommodates large inter-subject variability in counts,

which is a common issue in microbiome data analysis. We consider the following infinite
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mixture model for G in (3.2),

G(α) =

M∏
m=1

Jm∏
j=1

Gmj(αmj)

=

M∏
m=1

Jm∏
j=1

[ ∞∑
l=1

ψαml

{
ωαmlδξαmjl

+ (1− ωαml)δ
(

να
mj

−ωα
ml

ξα
mjl

1−ωα
ml

)
}]

,

(3.7)

where δξ is a point mass centered at ξ. We assume ξαmjl | ναmj , u2α
iid∼ N(ναmj , u

2
α) with fixed

ναmj and u2α. The mixture weights ψαml in (3.7) are constructed using a stick-breaking

process (Sethuraman, 1994); let ψαm1 = V α
m1 and ψαml = V α

ml

∏l−1
l′=1(1 − V α

ml′), l > 1

with V α
ml | cα

iid∼ Be(1, cα), where the total mass parameter cα is fixed. Assume inner

mixture weights ωαml | aαω, bαω
iid∼ Be(aαω, b

α
ω), where a

α
ω and bαω are fixed. Observe that

individual parameters αsimj and rim in µimj are not identifiable due to the multiplicative

structure, E(log(y⋆imj) | αsimj , rim) = αsimj + rim. Under (3.7), the prior and posterior

means of αsimj are fixed at ναmj , and E(log(y⋆imj) | Gmj , rim) fixed at ναmj + rim. We

will impose a similar constraint on the prior of rim below. The constraints are placed

to address potential issues with the identifiability. Note that µimj ’s are identifiable, and

Σ, a parameter of primary interest, can be identified. Despite the constraint, G can

capture various patterns in the distribution of α due to its inherent flexibility (Müller

et al., 2015). Specifically, the distribution of y⋆imj can be written as a Dirichlet process

mixture with a log-normal mixture kernel in Antoniak (1974). Also, the model in (3.7)

allows to efficiently borrow information across subjects and across OTUs through its

hierarchical structure and yield improved estimates of αsimj . In particular, ψαml’s and

ωαml’s are common weights for all OTUs in group m, while the mixture locations vary
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by j for each m.

Recall that rim is a normalizing factor of group m of sample i. Similar to (3.7),

we consider a flexible infinite mixture model for rim;

rim | ψr
ml, ω

r
ml

indep∼ Hm =

∞∑
l=1

ψr
ml

{
ωr
mlN(ξrml, u

2
r) + (1− ωr

ml)N

(
νrm − ωr

mlξ
r
ml

1− ωr
ml

, u2
r

)}
, (3.8)

where νrm and u2r are fixed. The prior and posterior expectations of rim are νrm in (3.8),

and E(log(y⋆imj) | Gmj , Hm) fixed at ναmj + νrm. Each group has different means, as

indicated in our motivating application as illustrated in Appendix Fig B.16. We jointly

specify values of ναmj and νrm using observed counts. For example, we first fix νrm at

the average of the logarithm of the total count, νrm = 1
N

∑N
i=1 log

(∑Jm
j=1 yimj

)
, and set

ναmj =
1
N

∑N
i=1 {log(yimj + 0.01)− νrm}. We consider the following priors for ψrml, ω

r
ml

and ξrml; assume ξrml | νrm, u2ξr
iid∼ N(νrm, u

2
ξr), ω

r
ml | arω, brω

iid∼ Be(arω, b
r
ω), ψ

r
m1 = V r

m1 and

ψrml = V r
ml

∏l−1
ℓ′=1(1− V r

ml′), l > 1, where V r
ml | cr

iid∼ Be(1, cr). Here, u2ξr , a
r
ω, b

r
ω, and c

r

are fixed.

In addition, the model is extended to accommodate covariates xi using regres-

sion in µimj ;

µimj = rim + αsimj + x′
iβmj . (3.9)

Assume βmjp
iid∼ N(0, u2β) with fixed u2β. Regression coefficients βmjp quantify the change

in the abundance of OTU j of group m from its baseline abundance by xip. Especially,

in a case of a categorical covariate, βmjp shows an effect on the baseline abundance of
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Figure 3.3: A graphical representation of Sp-BGFM. Fixed hyperparameters are in
boxes with dashed lines, while random parameters are in boxes with solid lines. Ob-
servables are represented within circles.

the OTU for the level represented by xp, and βmjp−βmjp′ can be used to infer the effect

by the difference in levels between xp and xp′ .

A graphical representation of Sp-BGFM is shown in Fig 3.3. In Appendix § B.2,

we illustrate the distribution of observables under Sp-BGFM to examine the distribu-

tions of OTUs’ count. Specifically, how the model with (3.1)-(3.3) and (3.7) accom-

modates the dependence between OTU counts, excess zeros and large between-sample

variability is illustrated with various examples. The moments such as expectation and

correlation of count vectors are also derived, further illustrating the interpretation of Σ

in terms of counts.
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3.2.2 Prior Calibration and Posterior Computation

The prior of Σ in (3.4) requires specification of fixed hyperparameters K, aϕ,

aτ and bτ . The number K of latent factors is assumed to be fixed. For cases with

N ≪ J , a relatively small value of K is more desirable to obtain reliable estimation of

Σ. For our simulation studies and real data analyses, we empirically set a value for K;

we perform principle component analysis (PCA) for the sample covariance matrix of log-

transformed normalized counts and fix K at a value such that the K largest eigenvalues

explain 95% of the total variance. Given a sufficiently large value of K, the model may

let τk close to 0 for unneeded latent factors. If desired, a prior can be considered for K,

e.g., a geometric or truncated Poisson distribution. In addition, specifications of aϕ, aτ

and bτ may need careful attention. Similar to Bhattacharya et al. (2015), we observed

that estimates of λmjk tend to be overly shrunken toward zero with aϕ = 1/J . We also

observed that aϕ = 1/2 recommended in Bhattacharya et al. (2015) for the Dir-Laplace

distribution does not efficiently produce joint sparsity under the Dir-HS distribution.

After careful exploration, we used aϕ = 1/(0.2×J), which gives approximately 1/20 for

a dataset with J ≈ 100 as in our motivating example. By setting the scale parameter

of τk to bτ/J in (3.4), the prior for λmjk is appropriately scaled under the constraint∑
m,j ϕmjk = 1. We fixed aτ = 0.1 and bτ = 1/J for the analyses in § 3.3 and § 3.4. We

performed a thorough sensitivity analysis by varying the values of K, aϕ, aτ , and bτ and

found that the model’s performance remains robust within a reasonable range of these

values. See Appendix § B.6 for sensitivity analyses related to the real data analysis in
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§ 3.4.

Collecting terms, let θ = {λmjk, ϕmjk, τk, ζmkj , v2m, αsimj , ωαml, V α
ml, ξ

α
mjl, rim,

ωrml, V
r
ml, ξ

r
ml, βmjp} a vector of all random parameters. We utilize Markov Chain Monte

Carlo (MCMC) simulations to generate samples of θ from their posterior distribution.

To facilitate the posterior computation, we introduce sample-specific latent vectors ηi
iid∼

NK(0, IK). We then have y⋆imj | µimj ,λmj ,ηi, v2m
indep∼ log-N(µimj + λ′

mjηi, v
2
m) as

independent log-normal variables, which results in significant computational efficiency.

The joint posterior distribution of the augmented model is

p(θ,y⋆,η | y,x) ∝
N∏
i=1

M∏
m=1

Jm∏
j=1

p(yimj ≤ y⋆imj < yimj + 1 | ηi,θ)
N∏
i=1

p(ηi | θ)p(θ).(3.10)

We further augment the model by introducing latent variables to facilitate updates of

ri, αsi , and ζmkj . We use the blocked Gibbs sampling algorithm (Ishwaran and James,

2001) by considering a finite-dimensional truncation of the stick-breaking processes in

(3.7) and (3.8). We set the truncation levels Lrm and Lαm to sufficiently large values.

Under the augmented model, all model parameters except ϕk can be updated through

Gibbs steps. We use adaptive MH algorithm (Haario et al., 2001) for an efficient update

of ϕk. Details of the MCMC algorithm are in Appendix § B.3. Details of the reproducing

code are in Appendix § B.4.
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3.3 Simulation

3.3.1 Simulation 1

For Simulation 1, we considered a case without covariates and evaluated the

estimation of interaction between OTUs in two groups. We let M = 2 with J1 = 150

and J2 = 50 OTUs. We assumed one sample from each of S = 20 subjects, and we had

N = 20. To specify Σtr, we let Ktr = 5. We then simulated λtrmjk from N(0, 1) and

shifted away from zero by 1 for OTUs 1-25 and 51-75 in group 1 and OTUs 1-25 in group

2 to ensure that those OTUs have large covariances. For the remaining OTUs, we let

λtrmjk = 0 for all k. Thus, 80% of OTUs do not interact with the other OTUs. We then

let Σtr = ΛtrΛtr,′+V tr with v2,trm = 0.52 for allm. The correlation matrix corresponding

to Σtr is illustrated in the lower triangle of Fig 3.4(a). For the normalized abundance

level, we first set ξα,trmj1 = −5, ξα,trmj2 ∼ N(4, 1) and ξα,trmj3 ∼ N(10, 1) and simulated ψtr
mj =

(ψtr
mj1, ψ

tr
mj2, ψ

tr
mj3) ∼ Dir(30, 40, 30) independently for each (m, j). The three values,

ξα,trmjl , l = 1, 2 and 3, represent zero, small and large counts, respectively. We then let

αtrsimj = ξα,trmjl with probability ψtr
mjl for si ∈ {1, . . . , S}. We next simulated size factors

rtrim
iid∼ Unif(0, 2). Finally, we generated y⋆,tri from log-NJ(µ

tr
i ,Σ

tr) with µtr
i = rtri +αtr

si

and obtain count vectors yi = ⌊y⋆,tri ⌋. Under this setup, approximately 30% of yimj ’s

are 0.

We specified the hyper-parameters values as discussed in § 3.2.2. In addition,

we let K = 10, cr = cα = 1, Lrm = Lαm = 50, av = bv = 3, arω = brω = aαω = bαω = 5.

We ran MCMC for 105 iterations and discarded the first half for burn-in. It took 67
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Figure 3.4: [Simulation 1] The upper right and lower left triangles of a heatmap illustrate
the estimates ρ̂mm

′
jj′ of correlations and their truth, respectively. The horizontal and

vertical lines are to divide the groups. The estimates in panels (a)-(c) are from Sp-
BGFM, MOFA and SPIEC-EASI.

minutes on an Apple M1 chip laptop. We examined trace plots to assess the convergence

and mixing of the MCMC chain and did not observe any evidence of slow mixing and

convergence issues.

For easy interpretation, we consider correlations ρmm
′

jj′ = Σmm
′

jj′ /(Σmmjj Σm
′m′

j′j′ )

instead of Σ. Fig 3.4 (a) compares posterior median estimates ρ̂mm
′

jj′ of correlations to

their truth. As shown in the figure, Sp-BGFM capably identifies zeroes in the truth

and efficiently shrinks the corresponding λmjk to zero, leading to an accurate recon-

struction of the truth. We performed posterior predictive checking to assess model

fit as follows; we first set the sample size factors rpred = (r
pred
1 , r

pred
2 ) for an unob-

served sample and estimated the posterior predictive distribution of a count vector,

Pr(ypred = y | rpred,D) =
∫
A(y)

∫
f(ỹ⋆ | rpred,θ)f(θ | D)dθdy, where D = {Y1,Y2}

denotes observed data. We approximated it with posterior samples of θ drawn from

the posterior simulation. Fig 3.5 illustrates marginal predictive distribution estimates
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(a) Group 1, OTU 30 (b) Group 1, OTU 133 (c) Group 2, OTU 31

Figure 3.5: [Simulation 1] Posterior predictive estimates of the marginal distribution
of log-transformed counts are plotted for three arbitrarily chosen OTUs, OTUs 30 and
133 of group 1 and OTU 31 of group 2 for model checking. Crosses are log-transformed
observed counts after normalization based on a posterior estimate of the scale factors
rim.

of log-transformed counts for three arbitrarily chosen OTUs with r
pred
m = 0, m = 1, 2.

If the model fits well, the observed data should look plausible under the posterior pre-

dictive distribution (Gelman et al., 2013). To avoid numerical issues, we added 1 to

the posterior predictive samples of y. The observed counts, marked with crosses in the

figure, are also scaled according to rpred after normalization by a posterior estimate

of their scale factor for compatibility, log(⌊yimj/ exp(r̂im − r
pred
m )⌋+ 1), where r̂im is a

posterior estimate of rim. The comparison of the predictive density estimates to the

empirical distribution of the normalized observed counts suggests that the model offers

a good fit to the data, accounting for excess zeros and multimodality, even with N = 20

for J = 200.

For comparison, we fit MOFA(Argelaguet et al., 2018) and SPIEC-EASI (Tip-

ton et al., 2018) to the simulated data. We used R packages, MOFA2 and SpiecEasi

to apply their methods. Prior to fitting, the OTU counts were clr-transformed and

71



Method Sim 1 Sim 2 Sim 3 Sim 4 Sim 5

Sp-BGFM 0.031 0.109 0.232 0.000 0.124
MOFA 0.229 0.364 0.316 0.107 0.235

SPIEC-EASI 0.150 0.306 0.306 0.004 0.205

Table 3.1: Root mean square error (RMSE) of the correlations ρmm
′

jj′ is computed for

Simulations 1-5. Estimates ρ̂mm
′

jj′ are obtained from three methods, Sp-BGFM, MOFA

and SPIEC-EASI. The smallest RMSE is in bold.

re-centered with default settings in the packages. Their correlation estimates ρ̂mm
′

jj′ are

compared to the truth in Fig 3.4 (b)-(c). They yield poor estimates and fail to recover

the true interaction structure, potentially due to their assumption of mean zero and/or

the normalization of the observed counts prior to analysis. The root mean square error

(RMSE) of ρmm
′

jj′ is used to quantify the differences between the estimates from Sp-

BGFM, MOFA, and SPIEC-EASI and the truth. The results are presented in Tab 3.1.

Additional comparison of Sp-BGFM to REBACCA(Ban et al., 2015), COAT(Cao et al.,

2019) and Zi-LN (Prost et al., 2021) that analyze a single count table, is provided in

Appendix § B.5.1. Comparing their estimates to the truth, those alternative methods

perform poorly in uncovering the true dependence among the OTUs.

3.3.2 Simulation 2

For Simulation 2, we setM = 2, J1 = 150, J2 = 50, S = 20 and N = 40 with a

binary covariate. We used the vine method in Lewandowski et al. (2009) and generated

an arbitrary covariance matrix to specify Σtr. The correlation matrix corresponding to

Σtr is shown in the lower triangle of Fig 3.6(a). The OTUs are rearranged within a

group for a better illustration. For abundances, we generated αtrsimj and rtrim similarly
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Figure 3.6: [Simulation 2] The upper right and lower left triangles of a heatmap illustrate
estimates ρ̂mm

′
jj′ of correlations and their truth, respectively. The horizontal and vertical

lines are to divide the groups. The estimates in panels (a)-(c) are from Sp-BGFM,
MOFA and SPIEC-EASI, respectively.

as in Simulation 1, but we used the empirical proportions of zero counts from the

multi-domain skin microbiome dataset in § 3.4 for αtrsimj to simulate a dataset closely

resembling the skin microbiome dataset. In addition, we incorporated a categorical

covariate with two levels to investigate the estimation of βmjp and Σ in a complex

setting. A sample was generated under each level for a subject, resulting in N = 40.

We imposed sparsity on βtr by letting them zero with a large probability. We then

let µtrimj = rtrim + αtrsimj + x′
iβ

tr
mj and generated y⋆,tri from log-NJ(µ

tr
i ,Σ

tr). We finally

let count vectors yi = ⌊y⋆,tri ⌋, and the overall zero count rate is 45%. Details of the

simulation setup are in Appendix § B.5.2.

The fixed hyperparameters are specified the same as those in Simulation 1. For

the prior of βmjp, we set u2β = 3. The MCMC simulation, consisting of 105 iterations,

took approximately 98 minutes to complete on an Apple M1 chip laptop. We discarded

the first half of the iterations as burn-in, and the remaining half was used for making
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Figure 3.7: [Simulation 2] Posterior estimates of covariate effect βmj1 − βmj2 under Sp-
BGFM are plotted against the truth in panels (a) and (b) for two groups, m = 1 and
2. The posterior median estimates are denoted by dots, and the 95% credible estimates
with vertical lines. In panels (c) and (d), the estimates of βmjp under metagenomeSeq
are plotted for two groups.

inferences. The trace plots demonstrated a good mixing of the MCMC chain.

The upper triangle of Fig 3.6(a) illustrates the posterior estimates ρ̂mm
′

jj′ under

Sp-BGFM. Figs 3.7(a) and (b) show the posterior median estimates of βmj1 − βmj2
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Figure 3.8: [Simulation 2] Posterior predictive estimates of the marginal distribution
of log-transformed counts for three arbitrarily chosen OTUs, OTUs 1 and 32 of group
1 and OTU 161 of group 2 for model checking. Dots and crosses are log-transformed
observed counts after normalization based on a posterior estimate of the scale factors
rim for x =(1, 0) and (0, 1), respectively. The solid and dashed lines represent the
conditions with x =(1, 0) and (0, 1), respectively.

(dots) with their 95% credible interval estimates (vertical lines) for groups 1 and 2,

respectively. Sp-BGFM performs well in capturing the true within-domain and across-

domain dependence structure among the OTUs, despite the arbitrary specification of

Σtr and the added complexity due to the covariate in the true data generating process.

In addition, the covariate effects βmjp are well estimated.

We also check the model fit using posterior predictive checking. We set r
pred
m =

0 for m = 1, 2 and estimate the distribution of ypred for the two conditions, x = (1, 0)

and (0, 1), similar to the procedure used in Simulation 1. The predictive distribution

estimates are illustrated in Fig 3.8 for some selected OTUs. The solid and dashed lines

are for conditions, x = (1, 0) and (0, 1), respectively. The observed normalized counts

are shown with dots and crosses on the top of the figures after log transformation. For

the OTUs in the figure, posterior estimates of βmj1−βjm2, are 1.68, -2.65 and 2.07 with

75



95% credible intervals (0.98, 2.26), (-3.44, -2.02), and (1.11, 2.92), respectively. Their

true values are 2.15, -2.42, and 1.97, respectively. The figures show an adequate model

fit under Sp-BGFM and depict the covariate’s impact on the prediction of counts for

those OTUs.

Figs 3.6(b) and (c) compare the correlation estimates obtained fromMOFA and

SPIEC-EASI to the truth. For Sp-BGFM, MOFA, and SPIEC-EASI, RMSEs of ρmm
′

jj′

are computed and shown in Tab 3.1. The estimates from the additional comparators,

REBACCA, COAT and Zi-LN, are shown in Appendix Fig B.7. The estimates of

the comparators are very poor and fail to recover Σtr, potentially due to a lack of

consideration for covariates and/or assumption of mean zero. In addition, we compare

our Sp-BGFM to metagenomeSeq (Paulson et al., 2013) in the estimation of βmjp.

MetagenomeSeq transforms counts log2(yimj + 1) and builds a zero-inflated normal

mixture model. For the non-zero part, the mean function is modeled through regression.

It uses the CSS normalization method to estimate sample size factors and includes as an

offset to account for differences between samples in sequencing depth. Figs 3.7(c) and

(d) illustrate point estimates of βmj1 − βmj2 under metagenomeSeq. MetagenomeSeq

does not provide interval estimates. Comparison of the plots in panels (a) and (b) to

those in panels (c) and (d) suggests that Sp-BGFM offers more accurate estimates of

covariate effects with uncertainty quantification.
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3.3.3 Additional Simulations

We conducted additional simulation studies, Simulations 3, 4, and 5, to further

examine the robustness of Sp-BGFM. In Simulation 3, we kept the setup of Simulation

2 and used Σtr arbitrarily specified by the vine method in Lewandowski et al. (2009)

to generate data. However, no covariate was considered. Sp-BGFM recovers the true

microbial interaction structure well, as shown in Appendix Fig B.8. In Simulation

4, we simulated count vectors from multinomial distributions, where the total count,

i.e., the number of trials, was simulated from a normal distribution whose parameters

were empirically specified using the real dataset in § 3.4. The true OTU dependence

structure is well recovered under Sp-BGFM, as shown in Appendix Fig B.10. Especially,

Appendix Fig B.11 illustrates that the model-based normalization through rim provides

a reasonable basis for estimating α and Σ. For Simulation 5, we generated a multi-

domain count dataset using the functions in R package SpiecEasi (Kurtz et al., 2015).

The functions take a real microbiome count dataset and a correlation matrix as input

and generate a count table from a zero-inflated negative binomial distribution through

normal-copula functions. OTU counts have a dependence structure as in the provided

correlation matrix, and their marginal distributions are similar to those in the provided

dataset. We used the multi-domain skin microbiome dataset in § 3.4 and correlation

matrices randomly generated by the vine method. Appendix Fig B.13 demonstrates that

Sp-BGFM does an excellent job of capturing the true within-domain and cross-domain

dependence structure and provides a reasonable fit to the simulated data, although the
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dataset was generated from a model significantly different from the assumed model.

For comparisons, we fit the comparators, MOFA and SPEIC-SASI, to the

datasets of Simulations 3-5 and compared their results to the truth and those of Sp-

BGFM, indicating favorable performance of Sp-BGFM. The RMSEs of ρmm
′

jj′ are com-

puted for Sp-BGFM and the comparators, and they are presented in Tab 3.1. Details

of Simulations 3-5 are reported in §4.3-§4.5 of Appendix B, respectively.

3.4 Multi-domain Skin Microbiome Data Analysis

To fit Sp-BGFM for the multi-domain skin microbiome data, we removed

OTUs having extremely low counts on average or having zero counts in too many sam-

ples. In particular, we included only the OTUs that have a non-zero count in at least

two samples under each condition and an average count larger than ten under each

condition for analysis. After pre-processing, 75 bOTUs and 39 vOTUs were left for

analysis, so J1 = 75 and J2 = 39. The proportions of zeros are 42.97% and 44.10%

for bOTUs and vOTUs, respectively. Empirical correlation estimates ρ̃mm
′

jj′ among the

OTUs are computed using the OTU counts normalized using CSS, and illustrated in

the lower triangle of Fig 3.9(a). We used K = 15, and all other hyperparameters were

specified at the same values as in the simulation studies of § 3.3. We implemented

posterior inference using MCMC posterior simulation. The Markov chain ran for 105

iterations, and the initial half was discarded as burn-in. The posterior simulation took

approximately 4.82 minutes for every 10,000 iterations on an Apple M1 chip laptop. The
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Figure 3.9: [Multi-domain skin microbiome] The upper right triangle of the heatmaps
in (a)-(c) has correlation estimates ρ̂mm

′
jj′ under Sp-BGFM, MOFA and SPIEC-EASI,

respectively. Empirical correlation estimates ρ̃mm
′

jj′ are shown in the lower triangles.

trace plots indicated that the MCMC chain mixed well. We also performed sensitivity

analysis on the specification of the fixed hyperparameters. Details of MCMC simulation

diagnostics and prior sensitivity analyses are included in Appendix § B.6.

The upper right triangle of Fig 3.9(a) illustrates posterior median estimates

ρ̂mm
′

jj′ of correlations. The OTUs are rearranged within a group for a better illustra-

tion. Appendix Fig B.17 illustrates ρ̂mm
′

jj′ for the OTUs that have |ρ̂mm′
jj′ | > 0.5 with

any other OTU j′, j′ ̸= j. Appendix Tabs B.2 and B.3 have taxonomic information of

those OTUs. Here, 0.5 is an arbitrary choice to illustrate a smaller set of OTUs that

have large estimates. While the overall estimated interaction structure is sparse, some

OTU subsets within a group have large positive values of ρ̂mmjj′ . Interestingly, many of

these OTUs have zero counts across samples concurrently, potentially suggesting poten-

tial microbial co-existence patterns. Positive correlations among bacteria are expected

because some bacterial infections are known to be polymicrobial. That is, infections

occur with microorganisms from different genera. Specifically, the genera, Actinomyces,
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Actinotignum, Campylobacter, Helcococcus and Porphyromonas, which are bOTUs 3, 4,

10, 24 and 56, respectively, have large positive correlation estimates with ρ̂mmjj′ ≥ 0.71,

m = 1. Previous research has indicated potential relations between some of the species

of those OTUs. Actinomyces and Helcococcus, which are bacteria that can adapt and

survive in environments with or without oxygen, were found in diabetic patients with

osteomyelitis, a serious bone infection typically in the foot (Van Asten et al., 2016). Ad-

ditionally, Actinomyces-associated infections are frequently found to occur with other

bacteria including Campylobacter and Porphyromonas that might synergistically en-

hance the infection process (Könönen and Wade, 2015). In the oral microbiome, species

of Actinomyces, Campylobacter, and Porphyronomas are also known to be related to

periodontal diseases (Noiri et al., 1997). Synergistic interactions between the microbes

of these OTUs have not been found in chronic wounds. However, the identified positive

correlations align with previous findings under other biological contexts and support

further investigations into the relationship between these bacterial species in the con-

text of chronic wound healing. In addition, vOTUs 2, 9, 10, 13, 29, 32, 34 and 38

are estimated to have ρ̂mmjj′ ≥ 0.61, m = 2 with each other, implying that they coexist

and their abundance is related with that of the others. Especially, vOTUs 2, 9, 10

and 13, corresponding to Aquisalimonas phage, Grimontella phage, Klebsiella phage,

and Methylomonas phage, are annotated. With the exception of Klebsiella which is a

pathogen in the human microbiome, little is known about those phage hosts. The posi-

tive correlation estimates among those vOTUs may reflect the richness or scarcity of the

common environment, as virion production is influenced by environmental factors such
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as nutrient availability. Correlations among the phages reflect potential interactions

among the hosts, the phages, or the phages and hosts, and the results may suggest the

need for further studies to gain additional biological context.

Different from the previous analyses that focused on a single domain, Sp-

BGFM provides inference on interactions among microorganisms in both within and

different domains. From Fig 3.9(a), the overall cross-domain interaction is scarce, except

for Staphylococcus aureus (bOTU 65), a prominent skin pathogen. Interestingly, it has

a negative correlation estimate with a subset of phages, vOTU 2, 6, 8, 9, 10, 13, 28, 29,

31, 32, 34, 36 and 38, that are positively correlated with each other. The colonization

of S. aureus is found associated with disruption in the healthy composition of skin

microbiota (Di Domenico et al., 2019). The negative correlations may suggest potential

adversarial relationships between S. aureus and these phages (or their host) and call for

further investigation to enhance our understanding of the underlying biological process.

Additionally, the pair, Pseudomonas (bOTU 59) and Pseudomonas phage (vOTU 18),

is estimated to have a positive correlation 0.38, aligning with their inherent ecological

relations (i.e., Pseudomonas phage occurs with Pseudomonas bacteria).

In contrast to MOFA and SPEICE-EASI, Sp-BGFM also produces inferences

on mean microbial abundances and their association with covariates. Fig 3.10 illus-

trates inference on covariate effects βmjp−βmjp′ , p ̸= p′. Recall that βmjp, p = 1, 2 and

3, quantify changes in abundance compared to the baseline abundance. In the figure,

dots represent the posterior median estimates of βmjp − βmjp′ , while vertical lines illus-

trate their 95% credible interval estimates. The interval estimates that do not contain
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Figure 3.10: [Multi-domain skin microbiome] The left and right columns display the
posterior median estimates of βmjp − βmjp′ for bacterial and viral OTUs, respectively.
Vertical lines represent their corresponding 95% credible interval estimates. The interval
estimates that do not include 0 are marked in red bold.
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zero are in red. Appendix Tabs B.2 and B.3 have taxonomic information of the OTUs

whose interval estimates do not contain zero. Overall, the bOTUs tend to be enriched

in the healthy condition compared to the pre- and post-treatment conditions. In con-

trast, vOTUs tend to be enriched in the pre- and post-treatment conditions. Changes

in abundance between pre- and post-treatment conditions are relatively minimal for

bOTUs and vOTUs. This could be due to the fact that the post-treatment samples

were taken quite quickly after the treatment, while any significant changes might take

longer to occur. Within the wound samples, vOTUs 1, 18 and 23, corresponding to

Acinetobacter phage, Proteus phage and Staphylococcus phage, are found enriched as

also reported in Verbanic et al. (2022). Similar to the findings in Fig 2 of Verbanic et al.

(2020), bOTUs 27, 29 and 53, corresponding to the genera, Kocuria, Micrococcus and

Paracoccus, are significantly more abundant in the healthy skin samples. Interestingly,

the abundance of vOTU 2 (Aquisalimonas phage) is found to be statistically signifi-

cantly different between the pre- and post-treatment conditions. Little is known about

this phage, and the result suggests follow-up experiments for further examination.

Appendix Fig B.18 illustrates posterior predictive density estimates of an

OTU’s count under the different conditions for some selected OTUs, bOTUs 1, bOTU

69 and vOTU 17, for model assessment. The figure also demonstrates the effects of

the experimental conditions on the prediction. Overall, the comparison of the posterior

predictive density estimates to empirical distributions of the observed counts indicates

a reasonable model fit to the data.

For comparison, we applied MOFA and SPIEC-EASI to the skin microbiome
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data. Fig 3.9(b) and (c) illustrate ρ̂mm
′

jj′ under the comparators. The inference under

MOFA suggests a large number of interactions compared to that under Sp-BGFM.While

some interactions have been identified, such as the interaction between Staphylococcus

and other species (Alonzo III, 2022; Christensen et al., 2016), it is unclear whether the

high number of interactions aligns with the relative scarcity of known interspecies inter-

actions in the skin and the lack of universal dynamics compared to the gut microbiome

(Bashan et al., 2016). On the other hand, in contrast, SPIEC-EASI does not suggest any

significant interactions and fails to capture interactions related to known mechanisms

for chemical communication among species (e.g., secreted by Staphylococcus species).

The estimates from the additional comparators, REBACCA, COAT and Zi-LN, are in

Appendix Fig B.9. Appendix Fig B.10 illustrates estimates of covariate effects under

metagenomeSeq. The point estimates of coefficients under metagenomeSeq suggest that

abundance of the bOTUs tends to be higher in the healthy condition compared to the

post-treatment condition, which is similar to the inference under Sp-BGFM. However,

it does not provide any uncertainty associated with the point estimates, and their statis-

tical significance cannot be determined. Note that the comparators for estimating OTU

interactions do not take into account covariates, and metagenomeSeq that estimates

covariate effects does not consider potential interactions among OTUs.
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3.5 Conclusions

We developed Sp-BGFM, a sparse Bayesian group factor model for analyzing

multiple count tables data from multi-domain microbiome studies. The Dir-HS distri-

bution was developed to efficiently induce joint sparsity and used as a prior for factor

loadings. The model produces a reliable estimate of covariance matrices even with small

sample sizes. Additionally, Sp-BGFM incorporates nonparametric mixtures of multi-

variate rounded kernels to capture inter-subject variability and improves inference on

the dependence structure. The model also accommodates covariates through regression.

Simulation studies and real data analysis confirm the robust performance of Sp-BGFM

compared to other alternatives. The model is applicable to the analysis of multiple

count tables data in any application.

Sp-BGFM can be extended by relaxing model assumptions further. One possi-

ble extension is to incorporate a hierarchical Dirichlet process (HDP) in Teh et al. (2004)

or to adopt a common atom model in Denti et al. (2023). These approaches facilitate the

construction of domain and OTU-specific distributions through a hierarchical structure.

Specifically, an HDP allows Gmj in (3.2) to share mixture components, with mixture

weights differing across OTUs. Another extension incorporates a fully nonparametric

regression model to accommodate covariates x more flexibly. This can be achieved us-

ing a dependent Dirichlet process (DDP) model (MacEachern, 1999; Quintana et al.,

2022) by letting ψαml and/or ξ
⋆
mjl of Gmj in (3.2) depend on x. The distribution of y is

marginally a DP-distributed random probability distribution that varies flexibly with
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x. It is important to note that while these extended models offer greater flexibility,

obtaining inference with reasonable uncertainty bounds may require a sufficiently large

sample size.

A potentially interesting avenue for further research is to integrate taxonomy

rank information into analysis. In microbiome studies, utilizing a phylogenetic tree

from 16S rRNA gene sequencing can enhance OTU interaction estimation (Washburne

et al., 2018). For example, Chung et al. (2022) incorporated branch split information

using a latent position model and a truncated Gaussian copula model. Adapting a

similar idea, Sp-BGFM can include taxonomy level-specific factor loadings, denoted as

ΛTm. Assigning OTUs latent factor loadings based on their phylogeny may allow to

capture interaction structures integrating phylogenetic relatedness. This approach has

the potential to enhance the inference of interaction structures in other domains.
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Chapter 4

Bayesian Covariate-Assisted Interaction

Analysis for Multivariate Count Data in

Microbiome Study

4.1 Introduction

Covariance estimation is a fundamental task in multivariate statistical analy-

sis, critical for understanding the relationships between variables. Covariance matrices

are pivotal in various applications, including principal component analysis (Pearson,

1901), factor analysis (Rummel, 1988), and canonical-correlation analysis (Hotelling,

1992). Traditional methods for covariance estimation, such as the sample covariance

matrix, typically assume that the data is identically and independently distributed

(i.i.d.). However, this assumption is often violated in real-world scenarios, where data

often exhibits heteroscedasticity and covariance changes with external factors, such as
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covariates. Ignoring these covariate dependencies can result in inaccurate models and

misleading conclusions, necessitating the development of methods that account for these

dependencies to provide more reliable estimates of the interrelationships between vari-

ables.

Covariance regression has gained significant attention over a long history due

to its ability to incorporate covariate information, thereby enhancing the accuracy and

interpretability of covariance estimates. Carroll and Ruppert (1982) first considered a

heteroscedastic model in which the variances were given by a parametric function of the

mean. A linear model for the standard deviation(Rutemiller and Bowers, 1968) and a

generalized model with a link function to allow non-negativity of variance (Smyth, 1989)

were developed for uni-variate cases. When it comes to multivariate heteroscedasticity,

Chiu et al. (1996), Pourahmadi (2011) and Battey (2017) modeled the logarithm of

elements of the covariance matrix as a linear function of known matrices to guarantee

the positive definiteness of the covariance matrix. However, it is difficult to interpret

parameters of covariate effects in the log scale and the number of parameters can be

quite large in high-dimensional data. More recently, sparse and low-rank methods for

covariate-dependent covariance estimation or its inversion (precision matrix) have been

considered to manage high-dimensional data where traditional methods are often inade-

quate. These approaches leverage structural assumptions, sparsity and low rankness, to

enhance estimation accuracy and interpretability. Pourahmadi (1999) modeled the un-

constrained elements of the Cholesky decomposition on the precision matrix and linked

covariates to elements. Hoff and Niu (2012) expressed the covariance as a baseline
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covariance matrix plus a rank-1 positive definite matrix which depends on covariates.

They further extended to allow the deviation of each covariate-dependent covariance

from the baseline to be any rank. Fox and Dunson (2015) put a Gaussian process prior

on the latent factor model and induced a flexible Bayesian nonparametric covariance

regression model. The predictor-dependent framework was characterized as a combi-

nation of Gaussian process random functions of covariates. Ni et al. (2019) proposed

a graphical regression method that estimates directed acyclic graphs for the precision

matrix in heterogenous data with additional subject-level covariates. Niu et al. (2023)

further modeled continuously varying undirected graphs with additional assistance from

any general covariates for underlying heterogeneous multivariate observations.

Besides modeling the covariance matrix with covariates, joint modeling for

means and covariances allows for the simultaneous exploration of covariate effects on

the mean and the covariance of the data. Pourahmadi (1999) provided a joint mean-

covariance model with applications to longitudinal data. In the context of temporal

heteroscedasticity, Fong et al. (2006) studied multivariate autoregressive conditionally

heteroscedastic (ARCH) models in the financial data. Niu and Hoff (2019) extended

their model in Hoff and Niu (2012) to a joint mean and covariance model, studying

the covariate effects on both mean and covariance in the application of multiple health

outcome measures. Moran et al. (2021) used a parametric covariance regression model

to analyze verbal autopsy data. It was designed specifically for cause of death de-

noted covariance. However, the above approaches are built for continuous data, and

they can be inappropriate for analyzing multivariate count data. With the advent of
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high-throughput sequencing (HTS) sequencing technologies, multivariate count tables

arise in various biological applications. Especially in microbiome studies, 16S ribosomal

RNA (16S rRNA) sequencing uses similarity-based clustering algorithms to group 16S

rRNA sequences into Operational Taxonomic Units (OTUs), producing multivariate

count tables for downstream analysis. Analyzing OTU tables and detecting the struc-

ture of microbial interactions is essential for more accurately characterizing microbial

communities. Popular methods in microbiome studies such as SparCC (Friedman and

Alm, 2012), CCLasso (Fang et al., 2015) and SPIEC-EASI (Kurtz et al., 2015) adopt

log-transformed counts or log-transformed ratio for analysis of interactions. Specifically,

SparCC (Friedman and Alm, 2012) adds pseudo counts and then divides the raw counts

by the sample’s total counts for normalization. It models log-transformed ratios of

these normalized counts to infer correlations between OTUs through sparse networks.

Similarly, CCLasso in Fang et al. (2015) uses ℓ1 penalty to estimate the correlation

network of log-transformed counts. SPIEC-EASI (Kurtz et al., 2015) uses graphical

lasso (Friedman et al., 2008), a popular penalized method outputting the association

of undirected graphs, to obtain a robust precision matrix estimate. The raw OTU

counts are also first centered by log-ratio (clr) transformation. See REBECCA (Ban

et al., 2015), COAT (Cao et al., 2019) and MOFA (Argelaguet et al., 2018) for more.

However, most methodologies above assume the mean centered at 0 or simply subtract

the sample mean. In addition, those covariance estimates remain the same across any

covariates.

To circumvent the challenges described above and address the effect of covari-
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ates on microbial interactions, we propose a Bayesian covariate-dependent sparse factor

model with a rounded kernel. The model assesses interrelationships between OTUs vary-

ing as a function of covariates. Furthermore, it simultaneously performs model-based

normalization and flexibly accommodates large variability in count data. Specifically,

we use nonparametric mixtures of rounded multivariate log-normal kernels to introduce

latent continuous random variables. Then, the covariance matrix characterizes interre-

lationships among OTUs and varies with covariates. We adopt the low-rank structure

factor model and induce a Dir-HS prior (Zhang et al., 2024) on the factor loading ma-

trix to effectively learn a high-dimensional covariance structure despite a limited sample

size. We further link the covariate as a multiplicative effect to the factor loading ma-

trix, letting the covariance vary with general covariates. The parametric formulation

in the covariate-covariance structure significantly reduces the number of parameters to

estimate and offers a straightforward interpretation of the interrelationship structure.

Moreover, we use a Dirichlet process (DP) prior on relative abundances to obtain a flex-

ible joint distribution of count vectors. It induces an infinite Dirichlet process mixture

(DPM) on the count distribution, a flexible mean formulation handling excess zeros

and overdispersion in microbiome data. We also relate covariates to the mean to detect

different OTU abundances under covariates.

In the rest of the section, we describe the model and its applications. § 4.2 and

§ 4.3 describe the covariate-dependent rounded multivariate log-normal kernel model,

its prior specification and posterior computation. § 4.4 shows the results of simulation

studies to evaluate the performance of our method. § 4.5 has results from the model
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applied to the real dataset, and § 4.6 concludes with some discussion of the results and

areas of future research.

4.2 Model and Prior Specification

In this section, we first introduce a Bayesian sparse factor model and let factors

vary with covariates and obtain estimates of covariate-dependent covariance matrices.

Then, we build a rounded kernel model that exploits a Bayesian nonparametric approach

to induce a flexible joint distribution for multivariate count responses.

4.2.1 Sparse Covariate-dependent Factor Model

Let Ỹ⋆
i = (Ỹ ⋆

i1, . . . , Ỹ
⋆
iJ) ∈ RJ be a J-dimensional normal vector taken from

sample i,

Ỹ⋆
i | µ(xi),Σ(xi)

indep∼ NJ(µ(xi),Σ(xi)), i = 1, . . . , N, (4.1)

where xi = (xi1, . . . , xiP ) is a P -dimensional covariates of a sample. We first build a prior

probability model for the covariate-dependent covariance Σ(xi), the main parameter of

interest. We will discuss a model for µ(xi) later in § 4.2.2. In the high-dimensional

setting, the number of features J is large compared to the sample size N , and sample

covariance estimates of a large covariance matrix are usually unstable. Introducing a

sparse structure of covariance matrix mitigates the curse of dimensionality, allows for

more efficient and interpretable models and leads to more robust statistical inferences
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(Cai et al., 2015; Xie et al., 2022). Following this vein, we first decompose Σ(xi) as

Σ(xi) = Λ(xi)Λ
′(xi) + σ2IJ , (4.2)

where λj(xi) = [λj1(xi), . . . , λjK(xi)]
′ and Λ(xi) = [λ1(xi)

′, . . . ,λJ(xi)
′]′ is a J × K

covariate-dependent factor loading matrix. Here, K is the dimension of the subspace

that is assumed to capture statistical variability, and typically K ≪ J . Similar to

Bhattacharya and Dunson (2011) and Xie et al. (2018), we do not impose any constraints

on Λ(xi), such as column orthogonality, nor do we seek to interpret latent factors, as

our primary focus is on the inference of Σ(xi). For each factor loading element λjk(xi),

we further express as

λjk(xi) = qjkf
′
kxi, (4.3)

where qjk is a local multiplicative effect and P -dimensional random vector fk is used to

have a column-wise covariate-dependent multiplicative effect. Note that qjk’s are OTU

and factor specific, and fk is common for all OTUs. When the local effect qjk is close

to 0, the corresponding λjk becomes small. When fkp is small for all k, Σ(xi) does not

vary much with xip. Under (4.2) and (4.3), the covariance between OTUs j and j′ is a

quadratic function of covariates;

Σjj′(xi) =


K∑
k=1

qjkqj′k(f
′
kxi)

2, if j ̸= j′,

K∑
k=1

q2jk(f
′
kxi)

2 + σ2, if j = j′.

(4.4)
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Similar to Hoff and Niu (2012) and Niu and Hoff (2019), including the intercept 1

in xi alleviates the constraint that the minimum of covariance is always obtained at

xip = 0, p > 1. Instead of directly estimating J(J + 1)/2 parameters of the covariance

matrix for each xi, we have JK + KP parameters in (4.3). It yields a significant

reduction of unknown parameters to estimate, which is crucial for a high-dimensional

setting. We introduce joint sparsity through columns qk = (q1k, . . . , qJk) by considering

the Dirichlet-Horseshoe (Dir-HS) prior in Zhang et al. (2024), for k = 1, · · · ,K,

τk | aτ , bτ
iid∼ Ga(aτ , bτ/J),

ϕk = (ϕ1k, . . . , ϕJk) | aϕ
iid∼ Dir(aϕ, . . . , aϕ),

ζjk
iid∼ C+(0, 1),

qjk | ϕjk, τk, ζjk
indep∼ N(0, ζ2jkϕjkτk).

(4.5)

where C+(0, 1) is the half-Cauchy distribution for R+ with location and scale parameters

0 and 1, and Ga(a, b) represents the gamma distribution with mean a/b. Under the

model in (4.5), ϕjk locally shrinks qjk toward zero and in return shrinks λjk(xi). On the

other hand, τk controls the global shrinkage for each factor and performs an effective

truncation of the number of latent factors. The joint sparsity assumption leads to

obtaining a reliable estimate of the structure with a small sample size and achieving

good theoretical properties (Cai et al., 2015; Xie et al., 2018). To complete the prior

specification, we assume a conditionally conjugate prior on σ2, σ2 ∼ inv-Ga(aσ, bσ) with

fixed aσ and bσ and a standard normal prior on fkp
iid∼ N(0, 1).
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A nonparametric model can also be considered by expressing λjk(xi) in (4.3)

as a weighted combination of a set of basis functions from a Gaussian process (GP)

prior (Fox and Dunson, 2015). While a nonparametric model using the GP can be more

flexible, the computation with many GPs becomes complicated when the number of

OTUs increases. Moran et al. (2021) further adopts a similar expression with parametric

basis functions, and the covariance regression model in Hoff and Niu (2012) can also

be written into a covariate-dependent factor model. Different from these methods,

our proposed model includes OTU and factor-specific multiplicative effect with joint

sparsity, efficiently reducing the number of parameters and having a straightforward

interpretation of coefficients. We present later in Simulation 2 that our parametric

design can flexibly capture arbitrary random covariance matrices while parsimonious.

4.2.2 A Nonparametric Model for Mean

Next, we build a Bayesian nonparametric mixture model with a rounded kernel

to obtain a flexible multivariate count distribution. Let Yi = (Yi1, . . . , YiJ) be the

observed J-dimensional random count vector of counts of sample i = 1, . . . , N , where

Yij ∈ N0 is the count of feature j = 1, . . . , J in sample i. Noting the relationship between

normal distribution and log-normal distribution, we introduce a latent multivariate log-

normal vector Y⋆
i = exp(Ỹ⋆

i ) ∈ RJ
+ by considering the rounded kernel approach for

count data in Canale and Dunson (2011) and assume

Y⋆
i | µ(xi),Σ(xi)

indep∼ log-NJ(y
⋆ | µ(xi),Σ(xi)), i = 1, . . . , N. (4.6)
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where parameters µ(xi) = (µi1, . . . , µiJ)
′ ∈ RJ and Σ(xi) > 0. The multivariate log-

normal density is zero for a vector with negative values, and the kernel defines a valid

multivariate count distribution for Yi as follows;

P(Yi = y | µ(xi),Σ(xi)) =
∫
A(y)

fy⋆(y⋆ | µ(xi),Σ(xi))dy⋆, (4.7)

where the region of integration A(y) = {y⋆ | y1 ≤ y⋆1 < y1+1, . . . , yJ ≤ y⋆J < yJ+1} and

fy⋆(·) is a pdf of a J−dimensional log-normal distribution with parameters µ(xi) and

Σ(xi). In (4.6), exp(µij) is the median of Y ⋆
ij representing the location of the distribution.

Larger µij thus implies a large abundance of feature j in sample i. We consider the

model in § 4.2.1 for Σjj′(xi). We have the mean E(Y ⋆
ij) = exp(µij +

1
2Σjj(xi)) and

Cov(Y ⋆
ij , Y

⋆
ij′) = E(Y ⋆

ij)E(Y
⋆
ij′)
{
exp(Σjj′(xi))− 1

}
. When Σjj′(xi) = 0, it implies there

are no microbial interactions between features. In terms of the count distributions, the

mean and covariance ofYi can be easily verified finite and computed through probability

mass function defined in (4.7).

We relate µij to covariates xi through regression;

µij(xi) = ri + αj + x̃′
iβj . (4.8)

ri is the sample (library) size factor, normalizing counts across samples. αj represents

the normalized baseline abundance of feature j = 1, · · · , J for all samples, and x̃i omits

the intercept in xi due to identifiability. Regression coefficients βjp quantify the change

96



in the abundance of feature j from its baseline abundance αj by covariates xip. For

example, we have different experimental conditions for x̃i in the mice gut microbiome

data in § 4.5. βjp measures the change in the abundance of OTU j by experimental

condition with xip. We first impose a Bayesian nonparametric prior model on αj to

accommodate large variability. An adequately flexible mean model further improves

the estimation of Σ(xi). While βj are identifiable, ri and αj in µij are not identifiable

due to the multiplicative structure, E(log(y⋆ij) | ri, αj) = ri + αj . To address the issues,

we assume a mean-constrained Dirichlet process for the prior of αj as follows,

αj | G
iid∼ G =

∞∑
l=1

ψαl

{
ωαl δξαl + (1− ωαl )δ

(
να−ωα

l
ξα
l

1−ωα
l

)
}
, (4.9)

where δξ is a point mass centered at ξ. We let ξαl | να, u2α
iid∼ N(να, u2α) with fixed

να and u2α. The mixture weights ψαl in (4.9) are constructed using a stick-breaking

process (Sethuraman, 1994); let ψα1 = V α
1 and ψαl = V α

l

∏l−1
l′=1(1 − V α

l′ ), l > 1 with

V α
l | cα iid∼ Be(1, cα), where the concentration parameter cα is fixed. Assume inner

mixture weights ωαl | aαω, bαω
iid∼ Be(aαω, b

α
ω), where aαω and bαω are fixed. Under (4.9),

the prior and posterior means of αj are fixed at να, and E(log(y⋆ij) | G, ri) fixed at

να + ri. We will impose a similar constraint on the prior of ri below to achieve soft

identifiability. Shuler et al. (2021a) and Zhang et al. (2024) showed that overall means

can be well estimated under the mean-constrained prior and their posterior inference

is not sensitive to the choice of να and u2α. (4.6) and (4.9) lead to a Dirichlet process
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mixture model for Y ⋆
ij ,

Y⋆
i | µ(x̃i),Σ(xi)

indep∼
∫

log-NJ(y
⋆ | ri1J +α+ βx̃′

i,Σ(xi))dG(α), (4.10)

where α = [α1, . . . , αJ ]
′ and β is a J × P coefficient matrix with βj in the rows. With

random mixture weights, ωαl and ψαl , and random locations ξαl in G(α), the mixture

model in (4.10) can flexibly capture various shapes of a distribution and accommodate

variability in the count distribution. We also consider an extension of the model in

(4.8)-(4.10) to accommodate inter-subject heterogeneity. We illustrate it in Simulations

2 and 3 in detail.

Similar to (4.9), we consider a flexible infinite mixture model for ri;

ri | ψrl , ωrl
iid∼

∞∑
l=1

ψrl

{
ωrlN(ξ

r
l , u

2
r) + (1− ωrl )N

(
νr − ωrl ξ

r
l

1− ωrl
, u2r

)}
, (4.11)

where νr and u2r are fixed. The prior expectation of ri is ν
r in (4.11), and E(log(y⋆ij) |

G, ri) fixed at να+νr from (4.9) and (4.11). We jointly specify values of να and νr using

observed counts. For example, we first fix νr at the average of the logarithm of the total

count, νr = 1
N

∑N
i=1 log

(∑J
j=1 yij

)
, and set να = 1

N

∑N
i=1

∑J
j=1 {log(yij + 0.01)− νr}.

We consider similar following priors for ψrl , ω
r
l and ξrl ; assume ξrl | νr, u2ξr

iid∼ N(νr, u2ξr),

ωrl | arω, brω
iid∼ Be(arω, b

r
ω), ψ

r
1 = V r

1 and ψrl = V r
l

∏l−1
ℓ′=1(1 − V r

l′ ), l > 1, where V r
l | cr iid∼

Be(1, cr). Here, u2ξr , a
r
ω, b

r
ω, and c

r are fixed. To complete the prior specification of β,

we consider a conjugate standard normal distribution for βjp
iid∼ N(0, 1).
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4.3 Prior Calibration and Posterior Computation

The prior of Σ(xi) in (4.5) requires the specification of the hyperparameters

K, aϕ, aτ and bτ . Selecting the dimension of the latent space K can be challenging. K

determines the number of parameters, and a model with a random K requires compli-

cated algorithms such as reversible jump MCMC (Green and Hastie, 2009) for posterior

simulation. We set K to a reasonably large value for computational convenience. Em-

pirically, we determine K by performing principle component analysis (PCA) on the

sample covariance matrix of log-transformed normalized counts and fixing K such that

the K largest eigenvalues explain 95% of the total variance. With a sufficiently large

K, the model can let some τk small for redundant latent factors. If desired, a geometric

or truncated Poisson distribution can be placed on K to achieve an optimal posterior

contraction rate (Pati et al., 2014). In terms of the hyperparameters aϕ, aτ and bτ , we

follow the setup in Zhang et al. (2024) and let aϕ = 1/(0.2×J), aτ = 0.1 and bτ = 1/J .

From simulation studies, we observed that a too small value of aϕ tends to overly shrink

qjk toward zero, resulting in a poor estimate of Σ(xi). We also examined sensitivity to

the specifications of those hyper-parameters and found that the model’s performance

remains robust within a reasonable range of those values.

Let θ = {qjk, ϕjk, τk, ζjk, fkp, σ2, αj , ωαl , V α
l , ξ

α
jl, ri, ω

r
l , V

r
l , ξ

r
l , βjp} a vector of

all random parameters. We use Markov Chain Monte Carlo (MCMC) to sample θ from

their posterior distributions. We introduce a latent normal vector ηi
iid∼ NK(0, IK). We

then have Y ⋆
ij | µij(xi),λj(xi),ηi, σ2

indep∼ log-N(µij(xi) + λ
′
j(xi)ηi, σ

2) as independent
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log-normal variables, which results in significant computational efficiency. The joint

posterior distribution of the augmented model is

p(θ,Y⋆,η | y,x) ∝
N∏
i=1

J∏
j=1

p(yij ≤ Y ⋆
ij < yij + 1 | ηi,θ)

N∏
i=1

p(ηi | θ)p(θ). (4.12)

We use the blocked Gibbs sampling algorithm (Ishwaran and James, 2001) by consid-

ering a finite-dimensional truncation of the stick-breaking processes in (4.9) and (4.11).

We set the truncation levels Lr and Lα to sufficiently large values. Given the latent

variables, all parameters except ϕk can be updated through Gibbs steps. Although

fkp has a conjugate full conditional distribution, we found the mixing over fkp could be

poor, and used an adaptive MH algorithm (Haario et al., 2001) for an efficient update of

ϕk and fkp. Details of the MCMC algorithm are in Supp. § C.1. The reproducing codes

of the proposed model are on https://github.com/shuang-jie/BCAIA. The instructions

are on the ReadMe page.

4.4 Simulation Studies

4.4.1 Simulation 1

For Simulation 1, we considered a case mimicking the mice gut microbiome

dataset in § 4.5. We include two categorical variables, one with two levels xi1 ∈ {0, 1}

and the other with three levels xi2 ∈ {(0, 0), (0, 1), (1, 0)}, and we have xi = (1, xi1, xi2).

We assumed five samples with J = 15 OTUs under each of the six conditions, and had
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N = 30 samples in total. To specify Σtr(xi), we letK
tr = 2. We then simulated qtrjk from

N(0, 1) with probability 0.5 and to be zero with probability 0.5. For non-zero entries,

we further shifted them away from zero by 1 to have large non-zero covariance. We let

f trkp
iid∼ Unif(−1, 1) and f11 = −f13, f21 = −f22, resulting in covariance matrix varying

over different levels. The truth covariance matrix Σtr(xi) is illustrated in Fig 4.1(b)-(c).

For the mean count abundance, we set rtri
iid∼ Unif(0, 2) and αtrj

iid∼ 0.3N(2.5, 0.52) +

0.7N(5, 0.52). And we sample βtrjp similar to qjk by having probability 0.5 to be 0 and

probability 0.5 to be sampled from N(0, 1) then shifting by 1. Finally, we generatedY⋆,tr
i

from log-NJ(µ
tr(xi),Σ

tr(xi)) and obtain count vectors Yi = ⌊Y⋆,tr
i ⌋. There are no zero

counts which is the same as the mice dataset in § 4.5. We fit the model by setting

the hyperparameters as discussed in § 4.3, K = 8, cr = cα = 3, Lr = 30, Lα = 35,

aσ = bσ = 3, arω = brω = aαω = bαω = 5. We ran MCMC for 160, 000 iterations and

discarded the first half for burn-in. It took 13 minutes on an Apple M1 chip laptop. We

examined trace plots to assess the convergence and mixing of the MCMC chain and did

not observe any evidence of slow mixing and convergence issues.

Fig 4.1(a) shows a histogram of the differences Σ̂jj′(xi) − Σtr
jj′(xi) of all six

conditions, j < j′. The differences tightly centered around 0, indicates that the method

provides good estimates of the covariance. We compare posterior median covariance

estimates Σ̂jj′(xi) for two randomly samples to their true values Σtr
jj′(xi) in Fig 4.1(b)-

(c). For sample 16, all OTU pairs have a small covariance in the truth, but in sample 26,

some OTU pairs have a strong covariance. Our method produces reasonable estimates

for the samples. Covariates of sample 16 and 26 are x16 = [1, 1, (0, 0)] and x26 =
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(a) Σ̂jj′ − Σtr
jj′ (b) Sample 16 (c) Sample 26

Figure 4.1: [Simulation 1] Panel (a) has a histogram of differences between Σ̂jj′(xi)
and Σtr

jj′(xi) of six conditions. In (b), the lower left and upper right triangles of the

heatmap illustrate true values Σtr(xi) and their posterior estimates of covariance Σ̂(xi),
respectively. Samples 16 (x16 = [1, 1, (0, 0)]) and 26 (x26 = [1, 1, (0, 1)]) from two
different levels are used for illustration.

(a) µ̂ij vs µ
tr
ij (b) ̂βj1 − βj2 vs βtrj1 − βtrj2 (c) ̂βj5 − βj3 vs βtrj5 − βtrj3

Figure 4.2: [Simulation 1] The posterior median estimate of mean abundance µij is
plotted against the truth in panels (a). Panel (b)-(c) plot the effect of the first covariate
βj1−βj2 and the difference in mean between the first and the third levels of the second
covariate βj5 − βj3, respectively.

[1, 1, (0, 1)], respectively. Fig 4.2(a) shows the posterior median estimates of mean µij

with its 95% credible interval estimates. We also check the estimates of categorical

covariate effects in Figs 4.2(b)-(c). Our method estimates the mean abundance well,

which provides a profound basis for good estimates of covariance.
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4.4.2 Simulation 2

In Simulation 2, we extend the model in (4.9) to accommodate inter-subject

variability, which is commonly present in microbiome data. Suppose we have multiple

samples from a set of subjects, {1, . . . , S}. We let si denote the subject from which sam-

ple i is taken, and αsij the normalized abundance of OTU j in the samples form subject

si. We replace the prior of αj in (4.9) to with the following for αsi = [αsi1, . . . , αsiJ ],

αsi | G
iid∼G(α), si ∈ {1, . . . , S},

G(α) =

J∏
j=1

Gj(αj) =

J∏
j=1

[ ∞∑
l=1

ψαl

{
ωαl δξαjl + (1− ωαl )δ

(
να
j
−ωα

l
ξα
jl

1−ωα
l

)
}]

.

(4.13)

where the individual Gj(αj) has different mixing locations ξαjl for each feature.

To generate a dataset, we let S = 25 subjects and J = 100 OTUs. We

introduce a continuous xcsi and generate xcsi
iid∼ N(0, 1). In addition, we include a binary

covariate xdi ∈ {0, 1}, that represents two experimental conditions. Assuming that a

sample is obtained from each condition for a subject, we have xi = (xcsi , 0) or (xcsi , 1)

for sample i. Thus, we have N = 50 samples in total. In Simulation 2, we also intend

to assess our model’s ability to recover the common factor model (De Vito et al., 2019,

2021), where some columns of common factor loadings are the same for all xi. That is,

in the simulation truth, we have

Σtr(xi) = Λtr
0 Λ

tr,′
0 + Λtr(xi)Λ

tr,′(xi) + σ2,trIJ , (4.14)
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where Λtr
0 is the common factors with dimension J×K0 resulting in a commonly shared

baseline covariance. We first specify Σtr(xi) in (4.14) by having K0 = 2 common

factors and Ktr = 3 covariate dependent factors. For K0 = 2 common factors, we

simulated λtr0,jk from N(0, 1) and shifted away from zero by 1/2 for OTUs 1-25 and

51-100 to ensure that those OTUs have baseline interactions. We let λtr0,jk = 0 for

the remaining OTUs. Similarly, for Ktr = 3 covariate dependent factors, we set qtrjk

also from N(0, 1) and shifted away from zero by 1/2 but only for OTUs 51-100. And

we have f trkp
iid∼ Unif(−1, 1) and σ2,tr = 0.52. Under this design, interactions among

OTUs 1-25 do not change with covariates, while among OTUs 51-100 change with the

binary experimental covariate and the continuous covariate. The covariance matrix

corresponding to Σtr(xi) is illustrated in the lower triangle of Fig 4.3(b). Finally, we

would like to include a considerable amount of zero counts and large variability over

samples. For the normalized abundance level, we first set ξα,trj1 = −5, ξα,trj2 ∼ N(2.5, 0.5)

and ξα,trj3 ∼ N(5, 0.5) and simulated ψtr
j = (ψtr

j1, ψ
tr
j2, ψ

tr
j3) ∼ Dir(30, 40, 30). The three

values, ξα,trjl , l = 1, 2 and 3, represent zero, small and large counts, respectively. We

then let αtrsij = ξα,trjl with probability ψtr
jl for si ∈ {1, . . . , S}. We next simulated size

factors rtri
iid∼ Unif(0, 2) and regression coefficients βtrjp

iid∼ N(0, 1). We included one

binary covariate and one continuous covariate sampled from N(0, 1). We had µtr(xi) =

rtri 1J +α
tr
si +β

′xi. Under this setup, approximately 30.76% of Yij ’s are 0. We specified

the hyper-parameters values similar to Simulation 1 with K = 7. We ran MCMC for

160, 000 iterations and discarded the first half for burn-in. It took 23 hours on an Apple

M1 chip laptop.
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Fig 4.3(a) plotting the differences Σ̂jj′(xi)−Σtr
jj′(xi) of all samples shows good

estimates of interactions. We check the binary experimental effect and continuous co-

variate effect on the covariance in Fig 4.3(b)-(c) and Fig 4.4. Fig 4.4 presents the poste-

rior estimation of covariance-covariates dependence among selected OTUs. Our method

identifies truly inactive OTUs and estimates the baseline covariance successfully, and

the OTU interrelationship with covariate structure is reasonably well captured even

when the sample size is smaller than the number of OTUs. Figs 4.5(a) and (b) show the

posterior median estimates of βjp with their 95% credible interval estimates for binary

covariate and continuous covariate, respectively. Our method effectively captures the

covariate effects as well.

We also examine estimates of the factor loading matrix in Supp Fig C.1. Our

posterior estimates of qjk resemble two designed common factors, and for redundant

factors we estimate extremely small posterior estimates of τk to shrink towards 0. Supp.

Fig C.2 compares posterior median estimates of sample size factor ri and the mean

abundance µij to their truth. In the figure, the library size factor and mean abundances

are well estimated, serving as a reliable foundation for estimating the parameters of

primary interest, such as Σ(xi).

4.4.3 Simulation 3

We conducted Simulation 3 for a case with one binary covariate, where the

covariance under each condition is arbitrarily generated using the vine method in

Lewandowski et al. (2009). In particular, we simulated partial correlations from linearly
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(a) Σ̂jj′(x)− Σtr
jj′(x) (b) Σ̂(x2) vs Σ

tr(x2) (c) Σ̂(x27) vs Σ
tr(x27)

Figure 4.3: [Simulation 2] Panel (a) has a histogram of differences between Σ̂jj′(xi) and
Σtr
jj′(xi) of all samples. In (b), the lower left and upper right triangles of the heatmap

illustrate true values Σtr
jj′ and their posterior estimates of correlations Σ̂jj′ , respectively.

Two samples, samples 2 and 27, from subject 2, are arbitrarily chosen for illustration.
Their covariates are x2 = (1,−1.23),x27 = (0,−1.23).

(a) OTU 52 & 53 (b) OTU 67 & 86 (c) OTU 74 & 90

Figure 4.4: [Simulation 2] Scatter plots of Σjj′(x) (dashed) and Σtr
jj′(x) (solid) are

plotted for three arbitrarily chosen OTU pairs, OTUs 52 and 53, OTUs 67 and 86, and
OTUs 74 and 90 for model checking. Crosses are observed covariates in the simulated
data.

transformed Be(1, 1) distribution over the interval of (−1, 1). To encourage sparsity in

Σtr(xi), we set the partial correlations below 0.8 to 0 and generated a correlation ma-

trix, ρtr(xi) using their recursive formula. We then sampled σ2,tr independently from

Unif(1, 1.5) and let Σtr
jj′(xi) = σ2,trj σ2,trj′ ρtrjj′(xi). Σ

tr
0 and Σtr

1 is shown in the lower trian-

gle of Fig 4.6(b)-(c). For abundances, we kept the same as in Simulation 1 to simulate

a count dataset. We used the same fixed hyperparameter values as in Simulation 2
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(a) ̂βj1 − βj2 versus βtrj1 − βtrj2 (b) β̂j3 versus βtrj3

Figure 4.5: [Simulation 2] The posterior median estimates (dots) of βjp for binary and
continuous covariates are plotted in (a)-(b), respectively. Vertical lines represent their
corresponding 95% credible interval estimates.

except K = 25. We test the sensitivity analysis in the supplementary that large enough

K outputs similar estimates of the covariance matrix. We approximated the posterior

distribution using MCMC. The examination of the MCMC simulation using traceplots

indicated no evidence of convergence or mixing problems.

The upper triangle of Fig 4.6(a)-(b) illustrates the posterior estimates Σ̂0 and

Σ̂1 under our model. Figs 4.7(a) and (b) show the posterior median estimates of mean

abundance µij of each OTU j in sample i and experimental coefficient βj1 − βj2 (dots)

with their 95% credible interval estimates (vertical lines), respectively. Our method

effectively captures the true dependence structure among the OTUs, even with the

arbitrary specification of Σtr and the added complexity introduced by the covariate in

the true data-generating process.
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(a) Σ̂jj′ − Σtr
jj′ (b) Σ̂0 vs Σtr

0 (c) Σ̂1 vs Σtr
1

Figure 4.6: [Simulation 3] Panel (a) has a histogram of differences between Σ̂jj′(xi) and
Σtr
jj′(xi) of all samples. In (b), the lower left and upper right triangles of the heatmap

illustrate true values Σtr
xi and their posterior estimates of correlations Σ̂xi , respectively.

(a) µ̂ij vs µ
tr
ij (b) ̂βj1 − βj2

Figure 4.7: [Simulation 3] The posterior median estimates and 95% credible intervals of
mean abundance µij and experimental regression coefficient βjp are plotted against the
truth in panels (a) and (b), respectively.

4.5 Mice Gut Microbiome Data Analysis

We applied our method to the mice gut microbiome data in Patnode et al.

(2019). N = 30 gnotobiotic mice were fed a human diet supplemented with different

combinations of three different fiber preparations, e.g upper tertile of saturated fat

(HiSF), 10% Citrus Pectin (CPT) and 10% Pea Fiber (PEF). Besides, one specific
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OTU, Bacteroides cellulosilyticus WH2 (WH2), was removed from half of the mice at

the beginning of the study. Thus, it resulted in two categorical variables: one with

two levels (removal of WH2 or not) and the other with three levels (diets). 16S rRNA

gene sequencing was performed, and J = 15 OTUs including OTU WH2 were included

for analysis. The names of OTUs are included in the supplementary files for further

studies. We denote covariates xi = (xWH2, xdiet), where xWH2 ∈ {0, 1} and xdiet ∈

{(0, 0), (1, 0), (0, 1)}. Since the removal of WH2 at the beginning highly affects the

mean abundance of WH2 throughout the study, we have x̃ij = xi for OTU WH2.

For all other OTUs, the study focuses on their abundance changes though interactions

with WH2. We set x̃ij = xdiet for all other OTUs. Fig 4.8(a)-(f) shows empirical

correlation estimates ρemjj′ (xi) computed using log(yij + 0.01) after normalization with

log of total count sample size factor estimates. To fit our model, the values of the

fixed hyperparameter values were set similar to those of Simulation 1 with K = 8.

The MCMC simulation was run over 160,000 iterations, with the first half iterations

discarded as burn-in. It took 22 minutes on a M1 Mac.

Fig 4.8(a)-(f) illustrates posterior mean estimates of correlation ρ̂jj′(xi) of all

OTUs under six different conditions. We turn to correlation ranging from -1 to 1 for

easier illustration in the context of microbiome study. Some common interaction struc-

tures are found under all conditions, such as negative correlation between OTUs 9 (Cat

Collinsella aerofaciens TSDC17) and 13 (Cat Ruminococcaceae TSDC17). We identify

three significantly different correlation pairs in Fig 4.9. Fig 4.9(a)-(b) shows that the

correlation between OTU 1 (B ovatus ATCC.8483) and OTU 3 (B thetaiotaomicron
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(a) rm of WH2 + CPT (b) rm of WH2 + HiSF (c) rm of WH2 + PEF

(d) CPT (e) HiSF (f) PEF

Figure 4.8: [Mice Data] The lower left and upper right triangles of the heatmap illustrate
empirical estimates Σem

xi and their posterior estimates of correlations Σ̂xi under six
different experimental conditions, respectively.

7330) and the correlation between 3 and 11 (Cat Odoribacter splanchnicus TSDC17)

are highly positively correlated when OTU WH2 is removed from mice at the begin-

ning. But this interaction is much mitigated in the mice having OTU WH2 from the

beginning to the end. Fig 4.10 illustrates posterior median estimates β̂jp of the two cate-

gorical covariates, respectively, with their 95% credible intervals. Fig 4.10(a) verifies the

correctness of our results that mice which were removed WH2 at the beginning have a

significantly smaller count abundance of OTU 2 (WH2). In Fig 4.10(b)-(d), the effect of

having diet PET compared to CPT βPET −βCPT is statistically significant for 4 OTUs.

The effect estimates are positive for OTU 1 and 4 (B thetaiotaomicron VPI.5482) and

negative for OTU 7 (Cat Bacteroides finegoldii TSDC17) and 13. Similarly, we also
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(a) OTU 1 and OTU 3 (b) OTU 3 and OTU 11 (c) OTU 9 and OTU 13

Figure 4.9: [Mice Data] Three representative pairs of OTUs having significantly different
correlations under six conditions are plotted in (a)-(c). The points are the posterior
estimate of correlation, and 95% credible intervals are in black intervals.

have significantly positive effects for OTU 4 comparing PET to HiSF, and significantly

negative for OTU 7 and 13 comparing HiSF to CPT. It implies that OTU 4 is more

abundant under diet PET, and OTUs 7,13 are very rare under diet CPT.

4.6 Conclusion

In this paper, we developed a Bayesian joint model of mean and covariance

varying with covariates for high-dimensional multivariate count data. This method

utilizes a covariate-dependent factor model for the covariance matrix and models the

mean abundance using a flexible DP mixture. The model enables the assessment of

covariate effects on mean and covariance in tandem. We place a Dir-Horseshoe prior

on the covariate-dependent loading matrix to induce sparse feature interactions. The

flexible mean mixture kernels handle the excess zeros and over-dispersion problems in

the count data. The model is demonstrated through simulations and a real data example

with categorical covariates.
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(a) βremove WH2 − βnot remove WH2 (b) βPET − βCPT

(c) βHiSF − βCPT (d) βPET − βHiSF

Figure 4.10: [Mice Data] Posterior inference of regression coefficients of two categorical
covariates, where the posterior mean estimates are denoted by dots, and the 95% credible
estimates with vertical lines. The intervals that do not contain zero are marked.

Our methods can be further extended by relaxing the linear covariance regres-

sion to a more complicated regression formula, such as introducing the transformation of

covariates
√
x and x

3
2 . Introducing different orders of covariates induces a higher order

of covariance-covariate relationship. It is important to note that while this extension

offers greater flexibility, the same higher order of covariates entering the mean regres-

sion would need more exploration (variables selection). With added parameters, more
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samples are needed to obtain reasonable inferences. A further research field is to study

covariate-assisted interactions among temporal and/or longitudinal multivariate count

data. In spatial and temporal heteroscedasticity, it’s natural to consider the conditional

dependence through time or locations. Fieuws and Verbeke (2006) discussed a pairwise

approach jointly modeling of multivariate longitudinal data using mixed models, provid-

ing a foundation for understanding covariance structures in such contexts. Adapting the

factor loading matrix to a time or location-dependent one has the potential to enhance

the inference of interaction structures in other domains.
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Chapter 5

Conclusion

In this thesis, we have developed flexible and efficient Bayesian methodologies

for high-dimensional multivariate count data analysis, addressing the unique challenges

posed by the complexities of such data including high dimensionality. By leveraging

Bayesian frameworks, we introduced robust approaches that effectively capture the un-

derlying dependence structure in high-dimensional count data, while accommodating

the inherent uncertainty and variability.

Our exploration began with a zero-inflated Bayesian rounded kernel model tai-

lored for count data, emphasizing its interpretability and adaptability in handling com-

plex datasets. The covariance matrix of the kernel was estimated through a sparse factor

model with a Dir-Laplace shrinkage prior on the factor loading matrix. We demonstrated

how the prior was particularly beneficial in high-dimensional settings where data spar-

sity and overfitting are common concerns. The model also yielded reasonable estimates

of relative count abundance by simultaneously performing a model-based normalization.

114



Simulation and real data examples both provide superior performance of the proposed

model compared to the alternatives.

We next developed a Bayesian nonparametric method that integrates multiple

sources of count tables. A Dirichlet process mixture of rounded kernel provides flexible

multivariate distribution for count tables. We further constructed a novel shrinkage

prior Dir-HS distribution to effectively induce a sparse factor loading matrix, leading

to robust estimates of interactions in high-dimensional data. The theoretical properties

of Dir-HS were examined and compared to existing priors. Simulations indicated the

proposed model captured various shapes of distributions and recovered arbitrary random

covariance matrices. We used the model to analyze a multi-domain skin microbiome

dataset to infer interactions among the microbes from different domains.

Finally, we considered the problem of heteroscedasticity in a count vector and

developed a covariate-dependent factor model for multivariate count data. We uti-

lized a linear formulation in the lower-dimensional structure that induces a quadratic

covariance-covariate relationship. Simulations showed the model with this parsimo-

nious structure can sufficiently approximate arbitrary covariance varying over different

experimental conditions. The parametric relationship brought computational efficiency

and straightforward interpretability. We further extended this model to accommodate

inter-subject heterogeneity. The model was demonstrated with analysis of mice gut

microbiome dataset, where competition among microbes may be affected by different

diets.

In conclusion, Bayesian high-dimensional multivariate count analysis offers a
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comprehensive and powerful framework for analyzing complex count data. By introduc-

ing latent variables and combining rigorous statistical modeling with advanced compu-

tational techniques, these proposed approaches provide significant advantages in terms

of flexibility, interpretability, and accuracy. Future research can build on these founda-

tions by exploring more sophisticated count structures, such as spatial-temporal count

data and tree-evolving count tables. The ongoing advancements in this field promise to

enhance our ability to extract meaningful insights from high-dimensional count data,

driving further innovations in various scientific and applied disciplines.
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Appendix A

SUPPLEMENTARY FOR Bayesian

Modeling of Interaction between

Features in Sparse Multivariate Count

Data with Application to Microbiome

Study

A.1 Details of Posterior Computation

We use Markov chain Monte Carlo (MCMC) to draw samples of the random

parameters from their posterior distribution. Recall that Yij ∈ N0, i = 1, . . . , N and

j = 1, . . . , J denotes the count of OTU j in sample i, and the model assumes Yij = ⌊Y ⋆
ij⌋

with Y ⋆
ij ∈ R+. The distribution of Y⋆

i = (Y ⋆
i1, . . . , Y

⋆
iJ) is specified in (1) of the main
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text. We also let X represent a N × P covariate matrix whose rows have a P−dim

covariate vector xi. The probit regression for the probabilities of an OTU being absent

may have a different covariate vector x̃i with Pκ even for the same set of covariates due

to different parameterizations. We let X̃ be a N × Pκ covariate matrix having x̃i in

rows and X̃⋆ = [1, X̃] a N × (Pκ + 1) covariate matrix with the first column being a

column of 1.

To facilitate updating the parameters related to zero inflation such as δij and

κj , we introduce a continuous real valued latent variable zij ∼ N(κj0 + x̃′
iκj , 1) and let

δij = 1 if zij < 0 and otherwise δij = 0. We then have ϵij = Pr(δij = 1) = Pr(zij < 0 |

κj) = Φ(κj0+ x̃′
iκj). The MCMC steps of updating parameters κj and latent variables

δij and zij can be summarized as below;

• κj : The full conditional distribution of κj is

κj | µκ,Σκ ∼ N(Pκ+1)((X̃
′
⋆X̃⋆ + uκIP+1)

−1((uκIP+1)
−1µκ + X̃′zj),

(X̃′
⋆X̃⋆ + uκIP+1)

−1).

Draw κj from its full conditional.

• zij : The full conditional distribution is

zij ∼


N−(κj0 + x̃′

iκj , 1) if δij = 1,

N+(κj0 + x̃′
iκj , 1) if δij = 0,
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where N+ and N− represent normal distributions truncated below and above at

zero, respectively.

• δij : For (i, j) with Yij = 0, update δij using the full conditional;

Pr(δij = 1 | −) ∝ ϵij ,

Pr(δij = 0 | −) ∝ (1− ϵij)

∫ 0

−∞
ϕ(ỹ⋆ij | ri + αj + sgi,j + λ′jηi + x′

iβj , σ
2)dỹ∗ij ,

where ϵij = Φ(κj0 + x̃′
iκj , 1) and ϕ(· | a, b2) represents the probability density

function of the normal distribution with mean a and variance b2. If Yij > 0,

δij = 0 with probability 1.

Updating of the random parameters related to µij and Σ can be more conve-

nient with latent continuous variables Ỹ ⋆
ij = log(Y ⋆

ij) for (i, j) having δij = 0 imputed as

follows;

Ỹ ⋆
ij ∼ N(ri + αj + sgi,j + λ

′
jηi + x′

iβj , σ
2)1(log(yij) ≤ Ỹ ⋆

ij < log(yij)),

that is, a truncated normal distribution, where the support is determined by the ob-

served count yij . Given Ỹ ⋆
ij , the full conditionals of the parameters in Σ except for ϕj

have a standard form, and the Gibbs sampler can be used to update τk, λjk and σ2.

Specifically, we re-write the Laplace distribution as a normal scale mixture to facilitate

the step of updating λjk from its full conditional; λjk | ζjk, ϕj , τk
indep∼ N(0, ζjkϕ

2
jτ

2
k ) and

ζjk
iid∼ Exp(1/2). Then λjk can be easily obtained through a data augmented Gibbs
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step. The full conditional distribution of ζ−1
jk and τk can be sampled from the inverse

Gaussian and generalized inverse Gaussian sampling distribution (Park and Casella,

2008). We update ϕj using a Metropolis-Hastings step. We let ϕ⋆j
iid∼ Ga(aϕ, 1) and

have ϕ = (ϕ1, . . . , ϕJ) ∼ Dir(aϕ, . . . , aϕ) with ϕj = ϕ⋆j/
∑

j′ ϕ
⋆
j′ . The full conditional of

ϕ is given by

p(ϕ | −) ∝ p(λ | τ ,ϕ, ζ)p(ϕ)

∝
J∏
j=1

K∏
k=1

N(λjk | 0, ζjkϕ2jτ2k )
J∏
j=1

Ga(ϕ⋆j | aϕ, 1).

In order to explore the posterior distribution of ϕj efficiently, the adaptive MH algorithm

(Haario et al., 2001) is used. We adjust the MH step size according to the acceptance

ratio, and the convergence rate is accelerated.

Recall that we have parameters, ri, αj , βj , sgi,j and u2s, for µij in (8) of the

main text, and parameters, ψχ, ωχl and ξχl , χ ∈ {α, r}, in (9) of the main text. The full

conditional distributions of the parameters βj , sgi,j and u
2
s have a standard distribution,

and their samples are easily drawn through a usual Bayesian Normal-Gamma model

update. Size factors ri and αj have a mixture of mixtures as their prior. To facilitate

computation, we introduce a pair of auxiliary variables for each χ ∈ {α, r} that specifies

the mixture component from which each particular χ is, i.e., (Sri1, S
r
i2) for ri, where

Sri1 ∈ {1, . . . , Lr} and Sri2 ∈ {0, 1}, and (Sαj1, S
α
j2) for αj , where S

α
i1 ∈ {1, . . . , Lα} and

Sαi2 ∈ {0, 1}. We then assume P(Sri1 = l) = ψrl and P(Sri2 = 0 | Sri1 = l) = ωrl , and

similarly, assume P(Sαi1 = l) = ψαl and P(Sαi2 = 0 | Srj1 = l) = ωαl . The conditional prior
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Figure A.1: [Simulation 1] Traceplots of log likelihood under three different initializa-
tions are presented in black, red and blue, respectively.

distributions of ri and αj are

ri | ψr,ωr, ξr, Sri1 = l, Sri2 ∼


N(ξrl , u

2
r) if Sri2 = 0,

N
(
vr−ωr

l ξ
r
l

1−ωr
l
, u2r

)
if Sri2 = 1,

αj | ψα,ωα, ξα, Sαi1 = l, Sαi2 ∼


N(ξαl , u

2
α) if Sαi2 = 0,

N
(
vα−ωα

l ξ
α
l

1−ωα
l
, u2α

)
if Sαi2 = 1,

Conditional on those indicators, ψχ can be drawn through a traditional Multinomial-

Dirichlet model update and ωχl through a Metropolis-hasting update. Also, given the

indicators, the full conditional distributions of ri, αj and ξ
χ
l , χ ∈ {r, α} have a Gaussian

distribution.
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(a) ρtrjj′ versus ρ
em
jj′ (b) ρemjj′ − ρtrjj′

Figure A.2: [Simulation 1] The upper right and lower left triangles of the heatmap in
panel (a) illustrates empirical correlation estimates ρemjj′ of log(Yij + 0.01) scaled with

CSS and the true values of the correlations ρtrjj′ , respectively. Panel (b) has a histogram

of differences between ρemjj′ and ρ
tr
jj′ .

A.2 Instruction for the R package, ZI-MLN

ZI-MLN is an R package that reproduces the tables and figures in Chapter 2

and evaluates the performance of ZI-MLN. Download and install R from https://www.

r-project.org/. It requires R 3.6 or greater. Once installed, open R from the terminal

and run the following command to install packages.

install.packages(c("statmod", "GIGrvg", "extraDistr", "mvtnorm"))

One can also import the GitHub repository https://github.com/shuang-jie/

ZI-MLN directly to load all functions. Two main functions in the repository are ‘ZI

MLN without’ for microbiome count tables without covariates and ‘ZI MLN with’ for

cases with covariates. The input count table Y is a raw count table and does not need

normalization. For the input count table, samples are in rows and features (OTUs)

are in columns. Note we also have an index m = 1, 2...M for subjects. For example,
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(a) ri + αj (b) ϵij

Figure A.3: [Simulation 1] In panel (a), posterior mean estimates of the mean abundance
ri + αj are plotted against the simulation truth rtri + αtr

j . Panel (b) has a histogram of
the differences in posterior mean estimates ϵ̂ij of probabilities of an OTU being absent
and their true values ϵtrij .

m = 1, 2, 2, 3 means that the four samples are from subject 1, 2, 2 and 3, respectively.

A special case is m = 1, 2, 3, . . . , n, which implies one sample is obtained from each

subject. Hyper-parameter specifications are discussed in the simulation part of Chapter

2. We also provide simulation code in ‘without covariate.R’ to analyze simulated data

when there are no covariates on artificially generated data. More details of the code are

on the github README page.

A.3 Additional Simulation Studies

A.3.1 Additional Results of Simulation 1

In this subsection, we present additional results from Simulation 1 in § 2.3.1 of

the main text. We examined the convergence of the MCMC simulation using trace plots

of the log-likelihood. The model was run under different initializations and random
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seeds. Traceplots of the log-likelihood in Fig A.1 suggest that the model converged

to a similar state under these different initializations. The figure provides practical

evidence of the model’s convergence. Fig A.2 illustrates empirical estimates of the

marginal correlations ρemjj′ of the logarithm transformed counts, log(yij + 0.01) after

normalization with sample size factors estimated by CSS. The true values ρtrjj′ of the

correlations are shown in the lower left triangle of the heatmap in panel (a). In panel

(b), a histogram of the differences ρemjj′ − ρtrjj′ is shown. Fig A.3(a) shows posterior

mean estimates of the baseline abundance ri + αj of OTU j in sample i compared to

the simulation truth rtri + αtrj . The figure indicates that the mean abundances ri + αj

are identifiable although ri and αj are not individually identifiable, and our model

provides good estimates of the mean abundance. Furthermore, it provides a good basis

for the estimation of parameters of our main interest such as Σ. We also examined the

performance of estimating probabilities ϵij of OTUs being absent in samples. Under the

setup without covariates, ϵij = Φ1(κj0 | 0, 1) is identical for all i, i.e., ϵij = ϵj for all i.

Fig A.3(b) shows that ϵj ’s are well estimated even with a small sample size N = 20.

A.3.2 Additional Results of Simulation 2

In this subsection, we include additional results from Simulation 2, described in

§ 2.3.2 of the main text. We ran the model on the dataset with different initializations

and random seeds for the MCMC chain. Traceplots of the log-likelihood under the

different random seeds and initializations are shown in Fig A.4. The figure shows the

MCMC converges to similar log-likelihood ranges under these different specifications,
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Figure A.4: [Simulation 2] Traceplots of log likelihood under three different initializa-
tions are presented in black, red and blue, respectively.

(a) ρtrjj′ versus ρ
em
jj′ (b) ρemjj′ − ρtrjj′

Figure A.5: [Simulation 2] The upper right and lower left triangles of the heatmap in
panel (a) illustrate empirical correlation estimates ρemjj′ of log(Yij + 0.01) scaled with

CSS and the true values of the correlations ρtrjj′ , respectively. Panel (b) has a histogram

of differences between ρemjj′ and ρ
tr
jj′ .

and we did not find evidence suggesting the Markov chain failed to converge. Fig A.5

compares empirical estimates ρemjj′ of the marginal correlations to the true values ρtrjj′ of
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(a) κj0, ZI-MLN (b) κj1, ZI-MLN (c) κj2, ZI-MLN

(d) κj0, ZI-MLN w.o. Λ (e) κj1, ZI-MLN w.o. Λ (f) κj2, ZI-MLN w.o. Λ

Figure A.6: [Simulation 2] Posterior mean estimates κ̂jp of coefficients on ϵij are plotted
against the truth for p = 0, 1, 2 in columns 1-3, respectively. The top and bottom rows
are for ZI-MLN and ZI-MLN without Λ, respectively.

(a) ri + αj (b) ϵij

Figure A.7: [Simulation 2] In panel (a), posterior mean estimates of the mean abundance
ri + αj are plotted against the simulation truth rtri + αtr

j . Panel (b) has a histogram of
the differences in posterior mean estimates ϵ̂ij of probabilities of an OTU being absent
and their true values ϵtrij .
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(a) βj1 − βj2 under ZI-MLN without Λ (b) βj3 under ZI-MLN without Λ

(c) βj1 − βj2 under metagenomeSeq (d) βj3 under metagenomeSeq

(e) βj1 − βj2 under edgeR (f) βj3 under edgeR

Figure A.8: [Simulation 2: Comparison] Estimates ̂βj1 − βj2 and β̂j3 of regression co-
efficients are compared to the truth, βtrj1 − βtrj2 and βtrj3. The estimates in rows 1-3 are

produced by ZI-MLN without Λ, metagenomeSeq and edgeR, respectively.
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(a) MetagenomeSeq (b) EdgeR

Figure A.9: [Simulation 2: Comparison] Panels (a) and (b) present scatter plots of
observed log(yij + 0.01) versus log(µ̂ij + 0.01) by metagenomeSeq and edgeR. µ̂ij are
estimated mean abundances of OTUs in samples.

the correlations. ρemjj′ and ρ
tr
jj′ are shown in the upper right and lower left triangles of the

heatmap in panel (a), respectively. A histogram of differences ρemjj′ −ρtrjj′ is in panel (b).

Figs A.6(a)-(c) compare posterior mean estimates κ̂jp of probit regression coefficients

on ϵij to their true values under ZI-MLN. In Fig A.7, we examine the estimation of

mean abundances ri+αj and the probabilities ϵij of an OTU being absent in a sample.

The figure shows that posterior mean estimates of ri + αj and of ϵij are close to their

simulation truth, and the model reasonably well recovers the simulation truth.

Fig A.8 illustrates posterior mean estimates of regression coefficients βjp under

comparators, ZI-MLN without Λ, metagenomeSeq and edgeR. Figs A.6(d)-(f) compare

posterior mean estimates of κjp under ZI-MLN without Λ to their truth. Estimates of

OTU mean abundances under metagenomeSeq and edgeR are compared to the observed

counts in Fig A.9.
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Figure A.10: [Simulation 3] Traceplots of log likelihood under three different initializa-
tions are presented in black, red and blue, respectively.

(a) ρtrjj′ versus ρ̂jj′ (b) ρ̂jj′ − ρtrjj′

Figure A.11: [Simulation 3] The upper right and lower left triangles of the heatmap
in panel (a) illustrate posterior estimates of correlations ρ̂jj′ and their true values ρtrjj′ ,

respectively. Panel (b) has a histogram of differences between ρ̂jj′ and ρ
tr
jj′ .

A.3.3 Simulation 3

We performed an additional simulation study, Simulation 3, where OTU counts

are generated from Poisson distributions with correlated means and examined the ro-
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(a) ri + αj (b) ϵij

Figure A.12: [Simulation 3] In panel (a), posterior mean estimates of the mean abun-
dance ri+αj are plotted against the simulation truth rtri +α

tr
j . Panel (b) has a histogram

of the differences in posterior mean estimates ϵ̂ij of probabilities of an OTU being absent
and their true values ϵtrij .

Table A.1: [Simulation 3: Comparison] RMSEs are computed for ρjj′ , j < j′, δij , µij ,
βj2 − βj1, βj3 and κjp under ZI-MLN and comparators.

Model ρjj′

ZI-MLN 0.064

SparCC 0.178

SPIEC-EASI 0.158

CCLasso 0.154

Zi-LN 0.160

Model δij µij βj2 − βj1 βj3 κj0 κj1 κj2
ZI-MLN 0.096 1.697 0.465 0.353 0.222 0.201 0.339

ZI-MLN without Λ 0.115 1.731 0.601 0.397 0.242 0.222 0.350

MetagenomeSeq 0.113 1.913 1.245 0.729 - - -

EdgeR - 3.400 0.952 0.595 - - -

(a) ρjj′ (b) δij , µij , βj2 − βj1, βj3 and κjp

bustness of our ZI-MLN. We kept most of the setup of Simulation 2 the same for

Simulation 3; we assumed the number of OTUs J = 150 and the number of subjects

M = 35 assuming two samples from each subject (so the number of samples N = 70).

We simulated λtrjk with K
tr = 5 assuming sparsity level g = 0.8 for joint sparsity, and set

σ2,tr = 1 and v2,trs = 1. We included a pair of dummy variables (xi1, xi2) ∈ {(1, 0), (0, 1)}

to represent a binary covariate, and a continuous covariate, xi3 generated from N(0, 1).
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(a) βj1 − βj2 under ZI-MLN (b) βj3 under ZI-MLN

(c) βj1 − βj2 under ZI-MLN without Λ (d) βj3 under ZI-MLN without Λ

(e) βj1 − βj2 under metagemoneSeq (f) βj3 under metagemoneSeq

Figure A.13: [Simulation 3] Estimates ̂βj1 − βj2 and β̂j3 of regression coefficients are
compared to the truth βtrj1 − βtrj2 and βtrj3. Estimates in the four rows are obtained by
ZI-MLN, ZI-MLN without Λ, metagenomeSeq and edgeR, respectively. The left and

right columns are for ̂βj1 − βj2 and β̂j3, respectively.
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(g) βj1 − βj2 under edgeR (h) βj3 under edgeR

Figure A.14: Fig A.13 continued [Simulation 3] Estimates of regression coefficients
̂βj1 − βj2 and β̂j3 are compared to the truth βtrj1−βtrj2 and βtrj3. Estimates in the four rows

are obtained by ZI-MLN, ZI-MLN without Λ, metagenomeSeq and edgeR, respectively.

The left and right columns are for ̂βj1 − βj2 and β̂j3, respectively.

We have xi = (xi1, xi2, xi3) for the mean abundance µij and x̃i = (xi2, xi3) for the prob-

ability ϵij of an OTU being absent. We then simulated sample size factors rtri , OTU

size factors αtrj , subject-specific random effects strgi,j , regression coefficients for mean

abundances βtrjp and regression coefficients for zero inflation κtrjp, the same as done in

Simulation 2. We finally generated counts Yij for Poisson distributions as follows;

δtrij | ϵtrij
indep∼ Ber(ϵtrij ), where ϵtrij = Φ1(κ

tr
j0 + x̃′

iκ
tr
j | 0, 1),

µ̃tr
i

iid∼ NJ(r
tr
i 1J +αtr + strgi + β

trxi,Σ
tr),


yij | µ̃trij

indep∼ Poi(exp(µ̃trij )) if δtrij = 0,

yij = 0 if δtrij = 1,
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(a) κj0 under ZI-MLN (b) κj1 under ZI-MLN (c) κj2 under ZI-MLN

(a) κj0 under ZI-MLN without Λ (b) κj1 under ZI-MLN without Λ (c) κj2 under ZI-MLN without Λ

Figure A.15: [Simulation 3] Posterior mean estimates κ̂jp of coefficients on ϵij are plotted
against the truth for p = 0, 1, 2. Estimates in the first and second rows are obtained
from ZI-MLN and ZI-MLN without Λ, respectively.

where Σtr = Λtr(Λtr)′ + σ2,trIJ . Here, βtr is the J × P matrix of the true βtrjp. To fit

the model, we specified the fixed hyperparameter values similar to those in Simulation 2

and approximated the posterior distribution using MCMC. The MCMC simulation was

run for 30,000 iterations, discarding the first 15,000 iterations. Reasonable convergence

was achieved and the chain mixed well from checking traceplots and auto-correlation

plots. Fig A.10 shows traceplots of the log-likelihood from MCMC chains under different

random seeds and initializations. The MCMC converges to similar log-likelihood ranges,

showing no evidence of poor mixing or convergence problem.

The results are shown in Figs A.11-A.16. Fig A.11 compares posterior mean

estimates of the marginal correlation ρjj′ to the truth. The figure shows that the depen-

dency structure is well recovered. Fig A.12(a) shows a scatter plot of posterior mean

estimates r̂i + αj of mean abundances compared to the truth rtri +αtrj . In panel (b) of the
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(a) ZI-MLN (b) ZI-MLN without Λ

(c) MetagenomeSeq (d) EdgeR

Figure A.16: [Simulation 3] Panels (a) and (b) compare posterior predictive median

counts to their observed counts on the logarithm scale, log(yij+0.01) versus log(ŷpredij +

0.01). ŷpredij are estimated with ZI-MLN with Λ in (a) and without Λ in (b). Panels
(c) and (d) present scatter plots of observed log(yij + 0.01) versus log(µ̂ij + 0.01) by
metagenomeSeq and edgeR, respectively, where µ̂ij are estimated mean abundances of
OTUs in samples.

figure, posterior estimates of ϵij are compared to the truth ϵtrij . Posterior mean estimates

of regression coefficients βj1 − βj2 and βj3 are compared to their truth in Fig A.13(a)

and (b). Posterior mean estimates of probit regression coefficients κjp are compared to

their truth in Fig A.15(a)-(c). In Fig A.16(a), posterior predictive median estimates

of OTU counts are plotted against the observed counts for model checking. Overall,

160



(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

Figure A.17: [Simulation 3: Comparison] The upper right and lower left triangles of each
heatmap illustrate estimates ρ̂jj′ of correlations between OTUs and their true values
ρtrjj′ . Panels (a)-(d) are for SparCC, SPIEC-EASI, CCLasso and Zi-LN, respectively.

(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

Figure A.18: [Simulation 3: Comparison] A histogram of differences between ρ̂jj′ under
SparCC, SPIEC-EASI, CCLasso and ZiLN and ρtrjj′ , in panels (a)-(d), respectively.

the underlying data generation structure is reasonably well approximated although the

simulation truth is greatly different from the assumption that ZI-NNL makes, and the

model provides a reasonable fit to the data.

We also applied our comparators, SparCC, SPIEC-EASI, CCLasso and Zi-LN,

to the simulated dataset. Estimates ρ̂jj′ of the correlations under the comparators are

compared to the truth ρtrjj′ in Figs A.17 and A.18. The comparators fail to recover

the true dependence structure between OTUs. The RMSE computed for ρjj′ is shown

in Tab A.1(a) for all methods in comparison including ZI-MLN. The RMSE under ZI-

MLN is much smaller than those under the comparators. It is possibly because the

comparators do not attempt to estimate covariate effects on OTU abundances. Addi-
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Table A.2: [Simulation 4: Comparison] RMSEs are computed for ρjj′ , j < j′, δij , µij ,
βj2 − βj1, βj3 and κjp under ZI-MLN and comparators.

Model ρjj′

ZI-MLN 0.0011

SparCC 0.128

SPIEC-EASI 0.0042

CCLasso 0.053

Zi-LN 0.051

Model δij µij βj2 − βj1 βj3 κj0 κj1 κj2
ZI-MLN 0.052 0.783 0.325 0.234 0.223 0.170 0.170

ZI-MLN without Λ 0.052 0.783 0.370 0.241 0.223 0.170 0.170

metagenomeSeq 0.078 2.161 1.092 0.711 - - -

edgeR - 1.491 0.741 0.452 - - -

(a) ρjj′ (b) δij , µij , βj2 − βj1, βj3 and κjp

tional comparators, ZI-MLN without Λ, metagenomeSeq and edgeR were also applied

to compare estimates of the covariate effects. The RMSEs are computed for the pa-

rameters δij , µij , βj2 − βj1, βj3 and κjp and summarized in Tab A.1(b). Our ZI-MLN

outperforms the comparators even when the counts are generated from Poisson dis-

tributions. Estimates of regression coefficients βj1 − βj2 and βj3 obtained from the

comparators are compared to their truth in Figs A.13(c)-(h). Figs A.15(d)-(f) illustrate

a comparison of posterior mean estimates of probit regression coefficients κjp under

ZI-MLN without Λ to the truth. Predictive model checking for ZI-MLN without Λ is

reported in Fig A.16(b) by comparing their posterior predictive median estimates ŷ
pred
ij

of OTU counts to the observed counts. Estimates of mean abundance levels under

metagenomeSeq and edgeR are plotted against the observed counts in Figs A.16(c) and

(d), respectively. The comparison indicates that ignoring the interrelationship between

OTUs may distort inferences on mean abundances and the absence/presence of OTUs.

Also, comparison of ZI-MLN to edgeR shows that ignoring excess zeros may lead to

poor estimation of mean abundance levels.
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Figure A.19: [Simulation 4] Traceplots of log likelihood under three different initializa-
tions are presented in black, red and blue, respectively.

(a) ρtrjj′ versus ρ̂jj′ (b) ρ̂jj′ − ρtrjj′

Figure A.20: [Simulation 4] The upper right and lower left triangles of the heatmap
in panel (a) illustrate posterior estimates of correlations ρ̂jj′ and their true values ρtrjj′ ,

respectively. Panel (b) has a histogram of differences between ρ̂jj′ and ρ
tr
jj′ .

A.3.4 Simulation 4

In Simulation 4, we considered a dataset without any dependency structure

between OTUs. We let λtrjk = 0 for all (j, k) and had Σtr = σ2,trIJ with σ2,tr =
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(a) ri + αj (b) ϵij

Figure A.21: [Simulation 4] In panel (a), posterior mean estimates of the mean abun-
dance ri+αj are plotted against the simulation truth rtri +α

tr
j . Panel (b) has a histogram

of the differences in posterior mean estimates ϵ̂ij of probabilities of an OTU being absent
and their true values ϵtrij .

1. We kept the remaining simulation setup the same as in Simulation 2. The fixed

hyperparameters are set the same as in Simulation 2 to fit the model, and the posterior

samples were drawn from the posterior distribution via MCMC. We discarded the first

15,000 iterates for burn-in and kept the next 15,000 iterates for posterior inference. We

examined the mixing and convergence of the Markov chains using trace plots and did

not find evidence of poor mixing or bad convergence. For example, Fig A.19 shows

traceplots of the log-likelihood from MCMC chains under different random seeds and

initializations and does not indicate evidence of poor mixing or convergence problem.

Posterior inference is summarized in Figs A.20-A.25. Fig A.20 shows that our

posterior mean estimates of marginal correlations are close to the truth, ρtrjj = 1 and

ρtrjj′ = 0, j ̸= j′. Posterior mean estimates of σ2 and u2s are (1.002, 0.922), which are

close to their true values of 1. Also, we check the estimation of the mean abundances.
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(a) βj1 − βj2 under ZI-MLN (b) βj3 under ZI-MLN

(c) βj1 − βj2 under ZI-MLN without Λ (d) βj3 under ZI-MLN without Λ

(e) βj1 − βj2 under metagemoneSeq (f) βj3 under metagemoneSeq

Figure A.22: [Simulation 4] Estimates ̂βj1 − βj2 and β̂j3 of regression coefficients are
compared to the truth βtrj1 − βtrj2 and βtrj3. Estimates in the four rows are obtained by
ZI-MLN, ZI-MLN without Λ, metagenomeSeq and edgeR, respectively. The left and

right columns are for ̂βj1 − βj2 and β̂j3, respectively.
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(g) βj1 − βj2 under edgeR (h) βj3 under edgeR

Figure A.23: Fig A.22 continued [Simulation 4] Estimates of regression coefficients
̂βj1 − βj2 and β̂j3 are compared to the truth βtrj1−βtrj2 and βtrj3. Estimates in the four rows

are obtained by ZI-MLN, ZI-MLN without Λ, metagenomeSeq and edgeR, respectively.

The left and right columns are for ̂βj1 − βj2 and β̂j3, respectively.

Specifically, from Fig A.21(a) posterior mean estimates r̂i + αj are tightly around rtri +

αtrj . Fig A.21(b) compares posterior estimates of the probabilities of OTUs being absent,

ϵij to the truth, indicating reasonable inferences on the absence/presence of OTUs.

Figs A.22(a)-(b) and A.24(a)-(c) show that estimates of the regression coefficients are

reasonably well estimated. Posterior predictive checking is illustrated in Fig A.25(a).

The plot shows that our model provides a good fit even when there is no dependence

structure assumed in the truth.

We applied the comparators, SparCC, SPIEC-EASI, CCLasso and Zi-LN, to

the simulated data and compared their performance of estimating ρjj′ to that of our

ZI-MLN. Figs A.26 and A.27 compare the estimates of ρjj′ under the comparators to the

truth. The RMSE of ρjj′ is computed and given in Tab A.2(a). ZI-MLN outperforms

the other methods in comparison for estimating ρjj′ . SparCC yields estimates not close

to zero for many ρjj′ and yields the largest RMSE for this simulated dataset. The addi-
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(a) κj0 under ZI-MLN (b) κj1 under ZI-MLN (c) κj2 under ZI-MLN

(b) κj0 under ZI-MLN without Λ (b) κj1 under ZI-MLN without Λ (c) κj2 under ZI-MLN without Λ

Figure A.24: [Simulation 4] Posterior mean estimates κ̂jp of coefficients on ϵij are plotted
against the truth for p = 0, 1, 2. Estimates in the first and second rows are obtained
from ZI-MLN and ZI-MLN without Λ, respectively.

tional comparators, ZI-MLN without Λ, metagenomeSeq and edgeR were applied to the

dataset for further comparison. RMSEs for the parameters, δij , µij , βj2 − βj1, βj3 and

κjp, are computed and listed in Tab A.2(b). ZI-MLN performs the best, very closely

followed by ZI-MLN without Λ, or the same as ZI-MLN without Λ although the simula-

tion truth is closer to the assumption made under ZI-MLN without Λ. Also, the truth

is close to the assumption that metagenomeSeq, but RMSE of mean abundances µij is

large compared to those under the other methods. Figs A.22(c)-(h) compare estimates

of the regression coefficients on OTU abundances under the comparators. Figs A.24(d)-

(f) show posterior mean estimates of κjp under ZI-MLN without Λ. Posterior predictive

checking is shown in Fig A.25(b) for ZI-MLN without Λ. Estimates of mean abundances

under metagenomeSeq and edgeR are shown in Figs A.25(c) and (d), respectively. The

results indicate that there is no degradation in the performance of ZI-MLN in a case
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(a) ZI-MLN (b) ZI-MLN without Λ

(c) MetagenomeSeq (d) EdgeR

Figure A.25: [Simulation 4] Panels (a) and (b) compare posterior predictive median

counts to their observed counts on the logarithm scale, log(yij+0.01) versus log(ŷpredij +

0.01). ŷpredij are estimated with ZI-MLN with Λ in (a) and without Λ in (b). Panels
(c) and (d) present scatter plots of observed log(yij + 0.01) versus log(µ̂ij + 0.01) by
metagenomeSeq and edgeR, respectively, where µ̂ij are estimated mean abundances of
OTUs in samples.

where there is no dependence in the data generating process. Note that Simulations

1-3 indicate the additional flexibility of ZI-MLN allows to outperform the comparators

when data has a dependence structure.
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(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

Figure A.26: [Simulation 4: Comparison] The upper right and lower left triangles of each
heatmap illustrate estimates ρ̂jj′ of correlations between OTUs and their true values
ρtrjj′ . Panels (a)-(d) are for SparCC, SPIEC-EASI, CCLasso and Zi-LN, respectively.

(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

Figure A.27: [Simulation 4: Comparison] A histogram of differences between ρ̂jj′ under
SparCC, SPIEC-EASI, CCLasso and ZiLN and ρtrjj′ , in panels (a)-(d), respectively.

Table A.3: [Simulation 5: Comparison] RMSEs are computed for ρjj′ , j < j′, δij and
µ̃ij under ZI-MLN and comparators. µ̃ij is the mean abundance adjusted by a sample
total count.

Model ρjj′

ZI-MLN 0.034

SparCC 0.253

SPIEC-EASI 0.034

CCLasso 0.142

Zi-LN 0.048

Model δij µ̃ij
ZI-MLN 0.070 0.917

ZI-MLN without Λ 0.071 0.917

metagenomeSeq 0.091 1.922

(a) ρjj′ (b) δij and µ̃ij

A.3.5 Simulation 5

In this simulation study, we used SparseDOSSA (Ma et al., 2021) to gener-

ate a dataset. An open-source software SparseDOSSA2 is available from the authors’
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Figure A.28: [Simulation 5] Traceplots of log likelihood under three different initializa-
tions are presented in black, red and blue, respectively.

(a) ZI-MLN (b) SparCC (c) SPIEC-EASI

(d) CCLasso (e) Zi-LN

Figure A.29: [Simulation 5] The upper right and lower left triangles of each heatmap
illustrate estimates ρ̂jj′ of correlations between OTUs and their true values ρtrjj′ . Panels

(a)-(e) are for ZI-MLN, SparCC, SPIEC-EASI, CCLasso and Zi-LN, respectively.
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(a) ZI-MLN (b) SparCC (c) SPIEC-EASI

(d) CCLasso (e) Zi-LN

Figure A.30: [Simulation 5] A histogram of differences between ρ̂jj′ under ZI-MLN,
SparCC, SPIEC-EASI, CCLasso and ZiLN and ρtrjj′ , in panels (a)-(e), respectively.

(a) ZI-MLN (b) ZI-MLN without Λ (c) metagenomeSeq

Figure A.31: [Simulation 5] Histograms of the differences between δ̂ij and the observed
zero indicator 1(Yij = 0) under ZI-MLN, ZI-MLN without Λ and metagenomeSeq,
respectively. Posterior mean estimates are used for ZI-MLN and ZI-MLN without Λ.

webpage. SparseDOSSA takes a real microbiome dataset as an input and generates a re-

alistic microbiome dataset. Generated OTU counts in a sample are constrained to sum

up to a constant (compositionality), are enriched for zero counts (zero-inflated), and

are dependent due to microbial interactions. SparseDOSSA assumes a Gaussian copula
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(a) ZI-MLN (b) ZI-MLN without Λ (c) metagenomeSeq

Figure A.32: [Simulation 5] Panels (a) and (b) have scatter plots of observed log(yij +

0.01) versus log(ŷpredij +0.01) under ZI-MLN and ZI-MLN without Λ, respectively. Panel
(c) is the scatter plots of observed log(yij + 0.01) versus mean abundance estimates
log(µ̂ij + 0.01) by metagenomeSeq.

model with a zero-inflated log-normal distribution for latent absolute (unnormalized)

OTU abundances and generates OTU count vectors from a multinomial distribution

with the relative abundances normalized from the absolute abundances. For the multi-

nomial distribution, sample total counts are independently simulated from a log-normal

distribution. SparseDOSSA does not include random effects, and the same relative

abundance vector is assumed for the samples. Thus, a simulated dataset may not ex-

hibit overdispersion that ZI-MLN accounts for through subject group factor effects sgi .

SparseDOSSA estimates the model parameters using an input dataset, e.g., the mean

vector and precision matrix of the absolute abundance vector, and then sets the true

input parameter values at its estimates. The parameters are estimated by an EM al-

gorithm. In particular, its precision matrix is estimated with a ℓ1 penalty function for

sparsity. The correlation matrix estimated from SparseDOSSA is shown in the lower tri-

angles of the heatmaps in Fig A.29. The data-generating process under SparseDOSSA

is greatly different from that assumed for ZI-MLN. We used the skin microbiome dataset
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in §2.4.1 of the main text as an input dataset. The dataset has N = 20 samples and

J = 187 OTUs. Similar to that of the skin microbiome data, the simulated dataset has

zeros for 30% of the counts.

To fit ZI-MLN, we specified the fixed hyperparameter values similar to those in

the previous simulation studies. For this simulation study, we set aϕ = 1/10 for greater

sparsity. We ran MCMC for 30,000 iterations with the first 15,000 iterations to burn-

in. To examine mixing and convergence, we ran multiple chains under different initial

values and random seeds. Fig A.28 shows the chains with different initial values and

random seeds converge to similar log-likelihood ranges, indicating no empirical evidence

of bad mixing or convergence.

Posterior inferences under ZI-MLN are summarized in Figs A.29(a), A.30(a)

and A.31(a). Figs A.29(a) and A.30(a) show that the true underlying between-OTU

dependence structure is well recovered although the dataset was generated from a very

different model. Especially, the true data-generating process assumes a multimonimal

distribution that conditions on sample total counts. The model-based normalization

through sample size factors ri under ZI-MLN accounts for compositionality reasonably

well, and the model provides reasonable estimates of ρjj′ . From Fig A.31(a), the ab-

sence/presence of OTUs is also well estimated. Posterior predicted mean counts are

compared to observed counts in Fig A.32(a). The plot indicates that ZI-MLN fits the

data well.

For comparison, we applied SparCC, SPIEC-EASI, CCLasso and Zi-LN to

the dataset simulated by SparseDOSSA. Note that SPIEC-EASI and CCLasso use ℓ1
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penalty to estimate dependence structure, similar to SparseDOSSA. Estimates ρ̂jj′ of

the correlations obtained under the comparators are compared to their true values ρtrjj′

in Figs Figs A.29(b)-(e) and A.30(b)-(e). We also computed the RMSE of ρjj′ under all

methods in comparison including ZI-MLN. From Tab A.3(a), ZI-MLN and SPIEC-EASI

produce the smallest value of RMSE. It is noticeable that correlation matrix estimates

under SparCC and CCLasso are very dense, resulting in very large values of RMSE.

Also, we applied the additional comparators, ZI-MLN without Λ and metagenomeSeq,

to the dataset. RMSE of δij and µij are computed and summarized in Tab A.3(b).

Since the counts were generated from a multinomial distribution, we adjusted estimates

of µij by the total sample counts, µ̃ij = µ̂ij − log(
∑

j Yij), and compared µ̃ij to the

true normalized abundance of SparseDOSSA. ZI-MLN outperforms ZI-MLN without

Λ and metagenomeSeq in estimating the presence/absence of OTUs and their mean

abundances. δ̂ij under ZI-MLN without Λ and metagenomeSeq are compared to the

observed zero indicators 1(Yij = 0) in Fig A.31(b) and (c), respectively. Posterior

predictive mean counts under ZI-MLN without Λ are plotted against the observed counts

in Fig A.32(b). ZI-MLN without Λ yielded a poorer fit to the data than ZI-MLN.

The mean abundance estimates under metagenomeSeq are compared to transformed

observed counts in Fig A.32(c)
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Table A.4: [Skin Microbiome Data] Taxonomic information for the OTUs illustrated in
in Fig 9(b) of the main text.

OTU Taxonomic information (Kingdom/ Phylum/ Class/ Order/ Family / Genus)

41 Bacteria - Actinobacteria - Actinobacteria - Micrococcales - NA - NA
42 Bacteria - Actinobacteria - Actinobacteria - Micrococcales - Micrococcaceae

- Glutamicibacter
43 Bacteria - Proteobacteria - Epsilonproteobacteria - Campylobacterales

- Campylobacteraceae - Campylobacter
46 Bacteria - Bacteroidetes - Sphingobacteriia - Sphingobacteriales

- Chitinophagaceae - uncultured
47 Bacteria - Bacteroidetes - Sphingobacteriia - Sphingobacteriales

- Chitinophagaceae - Segetibacter
48 Bacteria - Bacteroidetes - Bacteroidia - Bacteroidales

- Porphyromonadaceae - Porphyromonas
76 Bacteria - Proteobacteria - Gammaproteobacteria - Pseudomonadales

- Moraxellaceae - Enhydrobacter
88 Bacteria - Firmicutes - Clostridia - Clostridiales - Family XI - Peptoniphilus
92 Bacteria - Firmicutes - Clostridia - Clostridiales - Family XIII - uncultured
138 Bacteria - Proteobacteria - Alphaproteobacteria - Caulobacterales

- Caulobacteraceae - Brevundimonas
153 Bacteria - Firmicutes - Bacilli - Lactobacillales - Aerococcaceae - uncultured
173 Bacteria - Actinobacteria - Actinobacteria - Streptomycetales

- Streptomycetaceae - Streptomyces

A.4 Additional Results for Real Data Analyses

A.4.1 Additional Results for Skin Microbiome Data Analysis

Multiple MCMC chains were run with different initial values and random

seeds to examine the mixing and convergence of the MCMC. Fig A.33 illustrates tra-

ceplot of the log-likehood of the MCMC runs and shows no evidence of poor mixing or

convergence issues. Tab A.4 has taxonomic information for the OTUs illustrated in Fig

9(b) of the main text. We include the comparison of the observed zero inflation rate

against the observed zero indicators 1(Yij = 0) under ZI-MLN, ZI-MLN without Λ and

metagenomeSeq in Fig A.34.

To examine robustness to the specification of the threshold used for data pre-
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Figure A.33: [Skin Microbiome Data] Traceplots of log likelihood under three different
initializations are presented in black, red and blue, respectively.

(a) ZI-MLN (b) ZI-MLN without Λ (c) metagenomeSeq

Figure A.34: [Skin Microbiome Data] Histograms of the differences between δ̂ij and the
observed zero indicators 1(Yij = 0) under ZI-MLN, ZI-MLN without Λ and metagenome-
Seq, respectively. Posterior mean estimates are used for ZI-MLN and ZI-MLN without
Λ.
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processing, we performed a sensitivity analysis. We used five different values of the

threshold to remove OTUs that have zeros in too many samples from analysis. In par-

ticular, OTUs that have zero counts in more than b% of the samples were removed,

where 40%, 45%, 50%, 55% and 60% are used for b. Note that b =50% is used for the

analysis in §2.4.1 of the main text. The skin microbiome data has a total of 20 samples,

and those cutoff values remove OTUs who have zero counts in more than 8, 9, 10, 11

and 12 samples, resulting that 147, 163, 187, 213 and 238 OTUs are included for anal-

ysis. We fitted the model to each of the preprocessed datasets and compared posterior

inferences and model fit. We used the same hyperparameter values. From the posterior

predictive checking illustrated in Fig A.35, we observe that the model provides a good

fit to all datasets the mode fit does not change much by the value of b. We also examined

correlation estimates for the OTUs that are included in all five preprocessed datasets

and compared. Fig A.36 shows the posterior mean estimates ρ̂jj′ for seven OTUs that

are arbitrarily chosen among the OTUs included in all datasets for illustration. The

figure shows that the correlation estimates remain almost unchanged by the value of b,

indicating the robustness of the model to the specification of b for preprocessing.

A.4.2 Additional Results from Human Gut Microbiome Data Analysis

Tab A.5 presents the names of the covariates included for human gut micro-

biome data analysis and their support. The dataset has 37 children subjects collected

from two different recruitment sites. The biopsy samples were taken from either of

two biopsy locations, ileum or rectum or both locations. The model was run for the

177



(a) b =40% (b) b =45% (c) b =50%

(d) b =55% (e) b =60%

Figure A.35: [Sensitivity Analysis for the Skin Microbiome Data] Scatter plots of ob-

served log(yij + 0.01) versus posterior predictive log count log(ŷpredij + 0.01) estimated
by ZI-MLN. Different threshold values are used for data preprocessing. b=40%, 45%,
50%, 55% and 60% are used for panels (a)-(e), respectively.

dataset three times under different initializations and random seeds. Traceplots of the

log-likelihood shown in Fig A.37. The plot suggests that the model converged to a

similar state under these alternative specifications, and provides practical evidence of

the chain’s convergence. Fig A.39 illustrates posterior mean estimates of κjp for two

selected covariates, age and binary indicator of a subject being white, where posterior

mean estimates are represented with black dots, and 95% credible intervals with vertical

lines. κjp whose credible interval does not contain zero are in red.

Tab A.6 has taxonomic information of the OTUs in Fig 12(b) of the main text.

Fig A.38 compares posterior mean estimates δ̂ij to the observed indicator 1(Yij = 0).

Fig A.39 presents posterior estimates of coefficients κjp of the probit regression for two
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(a) b =40% (b) b =45% (c) b =50%

(d) b =55% (e) b =60%

Figure A.36: [Sensitivity Analysis for the Skin Microbiome Data] The posterior mean
estimates ρ̂jj′ of correlations for seven OTUs. The OTUs are arbitrarily chosen for
illustration among the OTUs that are included in datasets preprocessed with different
threshold values. The value of a preprecessing threshold, b=40%, 45%, 50%, 55% and
60% are used for panels (a)-(e), respectively.

selected covariates, age and race. κ̂jp for age is larger than 0 and κ̂jp for race smaller

than 0 for many OTUs, although they are not statistically significant. Tabs A.7 and A.8

provide taxonomic information of the OTUs whose abundance and absence/presence are

statistically significantly associated with the covariates, respectively.

Fig A.40 provides point estimates for βjp for some selected covariates under

the comparators. In panel (d), age under metagenomeSeq has statistically significant

positive effects for most OTUs. EdgeR does not provide interval estimates, and Fig A.40

(g)-(i) illustrate point estimates only. Fig A.41 compares posterior predictive median

estimates under ZI-MLN without Λ and mean abundance estimates under metagenome-
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Table A.5: [Human Gut Microbiome Data] Covairates names with their support

Covariate Name Support

Age 6 to 17
Gender Male or Female
Race White or non-white

Site Name
Cincinnati Children’s Hospital or

Massachusetts General Hospital (MGH) Pediatrics
Biopsy location Ileum or Rectum

Disease phenotype UC, CD or non-IBD

Figure A.37: [Human Gut Microbiome Data] Traceplots of log likelihood under three
different initializations are presented in black, red and blue, respectively.

Seq and edgeR to the observed counts.
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Table A.6: [Human Gut Microbiome Data] Taxonomic information for the OTUs illus-
trated in Fig 12(b) of the main text.

OTU Taxonomic information (Kingdom/ Phylum/ Class/ Order/ Family / Genus)

30 Bacteria - Firmicutes - Clostridia - Clostridiales - Ruminococcaceae - Faecalibacterium
31 Bacteria - Firmicutes - Erysipelotrichia - Erysipelotrichales - Erysipelotrichaceae

- Clostridium innocuum group
36 Bacteria - Fusobacteria - Fusobacteriia - Fusobacteriales - Fusobacteriaceae - Fusobacterium
37 Bacteria - Proteobacteria - Betaproteobacteria - Neisseriales - Neisseriaceae - Eikenella
39 Bacteria - Firmicutes - Erysipelotrichia - Erysipelotrichales - Erysipelotrichaceae

- Erysipelatoclostridium
56 Bacteria - Firmicutes - Clostridia - Clostridiales - FamilyXI - Anaerococcus
59 Bacteria - Bacteroidetes - Bacteroidia - Bacteroidales - Bacteroidaceae - Bacteroides
62 Bacteria - Proteobacteria - Gammaproteobacteria - Xanthomonadales - Xanthomonadaceae - Stenotrophomonas

- LachnospiraceaeUCG010
85 Bacteria - Firmicutes - Clostridia - Clostridiales - Ruminococcaceae

- RuminococcaceaeNK4A214group
93 Bacteria - Proteobacteria - Gammaproteobacteria - Enterobacteriales

- Enterobacteriaceae - Escherichia Shigella
96 Bacteria - Firmicutes - Clostridia - Clostridiales - Clostridiaceae1 - Clostridium Sensu Stricto 1

Table A.7: [Human Gut Microbiome Data] Taxonomic information for the OTUs,
for which a 95% posterior credible interval estimate of κjp does not contain zero for
covariates.

OTU Covariate Pos mean 95% credible interval Taxonomic information (Kingdom/ Phylum/ Class/ Order
/ Family / Genus)

10 white−non-white -2.72 [-5.44, -0.22] Bacteria - Firmicutes - Bacilli - Lactobacillales
- Streptococcaceae - Streptococcus

23 MGH −Cincinnati -2.19 [-4.68, -0.05] Bacteria - Proteobacteria - Alphaproteobacteria
- Sphingomonadales

30 age -2.83 [-4.91, -0.96] Bacteria - Firmicutes - Clostridia - Clostridiales
- Ruminococcaceae - Faecalibacterium

36 age -0.89 [-1.85, -0.02] Bacteria - Fusobacteria - Fusobacteriia - Fusobacteriales
white−non-white -2.03 [-4.01, -0.24] - Fusobacteriaceae - Fusobacterium

49 Rectum−ileum -2.32 [-4.25, -0.74] Bacteria - Bacteroidetes - Flavobacteriia - Flavobacteriales
- Flavobacteriaceae - Cloacibacterium

55 age 2.26 [0.66, 4.29] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - uncultured

68 MGH −Cincinnati -2.32 [-4.79, -0.26] Bacteria - Firmicutes - Erysipelotrichia - Erysipelotrichales
- Erysipelotrichaceae - Erysipelatoclostridium

84 age 1.93 [0.38, 3.63] Bacteria - Firmicutes - Clostridia - Clostridiales
male−female 2.21 [0.52, 3.98] - Lachnospiraceae - Lachnospiraceae UCG010

102 male−female -4.62 [-2.19, -0.10] Bacteria - Firmicutes - Clostridia - Clostridiales
- Ruminococcaceae - Faecalibacterium

104 male−female -4.82 [-4.91, -0.53] Bacteria - Firmicutes - Erysipelotrichia - Erysipelotrichales
- Erysipelotrichaceae - Erysipelotrichaceae UCG003
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Table A.8: [Human Gut Microbiome Data] Taxonomic information for the OTUs,
for which a 95% posterior credible interval estimate of βjp does not contain zero for
covariates

OTU Covariate Pos mean 95% credible interval Taxonomic information (Kingdom/ Phylum/ Class/ Order
/ Family / Genus)

9 white−non-white 3.44 [0.22 , 6.48] Bacteria - Bacteroidetes - Bacteroidia - Bacteroidales
- Bacteroidaceae - Bacteroides

10 Rectum-Ileum -0.89 [ -1.72, -0.03] Bacteria - Firmicutes - Clostridia - Clostridiales
- Family XI -Helcococcus

11 CD−non-IBD -3.65 [ -5.71, -1.40] Bacteria - Firmicutes - Clostridia - Clostridiales
- Peptostreptococcaceae - Intestinibacter

12 CD−non-IBD -3.06 [-5.12, -0.58] Bacteria - Bacteroidetes - Bacteroidia - Bacteroidales
- Bacteroidaceae - Bacteroides

23 age 2.63 [ 0.23, 5.57] Bacteria - Actinobacteria - Actinobacteria - Corynebacteriales
- Corynebacteriaceae- Corynebacterium

25 CD−non-IBD -2.53 [-4.85, -0.21] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - Coprococcus1

26 male−female -2.49 [-4.71, -0.07] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - uncultured

32 MGH −Cincinnati -3.11 [-5.57, -0.64 ] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - Tyzzerella

34 age -2.12 [-3.91, -0.15] Bacteria - Bacteroidetes - Bacteroidia - Bacteroidales
UC−non-IBD 5.49 [0.68, 10.64] - Prevotellaceae - Prevotella9

43 white−non-white -3.41 [-6.65 , -0.11] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - NK4A136group

48 MGH −Cincinnati 3.19 [1.10 , 5.31] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - Lachnoclostridium

52 CD−non-IBD -2.83 [-5.18, -0.51] Bacteria - Firmicutes - Clostridia - Clostridiales
- Ruminococcaceae - uncultured

55 male−female -3.95 [-6.78, -1.51 ] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - uncultured

59 male−female 3.48 [0.11, 7.01] Bacteria - Bacteroidetes - Bacteroidia - Bacteroidales
MGH −Cincinnati -4.33 [-10.50 , -0.65] - Bacteroidaceae - Bacteroides

61 UC−non-IBD 3.09 [0.40, 5.86 ] Bacteria - Proteobacteria - Gammaproteobacteria
- Enterobacteriales - Enterobacteriaceae - Citrobacter

63 MGH −Cincinnati -2.81 [-5.11, -0.43] Bacteria - Bacteroidetes - Bacteroidia - Bacteroidales
- Porphyromonadaceae - Parabacteroides

64 CD−non-IBD -3.07 [-5.64, -0.68] Bacteria - Firmicutes - Clostridia - Clostridiales
- Ruminococcaceae - Ruminococcaceae UCG 013

68 age 2.33 [0.57, 4.17] Bacteria - Firmicutes - Erysipelotrichia - Erysipelotrichales
- Erysipelotrichaceae - Erysipelatoclostridium

69 Rectum−ileum -1.50 [-2.46, -0.53] Bacteria - Firmicutes - Bacilli - Lactobacillales
- Carnobacteriaceae - Granulicatella
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Table A.9: Tab A.8 continued [Human Gut Microbiome Data] Taxonomic information
for the OTUs, for which a 95% posterior credible interval estimate of βjp does not
contain zero for covariates

OTU Covariate Pos mean 95% credible interval Taxonomic information (Kingdom/ Phylum/ Class/ Order
/ Family / Genus)

79 age 1.65 [0.20, 2.94] Bacteria - Firmicutes - Clostridia - Clostridiales
male−female -1.87 [-3.68, -0.14] - Ruminococcaceae - Subdoligranulum

84 age 2.66 [0.53, 5.62] Bacteria - Firmicutes - Clostridia - Clostridiales
CD−non-IBD 3.77 [0.07, 7.11] - Lachnospiraceae - Lachnospiraceae UCG 010

85 CD−non-IBD -3.80 [-6.89,-0.52] Bacteria - Firmicutes - Clostridia - Clostridiales
- Ruminococcaceae - NK4A214group

86 white−non-white -3.66 [-7.63 , -0.33] Bacteria - Firmicutes - Clostridia - Clostridiales
- Ruminococcaceae - Ruminiclostridium5

87 CD−non-IBD -2.12 [-4.27, -0.01] Bacteria - Firmicutes - Clostridia - Clostridiales
- Ruminococcaceae - Subdoligranulum

89 CD−non-IBD -3.16 [-5.47, -0.78] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - Eubacterium Ventriosum Group

90 CD−non-IBD -3.58 [-5.96, -0.91] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - Lachnospira

91 white−non-white 3.99 [0.07, 8.68] Bacteria - Firmicutes - Clostridia - Clostridiales
CD−non-IBD -3.44 [-6.23, -0.56] - Clostridiaceae1 - Clostridium Sensu Stricto 1

92 CD−non-IBD -3.88 [-7.20, -1.05] Bacteria - Firmicutes - Clostridia - Clostridiales
- Ruminococcaceae - Ruminiclostridium 6

93 MGH −Cincinnati -2.81 [-4.96, -0.34] Bacteria - Proteobacteria - Gammaproteobacteria
- Enterobacteriales - Enterobacteriaceae
- Escherichia Shigella

94 age 1.68 [0.17, 3.44] Bacteria - Firmicutes - Clostridia - Clostridiales
white−non-white -5.52 [ -9.84, -1.20] - Ruminococcaceae - Ruminococcus 1

96 MGH −Cincinnati -5.51 [-9.88, -0.35 ] Bacteria - Firmicutes - Clostridia - Clostridiales
- Clostridiaceae1 - Clostridium Sensu Stricto 1

103 CD−non-IBD -4.22 [-7.10, -1.08] Bacteria - Firmicutes - Clostridia - Clostridiales
- Lachnospiraceae - Eubacterium eligens group

104 male−female -2.21 [ -4.43 , -0.13] Bacteria - Firmicutes - Erysipelotrichia - Erysipelotrichales
MGH −Cincinnati 1.92 [0.07, 3.99] - Erysipelotrichaceae - Erysipelotrichaceae UCG 003
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(a) ZI-MLN (b) ZI-MLN without Λ (c) metagenomeSeq

Figure A.38: [Human Gut Microbiome Data] Histograms of the differences between
δ̂ij and the observed zero indicators 1(Yij = 0) under ZI-MLN, ZI-MLN without Λ
and metagenomeSeq, respectively. Posterior mean estimates are used for ZI-MLN and
ZI-MLN without Λ.
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(a) κage, ZI-MLN (b) κrace=white, ZI-MLN

(c) κage, ZI-MLN without Λ (d) κrace=white, ZI-MLN without Λ

Figure A.39: [Human Gut Microbiome Data] Posterior estimates of regression coef-
ficients κage and κrace=white under ZI-MLN and ZI-MLN without Λ for two selected
covariates, where black dots are posterior mean estimates with vertical lines for 95%
credible intervals. The intervals that do not contain zero are marked in red.
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(a) βage (b) βRectum − βIleum (c) βCD − βnon−IBD
ZI-MLN w.o. Λ ZI-MLN w.o. Λ ZI-MLN w.o. Λ

(d) βage (e) βRectum − βIleum (f) βCD − βnon−IBD
metagenomeSeq metagenomeSeq metagenomeSeq

(g) βage (h) βRectum − βIleum (i) βCD − βnon−IBD
edgeR edgeR edgeR

Figure A.40: [Human Gut Microbiome Data: Comparison] Posterior mean estimates of
βjp under the comparators for some selected covariates. Rows 1-3 are for ZI-MLN with-
out Λ, metagenomeSeq and edgeR, respectively. Black dots and vertical lines represent
point estimates and 95% confidence intervals. The intervals that do not contain zero
are marked in red.
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(a) MetagenomeSeq (b) EdgeR

Figure A.41: [Human Gut Microbiome Data: Comparison] Panels (a) and (b) present
scatter plots of observed log(yij + 0.01) versus mean estimated log(ŷij + 0.01) by
metagenomeSeq and edgeR, respectively.
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Appendix B

SUPPLEMENTARY FOR Sparse

Bayesian Group Factor Model for

Feature Interactions in Multiple Count

Tables Data

B.1 Properties of the Dirichlet-Horseshoe Distribution

We assume a Dirichlet-Horseshoe (Dir-HS) distribution for λ and examine the

marginal distribution of λj . For a simple illustration, we consider a bivariate case with
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J = 2. The Dir-HS distribution of λ = (λ1, λ2) can be expressed as follows; first assume

ϕ1 ∼ Be(aϕ, aϕ), and let ϕ2 = 1− ϕ1,

ζj
iid∼ C+(0, 1), j = 1, 2,

λj | τ, ϕj , ζj
indep∼ N(0, ζ2j ϕjτ), j = 1, 2.

(B.1)

The Dir-HS distribution of λ can be obtained by integrating out ζj and ϕ1. Note that

a gamma prior is placed for τ in (4) of the main text, while τ is assumed to be fixed in

(B.1). Theorem 2.1 of the main text provides the bounds of the marginal density of λ1

under a Dir-HS distribution in (B.1), and a proof is given below.

Proof. From the construction, we have

ΠDir-HS(λ1) =

∫ 1

0
Π(λ1 | ϕ1)p(ϕ1)dϕ1, where Π(λ1 | ϕ1) =

∫ ∞

0
Π(λ1 | ζ1, ϕ1)p(ζ1)dζ1.

We recognize that Π(λ1 | ϕ1) is the HS distribution given ϕ1, and we find the bounds

of Π(λ1 | ϕ1) using Theorem 1 in Carvalho et al. (2010);

2−
3
2π−

3
2ϕ

− 1
2

1 log

(
1 +

4ϕ1
λ21

)
< Π(λ1 | ϕ1) < 2−

1
2π−

3
2ϕ

− 1
2

1 log

(
1 +

2ϕ1
λ21

)
.

Under the beta prior Be(aϕ, aϕ) for ϕ1, the bounds for Π(λ1) are

2−
3
2π−

3
2

Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∫ 1

0
ϕ
aϕ− 3

2
1 (1− ϕ1)

aϕ−1 log

(
1 +

4ϕ1
λ21

)
dϕ1, (B.2)
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and

2−
1
2π−

3
2

Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∫ 1

0
ϕ
aϕ− 3

2
1 (1− ϕ1)

aϕ−1 log

(
1 +

2ϕ1
λ21

)
dϕ1. (B.3)

We use the Taylor expansion of log
(
1 + 4ϕ1

λ21

)
, log

(
1 + 4ϕ1

λ21

)
=

∞∑
k=1

(−1)k+1(4ϕ1/λ21)
k

k and

complete the integrals. Using the results in Gradshteyn and Ryzhik (2014), we then

obtain the lower bound,

2−
3
2π−

3
2

Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∫ 1

0
ϕ
aϕ− 3

2
1 (1− ϕ1)

aϕ−1 log

(
1 +

4ϕ1
λ21

)
dϕ1

= 2−
3
2π−

3
2

Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∞∑
k=1

Γ(aϕ)Γ(aϕ + k − 1/2)

Γ(2aϕ + k − 1/2)

(−1)k+1(4/λ21)
k

k

= 22aϕ−
5
2π−2 4

λ21

∞∑
k=0

Γ(aϕ + 1/2)Γ(aϕ + k + 1/2)

Γ(2aϕ + k + 1/2)

(−4/λ21)
k

k + 1

= 22aϕ−
5
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

4

λ21

∞∑
k=0

Γ(k+1)
Γ(1)

Γ(k+1)
Γ(1)

Γ(aϕ+k+1/2)
Γ(aϕ+1/2)

Γ(k+2)
Γ(2)

Γ(2aϕ+k+1/2)
Γ(2aϕ+1/2)

(−4/λ21)
k

k!

= 22aϕ−
5
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

4

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 4

λ21

)
,

(B.4)

where generalized hypergeometric series pF q(α1, . . . , αp;β1, . . . , βq;x) =∑∞
t=0

(α1)t...(αp)t
(β1)t...(βq)t

xt

t! . We obtain the upper bound in a similar fashion,

2−
1
2π−

3
2

Γ(2aϕ)

Γ(aϕ)Γ(aϕ)

∫ 1

0
ϕ
aϕ− 3

2
1 (1− ϕ1)

aϕ−1 log

(
1 +

2ϕ1
λ21

)
dϕ1

= 22aϕ−
3
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

2

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 2

λ21

)
.

(B.5)
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When aϕ = 1/2, the integrals in (B.2) and (B.3) are in a simpler form;

(
1√
2π5

log2

(
2

|λ1|
+

√
4

λ21
+ 1

)
,

√
2

π5
log2

(√
2

|λ1|
+

√
2

λ21
+ 1

))
.

We next compare the marginal density of a Dir-HS to that of a Dir-Laplace. Recall that

we set J = 2. The Dir-Laplace is defined as follows; given τ ,

ϕ1 ∼ Be(aϕ, aϕ), and let ϕ2 = 1− ϕ1,

λj | ϕj
indep∼ DE(τϕj), j = 1, 2,

(B.6)

where DE(b) is the Laplace distribution with mean 0 and variance 2b2. The model in

Bhattacharya et al. (2015) places a gamma prior on τ .

Proposition B.1.1. Let ΠDir-HS(λ1) denote the marginal distribution of λ1 obtained

from the Dir-HS distribution in (B.1) for λ = (λ1, λ2) ∈ R2 with τ ∈ R+. Similarly, Let

ΠDir-Laplace(λ1) denote the marginal distribution of ϕ1 obtained from the Dir-Laplace dis-

tribution in (B.6) for λ = (λ1, λ2) with fixed τ . The limits of the ratio of ΠDir-Laplace(λ1)

to ΠDir-HS(λ1) are

lim
λ1→±∞

ΠDir-Laplace(λ1)

ΠDir-HS(λ1)
= 0. (B.7)

Proof. Without loss of generality, we fix τ = 1. From the construction of Dir-Laplace
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distributions, we have the marginal distribution

ΠDir-Laplace(λ1) =

∫ 1

0

1

2ϕ1
e
− |λ1|

ϕ1
Γ(2aϕ)

Γ(aϕ)Γ(aϕ)
ϕ
aϕ−1
1 (1− ϕ1)

aϕ−1dϕ1

=
Γ(2aϕ)

2Γ(aϕ)Γ(aϕ)

∫ 1

0
ϕ
aϕ−2
1 (1− ϕ1)

aϕ−1e
− |λ1|

ϕ1 dϕ1.

From (B.4), we have

ΠDir-Laplace(λ1)

ΠDir-HS(λ1)
≤

Γ(2aϕ)
2Γ(aϕ)Γ(aϕ)

∫ 1
0 ϕ

aϕ−2
1 (1− ϕ1)

aϕ−1e
− |λ1|

ϕ1 dϕ1

22aϕ−
5
2π−2Γ(aϕ + 1/2) 4

λ21

∑∞
k=0

Γ(aϕ+k+1/2)
Γ(2aϕ+k+1/2)

(−4/λ21)
k

k+1

. (B.8)

We first observe e
− |λ1|

ϕ1 /ϕ1 ≤ e−|λ1| for any 0 < ϕ1 < 1 if |λ1| > 1. Given |λ1| > 1, we

have

Γ(2aϕ)

2Γ(aϕ)Γ(aϕ)

∫ 1

0
ϕ
aϕ−2
1 (1− ϕ1)

aϕ−1e
− |λ1|

ϕ1 dϕ1 ≤
e−|λ1|

2
.

Then from (B.8) we have

Γ(2aϕ)
2Γ(aϕ)Γ(aϕ)

∫ 1
0 ϕ

aϕ−2
1 (1− ϕ1)

aϕ−1e
− |λ1|

ϕ1 dϕ1

22aϕ−
3
2π−2Γ(aϕ + 1/2) 2

λ21

∑∞
k=0

Γ(aϕ+k+1/2)
Γ(2aϕ+k+1/2)

(−2/λ21)
k

k+1

≤

e−|λ1|

2

22aϕ−
3
2π−2Γ(aϕ + 1/2) 2

λ21

∑∞
k=0

Γ(aϕ+k+1/2)
Γ(2aϕ+k+1/2)

(−2/λ21)
k

k+1

and observe

lim
λ1→±∞

e−|λ1|

2

22aϕ−
3
2π−2Γ(aϕ + 1/2) 2

λ21

∑∞
k=0

Γ(aϕ+k+1/2)
Γ(2aϕ+k+1/2)

(−2/λ21)
k

k+1

= 0.
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Therefore, we obtain (B.7).

Proposition B.1.1 compares tails of the Dir-HS and Dir-Laplace distributions

and states a Dir-HS distribution has heavier tails than a Dir-Laplace distribution.

We next use numerical simulations and examine joint distributions of λ =

(λ1, λ2) assuming Dir-HS, Dir-Laplace and independent HS distributions. We fix τ = 1

for the Dir-HS and Dir-Laplace distributions. For the independent HS distributions, we

generate λj | ζj
indep∼ N(0, ζ2j /2) and ζj

iid∼ C+(0, 1), j = 1, 2 to match the scale parameter

with that under the Dir-HS. We vary the value of aϕ to examine how it affects the joint

distributions. Figs B.1 and B.2 illustrate the joint densities with aϕ = 2, 1/2 and 1/20.

As explained in the main text with aϕ = 1/20, Dir-HS distributions have higher densities

along the axes than the independent HS distributions. It illustrates joint sparsity under

the Dir-HS by shrinking one component toward zero more than the other component.

Compared to the Dir-Laplace, the Dir-HS has thicker tails. The Dir-HS has unbounded

density around zero for any value of aϕ, but the Dir-Laplace has bounded density around

zero if aϕ > 1.

B.2 Exploration of the Distributions of OTU Counts Un-

der Sp-BGFM

In this section, we explore the marginal distribution of an OTU’s count and

the joint distribution of the counts of a pair of OTUs under Sp-BGFM, using examples.

Specifically, we illustrate how Sp-BGFM addresses statistical challenges outlined in
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(e) Central density: aϕ = 1/20 (f) Tail density: aϕ = 1/20

Figure B.1: Marginal densities of λ1 are numerically evaluated at the central and
tail areas for the Dir-HS prior, Dir-Laplace, and HS with different values of aϕ,
aϕ = 2, 1/2, 1/20. The Dir-HS, Dir-Laplace and independent HS distributions are in
black, red and blue, respectively.
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(g) Dir-HS: aϕ = 1/20 (h) Dir-Laplace: aϕ = 1/20 (i) HS: aϕ = 1/20

Figure B.2: Scatter plots of λ = (λ1, λ2) are shown. λ are generated from three different
prior distributions: Dir-HS in the leftmost column, Dir-Laplace in the middle column,
and independent HS priors in the rightmost column. The values of aϕ used for the plots
are 2, 1/2, and 1/20 for the top, middle, and bottom plots, respectively. The contour
plots of the empirical joint densities are shown in red on a logarithmic scale.

§3.1.2 of the main text, including sparsity, between-sample variability, and dependence

between OTUs. For simplicity, we consider a model without regression, i.e., µi =
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ri +αsi .

From (1)-(3) of the main text, the marginal distribution of an OTU’s count is

P(yimj = y | µi,Σ) =

y+1∫
y

fy⋆(y
⋆
imj | µimj ,Σmmjj ) dy⋆imj , y = 0, 1, 2, . . . . (B.9)

where µimj = rim+αsimj . Here, fy⋆ is the density of a univariate log-normal distribution

with parameters µimj and Σmmjj . After integrating αsimj out with respect to Gmj in (7)

of the main text, we obtain

P(yimj = y | rim, Gmj ,Σ) =

y+1∫
y

∞∑
l=1

ψα
ml

{
ωα
mlfy⋆(y⋆imj | rim + ξαmjl,Σ

mm
jj )

+ (1− ωα
ml)fy⋆

(
y⋆imj | rim +

ναmj − ωα
mjξ

α
mjl

1− ωα
ml

,Σmm
jj

)}
dy⋆imj ,

(B.10)

for y = 0, 1, 2, . . .. Fig B.3 illustrates the marginal distribution of an OTU’s count

using the rounded kernel method with a log-normal distribution. A single log-normal

distribution, log-N(αsimj + rim,Σ
mm
jj ) is used to generate the distribution of yimj for

panels (a)-(c). We varied αsimj and Σmmjj , while rim = 0 is fixed. In panels (d)-(f), we

used a mixture of two log-normals with a constraint ναmj ;

ωαmlog-N(rim + ξαm,Σ
mm
jj ) + (1− ωαm)log-N

(
rim +

ναmj − ωαmjξ
α
mj

1− ωαm
,Σmmjj

)
. (B.11)

We varied the mixture weights ωα as well as the location ξα and variance Σmmjj , while

fixing ναmj at 3. In particular, we generate P(yimj = y) with the following specifications;

• Mixture Case I in panel (d): ωα = 0.5 and ξα = −1
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• Mixture Case II in panel (e): ωα = 0.25 and ξα = 0

• Mixture Case III in panel (f): ωα = 0.1 and ξα = 1

where Σmmjj are also varied. The figure shows that (B.11) accommodates excess zeros,

multimodality and variability in counts. The model in (B.10) has an infinite mixture for

αsimj and allows greater flexibility to accommodate various patterns in the distribution

of an OTU count.

We next explore the joint distribution of counts of a pair of OTUs, yimj and

yim′j′ . Similar to (B.9), we have

P(yimj = y, yim′j′ = y′ | µ̃, Σ̃) =

y+1∫
y

y′+1∫
y′

fy⋆(y⋆imj , y
⋆
im′j′ | µ̃, Σ̃) dy⋆im′j′dy

⋆
imj ,(B.12)

where y, y′ = 0, 1, 2, . . . . In (B.12), fy⋆ is the density of the bivariate log-normal distri-

bution with parameters

µ̃ =

 µimj
µim′j′

 =

 rim + αsimj

rim′ + αsim′j′

 and Σ̃ =

Σmmjj Σmm
′

jj′

Σmm
′

jj′ Σm
′m′

j′j′

 .

From (2) and (7) of the main text, we have αsimj ∼ Gmj and αsim′j′ ∼ Gm′j′ , where

Gmj and Gm′j′ are an infinite mixture of point masses with a mean constraint. Fig B.4

illustrates how the joint distribution of yimj and yim′j′ varies with µ̃ and Σ̃ using a

single bivariate log-normal distribution. From the figures, the dependence between yimj

and yim′j′ varies with changes in Σ̃. For Fig B.5, a mixture of two point masses with a
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(a) log-N(−1,Σmmjj ) (b) log-N(2,Σmmjj )

(c) log-N(5,Σmmjj ) (d) Mixture Case I

(e) Mixture Case II (f) Mixture Case III

Figure B.3: [Distribution of an OTU’s Count] The probability distribution of an OTU’s
count is computed from a rounded kernel method with log-normal distributions. For
panels (a)-(c), a single log-normal distribution is used, and for panels (d)-(f), a mixture
of two log-normals with a constraint in (B.11) is used. The detailed specifications are
in § B.2.
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mean constraint is used for each of Gmj and Gm′j′ ;

Gm̃j̃ = ωαm̃δξα
m̃j̃

+ (1− ωαm̃)δ(να
m̃j̃

−ωα
m̃j̃
ξα
m̃j̃

)/(1−ωα
m̃), (m̃, j̃) ∈ {(m, j), (m′, j′)}, (B.13)

where δξ is a point mass at ξ. In particular, να is fixed at 1.5 and 0.5 for (m, j) and

(m′, j′), respectively, for both panels, and rim and rim′ are fixed at 0. We then generate

P(yimj = y, yim′j′ = y′) with the following specifications;

• Case I in panel (a): ωαm = 0.5, ωαm′ = 0.4, ξαmj = 1, ξαm′j′ = 0,Σmmjj = Σm
′m′

j′j′ =

0.52,Σmm
′

jj′ = 0.52 × 0.9

• Case II in panel (b): ωαm = 0.1, ωαm′ = 0.6, ξαmj = 1, ξαm′j′ = 2,Σmmjj = Σm
′m′

j′j′ =

0.52,Σmm
′

jj′ = 0.52 ×−0.9

Fig B.5 demonstrates the flexibility of the model, even with fixed να. The infinite mix-

ture for G(α) in Eq. (7) of the main text can provide more flexibility to accommodate

the potential complexity of real data.

We also calculate the expectation of count variables and their correlation. The

moment of order k can be computed through E(Y k
ij | µij ,Σjj) =

∑∞
b=0 b

kP(Yij = b |

µij ,Σjj) with P(Yij = b | µij ,Σjj) = Φ1(log(b + 1) | µij ,Σjj) − Φ1(log(b) | µij ,Σjj),

where Φd(· | a,B) is the cdf of the d− variate normal distribution with mean a and

(co)variance B. The covariance and correlation of any two count random variables are

calculated by Cov(Yij , Yij′ | µi,Σ) =
∑∞

b=0

∑∞
b′=0 bb

′P(Yij = b, Yij′ = b′ | µi,Σ)−E(Yij |

µij ,Σjj)E(Yij′ | µij′ ,Σj′j′) and Cor(Yij , Yij′ | µi,Σ) = Cov(Yij , Yij′)/
√
Var(Yij)Var(Yij′).

P(Yij = b, Yij′ = b′ | µi,Σ) can be computed with a bivariate normal distribution in
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(a) µ̃ =

[
0
0

]
, Σ̃ =

[
1 −0.9

−0.9 1

]
(b) µ̃ =

[
0
0

]
, Σ̃ =

[
1 0
0 1

]

(c) µ̃ =

[
0
0

]
, Σ̃ =

[
1 0.9
0.9 1

]
(d) µ̃ =

[
3
0

]
, Σ̃ =

[
0.52 −0.9× 0.52

−0.9× 0.52 0.52

]

(e) µ̃ =

[
3
0

]
, Σ̃ =

[
0.52 0
0 0.52

]
(f) µ̃ =

[
3
0

]
, Σ̃ =

[
0.52 0.9× 0.52

0.9× 0.52 0.52

]
Figure B.4: [Distribution of Counts of a Pair of OTUs I] The joint distribution of counts
of a pair of OTUs is computed for a rounded kernel method with bivariate log-normals,
log-N2(µ̃, Σ̃). Different combinations of µ̃ and Σ̃ are used.
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(a) Case I (b) Case II

Figure B.5: [Distribution of Counts of a Pair of OTUs II] The joint distribution of
counts of a pair of OTUs is computed for a rounded kernel method with a mixture of
bivariate log-normals in (B.13). να is fixed at 1.5 and 0.5 for two OTUs, while the
mixture weights and locations vary. The detailed specifications are in § B.2.

a way similar to P(Yij = b | µij ,Σjj). Tab B.1 presents the moments of the count

variables illustrated in Fig B.4 and Fig B.5. The cases of ρ = 0 represent independence

between count random variables. The moments of the count distribution vary with µ

and Σ, the parameters of the distribution of their latent continuous variables. Thus,

posterior inferences on µ and Σ provide inference on the distribution of count vectors.

B.3 Details of Posterior Computation

We use Markov chain Monte Carlo (MCMC) techniques to obtain samples of

the random parameters θ from their posterior distributions, where θ = {λmjk, ϕmjk, τk,

ζmkj , v
2
m, αsimj , ω

α
ml, V

α
ml, ξ

α
mjl, rim, ω

r
ml, V

r
ml, ξ

r
ml, βmjp}. Recall that Yimj ∈ N0, i =

1, . . . , N , m = 1, . . . ,M and j = 1, . . . , Jm denotes the count of OTU j of group m in
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Table B.1: [Moments of bivariate count vectors] Moments of bivariate count vectors in
Fig B.4 and Fig B.5 are presented. Moments are referred to the marginal expectation,
variance and correlation of bivariate count vectors.

Figure E(Y1) E(Y2) Cov(Y1) Cov(Y2) Cor(Y1, Y2)

Fig B.4(a) 1.170 1.170 4.636 4.636 -0.277
Fig B.4(b) 1.170 1.170 4.636 4.636 0
Fig B.4(c) 1.170 1.170 4.636 4.636 0.835
Fig B.4(d) 22.188 0.600 141.608 0.486 -0.643
Fig B.4(e) 22.188 0.600 141.608 0.486 0
Fig B.4(f) 22.188 0.600 141.608 0.486 0.801
Fig B.5(a) 5.225 231.841 18.308 60728.64 0.312
Fig B.5(b) 4.639 146.836 8.188 43223.17 -0.256

sample i, rim the sample size factor of group m of sample i, and αsimj the normalized

baseline abundance level of OTU j of group m in sample i obtained from subject si =

1, . . . , S. We also have covariate X, a N×P covariate matrix whose rows have a P−dim

covariate vector xi.

To facilitate the posterior simulation, we introduce the latent continuous vari-

able y⋆imj ∈ R+ and have yimj = ⌊y⋆imj⌋. We then impute y⋆imj = exp(ỹ⋆imj) from a

truncated log-normal distribution

ỹ⋆imj | θ,ηi, yimj ∼ N(rim+αsimj+λ
′
mjηi+x′

iβmj , v
2
m)1(log(yimj) ≤ ỹ⋆imj < log(yimj+1)).

Given ỹ⋆imj , parameters βmj , ηi, and v
2
m can be conveniently updated through normal/inv-

gamma Gibbs steps. For ζmjk, we utilize the following to achieve conjugacy (Makalic
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and Schmidt, 2015);

ζmjk
iid∼ C+(0, 1) ⇔ ζ2mjk | Zmjk

iid∼ inv-Ga

(
1

2
,

1

Zmjk

)
, Zmjk

iid∼ inv-Ga

(
1

2
, 1

)
.

ζmjk can be easily updated via Gibbs steps. Also, recall that parameters ri and αsi

are from infinite mixtures of mixtures. For computational convenience, when fitting

the model, we approximate the infinite mixtures in (5) and (6) of the main text by

truncating the number of mixture components to Lα and Lr. The final weights ψαmLα =

1−
∑Lα−1

l=1 ψαml and ψ
r
mLr = 1−

∑Lr−1
l=1 ψrml is set to ensure the distributions are proper.

With sufficiently large Lα and Lr, the truncated process produces inference almost

identical to that with the infinite process (Ishwaran and James, 2001). We further

introduce a pair of membership variables (Irim1, I
r
im2) with I

r
im1 ∈ {1, . . . , Lr} and Irim2 ∈

{0, 1} for each rim and (Iαsimj1, I
α
simj2

) with Iαsimj1 ∈ {1, . . . , Lα} and Iαsimj2 ∈ {0, 1} for

each αsimj . We then assume P(Irim1 = l) = ψrml and P(Irim2 = 0 | Irim1 = l) = ωrml, and

similarly, assume P(Iαsimj1 = l) = ψαml and P(Iαsimj2 = 0 | Iαsimj1 = l) = ωαml. Given the

membership indicator vectors, the conditional distributions of rim and αsimj are

rim | ψr,ωr, ξr, Irim1 = l, Irim2 ∼


N(ξrml, u

2
r) if Irim2 = 1,

N(
vrm−ωr

mlξ
r
ml

1−ωr
ml

, u2r) if Irim2 = 0,

αsimj | ψα,ωα, ξα, IαSimj1 = l, IαSimj2 =


ξαmjl if Iαsimj2 = 1,

vαmj−ωα
l ξ

α
ml

1−ωα
l

if Iαsimj2 = 0.
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Given the latent variables, all parameters except ϕk are updated through Gibbs steps.

We update ϕk using a Metropolis-Hastings step. We let ϕ⋆mjk
iid∼ Ga(aϕ, 1) and have

ϕmjk = ϕ⋆mjk/
∑

m′, j′ ϕ
⋆
m′j′k. The full conditional of ϕk is given by

p(ϕk | −) ∝ p(λk | τk,ϕk, ζk)p(ϕk) ∝
M∏
m=1

Jm∏
j=1

N(λmjk | 0, ζ2mjkϕmjkτk)

M∏
m=1

Jm∏
j=1

Ga(ϕ⋆mjk | aϕ, 1).

To efficiently update ϕk, the adaptive MH algorithm (Haario et al., 2001) is applied to

adjust the MH step size according to the acceptance ratio, and the convergence rate is

accelerated.

We sample sequentially by alternating conditional sampling. The full condi-

tionals are given below;

• Update ỹ⋆imj given yimj , rim, αSimj ,λmj ,ηi, v
2
m,βmj ,xi

ỹ⋆imj ∼ N(rim + αSimj + λ
′
mjηi + x′

iβmj , v
2
m)1(log(yimj) ≤ ỹ⋆imj < log(yimj + 1)).

• parameters related to rim

– Update ψrm given Irim1

ψrm1 = V r
m1, ψ

r
ml = V r

ml

∏l−1
h=1(1 − V r

mh), for l = 2, . . . , Lr − 1, ψrmLr = 1 −
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∑Lr−1
l=1 ψrml,

V r
ml ∼ Be(1 +

N∑
i=1

1(Irim1 = l), . . . , cr +
N∑
i=1

∑
h>l

1(Irim1 = h)).

– Update ωrml given I
r
im1, I

r
im2

p(ωrml | −) ∝ ωrml
arω+

∑N
i=1 1(I

r
im1=l,I

r
im2=1)(1− ωrml)

brω+
∑N

i=1 1(I
r
im1=l,I

r
im2=0)

N∏
i=1

J∏
j=1

N(ỹ⋆imj | µimj , σ2).

We use logistic transformation and adaptive Metropolis-Hasting algorithm

(Haario et al., 2001) to update ωrml.

– Update (Irim1, I
r
im2) given ψ

r
ml, ω

r
ml, rim, v

r
m, ξ

r
ml, u

2
r

Pr(Irim1 = l, Irim2 = 1) ∝ ψrmlω
r
mlN(rim | ξrml, u2r),

Pr(Irim1 = l, Irim2 = 0) ∝ ψrml(1− ωrml)N(rim |
νrm − ωrmlξ

r
ml

1− ωrml
, u2r),

– Update ξrml given I
r
im1, I

r
im2, rim, ω

r
ml

ξrml ∼ N(ũ2ξr(
νrm
u2ξr

+
∑

i:Irim1=l,I
r
im2=1

rim
u2r

−
∑

i:Irim1=l,I
r
im2=0

ωr
ml

1−ωr
ml
rim− ωr

ml
(1−ωr

ml
)2
νrm

u2r
), ũ2ξr),

where ũ2ξr = (1/u2ξr +
∑N

i=1 1(I
r
im1 = l, Irim2 = 1)/u2r+ω

r,2
ml

∑N
i=1 ω

r
ml1(I

r
im1 =

l, Irim2 = 0)/u2r(1− ωrml)
2)−1.

– Update rim given αSimj ,λmj ,ηi,βmj
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rim ∼ N

(
( c
u2r

+
∑Jm

j=1(ỹ
⋆
imj−αSimj−λ′

mjηi−x′
iβmj)

σ2
m

)( 1
u2r

+ Jm
σ2
m
)−1, ( 1

u2r
+ Jm

σ2
m
)−1

)
,

where prior mean

c =
∑Jm

j=1(1(I
r
im2 = 1)ξrm,Irim1

+ 1(Irim2 = 0)
νrm−ωr

m,Ir
im1

ξr
m,Ir

im1
1−ωr

m,Ir
im1

).

• parameters related to αsimj

– Update ψαm given IαSimj1

ψαm1 = V α
m1, ψ

α
ml = V α

ml

∏l−1
h=1(1 − V α

mh), for l = 2, . . . , Lα − 1, ψαLα = 1 −∑mLα−1
l=1 ψαml

V α
ml ∼ Be(1 +

N∑
i=1

J∑
j=1

1(IαSimj1 = l), cα +
N∑
i=1

J∑
j=1

∑
h>l

1(IrSimj1 = h)).

– Update ωαml given I
α
Simj1

, IαSimj2

p(ωαml | −) ∝ ωαml
aαω+

∑N
i=1

∑J
j=1 1(I

α
Simj1=l,I

α
Simj2=1)

(1− ωαml)
bαω+

∑N
i=1

∑J
j=1 1(I

α
Simj1=l,I

α
Simj2=0)

N∏
i=1

Jm∏
j=1

N(ỹ⋆imj | µimj , σ2m).

We use logistic transformation and adaptive Metropolis-Hasting algorithm

(Haario et al., 2001) to update ωαml.
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– Update ωαml given I
α
Simj1

, IαSimj2

ωαml ∼ Be(aαω +
N∑
i=1

Jm∑
j=1

1(IαSimj1 = l, IαSimj2 = 1),

bαω +
N∑
i=1

Jm∑
j=1

1(IαSimj1 = l, IαSimj2 = 0)).

– Update (Iαsmj1, I
α
smj2) given ψ

α
ml, ω

α
ml

Pr(Iαsmj1 = l, Iαsmj2 = 1) ∝ ψαmlω
α
ml∏

i:Si=s

N(ỹ⋆imj | rim + ξαmjl + λ
′
mjηi + x′

iβmj , v
2
m),

Pr(Iαsmj1 = l, Iαsmj2 = 0) ∝ ψαml(1− ωαml)∏
i:Si=s

N(ỹ⋆imj | rim +
ναmj − ωαmlξ

α
mjl

1− ωrml
+ λ′

mjηi + x′
iβmj , v

2
m).

– Update ξαmjl given ỹ
⋆
imj , rim,λ

′
mj ,ηi,xi,βmj

ξαmjl ∼ N(ũ2α(ν
α
mj/u

2
α +

∑
i:IαSimj1=l,I

α
Simj2=1

(ỹ⋆imj − rim − λ′
mjηi −

x′
iβmj)/v

2
m −

∑
i:IαSimj1=l,I

α
Simj2=0

(
ωα
ml

1−ωα
ml
(ỹ⋆imj − rim − λ′

mjηi − x′
iβmj)

− ωα
ml

(1−ωα
ml)

2 ν
α
mj)/v

2
m), ũ

2
α),

where ũ2α = (1/u2α +
∑N

i=1 1(I
α
Simj1

= l, IαSimj2
= 1)/v2m + ωα,2ml

∑N
i=1 ω

α
ml

1(IαSimj1
= l, IαSimj2

= 0)/v2m(1− ωαml)
2)−1.
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• Update λmj given Y
⋆
mj , rm,αmj ,X,βmj ,η, ζmj ,ϕmj , τ

λmj ∼ N((v−2
m η

′η + V −2
λ )−1v−2

m η
′(Ỹ ⋆

mj − rm −αmj −Xβmj), (v
−2
m η

′η + V −2
λ )−1),

where Vλ = diag(ζ2mj1ϕmj1τ1, . . . , ζ
2
mjKϕmjKτK).

• Update ϕk using adaptive M-H by proposing from a normalized Ga(aϕ, 1).

We let ϕ⋆mjk
iid∼ Ga(aϕ, 1) and have ϕ = (ϕ1, . . . , ϕJ) ∼ Dir(aϕ, . . . , aϕ) with ϕmjk =

ϕ⋆mjk/
∑

j′ ϕ
⋆
mj′k. The full conditional of ϕk is given by

p(ϕk | −) ∝
M∏
m=1

Jm∏
j=1

N(λmjk | 0, ζ2mjkϕmjkτk)
M∏
m=1

Jm∏
j=1

Ga(ϕ⋆mjk | aϕ, 1).

We reject or accept the proposal by utilizing the adaptive MH algorithm (Haario

et al., 2001).

• Update ζ2mjk given Zmjk, λmjk, ϕmjk, τk

ζ2mjk ∼ inv-Ga(1, 1/Zmjk + λ2mjk/(2ϕmjkτk),
M∑
m=1

Jm∑
j=1

(λ2mjk/ϕmjkτk)).

• Update Zmjk given ζmjk
indep∼ inv-Ga(1, 1 + 1/ζ2mjk).

• Update τk | λmjk, ζmjk, ϕmjk

τk ∼ Generalized inverse Gaussian (aτ − J/2, 2bτ ,
M∑
m=1

Jm∑
j=1

λ2mjk/ζ
2
mjkϕmjk).
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• Update ηi given Λ, V,Y ⋆
i , ri,αsi ,β,Xi

ηi ∼ N((IK + Λ′V −1Λ)−1Λ′V −1(Y ⋆
i − ri −αsi − βXi), (IK + Λ′V −1Λ)−1).

• Update βmj given Ỹ
⋆
mj , rm,αmj ,λmj ,η,X

βmj ∼ N((
X′X

v2m
+v−2

β Ip)
−1v−2

m X′(Ỹ ⋆
mj−rm−αmj−ηλmj), (v−2

m X′X+v−2
β Ip)

−1).

• Update v2m given ỹ⋆imj , rim, αSi,j ,λ
′
mj ,ηi,xi,βmj

v2m ∼ inv-Ga(av + n× Jm/2, bv +

n∑
i=1

Jm∑
j=1

(ỹ⋆imj − rim − αSi,j − λ′
mjηi − x′

iβmj)
2

2
).

B.4 Instruction of reproducing codes

SP-BGFM requires R 3.6 or greater to reproduce the tables and graphics in

Chapter 3. Download and install R from https://www.r-project.org/. Once installed,

open R from the terminal and run the following command to install packages especially

Rcpp and RcppArmadillo for Rc++ functions:

install.packages(c("Rcpp", "RcppArmadillo", "statmod", "GIGrvg",

"extraDistr", "abind", "mvnfast", "mvnfast", "statmod", "extraDistr")).

For a comparison of the SPIEC-EASI method, we need to install

install.packages("SpiecEasi").
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Make sure that the C++ compiler is correctly installed. Mac users need to

install Xcode from command line tools. Execute the command ‘xcode-select –install’ on

Terminal. One can also import the GitHub repository https://github.com/shuang-jie/

ZI-MLN directly to load all functions. Under the simulation code folder, Sim 1-5.R

produces the results displayed in Sim 1-5 in Chapter 3, and please save the result as

RData with the respective sim ID. To reproduce the real data, Filtered7539OTUs.RData

has the multi-domain skin microbiome data in Chapter 3.4. In the real data, it contains:

• Y1 : bacterial microbiome count table. 60 samples × 75 OTUs. Each row is a

sample, and each column is a bacterial OTU.

• Y2 : viral microbiome count table. 60 samples × 39 OTUs. Each row is a sample,

and each column is a viral OTU.

• Y : combined multi-domain skin microbiome data. 60 samples × 114(75+39)

OTUs.

• X : a categorical covariate representing experimental conditions. (1,0,0) pre-

treatment & (0,1,0) post-treatment & (0,0,1) healthy condition.

• J : number of OTUs in each domain. (75, 39)

• Jsum : number of total OTUs. 114

• n : number of samples. 60

• S : number of subjects. 20

210

https://github.com/shuang-jie/ZI-MLN
https://github.com/shuang-jie/ZI-MLN


Real Data.R reproduces the results illustrated in Chapter 3.4. Save the result as RData

with Real Data.RData. One can further access the performance of SP-BGFM and

reproduce Figures 3.1-3.10 using Folder figures-codes.

B.5 Additional Simulation Studies

B.5.1 Additional Results of Simulation 1

We present results from additional comparators REBACCA(Ban et al., 2015),

COAT(Cao et al., 2019) and Zi-LN (Prost et al., 2021) for Simulation 1 presented in

§3.3.1 of the main text. Those comparators are for a single group count table analysis.

To apply those methods for count table data of two groups, we first combined Y1 of

size N × J1 and Y2 of size N × J2 and had a single count matrix of N × J with

J = J1 + J2. We then applied their normalization or transformation procedures for

those methods. REBECCA uses sample proportions by normalizing the observed data

by the total number of counts and estimates the covariance matrix of the log-transformed

latent basis abundances with the ℓ1 penalty. COAT further develops REBECCA using

a procedure of thresholding the sample centered log-ratio covariance matrix. It can

avoid optimization and is scalable for large covariance matrices. Zi-LN is a likelihood-

based zero-inflation model on a single transformed count table. Zi-LN normalizes the

observed counts using a modified centered log-ratio (clr) transformation prior to analysis

to account for zeros, and uses graphical lasso for estimating the precision matrix. The

three methods do not include covariates in their model.
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Figure B.6: [Simulation 1] The upper right and lower left triangles of a heatmap illus-
trate the estimates ρ̂mm

′
jj′ of correlations and their truth, respectively. The horizontal

and vertical lines are to divide the groups. The estimates in panels (a)-(c) are from
REBACCA, COAT and Zi-LN.

The upper triangles of the heatmaps in Fig B.6 illustrate the estimate of the

correlations ρ̂jj′ obtained from the additional comparators for Simulation 1. The true

values ρtrjj′ of the correlations are shown in the lower triangles of the heatmaps. Com-

pared to the estimate under Sp-BGFM in panel (a) of Fig 4 of the main text, the

comparators perform poorly and do not capture the true interaction patterns among

OTUs both within and across groups. This could be due to limitations such as a single-

domain analysis and/or failure to account for inter-subject heterogeneity.

B.5.2 Additional Details of Simulation 2

For Simulation 2, we set M = 2, J1 = 150, J2 = 50, S = 20 the same as

in Simulation 1. We incorporated a binary covariate to represent two experimental

conditions. To denote the two levels, we introduced a pair of binary indicators xi =

(xi1, xi2) ∈ {(1, 0), (0, 1)}. We generated two samples for each of the S = 20 subjects,
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Figure B.7: [Simulation 2] The upper right and lower left triangles of a heatmap illus-
trate the estimates ρ̂mm

′
jj′ of correlations and their truth, respectively. The horizontal

and vertical lines are to divide the groups. The estimates in panels (a)-(c) are from
REBACCA, COAT and Zi-LN.

one from each of the levels, resulting in a total of N = 40 samples. We used the vine

method in Lewandowski et al. (2009) to generate an arbitrary Σtr. In particular, we

simulated partial correlations from linearly transformed Be(1, 1) distribution over the

interval of (−1, 1). To encourage sparsity in Σtr, we set the partial correlations below

0.8 to 0 and generated a correlation matrix, ρmm
′,tr

jj′ using their recursive formula. We

then sampled vtrmj independently from Unif(1, 1.5) and let Σmm
′,tr

jj′ = vtrmjv
tr
m′j′ρ

mm′,tr
jj′ .

For abundances, we computed the empirical proportions ψ̃mj of zero counts in the multi-

domain skin microbiome dataset in §3.4 of the main text. To set the values of ψtr
mj1

for a group, we sampled with replacement from the corresponding set of ψ̃mj . We let

ψtr
mj2 = 0.6 × (1 − ψtr

mj1) and ψtr
mj2 = 0.4 × (1 − ψtr

mj1). In addition, we introduced a

categorical covariate with two levels. For covariate effects, we set βtrmj1 = 0 for all (m, j).

We let βtrmj2 = 0 with probability 0.8. For non-zero βtrmj2, we simulated βtrmj2 ∼ N(0, 1/3)

and shifted away from zero by 1.
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The upper triangles of the heatmaps in Fig B.7 illustrate the estimate of the

correlations ρ̂jj′ obtained from REBACCA, COAT and Zi-LN, which are developed for

single-domain analysis. The true values ρtrjj′ of the correlations are shown in the lower

triangles of the heatmaps. Compared to the estimate under Sp-BGFM in panel (a) of

Fig 6 of the main text, their performance is poor. Note that they do not account for

covariates in addition to not properly considering data from a multi-domain study.

B.5.3 Simulation 3

For Simulation 3, we kept M = 2, J1 = 150, J2 = 50, S = 20 and N =

20 the same as in Simulation 2, but removed the covariate to closely examine the

estimation of Σ. Specifically, we used the vine method in Lewandowski et al. (2009)

to have an arbitrarily specified Σtr. We used the empirical proportions ψ̃mj of zero

counts from the multi-domain skin microbiome dataset to have a dataset close to the

real dataset. Approximately 40% of the counts in the dataset were zero, which is

comparable to the proportion of zeros in the skin microbiome dataset. We used the

same fixed hyperparameter values as in Simulation 1, and we approximated the posterior

distribution using MCMC. The examination of the MCMC simulation using traceplots

indicated no evidence of convergence or mixing problems

Fig B.8(a) compares posterior estimates ρ̂mm
′

jj′ of correlations (upper triangle)

to the truth (lower triangle). Recall that ρmm
′,tr

jj′ is specified arbitrarily. Sp-BGFM

effectively recovers the underlying interaction structure with a high degree of accuracy

even in a case of N = 20 and J = 200. To assess the fit of the model, we compared pre-
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Figure B.8: [Simulation 3] The upper right and lower left triangles of a heatmap illus-
trate the estimates ρ̂mm

′
jj′ of correlations and their truth, respectively. The horizontal

and vertical lines are to divide the groups. The estimates in panels (a)-(f) are from
Sp-BGFM, MOFA, SPIEC-EASI, REBACCA, COAT and Zi-LN, respectively.

dictive distribution estimates to the empirical distribution of the normalized observed

counts, using a procedure the same as that employed in Simulation 1. Marginal pos-

terior predictive distribution estimates of some selected OTUs are illustrated with the

normalized observed counts in crosses in Fig B.9. The plots do not show any systematic

discrepancy and indicate a reasonable model fit.

In addition, correlation estimates are obtained from MOFA and SPIEC-EASI

and compared to the truth in Fig B.8(b) and (c). The RMSE of ρmm
′

jj′ is computed for Sp-

BGFM, MOFA, and SPIEC-EASI, and is included in Tab 1 of the main text. Fig B.8

215



0.0

0.5

1.0

1.5

0 2 4 6 8
log(Yi1j + 1)

P
os

te
rio

r 
P

re
di

ct
iv

e 
D

en
si

ty

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10
log(Yi1j + 1)

P
os

te
rio

r 
P

re
di

ct
iv

e 
D

en
si

ty

0.00

0.05

0.10

0.15

0 5 10 15
log(Yi2j + 1)

P
os

te
rio

r 
P

re
di

ct
iv

e 
D

en
si

ty

(a) Group 1 OTU 67 (b) Group 1 OTU 118 (c) Group 2 OTU 47

Figure B.9: [Simulation 3] Posterior predictive estimates of the marginal distribution of
log-transformed counts for three arbitrarily chosen OTUs, OTUs 67 and 118 of group
1 and OTU 47 of group 2 for model checking. Crosses are log-transformed observed
counts after normalization based on a posterior estimate of the scale factors rim.

(d)-(f) compare correlation estimates under the additional comparators, REBACCA,

COAT and Zi-LN, to the truth. The comparators fail to capture the true dependence

structure. Our Sp-BGFM yields superior estimates of ρmm
′

jj′ and outperforms the other

methods in comparison.

B.5.4 Simulation 4

In Simulation 4, we further assessed the robustness of Sp-BGFM by simulating

count vectors from a distribution different from the assumed model. Specifically, we sim-

ulated count vectors yim from multinomial distributions, yim
indep∼ Multinomial(c̃im, Ñim),

i = 1, . . . , N and m = 1, . . . ,M , where c̃m is a Jm-dim probability vector and Ñim

the fixed total count. Let N = 20, M = 2, J1 = 150, and J2 = 50. To specify

c̃im, we first generated counts cimj independently from negative binomal distributions,

cimj
indep∼ NB(exp(αimj), simj) with mean exp(αimj) > 0 and dispersion parameter
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simj > 0. We specified the values of αimj by generating them from the same mix-

ture distribution used in Simulation 1, and smj ’s were sampled independently from

log-N(−2, 0.12). We then set c̃imj = cimj/
∑Jm

j′=1 cimj′ . The total counts Ñim were i.i.d

sampled from N(10.54, 1.68) and N(9.26, 1.49) respectively for two groups. The values

are the sample mean and variance of total counts of the multi-domain skin microbiome

dataset in §3.4 of the main text. Note that the true dependence structure does not have

any OTU interaction, and the total counts are fixed at Ñim. We specified the fixed

hyperparameter values similar to those in the previous simulation studies and applied

Sp-BGFM to the dataset. MCMC was run for 100,000 iterations, with the initial half

of iterations discarded as burn-in and the remaining half used for posterior inference.

The posterior estimate ρ̂mm
′

jj′ of the correlation matrix is compared to the truth

in Fig B.10(a). The model captures the pattern that the OTUs have no dependence

structure well. To understand how the model-based normalization through rim works,

posterior mean estimates r̂im of rim are compared to the logarithm of total counts,

log(
∑Jm

j=1 yijm), i = 1, . . . , N and m = 1, . . . ,M in Fig B.11. Note that due to the

simulation setup, we have log(
∑Jm

j=1 yimj) = log(Ñim), where Ñim that are randomly

generated. The figure illustrates that as the total count increases, r̂im tends to increase,

providing evidence that the model performs reasonable normalization to account for

differences in total counts. Fig B.12 compares the posterior predictive distribution to

the empirical distribution of observed counts for some selected OTUs. The observed

counts are transformed for better illustration as described in §3.3.1 of the main text.

The plot demonstrates that our model offers a reasonable fit, even in cases where the
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(a) Sp-BGFM (b) MOFA (c) SPIEC-EASI

Figure B.10: [Simulation 4] The upper right and lower left triangles of a heatmap
illustrate the estimates ρ̂mm

′
jj′ of correlations and their truth, respectively. The horizontal

and vertical lines are to divide the groups. The estimates in panels (a)-(c) are from Sp-
BGFM, MOFA and SPIEC-EASI.

data were generated from a model significantly different from the assumed model.

For comparison, MOFA and SPIEC-EASI were fitted to the simulated data,

and their estimates ρ̂mm
′

jj′ of correlations are compared to the truth in Figs B.10(b)-(c).

SPIEC-EASI produces the estimates close to zero, indicating no dependence structure.

However, MOFA produces estimates that are not close to zero, especially for the OTUs

in group 1, even though the true values are zero, and the inference under MOFA does

not accurately capture the true dependence structure. The RMSE of ρjj′ is computed

and presented in Tab 1 of the main text.

B.5.5 Simulation 5

In this simulation study, we utilized functions from the R package SpiecEasi

(Kurtz et al., 2015) to generate a synthetic dataset. The package, available on the

authors’ GitHub page, provides a function that takes a real microbiome dataset and a

correlation matrix as input to generate realistic synthetic OTU count data. It simulates
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(a) Group 1 (b) Group 2

Figure B.11: [Simulation 4] The posterior mean estimates of rim are plotted against
the logarithm of the total counts, Ñim = log(

∑Jm
j=1 yimj), i = 1, . . . , N and m = 1 or 2.

Panels (a) and (b) correspond to the two groups, m = 1 and m = 2, respectively.

Figure B.12: [Simulation 4] Posterior predictive estimates of the marginal distribution
of log-transformed counts are plotted for three arbitrarily chosen OTUs, OTUs 30 and
133 of group 1 and OTU 31 of group 2 for model checking. Crosses are log-transformed
observed counts after normalization based on a posterior estimate of the scale factors
rim.
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counts from zero-inflated negative binomial distributions using normal-copula functions.

The simulated counts have a dependence structure as in the provided correlation matrix

and marginally have a distribution similar to the empirical distribution of counts in the

provided real data. The R functions do not consider complex data structures such as

multiple domains, covariates and repeated samples from a subject. We thus generated

a table for each group separately, and then concatenated the simulated count tables to

have a multi-domain microbiome dataset. We used the bacterial and viral tables of the

multi-domain skin microbiome dataset as a real data input, and we had N = S = 60,

M = 2, J1 = 75 and J2 = 39. The covariates and potential dependence in repeated

samples that the skin microbiome dataset has were not taken account of for both data

simulation and analysis. We used the vine method in Lewandowski et al. (2009) to

randomly generate within-domain dependence structure, Σtr,mm. Since a dataset is

generated separately for each domain, there is no cross-domain dependence among OTUs

in the ground truth, i.e., Σtr,mm′
= 0, m ̸= m′. Σtr is plotted in the lower triangles

of Figs B.13. 72% of the counts are zero, similar to the zero rate of the multi-domain

skin microbiome data similar to that of the skin microbiome dataset. We specified the

values of the fixed hyperparameter similar to those in the previous simulation studies

and ran MCMC for 100,000 iterations. The initial half of iterations was discarded as

burn-in, and the second half was used for inference.

Posterior estimates ρ̂mm
′

jj′ are in Fig B.13(a). The figure indicates that the true

dependence structure among OTUs is well captured although the dataset was simulated

from a model very different from the assumed model. Also, the posterior predictive
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(a) Sp-BGFM (b) MOFA (c) SPIEC-EASI

Figure B.13: [Simulation 5] The upper right and lower left triangles of each heatmap
illustrate estimates ρ̂jj′ of correlations between OTUs and their true values ρtrjj′ = 0.

Panels (a)-(c) are for Sp-BGFM, MOFA, and SPIEC-EASI, respectively.

distributions in Fig B.14 indicate that Sp-BGFM yields reasonable model fit.

For comparison, we applied SPIEC-EASI and MOFA to the simulated data

and plotted their estimates ρ̂mm
′

jj′ in Fig B.13 (b)-(c). Comparing their estimates to

the truth indicates that they fail to recover the true dependence structure. A similar

conclusion is obtained from comparing the RMSE of ρmm
′

jj′ in Tab 1 of the main text

across the three methods.

B.6 Additional Results from Multi-domain Skin Micro-

biome Data Analysis

Data exploration: In this section, we present additional results from the multi-

domain skin microbiome data analysis. Fig B.15 illustrates empirical correlation esti-

mates computed using the samples from each of the experimental conditions: healthy,

pre-treatment and post-treatment. The log-transformed normalized counts were used.

Fig B.16 illustrates histograms of the logarithm of the sample total counts for each
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Figure B.14: [Simulation 5: Checking] Posterior predictive estimates of the marginal
distribution of log-transformed counts are plotted for arbitrarily chosen OTUs for model
checking. Crosses are log-transformed observed counts after normalization based on a
posterior estimate of the scale factors rim.

group (domain). The distributions are different by group, which indicates the need for

separately modeling rim for each group.

Additional results on ρ̂mm
′

jj′ : Fig B.17 illustrates ρ̂mm
′

jj′ for the OTUs that have

|ρ̂mm′
jj′ | > 0.5 with any other OTU j′, j′ ̸= j. Here, 0.5 is an arbitrary choice to illustrate

a smaller set of OTUs that have large estimates. Tabs B.2 and B.3 have taxonomic

information of the OTUs whose abundance changes statistically significantly by any of

the experimental conditions or the OTUs that have |ρ̂mm′
jj′ | > 0.5 with any other OTUs.

Predictive checking: Fig B.18 has posterior predictive density estimates of log-

transformed counts for some selected OTUs, bOTU 1, bOTU 69 and vOTU 17, where

black solid, red and blue dashed represent healthy, pre-treatment and post-treatment

conditions, respectively. We set r
pred
m = 0 for m = 1 and 2. Red crosses represent
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(a) Healthy (b) Pre-treatment (c) Post-treatment samples

Figure B.15: [Multi-domain skin microbiome data] Empirical correlation estimates ρ̃mm
′

jj′

are plotted in panels (a)-(c) for each experimental condition, healthy, pre-treatment,
and post-treatment. The counts are normalized using cumulative sum scaling and log-
transformed, with the addition of a pseudocount of 0.01 for the log-transformation.

log-transformed observed counts after normalization, log(⌊yimj/ exp(r̂im − r
pred
m )⌋+ 1),

where r̂im is a posterior estimate of rim. Posterior estimates of βmj2−βmj1, βmj3−βmj1

and βmj3 − βmj2 are 0.340, 1.384 and 1.036 with 95% credible intervals (-0.914, 1.522),

(0.227, 2.521) and (-0.134, 2.244), respectively for bOTU 1, -1.571, -1.633 and -0.062

with 95% credible intervals (-2.832, -0.321), (-2.869, -0.397) and (-1.294, 1.164), re-

spectively for bOTU 69, and 5.118, 5.146 and 0.037 with 95% credible intervals (3.935,

6.299), (3.916, 6.372) and (1.078, 1.104), respectively for vOTU 17.

Additional comparison: Fig B.19 plots correlation estimates from the additional

comparators, REBACCA, COAT and Zi-LN. Recall that the methods are developed for

a single-domain microbiome data analysis and do not include covariates. Compared to

the estimates under Sp-BGFM presented in the main text, the comparators produce

very dense correlation estimates. Fig B.20 shows the estimates of coefficient effects

βmjp − βmjp′ under metagenomeSeq.
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(a) Bacterial group (b) Viral group

Figure B.16: [Multi-domain skin microbiome data] Histograms of the logarithm of the
sample total counts log(

∑
j Yimj) are shown for the bacterial and viral groups in the

left and right panels, respectively.

Assessing convergence of MCMC simulation: To assess the convergence of the

MCMC simulation, we conducted Markov chain simulations with various initial values.

Fig B.21 displays traceplots of the log-likelihood and some selected random parameters,

v21, β1,2,2 − β1,2,1 and β2,2,3 − β2,2,2. The traceplots indicate that the Markov chains

converge to a similar state, providing practical evidence of the MCMC simulation’s

convergence.

Prior sensitivity analyses: We conducted sensitivity analyses to assess the robust-

ness of Sp-BGFM to the fixed hyperparameter specifications. Specifically, we investi-

gated the sensitivity of the posterior inference on ρmm
′

jj′ to the values of K, aϕ, and aτ ,

the hyperparameters of the priors on Σ. Recall that the results presented in §3.4 of the

main text are obtained with K = 15, aϕ = 1/20 and aτ = 1/10.

We first varied the value of K, setting K = 13, 17, and 20, while keeping aϕ
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Figure B.17: [Multi-domain skin microbiome data] Posterior correlation estimates ρ̂mm
′

jj′

(upper right triangle) and empirical correlation estimates ρ̃mm
′

jj′ (lower left triangle) are

plotted for the OTUs having |ρ̂mm′
jj′ | > 0.5

and aτ the same. The traceplots of the log-likelihood in Fig B.22(a) show that log-

likelihoods under K = 15, 17 and 20 converge to a similar state, but it has a much

smaller value for K = 13. Posterior estimates ρ̂mm
′

jj′ are presented in Fig B.22(b)-(e).

From comparison with the estimates in Fig 9(a) of the main text, it is observed that

the posterior estimates of ρmm
′

jj′ show minimal changes across the different values of K.

We then examined how the posterior estimates of ρmm
′

jj′ change by the spec-
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(a) Bacterial OTU 1 (b) Bacterial OTU 69 (c) Viral OTU 17

Figure B.18: [Multi-domain skin microbiome data] In panels (a)-(c), posterior predictive
density estimates of log-transformed counts log(ypred + 1) are plotted for some OTUs.
Solid, blue and red dashed lines denote healthy, pre-debridement and post-debridement
conditions, respectively. Log-transformed observed counts are plotted with crosses after
normalization.
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(a) REBACCA (b) COAT (c) Zi-LN

Figure B.19: [Multi-domain skin microbiome data] The upper right triangle of the
heatmaps in panels (a)-(c) illustrates the correlations estimates ρ̂mm

′
jj′ under REBACCA,

COAT and Zi-LN, respectively. The lower left triangles have the empirical correlation
estimate ρ̃mm

′
jj′ .

ification of aϕ. Specifically, we used three different values: aϕ = 1/2, 1/10, and 1/50.

The traceplots of the log-likelihood in Fig B.23(a) show that the Markov chains with

aϕ = 1/10, 1/20, and 1/50 reached a similar state, while the chain with aϕ = 1/2

converged to a much smaller value. The posterior estimates ρ̂mm
′

jj′ in Fig B.22(b)-(e)

show that a larger value of aϕ results in less sparsity, and ρ̂mm
′

jj′ with the values of
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aϕ = 1/10, 1/20, and 1/50 do not change much.

Lastly, Fig B.24 presents the results obtained by varying the value of aτ . Specif-

ically, we used aτ = 1/100, 1/2, 1, 2. The traceplots in Fig B.24(a) and the posterior

estimates ρ̂mm
′

jj′ in Fig B.24(b)-(d) demonstrate the robustness of the model under dif-

ferent specifications of aτ .

In summary, while a small value of K leads to a significant reduction in compu-

tation, a complex dependence structure in Σ requires a large value of K. As suggested

in §3.2.2 of the main text, one way to specify the value of K is by choosing a sufficiently

large value based on principal component analysis using the sample covariance matrix.

A large value of aϕ may result in negligibly small values of ρ̂mm
′

jj′ for many pairs of j and

j′ (i.e., less sparsity). The model’s performance does not change significantly within a

reasonable range of values for aτ .
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(a) β1j2 − β1j1 (b) β2j2 − β2j1

(c) β1j3 − β1j1 (d) β2j3 − β2j1

(e) β1j3 − β1j2 (f) β2j3 − β2j2

Figure B.20: [Multi-domain skin microbiome] The point estiamte of regression coefficient
effect βmjp − βmjp′ under metagenomeSeq is plotted in panels (a) - (f).
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Table B.2: [Multi-domain skin microbiome data] Taxonomic information of the bacterial
OTUs whose abundance changes statistically significantly by any of the experimental
conditions or the OTUs that have |ρ̂mm′

jj′ | > 0.5 with any other OTUs. The OTUs that

have |ρ̂mm′
jj′ | > 0.5 and abundances significantly changing by an experimental condition

are in blue. The OTUs that have |ρ̂mm′
jj′ | > 0.5 and abundances significantly changing

by an experimental condition are in blue italic.

OTU Phylum Class Order Family Genus/Genus species

B1 Proteobacteria Alphaproteobacteria Rhizobiales Brucellaceae Unassigned
B2 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter
B3 Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinomyces
B4 Actinobacteria Actinobacteria Actinomycetales Actinomycetaceae Actinotignum
B5 Firmicutes Clostridia Clostridiales Family XI Anaerococcus
B6 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
B7 Actinobacteria Actinobacteria Micrococcales Brevibacteriaceae Brevibacterium
B8 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas
B9 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Burkholderia-Paraburkholderia
B10 Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter
B11 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium
B12 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium 1
B14 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Enhydrobacter
B15 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Enterobacter
B19 Firmicutes Clostridia Clostridiales Ruminococcaceae Fastidiosipila
B20 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Unassigned
B21 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unassigned
B22 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Glutamicibacter
B24 Firmicutes Clostridia Clostridiales Family XI Helcococcus
B25 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unassigned
B26 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Kocuria
B27 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Massilia
B28 Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium
B29 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Micrococcus
B30 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella
B31 Actinobacteria Actinobacteria Micrococcales Unassigned Unassigned
B32 Unassigned Unassigned Unassigned Unassigned Unassigned
B33 Unassigned Unassigned Unassigned Unassigned Unassigned
B34 Unassigned Unassigned Unassigned Unassigned Unassigned
B35 Unassigned Unassigned Unassigned Unassigned Unassigned
B37 Actinobacteria Actinobacteria Micrococcales Dermabacteraceae Unassigned
B38 Unassigned Unassigned Unassigned Unassigned Unassigned
B39 Unassigned Unassigned Unassigned Unassigned Unassigned
B41 Unassigned Unassigned Unassigned Unassigned Unassigned
B42 Unassigned Unassigned Unassigned Unassigned Unassigned
B44 Firmicutes Bacilli Lactobacillales Aerococcaceae uncultured
B45 Unassigned Unassigned Unassigned Unassigned Unassigned
B46 Unassigned Unassigned Unassigned Unassigned Unassigned
B48 Unassigned Unassigned Unassigned Unassigned Unassigned
B50 Unassigned Unassigned Unassigned Unassigned Unassigned
B51 Unassigned Unassigned Unassigned Unassigned Unassigned
B52 Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides
B53 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus
B55 Firmicutes Clostridia Clostridiales Family XI Peptoniphilus
B56 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas
B57 Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Propionibacterium
B58 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Proteus
B60 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Ralstonia
B62 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Salmonella
B63 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Serratia
B64 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas
B65 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus aureus
B67 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus cohnii
B70 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus hominis
B72 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus pettenkoferi
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Table B.3: [Multi-domain skin microbiome data] Taxonomic information of the viral
OTUs whose abundance changes statistically significantly by any of the experimental
conditions or the OTUs that have |ρ̂mm′

jj′ | > 0.5 with any other OTUs. The OTUs that

have |ρ̂mm′
jj′ | > 0.5 and abundances significantly changing by an experimental condition

are in blue. The OTUs that have |ρ̂mm′
jj′ | > 0.5 and abundances significantly changing

by an experimental condition are in blue italic.

OTU Type Resolution

V1 Acinetobacter phage Defined
V2 Aquisalimonas phage Defined
V3 Bacillus phage Defined
V6 Citrobacter phage Defined
V8 Enterobacter phage Defined
V9 Grimontella phage Defined
V10 Klebsiella phage Defined
V11 Leptotrichia phage Defined
V12 Mannheimia phage Defined
V13 Methylomonas phage Defined
V15 Prevotella phage Defined
V17 Proteus phage Defined
V18 Pseudomonas phage Defined
V21 Staphylococcus aureus phage Defined
V22 Staphylococcus phage Defined
V23 Staphylococcus phage Defined
V24 Streptococcus phage Defined
V26 Vibrio phage Defined
V28 Unknown host type Ambiguous
V29 Other phage Ambiguous
V30 Other phage Ambiguous
V31 Other phage Ambiguous
V32 Other phage Ambiguous
V33 Unknown host type Ambiguous
V34 Other phage Ambiguous
V35 Other phage Ambiguous
V36 Other phage Ambiguous
V37 Other phage Ambiguous
V38 Other phage Ambiguous
V39 Other phage Ambiguous
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(a) log-likelihood (b) σ21

(c) β1,2,2 − β1,2,1 (d) β2,2,3 − β2,2,2

Figure B.21: [Convergence checking] Traceplots of log-likelihood and some selected pa-
rameters, v21, β1,2,2 − β1,2,1 and β2,2,3 − β2,2,2. MCMC simulations were ran with four
different initial values.
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(a) Traceplot of log-likelihood (b) K = 13

(c) K = 15 (d) K = 17

(e) K = 20

Figure B.22: [Sensitivity to the specification of K] Traceplots of log-likelihood under
different values of K (K = 13, 15, 17, 20) are presented in distinct colors. In panels
(b)-(e), posterior estimates ρ̂mm

′
jj′ of the correlation matrix are displayed in the upper

triangles for each value of K. Additionally, empirical correlation estimates are shown in
the lower triangles. The estimates with K = 15 in § 3.4 of the main text are included
for easy comparison.
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(a) Traceplot of log-likelihood (b) aϕ = 1/2

(c) aϕ = 1/10 (d) aϕ = 1/20

(e) aϕ = 1/50

Figure B.23: [Sensitivity to the specification of aϕ] Traceplots of log-likelihood under
different values of aϕ (aϕ = 1/2, 1/10, 1/20, 1/50) are presented in distinct colors. In
panels (b)-(e), posterior estimates ρ̂mm

′
jj′ of the correlation matrix are displayed in the

upper triangles for each value of aϕ. Additionally, empirical correlation estimates are
shown in the lower triangles. The estimates with aϕ = 1/20 in § 3.4 of the main text
are included for easy comparison.
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(a) Traceplot of log-likelihood (b) aτ = 1/100

(c) aτ = 1/10(main text) (d) aτ = 1/2

(e) aτ = 2

Figure B.24: [Sensitivity to the specification of aτ ] Traceplots of log-likelihood under
different values of aτ (aτ = 1/100, 1/10, 1/2, 2) are presented in distinct colors. In
panels (b)-(f), posterior estimates ρ̂mm

′
jj′ of the correlation matrix are displayed in the

upper triangles for each value of aτ . Additionally, empirical correlation estimates are
shown in the lower triangles. The estimates with aτ = 1/10 in § 3.4 of the main text
are included for easy comparison.
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Appendix C

SUPPLEMENTARY FOR Bayesian

Covariate-Assisted Interaction Analysis

for Multivariate Count Data in

Microbiome Study

C.1 Details of Posterior Computation

We use Markov chain Monte Carlo (MCMC) techniques to obtain samples of

the random parameters θ from their posterior distributions, where θ = {qjk, fkp, ϕjk, τk,

ζjk, σ
2, αj , ω

α
l , V

α
l , ξ

α
l , ri, ω

r
l , V

r
l , ξ

r
l , βjp}. To facilitate the posterior simulation, we in-

troduce the latent continuous variable y⋆ij ∈ R+ and have yij = ⌊y⋆ij⌋. We then impute
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y⋆ij = exp(ỹ⋆ij) from a truncated log-normal distribution

ỹ⋆ij | θ,ηi, yij ∼ N(ri + αj + λ
′
j(xi)ηi + x′

iβj , σ
2)1(log(yij) ≤ ỹ⋆ij < log(yij + 1)).

Given ỹ⋆ij , parameters βj , ηi, and σ
2 can be conveniently updated through normal/inv-

gamma Gibbs steps. For ζjk, we utilize the following to achieve conjugacy (Makalic and

Schmidt, 2015);

ζjk
iid∼ C+(0, 1) ⇔ ζ2jk | Zjk

iid∼ inv-Ga

(
1

2
,

1

Zjk

)
, Zjk

iid∼ inv-Ga

(
1

2
, 1

)
. (C.1)

ζjk can be easily updated via Gibbs steps. Also, recall that parameters ri and αj are from

infinite mixtures of mixtures. For computational convenience, when fitting the model,

we approximate the infinite mixtures by truncating the number of mixture components

to Lα and Lr. The final weights ψαLα = 1 −
∑Lα−1

l=1 ψαl and ψrLr = 1 −
∑Lr−1

l=1 ψrl is set

to ensure the distributions are proper. With sufficiently large Lα and Lr, the truncated

process produces inference almost identical to that with the infinite process (Ishwaran

and James, 2001). We further introduce a pair of membership variables (Iri1, I
r
i2) with

Iri1 ∈ {1, . . . , Lr} and Iri2 ∈ {0, 1} for each ri and (Iαj1, I
α
j2) with Iαj1 ∈ {1, . . . , Lα} and

Iαj2 ∈ {0, 1} for each αj . We then assume P(Iri1 = l) = ψrl and P(Iri2 = 0 | Iri1 = l) = ωrl ,

and similarly, assume P(Iαj1 = l) = ψαl and P(Iαj2 = 0 | Iαj1 = l) = ωαl . Given the
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membership indicator vectors, the conditional distributions of ri and αj are

ri | ψr,ωr, ξr, Iri1 = l, Iri2 ∼


N(ξrl , u

2
r) if Iri2 = 1,

N(
vr−ωr

l ξ
r
l

1−ωr
l
, u2r) if Iri2 = 0,

αj | ψα,ωα, ξα, Iαj1 = l, Iαj2 =


ξαl if Iαj2 = 1,

vα−ωα
l ξ

α
l

1−ωα
l

if Iαj2 = 0.

Given the latent variables, parameters ϕk, fkp are not updated through Gibbs steps.

We update ϕk, fkp using a Metropolis-Hastings step. We let ϕ⋆jk
iid∼ Ga(aϕ, 1) and have

ϕjk = ϕ⋆jk/
∑

m′, j′ ϕ
⋆
m′j′k. The full conditional of ϕk is given by

p(ϕk | −) ∝ p(qk | τk,ϕk, ζk)p(ϕk) ∝
J∏
j=1

N(qjk | 0, ζ2jkϕjkτk)
J∏
j=1

Ga(ϕ⋆jk | aϕ, 1).

To efficiently update ϕk, the adaptive MH algorithm (Haario et al., 2001) is applied to

adjust the MH step size according to the acceptance ratio, and the convergence rate is

accelerated.

We sample sequentially by alternating conditional sampling. The full condi-

tionals are given below;

• Update ỹ⋆ij given yij , ri, αj ,λj(xi),ηi, σ
2,βj ,xi

ỹ⋆ij ∼ N(ri + αj + λ
′
j(xi)ηi + x′

iβj , σ
2)1(log(yij) ≤ ỹ⋆ij < log(yij + 1)).
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• parameters related to ri

– Update ψr given Iri1

ψr1 = V r
1 , ψ

r
l = V r

l

∏l−1
h=1(1− V r

h ), for l = 2, . . . , Lr − 1, ψrLr = 1−
∑Lr−1

l=1 ψrl

V r
l ∼ Be(1 +

N∑
i=1

1(Iri1 = l), . . . , cr +
N∑
i=1

∑
h>l

1(Iri1 = h)).

– Update ωrl given Iri1, I
r
i2

p(ωrl | −) ∝ ωrl
arω+

∑N
i=1 1(I

r
i1=l,I

r
i2=1)(1− ωrl )

brω+
∑N

i=1 1(I
r
i1=l,I

r
i2=0)

N∏
i=1

J∏
j=1

N(ỹ⋆ij | µij , σ2). (C.2)

We use logistic transformation and adaptive Metropolis-Hasting algorithm

(Haario et al., 2001) to update ωrl .

– Update (Iri1, I
r
i2) given ψ

r
l , ω

r
l , ri, v

r
m, ξ

r
l , u

2
r

Pr(Iri1 = l, Iri2 = 1) ∝ ψrl ω
r
lN(ri | ξrl , u2r),

Pr(Iri1 = l, Iri2 = 0) ∝ ψrl (1− ωrl )N(ri |
νr − ωrl ξ

r
l

1− ωrl
, u2r),

– Update ξrl given Iri1, I
r
i2, ri, ω

r
l

ξrl ∼ N

ũ2ξr( νru2ξr +
∑

i:Iri1=l,I
r
i2=1

ri
u2r

−
∑

i:Iri1=l,I
r
i2=0

ωr
l

1−ωr
l
ri −

ωr
l

(1−ωr
l )

2 ν
r

u2r
), ũ2ξr

 ,
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where ũ2ξr = (1/u2ξr +
∑N

i=1 1(I
r
i1 = l, Iri2 = 1)/u2r + ωr,2l

∑N
i=1 ω

r
l 1(I

r
i1 =

l, Iri2 = 0)/u2r(1− ωrl )
2)−1.

– Update ri given αj ,λj(xi),ηi,βj

ri ∼ N((
c

u2r
+

∑J
j=1(ỹ

⋆
ij − αj − λ′

j(xi)ηi − x′
iβj)

σ2
)(

1

u2r
+

J

σ2
)−1,

(
1

u2r
+

J

σ2
)−1),

where prior mean c =
∑J

j=1(1(I
r
i2 = 1)ξrIri1

+ 1(Iri2 = 0)
νr−ωr

Ir
i1
ξr
Ir
i1

1−ωr
Ir
i1

).

• parameters related to αj

– Update ψα given Iαj1

ψα1 = V α
1 , ψ

α
l = V α

l

∏l−1
h=1(1−V α

h ), for l = 2, . . . , Lα−1, ψαLα = 1−
∑Lα−1

l=1 ψαl

V α
l ∼ Be(1 +

J∑
j=1

1(Iαj1 = l), . . . , cα +
J∑
j=1

∑
h>l

1(Irj1 = h)).

– Update ωαl given Iαj1, I
α
j2

p(ωαl | −) ∝ ωαl
aαω+

∑J
j=1 1(I

α
j1=l,I

α
j2=1)(1− ωαl )

bαω+
∑J

j=1 1(I
α
j1=l,I

α
j2=0)

N∏
i=1

J∏
j=1

N(ỹ⋆ij | µij , σ2).

We use logistic transformation and adaptive Metropolis-Hasting algorithm

(Haario et al., 2001) to update ωαl .
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– Update (Iαj1, I
α
j2) given ψ

α
l , ω

α
l

Pr(Iαj1 = l, Iαj2 = 1) ∝ ψαl ω
α
l

N∏
i=1

N(ỹ⋆ij | ri + ξαl + λ′
j(xi)ηi + x′

iβj , σ
2),

Pr(Iαj1 = l, Iαj2 = 0) ∝ ψαl (1− ωαl )
N∏
i=1

N(ỹ⋆ij | ri +
ναj −ωα

l ξ
α
l

1−ωα
l

+ λ′
j(xi)ηi

+x′
iβj , σ

2).

– Update ξαl given ỹ⋆ij , ri,λj(xi),ηi,xi,βj

ξαl ∼ N(ũ2α(ν
α
j /u

2
α +

∑
i:Iαj1=l,I

α
j2=1

(ỹ⋆ij − ri − λ′
jηi − x′

iβj)/σ
2 −

∑
i:Iαj1=l,I

α
j2=0

(
ωα
l

1−ωα
l
(ỹ⋆ij − ri − λ′

jηi − x′
iβj)−

ωα
l

(1−ωα
l )

2 ν
α
j )/σ

2), ũ2α),

where ũ2α = (1/u2α +N
∑J

j=1 1(I
α
j1 = l, Iαj2 = 1)/σ2 +Nωα,2l

∑J
j=1 ω

α
l 1(I

α
j1 =

l, Iαj2 = 0)/σ2(1− ωαl )
2)−1.

• Update fkp given Ỹ ⋆
ij , ri, αj ,xi,βj ,η

Although fkp has the posterior distribution in closed form, due to non-identifiability

between fkp and qj , we adaptive MH algorithm by proposing from a normal dis-

tribution. The full conditional of fkp is given by

p(fkp | −) ∝
N∏
i=1

J∏
j=1

N(Ỹ ⋆
ij | ri + αj + λ

′
j(xi)ηi + x′

iβj , σ
2)N(fkp | 0, 1),

where λjk(xi) = qjkf
′
kxi, we reject or accept the proposal by utilizing the adaptive

MH algorithm.
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• Update qj given Ỹ
⋆
j , r, αj ,X,βj ,η, ζj ,ϕj ,F

qj ∼ N(Vqσ
−2(XF ′ ◦ η)′(Ỹ ⋆

j − r−αj1n −Xβj), Vq),

where V = diag(ζ2j1ϕj1τ1, . . . , ζ
2
jkϕjkτK), Vq = (σ−2(XF ′ ◦η)′(XF ′ ◦η)+V −1)−1.

p(ϕk | −) ∝
J∏
j=1

N(qjk | 0, ζ2jkϕjkτk)
J∏
j=1

Ga(ϕ⋆jk | aϕ, 1).

• Update ϕk using adaptive MH algorithm by proposing from a normalized Ga(aϕ, 1).

We let ϕ⋆jk
iid∼ Ga(aϕ, 1) and have ϕ = (ϕ1, . . . , ϕJ) ∼ Dir(aϕ, . . . , aϕ) with ϕjk =

ϕ⋆jk/
∑

j′ ϕ
⋆
j′k. The full conditional of ϕk is given by

p(ϕk | −) ∝
J∏
j=1

N(qjk | 0, ζ2jkϕjkτk)
J∏
j=1

Ga(ϕ⋆jk | aϕ, 1).

We reject or accept the proposal by utilizing the adaptive MH algorithm.

• Update ζ2jk given Zjk, qjk, ϕjk, τk

ζ2jk ∼ inv-Ga(1, 1/Zjk + q2jk/(2ϕjkτk)).

• Update Zjk given ζjk
indep∼ inv-Ga(1, 1 + 1/ζ2jk).
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• Update τk | qjk, ζjk, ϕjk

τk ∼ Generalized inverse Gaussian (aτ − J/2, 2bτ ,
M∑
m=1

J∑
j=1

q2jk/ζ
2
jkϕjk).

• Update ηi given Λ(xi), Ỹ
⋆
i , ri,αsi ,β,Xi

ηi ∼ N((IK +
Λ′(xi)Λ(xi)

σ2
)−1Λ

′

σ2
(Y ⋆

i − ri1J −α− βXi), (IK +
Λ′(xi)Λ(xi)

σ2
)−1).

• Update βj given Ỹ
⋆
j , r,αj ,λj ,η, X̃

βj ∼ N((
X̃′X̃

σ2
+ v−2

β Ip)
−1 X̃

′

σ2
(Ỹ ⋆

j − r− αj1n − ηλj(X)), (
X̃′X̃

σ2
+
βIp
v−2

)−1).

• Update σ2 given ỹ⋆ij , ri, αj ,λj(xi),ηi,xi,βj

σ2 ∼ inv-Ga

aσ + nJ

2
, bσ +

n∑
i=1

J∑
j=1

(ỹ⋆ij − ri − αj − λ′
j(xi)ηi − x′

iβj)
2/2

 .

C.2 Additional Simulation Studies

C.2.1 Additional results of Sim 1

The posterior median estimates of qjk and posterior median estimates of τk

are plotted in Fig C.1 (a) and (b). The estimate of qjk and λjk(x) both show a good

estimate of baseline covariance. And Fig C.1(c) plots the posterior median estimates

of τk in a decreasing order. As designed in the prior of qjk, a small value of τk shrinks
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(a) q̂jk vs qtrjk (b) Λ(x1) vs Λ
tr(x1) (c) τ̂k

Figure C.1: [Simulation 1] Heatmap of qtrjk and posterior median estimates q̂jk are plotted

in panel (a). In (b), we have a heatmap of Λtr
0 ,Λ

tr(x), Λ̂(x). We use sample 1 as an
example. The scree plot of posterior estimates of τk is plotted in panel (c).

(a) r̂i vs r
tr
i (b) µ̂ij vs µ

tr
ij

Figure C.2: [Simulation 1] The posterior median estimates of sample size factor ri and
mean abundance µij are plotted against the truth in panels (a) and (b), respectively.

column-wise elements of qjk toward 0. It leaves the redundant factor to 0, contributing

little to the covariance. We also check the posterior estimates of sample size factor ri

versus the truth and the mean estimates µij in Fig C.2. Our model provides accurate

estimates of the mean abundance, serving as a reliable foundation for estimating the

parameters of primary interest Σ(xi).
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Table C.1: [Mice Gut Microbiome Data] OTUs information in the mice gut microbiome
data.

OTU1 OTU2 OTU3

B ovatus ATCC.8483 B sp WH2 B thetaiotaomicron 7330

OTU4 OTU5 OTU6

B thetaiotaomicron VPI.5482 B vulgatus ATCC.8482 Cat Bacteroides caccae TSDC17

OTU7 OTU8 OTU9

Cat Bacteroides finegoldii TSDC17 Cat Bacteroides massiliensis TSDC17 Cat Collinsella aerofaciens TSDC17

OTU10 OTU11 OTU12

Cat Escherichia coli TSDC17 Cat Odoribacter splanchnicus TSDC17 Cat Parabacteroides distasonis TSDC17

OTU13 OTU14 OTU15

Cat Ruminococcaceae TSDC17 Cat Ruminococcus albus TSDC17 Cat Subdoligranulum variabile TSDC17

C.3 Additional Results of Mice Gut Microbiome Data

Tab C.1 provides information of the OTUs in the mice gut microbiome data.
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