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The parallel evolution of wearable electronics, artificial intelligence, and fifth-generation wireless technology has created a
technological paradigm with the potential to change our lives profoundly. Despite this, addressing limitations linked to
continuous, sustainable, and pervasive powering of wearable electronics remains a bottleneck to overcome in order to maximize
the exponential benefit that these technologies can bring once synergized. A recent groundbreaking discovery has demonstrated
that by using the coupling effect of contact electrification and electrostatic induction, triboelectric nanogenerators (TENGs) can
efficiently convert irregular and low-frequency passive biomechanical energy from body movements into electrical energy,
providing an infinite and sustainable power source for wearable electronics. A number of human motions have been exploited
to properly and efficiently harness this energy potential, including human ambulation. Shoes are an indispensable component of
daily wearing and can be leveraged as an excellent platform to exploit such kinetic energy. In this article, the latest
representative achievements of TENG-based smart electricity-generating shoes are comprehensively reviewed. We summarize
ways in which not only can biomechanical energy be scavenged via ambulatory motion, but also biomonitoring of health
parameters via tracking of rhythm and strength of pace can be implemented to aid in theranostic fields. This work provides a
systematical review of the rational structural design, practical applications, scenario analysis, and performance evaluation of
TENG-based smart shoes for wearable electricity generation. In addition, the perspective for future development of smart
electricity-generation shoes as a sustainable and pervasive energy solution towards the upcoming era of the Internet of Things
is discussed.

1. Introduction

It is no secret that the Internet of Things is changing how
business is conducted and how life is lived in fundamental
and meaningful ways. Distributed electronics are the key
components for enabling any Internet of Things applications
via means of a wide range of engineered solutions including
sensing [1–6], therapy [7–9], and environmental monitoring
[10–12]. However, ensuring constant power sources to feed
these distributed electronics, including stand-alone devices,
is an essential prerequisite currently beyond the capability
of traditional centralized power supply systems [13–16].
Traditional batteries have limited lifetime, rigid structures,
inconvenient heaviness, and can lead to potential environ-
mental pollution, thus alternatives are required [17–22].
The human body inherently generates a large amount of bio-
mechanical energy via daily activities such as walking and
running, providing a rich source of renewable energy [23–

29]. For example, ambulatory footfall generates as much
energy as 20W. [30–33]. If this energy were to be harnessed
to power wearable electronics, it could ensure life-long oper-
ations in a sustainable and independent way, eliciting much
interest in establishing a human footfall energy harvesting
system. Even though converting human footfall energy could
provide a superior solution to obtain sustainable energy for
on-body electronics powering, the increase in population
aging opens up unmet clinical needs which ambulatory mon-
itoring can help address, including gait [34–37]. Effective gait
monitoring can be used in many health-related scenarios,
such as the detection of sudden falls [38–40], leg rehabilita-
tion assessments [41–44], and detection and progression of
Parkinson’s disease [45–48]. Current ambulatory monitoring
methods such as mobile phones and sports bracelets can be
used to track the number of steps walked, but fail to provide
insight into clinical conditions. Devices which can specifi-
cally monitor gait are expensive and cannot be easily used
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at anytime and anywhere, because of the limited time and
space. To overcome this challenge, a number of progressive
smart shoes have been shown to effectively convert human
footfall into electric signals as a convenient and cost-
effective approach for both energy harvesting and active
sensing purposes [49–54]. A variety of smart shoes are
developed via engineering different working mechanism with
which they convert biomechanical energy into electricity,
including piezoelectric approaches [55–58], electromagnetic
approaches [59, 60], and many others [61–63].

In 2012, the triboelectric nanogenerators emerged as a
compelling means to generate electricity based on the con-
junction of the triboelectrification and electrostatic induc-
tion [64–66]. TENGs’ merits have been well documented,
and comprise high efficiency, low cost, light weight, simple
structure, biocompatibility, and wide-range of materials
choices [67–77]. TENGs were successfully applied to harvest
mechanical energy from sound [78–82], wind [83–90], water
waves [91–96], and vibration [97–101]. Owing to their
unique working mechanism and material usage, TENGs
can be flexible [102–107], stretchable [108–115], humidity-
proof [116, 117], self-healing [118–120], shape-adaptive
[121–123], and even washable [124–128]. In view of these
advantages, this promising technology has been cleverly
applied to different parts of shoes, creating TENG-based
smart footwear for biomechanical energy harvesting, as
shown in Figure 1.

In this review, we first discuss the selection of triboelectric
materials and the working principle of TENG for smart
electricity-generating shoes. Subsequently, emphasis is placed
on the recent progress and practical applications of TENG-
based smart shoes for electricity generation, classified accord-
ing to the operating locations in the shoes. Finally, perspec-
tives and challenges for the future development of wearable
TENGs are discussed. We hope that this review will signifi-
cantly promote the development of wearable TENG-based
smart shoes and shed light on providing a pervasive and sus-
tainable energy solution to the wearable electronic systems in
the era of the Internet of Things.

2. Working Mechanism

The triboelectric effect is often considered as negative or even
hazardous in daily life, because it is not only an irritating
event, but it allows for dust to collect everywhere and, in
extreme cases, can lead to dangerous events, including fires.
Despite this, TENGs can take advantage of usually wasted
and ubiquitously present ambient mechanical energy and
convert it into electric energy using the coupling of contact
electrification and electrostatic induction processes [66,
134–136]. The triboelectric effect results from the cyclic con-
tact and separation of two different materials with different
electron affinity, which is defined as the “triboelectric series,”
as shown in Figure 2(a). The lower the material's position in
the series, the better its ability to obtain electrons and get neg-
atively charged, and the further apart the two materials in the
triboelectric series, the more transfer charges are generated
during the physical contact [137–140]. Consquently, the “tri-
boelectric series” can be employed as the guideline in the

selection of optimized triboelectric material pairs for high
output performance, prior to designing and fabricating novel
TENGs. Tribo-materials selected for the fabrication of TENG
are ubiquitously present in our daily lives [141–146], among
them, metal and nylon are commonly positively charged,
while silicone rubber and polytetrafluoroethylene (PTFE)
are typically chosen as negative materials for gaining negative
charges [147–150].

When two triboelectric materials with different electron
affinities come into physical contact, tribo-charges are
separated and transferred from one material to the other.
The surface of the material with higher electron affinity
becomes negatively charged, while the other surface becomes
positively charged with an equal amount. When the two
materials separate, the tribo-charges in the interfacial regions
too are separated, inducing an electrical potential difference
between electrodes, and driving free electrons to flow back
and forth in the external circuit to maintain the electrostatic
equilibrium. The fundamental working modes of TENG can
be divided into the following four categories: vertical contact-
separation mode [151], lateral sliding mode [152], single-
electrode mode [153], and freestanding triboelectric-layer
mode [154], depending on the structure and relative motion
of the materials used (Figure 2(b)).

3. Smart Shoes for Biomechanical
Energy Harvesting

Recently, tremendous efforts have been devoted to develop-
ing wearable TENGs to be worn as on body bioelectronics
or integrated into clothes and accessories. Amongst those,
TENG-based smart shoes attracted public attention on
account of their ability to easily and conveniently convert
biomechanical energy generated during regular walking, into
electric energy, so that it may be used for third party devices.
Since TENGs could be miniaturized with thin and light-
weight materials, they can easily be placed just below the foot
as part of smart shoes, and harness passive biomechanical
ambulatory motions to generate electricity. Insoles are one
of the most popular components of shoes which have been
integrated with TENG for wearable electricity generation.
Studies have demonstrated that one walking step can pro-
duce 1 to 5 joules of energy [155]. If this pervasive energy
source is harnessed effectively, it can hold the potential to
capture a large amount of passively available energy, with
obvious sustainability benefits. To elucidate the working
principle of TENG-based smart shoes, a detailed explanation
of how TENG-based smart shoes generate electricity is pro-
vided below, with the TENG position varying from shoe
top to shoe bottom.

3.1. TENGsMounted on the Insoles. TENGsmounted directly
on the insole are very simple and convenient as they require
no intermediary processing. The TENG is in direct contact
with the feet (or socks), so the triboelectric materials used
needs to be of a soft, skin-friendly, waterproof, dirt-resistant,
and bacteria-resistant nature[129, 156–160]. Pu et al. pro-
posed a wearable textile TENG-cloth mounted directly on
the insole yielding a solution with flexibility, comfortability,
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On the insole

Under the sole

Integrated into the sole

Embedded into the insole

Engineered into the insole

Figure 1: Diverse applications of TENG enabled smart shoes for mechanical-to-electrical energy conversion. On the insole. Reproduced with
permission from [129]. Copyright Elsevier, 2017. Embedded into the insole. Reproduced with permission from [130]. Copyright Elsevier,
2017. Engineered into the insole. Reproduced with permission from [131]. Copyright Royal Society of Chemistry, 2019. Integrated into the
sole. Reproduced with permission from [132]. Copyright Springer Nature, 2015. Under the sole. Reproduced with permission from [133].
Copyright Springer Nature, 2016.
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Figure 2: Working principle of TENG. (a) Triboelectric series depending on their electron affinity. (b) Four fundamental operation
modes of TENG.
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air-breathability, and water-washability [160]. Figure 3(a)
shows the schematic illustration of the fabrication of the said
TENG-cloth. The soft polyester fabric was chosen as the base
substrate and coated with the Ni film and parylene film,
forming a conductive Ni-cloth, and insulating parylene-
cloth layers. The belt-type Ni-cloth and parylene-cloth were
woven into a 5 cm × 5 cm TENG-cloth, of which every basic
unit was composed of belt-type Ni-cloth, using Ni film as
both the triboelectric layer and electrode, and belt-type
parylene-cloth using Ni film as electrode, and parylene film
as the other triboelectric layer. Owing to the ingenuity of
the structural design, this TENG-cloth can work in a variety
of modes, including vertical contact-separation mode and
horizontal sliding mode. In the contact-separation mode,
the TENG-cloth and skin (or other ordinary clothes) can be
used as a pair of triboelectric layers, as can two identical
TENG-cloths. As to the sliding mode, two identical TENG-
cloths produce frictional motion in contact with each other,
which causes the transfer of free electrons betwen the mate-
rials, due to different electron affinity of the materials. As
shown in Figure 3(b), when the TENG-cloth is worn under
the foot, electricity can be generated by walking, and used
to light up to 37 LEDs. The TENG-cloth was also used in
scavenging biomechanical energy to charge a Li-Ion Battery
(LIB) belt, powering a heartbeat meter. The invention of
wearable TENG-cloth can inspire us to come up with a
number of innovative ideas for the applications as wearable
electronics in the near future. Chang et al. developed yet
another textile-based TENG, integrated with plastic metal
electrodes, and employing the contact-separation mode

[158]. The schematic of the structure and working mecha-
nism of the textile-based TENGs is shown in Figure 3(c).
The triboelectric layer pair was made up of nylon textile
embroidered with convex arrays in circular or square pat-
terns on the surface, and polyester textile coated with polyvi-
nylidene fluoride (PVDF) based nanofibers and particles, to
obtain nanostructures on the surface, which all increase the
contact extents on the triboelectric surface, enhancing output
performance. The PMFs made fromGa-In liquid alloy-added
glaze powders-a type of plastic metal using a coating scraper-
were selected as the electrodes of the triboelectric layers. To
prevent the liquid electrode from leaking, the backside of
nylon and polyester textiles was coated with silicone films,
and the copper wires were connected to the PMFs as the leads
of electrodes. Finally, four elastic sponges fixed at four cor-
ners between two triboelectric layers, were used to restore
TENG’s shape after compression. In this example, the work-
ing mechanism depended on cyclic contact and separation
between two triboelectric layers. Figure 3(d) illustrates how
the textile-based TENG had been tested for 1200 s and over
7200 cycles at a frequency of 6Hz, wihtout showing any
considerable decrease in the output voltage, proving this
textile-based TENG could be used as a very stable and dura-
ble option. The textile-based TENG was mounted onto the
insole as shown in Figure 3(e), and the maximum output
voltage generated reached circa 10V while walking.

On the multilayer structure front, garment-based TENGs
were developed using the contact-separation mode which
included fabrication modifications to improve output perfor-
mance [156]. Also, a laser-induced graphene-based TENG
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Figure 3: Textile-based TENGs mounted on the insoles. (a) Schematic illustration of the fabrication of TENG-cloth. (b) The short current
when the TENG-cloth was worn under the foot. Reproduced with permission from [160]. Copyright Wiley-VCH, 2015. (c) Schematic of
the structure and working mechanism of the textile-based TENGs. (d) Output voltage of the textile-based TENG tested for 1200 s and
over 7,200 cycles at the frequency of 6Hz. (e) Output voltage generated by the textile-based TENG mounted on the insole. The two insets
exhibit the shoe to extract biomechanical energy from human footfall. Reproduced with permission from [158]. Copyright Springer
Nature, 2019.
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employing the single-electrode mode was developed, yielding
open-circuit output voltage of above 3.5 kV [157]. Amongst
the most innovative work in this field, we highlight a stretch-
able porous nanocomposite (PNC) based on a hybrid of a
polydimethylsiloxane(PDMS) matrix and a multiwalled
carbon nanotubes (CNTs) network used to harvest energy
from biomechanical motions [159]. Figure 4(a) illustrates
the fabrication process of said PNC. Its working mechanism
employs the PDMS matrix and CNT network which effec-
tively and alternately cycle between contact and separation
phases in the porous structure generated, by NaCl dissolu-
tion, as shown in Figure 4(b). A magnified view of the inner
surface (Figure 4(c)) clearly displays the existence of exposed
CNTs which are essential to the electricity-generation pro-
cess. Figure 4(d) illustrates an optical photograph of a prepared
round PNC with a 5 cm diameter and 0.5 cm thickness, and
with the scannning electron microscope (SEM) inset showing
surface microstructure. Stomping and bending this device
generated a current via various motions linked to the varying
magnitude and direction of the external forces applied, mean-
ing that it could be effectively employed to harness different
motion states when worn on the insole, suggesting strong
future application potential, as shown in Figure 4(e).

Overall, it ought to be remembered that a TENG that is
placed directly on insoles is subjected to extremely unfavor-
able working conditions, including exposure to sweat and
biological contaminants (bacteria) from the feet. Conse-
quently, TENGs placed on insoles should be waterproof,
possess antibacterial qualities, and be soft enough to be com-
fortable when placed in direct contact with the foot. In addi-
tion, considering that TENG is subject not only to vertical
pressure but also to irregular lateral tearing of feet in the
shoes, the TENG must be structurally sound, and the mate-
rials selected must be mechanically robust and stable.

3.2. TENGs Embedded in the Insoles. Some studies have
reported the use of TENGs embedded into the insole, avoid-
ing direct contact with the feet, providing protection against
moisture and dirt, and significantly improving the devices'
stability and robustness [51, 130, 161–163]. Zhu et al. dem-
onstrated a self-lighting shoe, which was powered by the
insole inside [163]. The TENGs were embedded in the insole
to scavenge biomechanical energy during walking. As shown
in Figure 5(a), the flexible multilayered TENGs were made up
of three layers of TENG unit fabricated on the surface of a
zigzag-shaped substrate, and the TENG unit itself was com-
posed of a PTFE thin film and a polished aluminum (Al) foil
with copper as the electrode. To increase the contact area
with the PTFE film, dense nanopores were created on the
Al foil surface through wet chemical etching. The energy
created from the three TENG units could be coupled by par-
allel wiring to further enhance the output performance.
Figure 5(b) shows the multilayered TENGs embedded at
the heel of the insole. The same multilayered TENGs were
also present in the fore-insole. The open-circuit voltage of
the multilayered TENGs is displayed in Figure 5(c), where
the maximum value attained reached over 220V. The multi-
layered TENGs were able to light up all the LEDs installed in
the sneaker during normal ambulation, as illustrated in

Figure 5(d). This application not only holds the potential to
provide localized lighting for outdoor activities at night,
improving, for instance, personal safety, but also opens up
new opportunities for harvesting pedestrian biomechanical
energy.

Using a contact-separation mode, Huang et al. first
demonstrated an all-fiber TENG-based insole yielding a
maximum output voltage up to 240V [162]. Considering that
the surface of TENGs embedded into the insoles are easily
contaminated and can be grounds for bacteria to breed, an
antibacterial composite film-based TENGwas also developed
by researchers [161]. Employing the same working mecha-
nism, Li et al. demonstrated a flexible and lightweight tri-
boelectric nanogenerator (NM-TENG) constructed with a
tailored nanofibrous membrane that enhanced the output
performance and robustness of the device [130]. As shown
in Figure 5(e), polymethyl methacrylate (PMMA) was
chosen as the supporting substrates, while the nanofibrous
membrane constructed TENG was composed of a layer of
PVDF/PDMS nanofibrous composite membrane and a layer
of PAN/PA6 nanofibrous composite membrane, using cop-
per electrodes. The elastic sponges used in this case were
added to restore the TENG shape after heel detachment
and foot lifting, whereas the silica gel was laminated on the
inner side of both PMMA substrates to ease mechanical
buffering and adjust the gap between the triboelectric mate-
rials. As shown in Figure 5(f), the open-circuit voltage of
the NM-TENG could reach a voltage as high as 540V.
Figure 5(g) illustrates the NM-TENG embedded into the
insole with the ability to efficiently harvest energy from walk-
ing and light up roughly 400 LEDs, as shown in Figure 5(h).
The NM-TENG provides a new and efficient pathway for
designing self-powered systems, due to its cost-effectiveness,
breathability, and environmental friendly material use.

Beyond strict energy production application, Lin et al.
proposed an elastic TENG-based sensor embedded into the
insoles possessing air-pressure-driven structural design to
enable real-time gait monitoring, with a remarkably simple
fabrication protocol, high durability, fast response sensitivity,
and excellent mechanical robustness [51]. The TENG-based
sensor consists of a TENG on the top and an elastic air cham-
ber (EAC) made from elastic latex film at the bottom, as
shown in Figure 6(a). The TENG was composed of a rubber
layer as one of the triboelectric layers with a layer of copper
inside to prevent interference from the environment, and a
copper layer attached on top of the supporting acrylic layer
to act as the other triboelectric layer. Figure 6(b) illustrates
the working principle of the sensor. When the sensor is com-
pressed by external forces, the two triboelectric layers come
into contact and the internal air is squeezed into the elastic
air chamber underneath. When the external forces disappear,
the elastic air chamber pushes the air back into the TENG
above, allowing the two triboelectric layers to achieve cyclic
contact and separation during ambulation; air pressure is
thus used as a suspension system. Figure 6(c) shows the volt-
age signal generated by one stepping cycle. Experimental
studies showed that after exerting/releasing a force of 30N
for 1000 cycles, the open-circuit voltage amplitude was
almost constant, suggesting excellent stability and durability,
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as shown in Figure 6(d). Most importantly, this sensorial
approach was shown to be effectively used in a medical health
monitoring setting. When an elderly person falls, an alarm
can be sent out in real-time (Figure 6(e)). Figure 6(f) shows
an example of a smart shoe recording normal walking mon-
itoring and a sudden fall.

In conclusion, TENG embedded in the insole is subjected
to intermittent vertical pressure during normal walking or
exercise. By not coming into direct contact with the feet,
embedding TENG in the insole greatly reduces the possibility
of being affected by sweat and bacteria from feet. This
approach presents a tidier solution than directly placing
TENG onto the insole. Overall, considering that different
areas of the sole are subject to different pressures profiles,
passive energy harnessing can be optimized if correct engi-
neering and placement are used.

3.3. TENGs Engineered into the Insoles. TENG can also be
engineered directly into the insoles, but this presents consid-
erable constraints in material selection and structure design,
not only to ensure the comfort of the user but also to ensure
the prolonged durability of the TENG device itself [131, 164–
169]. Lin et al. developed a waterproof TENG-based smart
insole to extract biomechanical energy for sustainably power-
ing wearable electronics [131]. As shown in Figure 7(a), the
TENG-based energy harvesting insole (EHI) was composed
of a sealed airtight-cavity-structural TENG and an elastic
crescent-shaped latex-made airbag mounted in the middle
of the TENG-based insole itself. Rubber was selected as the
hollow sealing material of the TENG-based insole, and cop-

per was mounted on the inside top surface of the rubber act-
ing as one triboelectric layer and electrode. The inside
bottom surface of the rubber was the other triboelectric layer,
which was coated with an electrode layer made from a mix-
ture of silicone rubber and graphite. The working principle
is displayed in Figure 7(b), and comprised an airbag con-
nected to the airtight cavity used to drive air to the airtight
cavity when external force was released, achieving cyclic con-
tact and separation between two triboelectric materials while
walking. Figure 7(c) shows that the larger the volume of the
airtight cavity, the greater the open-circuit voltage became.
This device presented excellent stability and durability as
clearly seen in Figure 7(d). The most remarkable advantage
of this approach was its waterproof capabilities, with no sig-
nificant reduction in output performance after washing
(Figure 7(e)).

With regards to employing multilayer structures, Hou
et al. first developed a cost-effective and simple-to-fabricate
TENG employing contact-separation mode for effectively har-
vesting ambulatory energy [169]. Instead of using a sponge as
a spacer above, a liquid-metal-elastomer foam was selected as
both one triboelectric material and spacer, to improve output
performance [164]. Ma et al. demonstrated a polydopamine-
(pDA-) modified TENG (pDA-S-TENG) that is a simple, ver-
satile, antibacterial, and antifouling device [166]. The structure
of the pDA-S-TENG is shown in Figure 7(f). This specific
example consisted of a pDA membrane on the top as a tribo-
electric layer, an Al film in the middle as the electrode layer,
and a polyethylene terephthalate (PET) film at the bottom as
a substrate layer. The working method used was the single-
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repeated normal walking. Reproduced with permission from [159]. Copyright Wiley-VCH, 2016.
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electrode mode, which permits contact with a range of differ-
ent materials to produce electricity, as shown in Figure 7(g).
Latex was shown to yield the best output performance.
Figure 7(h) illustrates the shiny shoe, lit by alternately patting
the pDA-S-TENG based insole by hand instead of walking.
The voltage of the capacitor reached about 3V once powered
by this TENG at a 5Hz frequency, as shown in Figure 7(i).
Due to its bactericidal and antifouling properties, this device
promises good development potential in the field of self-
powered wearable electronics. Another approach to address
these latter issues includes using a simple membrane struc-
ture working in the single-electrode mode which exhibits
self-sterilizing properties [168].

The most creative integration structure within a regular
shoe, is that of Chen et al., who developed a 3D-printed
TENG (3DP-TENG) with a simple integrated procedure,
which can be easily, widely and effectively used in making
smart insoles [167]. The fabrication process of the 3DP-
TENG is shown in Figure 8(a), and the top view as well as a

side view (insets) of a 3DP-TENG insole is displayed in
Figure 8(b). The device was composed of poly (glycerol seba-
cate) (PGS) as one triboelectric material and CNTs as the
other triboelectric material and electrode, working in the sin-
gle-electrode, mode as shown in Figure 8(c). Salt particles
were added to the PGS to obtain a hierarchical porous struc-
ture after salt leaching. Compared with traditional molding
methods, the hierarchical porous 3DP-TENGs could achieve
better output performance using the same amount of com-
posite ink, as shown in Figure 8(d). To prove its practicality,
experiments were run as shown in Figure 8(e), which shows
the voltage property of a 22μF capacitor being charged by
the 3DP-TENG insole simultaneously powering an electronic
watch. A self-powered lighting shoe shown in Figure 8(f)
shows that the LEDs can be lit by stomping through the
3DP-TENG insole inside the shoe. The 3D printing strategy
developed here has broad development prospects, instead of
assembling different parts together to obtain 3D structures
like the previously reported TENGs.
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TENG enclosed at the rear section of the insole. The scale bar is 2 cm. (c) Open-circuit voltage of the TENG. (d) Photograph of the self-
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Elsevier, 2013. (e) Structure design of the NM-TENG. (f) Open-circuit voltage of the NM-TENG driven by human hand tapping. (g)
Optical image of NM-TENG embedded in the insole. (h) The NM-TENG based power generating insole could efficiently harvest energy
from human walking and light up about 400 LEDs. Reproduced with permission from [130]. Copyright Elsevier, 2017.
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In summary, the TENG used directly as an insole is rela-
tively large in size and its activity varies from place to place in
relation to applied foot pressure. With the entire insole size
area being in contact with the soles of the feet, this form is
most affected by the sweat, dirt, and bacteria produced by
the soles of the feet. Therefore, the requirements for material
selection of this form of TENGmust be of the highest quality,
water-resistant, bacteria-resistant, structurally stable, and
mechanically robust. Future research could also integrate
human sweat and temperature sensors with TENG to power
them and send wireless signals to mobile phones to provide
information for human health assessments.

3.4. TENGs Integrated into the Soles. TENG can also be inte-
grated into the sole during the production process, given
that the sole has a relatively large space that can harness
large movement ranges and improve output performance
[16, 132, 170, 171]. Niu et al. first proposed a highly-
efficient self-charging system for sustainably powering wear-
able electronics, in which the most important part was the
ingenious design of TENG [132]. As shown in Figure 9(a),
a zigzag-shaped Kapton film was selected as the substrate
and decorated with multiple TENG units, which were com-
posed of Al foil as both the triboelectric layer and electrode
and fluorinated ethylene propylene (FEP) layer with the
copper electrode. The as-fabricated TENG is very thin and
lightweight (Figure 9(b)), thus easily embedded into the
soles. Figure 9(c) shows that the output voltage was able to

reach up to 700V, indicating great application potential. A
novel corrosion-resistant copper-nickel based TENG with
a similar, multilayered, and stacked structure that can
deliver up to 1500V when integrated into the shoe, was also
developed [170].

Another developed TENG structure also relied on the
multilayer approach with closely stacked arches to improve
output performance [171]. Figure 9(d) illustrates the struc-
ture of the multilayer TENG made up of many planes and
waved layers. Every plane layer is the structure of dielec-
tric–conductive–dielectric style, and every waved layer is
the structure of conductive–dielectric–conductive architec-
ture, as shown in Figure 9(e), to provide a nifty TENG design.
The Ecoflex 00-30 super soft silicone was selected as the
dielectric elastomer, and a mixture of Ecoflex 00-30 with car-
bon black and carbon nanotubes was selected as the conduc-
tive elastomer. The working mechanism developed relied on
cyclic changes of contact between the dielectric elastomer
and conductive elastomer, driven by an external pressure or
a stretchable force. Figure 9(f) displays TENG integrated into
the sole, which can continually power a pedometer while
walking at a normal frequency (Figure 9(g)). The TENG
not only has high efficiency in generating electricity but can
also be combined with a pedometer and fitness tracker to
monitor human movement data, presenting very broad prac-
tical application value.

In conclusion, the TENG is integrated into the sole and
can be completely isolated from the shoe interior and the
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external environment, resulting in extremely superior work-
ing conditions. In order to allow comfortable wear, the sole
is generally designed to be thicker and elastic. This makes it
possible for multiple TENGs to work together in contact-
separation mode, which not only effectively utilizes the elas-
ticity of the sole for intermittent contact and separation, but
utilizes it also to work with multiple TENGs simultaneously
and improve output efficiency. In addition, future research
suggests designing the entire sole as a TENG to increase the
area of contact and thus the output power. Due to the excel-
lent working conditions inside the soles, it is also possible to
integrate locator chips into the soles and use TENG for per-
manent power supply, particularly suitable for real-time
location monitoring of the elderly and children.

3.5. TENGs under the Soles. Some researchers have placed
TENG under the soles of shoes, where its durability is greatly
reduced due to severe wear and tear on the ground, and
where it was thus necessary to select triboelectric or packag-
ing materials with good mechanical robustness [133, 172–
176]. In this space, most of the research achievements have
been linked to generating electricity. Wang et al. developed
a TENG with outstanding structural design and optimized

materials [133]. Figure 10(a) shows the structure of a tube-
shaped TENG, made up of a tube-shaped dielectric layer with
a back electrode outside and a belt-like helix inside acting as a
triboelectric layer and electrode. The silicone rubber was
selected as the encapsulation material to provide flexibility
and stretchability in multidimension. Silicone rubber, carbon
black and CNTs were mixed to fabricate the inner and output
electrodes. Figure 10(b) shows the TENG-tubes with a diam-
eter of 2–3mm, weaved into textile. The working principle of
the TENG-tube relies on the alternating contact/separation
between the inner and outer dielectric, when compressed
and released, as illustrated in Figure 10(c). To demonstrate
its practical value, 40 tubes were mounted under the shoes
(Figure 10(d)). Figure 10(e) illustrates an electronic watch
that can be immediately and sustainably powered by walking
and a LIB which can be also charged simultaneously while
walking (Figure 10(f)). Zhang et al. proposed an advanced
contact-separation mode TENG, based on macroshaped and
commercial conductive polyurethane foam [175]. As shown
in Figure 10(g), the TENG was composed of a macrostruc-
tured conductive PU foam (C-PUF) doped with conductive
carbon black powder and shaped with 5 triangle prisms acting
as one triboelectric layer and electrode. Moreover a PTFE film
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stuck onto the top Al electrode acted as the other triboelectric
layer. The Al electrode and the C-PUF were pasted to an insu-
lating Kapton substrate and a paper substrate, respectively.
Figure 10(h) shows a top view of the as-fabricated TENG.
The working mechanism here relied on the cyclic contact
and separation between the PTFE and the C-PUF. The maxi-
mum short-circuit current was about 2.2μA, as exhibited in
Figure 10(i). Moreover, it was discovered that the greater
was the external force applied, the greater the output voltage
became, as shown in Figure 10(j). When the TENGwas placed
under the sole to demonstrate its performance, the output
voltage of the capacitor with a full-wave rectifier (as shown
in Figure 10(k)) generated a greater output than at the fore-
foot, due to greater pressure discharge and reduced cushion-
ing. Moreover, TENGs with a liquid PEDOT:PSS electrode
[172] and with humidity-resisting characteristics [176] were
also designed to simply generate electricity.

TENGs integrated under the soles of shoes have other sur-
prising effects. For instance, Ahmed et al. developed a fire-
retardant TENG (FRTENG), which could endure extremely
high temperatures [174]. The FRTENG consists solely of a
copper wire and carbon aerogel nanocomposite (CaNC)
working in the single-electrode mode. This mechanism was
based on sol-gel polymerization of resorcinol-formaldehyde,
mixed with polyacrylonitrile nanofibers and graphene oxide
nanosheets (Figure 11(a)). After the sol-gel was carbonized
in a supercritical drying step, lightweight and durable carbon
aerogel was obtained (Figure 11(b)). This could be directly

fabricated into FRTENG, working in the single-electrode
mode. Figure 11(c) illustrates how the FRTENG is flame
resistant, and how the value of short-circuit current is only
slightly reduced after fire exposure. In addition, the FRTENG
could be mounted under the shoes (Figure 11(d)) as a track-
ing sensor to wirelessly monitor firefighters under dangerous
and hazardous conditions, allowing to automatically signal
for help in an emergency. The short circuit current obtained
is shown in Figure 11(e); the variation in both amplitude and
frequency could indeed be used to distinguish the walking,
running, and falling of a fireman.

In general, TENG is exposed to extremely harsh working
conditions when placed under the sole of a shoe, and its ser-
vice life is greatly reduced by the crushing pressure of the sole
of the foot, as well as the severe friction of the pavement.
Therefore, future research should focus on the encapsulation
of TENG. The packaging material ought to have strong
mechanical robustness, wear resistance, and water resistance.
In addition, the structural design of the TENG ought to be
optimized to collect both the downward pressure of the foot
and the friction between the shoes and the ground, thus sig-
nificantly increasing the power output that can be used for
night lighting and the continuous power supply of other elec-
tronic devices.

On the basis of the above discussion, TENG based smart
shoes could be designed and engineered in a manner that
allows installing them into commercial shoes without nega-
tively affecting wearing comfort. The electricity generated
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from the smart shoes can, not only provide continuous power
to various wearable bioelectronics, but also be employed as a
self-powered sensors to monitor our walking gait in real-
time. The output performance and main features of various
TENG enabled smart shoes are summarized in Table 1.

4. Summary and Perspective

Evergrowing device interconnectability, as well as the per-
vasive emergence of next generation Internet of Thing
infrastructure, provides an ecosystem in which wearable
electronics will flourish, changing our lives in ways we are
yet to understand. In order to convert passive human bio-
mechanical energy into electricity, triboelectric nanogenera-
tors can be employed to provide a sustainable and pervasive
energy solution, and they can be harnessed to help materi-
alize the aforementioend Internet of Things paradigm.
Among them, research into TENG-based smart shoes has
attracted significant attention due to the ability to harvest
the highest amount of available passive biomechanical

energy released during locomotion. In this review, the latest
achievements of TENG-based smart shoes for biomechani-
cal energy harvesting are systematically summarized and
reviewed from two perspectives (Figure 12). The foremost
is that smart electricity generation shoes are a sustainable
and pervasive power source for wearable electronics, a sec-
ondly that. The other is that they can also monitor human
health status by analyzing the generated electric signals.

Although research into TENG-based smart shoes has
achieved remarkable progress, as an emerging energy tech-
nology with great potential, both challenges and opportuni-
ties coexist. To advance the field development, research
efforts could be focused on improving the following aspects:

(1) Wearing Comfort. The comfort of the insole largely
determines whether it could be acceptable for daily
wearing. Therefore, in the design of TENG, especially
in the interior of shoes, new materials that are soft,
breathable, and mechanically durable are highly
desired. In addition, new soft electrodes need to be
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developed to replace the rigid metal electrode to
improve wearability.

(2) Enhancing the Waterproof Capabilities. Human feet
perspire heavily, resulting in a relatively high internal
humidity of the shoes, which impacts TENG output
negatively [177]. Therefore, it is particularly neces-
sary to develop TENG that are waterproof or which
are optimized in functionality in humid environ-
ments. Enhancing the breathability of the shoes could
be another approach to reduce the perspiration
induced internal humidity. In addition, the water-
proof property of smart shoes is also necessary
against pluvial weather. TENG and other electronic
devices can be significantly affected by water leaking
into shoes, so the easiest way to solve this problem
is to apply a waterproof coating to the outside of
the smart shoes to prevent rain from penetrating.

(3) Enhancing the Mechanical Durability. TENG-based
smart shoes can be subject to considerable mechanical
stress due to repeated and constant body movement
which could place a significant impact on the mechan-

ical durability of the shoes, and especially the tribo-
electric materials. Thus, highly durable materials
with enhanced wearability are required. Robust struc-
ture design could be another pathway to enhance the
mechanical strength of the smart shoes.

(4) Detachable Property of TENG. Smart shoes require
constant washing. Besides enhancing the washability
of the TENG component of the shoes, an alternative
approach is to make the TENG sole component easily
disassembled and assembled. TENG devices could be
detached when the shoe is washed and later rein-
stalled when the shoe is dried.

(5) Structure Optimization according to the Working
Location of the TENG. Foot pressure varies during
the various stages of ambulation, and when designing
footwear-enabled TENG, the characteristics of the
distribution of human foot pressure should be con-
sidered to guide the TENG structure and optimize
the conversion efficiency of mechanical energy into
electrical energy, improving the overall efficiency of
energy collection.
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Table 1: The output performance and main features of the TENG enabled smart shoes.

TENG’s position Structural design features Main properties Voltage Current Power Duration References

On the insole

Textiled TENG with plastic
metal electrodes

Flexible and stable 30.96V 3.07μA 13.97μW 7200 [158]

Multilayer TENG with porous
nanocomposite

Stretchable 55V 170 nA — — [159]

Embedded into
the insole

Multilayer TENG with a
zigzag-shaped substrate

Flexible 220V 600μA — — [163]

Simple TENG with nanofibrous
membrane

Breathable, lightweight
and flexible

540V 110μA — 6000 [130]

Engineered into
the insole

An airtight-cavity-airbag
structural insole

Waterproof and durable 528V 81.2 μA 5.47mW 10000 [131]

pDA-modified TENG
Simple, antibacterial,

and antifouling
80V 28.8μA 311.3μW — [166]

Integrated into
the sole

Multilayer TENG with a
zigzag-shaped substrate

High-efficient and lightweight 700V — 1.044mW — [132]

Multilayer elastomeric TENG
with closely stacked arches

High mechanical robustness
and waterproof

— 16.2μA — 200000 [171]

Under the sole
Tube-shaped TENG Waterproof and anticorrosive 140V — — — [133]

TENG based PU foam
and PTFE

Soft and lightweight 120V 2μA — — [175]
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(6) Energy Harvesting beyond Human Footfall. Existing
smart shoes can convert human biomechanical
energy into electricity. However, other forms of
renewable energy are also accessible in the ambient
environment, including raindrop striking on the out-
side of the shoe, wind blowing, and even snow fric-
tion, which all can also be converted into electricity
while walking.

(7) Intelligence. The rapid advancement of modern tech-
nologies and artificial intelligence is changing our
way of living. Intelligent and multifunctional smart
shoes could be explored beyond electricity genera-
tion. For instance, in order to automatically control
the temperature of an inner space, smart shoe could
be employed to control the heating, cooling, or venti-
lation automatically, and maintain the thermal com-
fort for an individual. Additionally, smart shoes
could also be applied to monitor human body move-
ment and send real-time health data wirelessly to the
medical system for personalized health care.
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