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CRACK MODELS FOR THE FAILURE OF ROCKS IN COMPRESSION 

JOHN M. KEMENY AND NEVILLE G. W. COOK 

Earth Sciences Division 
Lawrence Berkeley Laboratory 
and 
Department of Materials Science and Mineral Engineering 
University of California 
Berkeley, California 94720 

ABSTRACT 

Fracture mechanics models are developed to analyze the post failure behavior of rocks 
under triaxial compression. We consider axially aligned 'sliding cracks' as a model for 
the axial growth of microcracks, and a collinear row of shear cracks at an angle to the 
diredion of rnaxirrum compression, as a model for shear failure. It is found that the 
sliding crack model exhibits strain hardening and strain softening, while the shear crack 
model exhibits only strain softening. Also, we consider parallel columns of sliding 
cracks, and show that parallel interaction stabUizes the axial growth of cracks. 

INTRODUCTION 

When tested in triaxial COrJl)ression, most rocks show a rnaxirrum axial COrJl)ressive stress as a function 
of axial strain, referred to as the ultimate strength (Griggs and Handin, (1 ]). The ultimate strength for 
rocks is found to increase with increasing confining pressure, and to vary significantly between 
different rock types. Under sufficiently stiff testing conditions, rock can be deformed past the maximum 
compressive stress and into the 'post failure' region (Jaeger and Cook, [2]). Rocks can go unstable 
even under infinitely stiff (displacement controlled) testing conditions, if the stress strain curve in the 
post failure region passes through a vertical tangent and starts to loop back towards the origin. Using 
the notation of Wawersik and Fairhurst (3], class I and class II behavior refer to post failure behavior that 
is either stable or unstable under displacement controlled testing conditions, respectively. Wawersik 
[4) pioneered the use of unloading techniques to stabilize rocks exhibiting class II behavior. Wawersik 
used manual unloading, and similar results have been obtained recently using more sophisticated 
techniques such as servo-controlled unloading (Okubo and Nishimatsu, [5]). The reproducability of 
class I and II behavior for a given rock type (Wawersik and Brace, [6]) indicates that this behavior 
characterizes a material in the manner of the ultimate strength and elastic constants, and is therefore 
important from the standpoint of rock properties. 

Laboratory studies have provided the groundwork for theoretical models based on microcracking to 
describe the nonlinear behavior of rocks under compressive stresses. It is now well known that the 
controlling mechanism for strain hardening and softening in brittle rocks is the growth, interaction, and 
coalescence of microcracks (Wawersik and Brace, [6); Hallbauer et al., [7]; Tapponnier and Brace, [8]; 
Kranz, [9], and others). Recently, the use of high resolution scanning electron microscopes (SEM) has 
helped illuminate some of the mechanisms controlling the initiation and growth of microcracks, and the 
localization of deformation into macroscopic shear planes (Tapponnier and Brace, [8]; Kranz, [1 0]; 
Evans and Wong, [11]; Wong and Biegel, [12]; Wong, [13]). Mechanisms to generate the tensile 
stresses necessary for axial crack growth, that is, crack growth parallel to the direction of maximum 
compression, include shear along microcracks, stress concentrations around low aspect ratio 
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openings, and elastic moduli contrasts. Also, microprocesses leading to the formation of shear planes 
include microbuckling, kinking, rotation, and crushing. 

Theoretical models have recently been developed to describe nonlinear rock deformation in terms of 
microcrack growth parallel to the direction of maximum compression (Stevens and Holcomb, {14]; Dey 
and Wang, [15]; Kachanov, {16,17]; Moss and Gupta, [18]; Costin, [19]; Nemat-Nasser, [20]; Zaitsev, 
[21]). The basis for many of these models is the 'sliding crack', shown in Figure 1a and first proposed 
by Brace et al. [22] and Fairhurst and Cook [23]. The sliding crack consists of a sliding 'shear crack', 
and sliding produces 'wing cracks' that emerge symmetrically from both ends of the sliding portions. 
Stress intensity factor solutions for various approximations to the sliding crack have been developed by 
Nemat-Nasser and Horii {24], Steif {26], Nemat-Nasser [20], and Zaitsev [21]. The sliding crack model is 
found to exhibit many of the features associated with microcracking in rocks (Wong, {13]), however, the 
microscopic studies to date reveal few instances where sliding cracks can actually be found. This could 
be due to the resolution of the microscopic studies, or the fact that samples are unloaded before SEM 
work is conducted. Also, it could be that other mechanisms for axial crack growth produce similar overall 
effects to those of sliding cracks. Nemat-Nasser [20] shows that cracks emanating from either a stiff 
inclusion or a circular void have many of the characteristics of the sliding crack. However, based on 
energy considerations, Wong [13] shows that some of the inelastic energy in rock deformation must be 
due to mechanisms such as the sliding crack. 

In the next section, we consider axially aligned sliding cracks as a model for the axial growth of 
microcracks in rocks. Stress strain curves for this model are derived using the principles of linear elastic 
fracture mechanics. Our results show that the initial growth of the sliding cracks results in strain 
hardening, and the interaction with neighboring sliding cracks produces class I and class II strain 
softening. The effects of a confining stress are included, and the increase in the peak stress with 
increases in confining stress in the model are consistent with laboratory results. Our results are derived 
in analytic form, and therefore show the explicit dependence on the density and orientations of the 
initial shear cracks, the coefficient of friction, fracture toughness, and the elastic constants. These 
results are qualitatively similar to the results obtained by Costin [25,19) for a collinear row of axially 
growing cracks, where the driving force in his model is not due to shear sliding but rather linearly 
decreasing regions of tension. This similarity again indicates that several different mechanisms may be 
responsible for axial crack growth. Costin's results are not in analytic form, so the explicit dependence 
of the variables cannot be seen in his results. 

The sliding crack model predicts that the ultimate failure of the material will occur by axial splitting, as the 
individual sliding cracks coalesce to form a macroscopic axial crack. Except for the case of triaxial 
compression with zero or small amounts of confining stress, the axial cracks do not in general grow to 
the ends of the sample, but rather, at some stage localization of deformation into one or two shear 
bands occurs. Kemeny and Cook [27] have developed analytical models for the shear deformation and 
stability of preexisting faults and joints. Nonlinear fault and joint deformation is due to the progressive 
failure of asperities along the contact surface, and Kemeny and Cook model this phenomena using 
collinear arrays of shear cracks that propagate in plane. Even though the mechanisms for shear 
localization are different than those for asperity failure, it is found that shear localization produces stress 
strain curves similar to those derived by Kemeny and Cook [27]. Therefore we develop this as a model 
for the shear failure of rocks in compression. Using this model, it is found that the shear failure model 
exhibits types I and II strain softening but no strain hardening. Also, both theoretical models and 
laboratory results show that shear localization and failure is in general a more stable process than axial 
crack growth, and therefore a mechanism must exist to stabilize the axial growth of cracks and allow the 
shear mechanisms to dominate. We look at one mechanism that may be responsible for the 
stabilization of the axially growing cracks, namely, the effect of parallel cracks. 
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AXIAL CRACK GROWTH 

Here we consider a two dimensional (plane strain), linear elastic, isotropic, and homogeneous material 
containing a given configuration of sliding cracks, and subjected to axial and confining compressive 
stresses, a1 and a2, respectively. It is assumed that. the sliding cracks are far enough aJNay from the 

boundaries of the body such that the sliding cracks interact with each other but not with the boundaries 
of the body. The sliding portions of the cracks are closed and at an angle a from horizontal; they resist 

sliding by a frictional force -r, = J.L<Y, where a is the normal stress acting on the sliding portions of the 

cracks, and J.L is the coefficient of friction. In the actual sliding crack as proposed by Brace et al. [22], two 
curved wing cracks emerge from the ends of the sliding portions of the crack, and as the wing cracks 
grow they orient themselves in the direction of a1 , see Figure 1a. The sliding crack as shown in Figure 

1 a has been analysed in great detail (e.g., Horii and Nemat-Nasser, [28]), but from a computational point 
of view it is difficult to use , since stress intensity factor solutions for this configuration do not exist in 
analytic form. It is of interest, therefore, to seek approximate forms for the sliding crack model. One 
approximation to the sliding crack is shown in Figure 1 b. Here the wing portions of the crack are straight 
and deviate from the sliding portion of the crack by an angle a, where a varies with the length of the 
wing crack. The stress intensity factor solution for this configuration has been given recently by 
Nemat-Nasser [20], as follows: 

* 210t sina 

..J~I+() 
(1) 

2 
where 

* 1 = 0.2110 

where 210 is the initial crack length, and a is chosen so as to maximize K1 (this equation differs slightly 

from that given in (20] due to sign convention and the angle a being measured from vertical rather than 
horizontal). As the length of the wings increases, they will orient themselves in the direction of a1 , and 

this represents the long wing crack limit, as shown in Figure 1c. The stress intensity factor solution for 
this configuration under uniaxial compression has been given recently by Zaitsev [21], and is modified 
here to allow for a2 as follows: 

* 210t cosa 
K1 = - a2 ..J1tl 

ml 
(2) 

* where t is given in (1 ). 
This stress intensity factor solution is computationally simple since it is based on the solution for a 
straight, axially oriented crack with symmetrically opposed point forces at the crack center, and can 
therefore be extended to the cases of parallel and collinear cracks. The long wing crack limit in Figure 
1c, however, is not necessarily valid in our analysis, since it will be necessary in the derivations that 
follow to calculate the strain energy due to the cracks, which involves integrating the square of the 
stress intensity factor over the wing length from zero to some finite length. It turns out that the stress 
intensity factor solution in equation ( 1) quickly approaches the solution in equation (2) as the wing 
cracks extend, and therefore the configuration in Figure 1 c is still a valid approximation in our analysis. 
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This will be demonstrated by calculating stress strain curves for a body containing a single sliding crack, 
using both the approximations in Figures 1 b and 1 c. We will then use the same approach as in the 
approximation in Figure 1c for bodies containing interacting cracks. 

Stress strain curves for the crack configurations in this paper are calculated utilizing the principles of 
linear elastic fracture mechanics. We assume that the wing tips will extend when the mode I stress 
intensity factor, K1, attains a value equal to the critical stress intensity factor, Klc· also referred to as the 

fracture toughness, and assumed to be a constant. The critical value of the axial stress when K1 = K lc is 

referred to as the critical stress, a c. An elastic body containing sliding cracks will show linear axial 

stress-axial strain behavior under a fixed confining pressure up to the point where the wing cracks 
begin to extend. The slope of these linear 'loading' lines depends on the density, size, and 
orientations of the sliding portions of the cracks, the coefficient of friction, and the elastic constants. 
For certain values of the orientation of the sliding portions and of the relative amount of confining 
pressure, the sliding portions of the cracks will be locked, and for these cases, the loading lines have 
the same slope as those of a body containing no cracks. As the wing cracks extend, the slopes of the 
loading lines always decrease, but the critical stress, O'c, can either increase or decrease depending on 

whether the stress intensity factor decreases or increases with an increase in the wing crack length. 
The stress strajn curve js the locus of crUjcal pojnts tor dHferent loadjng line slopes. as described by 
Cook [29]. Strain hardening is the result of an increasing O'c as the slope of the loading line decreases, 

and strain softening is the result of a decreasing ac as the slope of the loading line decreases. Also, 

class I softening is due to a slow decrease in ac with decreasing loading line slope, and class II softening 

results from a rapid decrease in ac with decreasing loading line slope. The fact that the slope of the 

loading line always decreases with an increase in the wing crack length merely reflects the softening 
effect that cracks produce on elastic bodies. In the formulation of the stress strain curve as described 
above, the stress strain curve is independent of the loading conditions, and therefore can be 
calculated without consideration for the stability of the system. Stability is governed by the interaction 
of the stress strain curve with the unloading stiffness of the testing system. Further details on stability 
are discussed in Kemeny and Cook [27,30). 

The loading line for a configuration of sliding cracks is calculated using Castigliano's theorem 
(Sokolnikoff, [31]). Consider the system shown in Figure 2a. The body contains a single sliding crack 
and is under the action of three sets of stresses, axial and confining stresses a 1 and a 2, and a shear 

stress tf along the sliding portion of the crack. Here the body is assumed to be linearly elastic and the 

sliding crack surface is assumed to be frictionless, and 'tt represents the frictional stress that would exist 

due to the applied axial and confining stresses. By Castigliano's theorem, the axial displacement is 
given by: 

(3) 

where ope represents the axial displacement that would occur in the uncracked body due to the 

applied stresses, Ue represents the elastic strain energy due to the sliding crack, and P = 2wa 1, where 

2w is the width of the body. The effective axial strain under the applied loads is then calculated by 
dividing the total displacement by the length of the body, 2b, and loading line solutions are produced 
when 'tt is replaced by a function of a 1 and a2. We note here that the effective Poisson's ratio and the 

effective volume expansion due to a body with sliding cracks can be calculated using the lateral 
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displacement due to the applied stresses, which is calculated as above except the derivative of the 
strain energy is taken with respect to 0 = 2ba2, rather than P. 

The elastic strain energy due to the sliding cracks is the sum of of two components, that due to the 
initial shear cracks, and that due to the wing extension to the shear cracks. The strain energy due to 
initial shear cracks of length 21o has been calculated by Cook [29] and is given by: 

x< t* lo >2 
Ue = (t-v2) 

E 
(4) 

where E is Young's modulus. Using the reciprocal theorem, it can be shown that the strain energy due 
to the wing cracks is related to the effective shear stress along the sliding portions of the cracks. 
Looking closely at the stress intensity approximations for the sliding crack in equations ( 1) and 
(2) ,however, it is seen that they take into account only a component of the effective shear stress along 
the sliding surface, that component necessary to open or close a straight, axially aligned crack. 
Therefore, in order to use the approximations given in (1) and (2) to calculate strain energy, the normal 
relationship between stress intensity factors and strain energy (Irwin, [32]) is modified as follows: 

(1 -v2) f 
Ue = K1

2 dl 
Ecos2a 

(5) 

where the integral is over the wing crack length from zero to some finite length. For the approximation 
in Figure 1 b, the integration in equation (5) must be evaluated numerically. For the approximation in 
Figure 1c, the strain energy can be calculated explicitly, and using equations (2), (3) and (4), the 
loading line solution becomes: 

2sin9 10 (1 - v2) f t*x 10 t*2 10 cos9 I 1 
1- + In-- ~(1-lo) I 

EY.4J L 4cos9 x 10 J 
(6) 

Here we only consider the strain due to the sliding crack, i.e., the elastic strain due to the body with no 
cracks is left out. The critical stress, crc, for any loading line of a given slope is calculated by solving for 

cr1 in equations (1) or (2) when K1 = Klc· The stress strain curve is then the locus of critical points on 

loading lines of different slopes. Normalized stress strain curves for the approximations in Figures 1 b 
and 1 c are presented in Figure 2b. The curves for these two cases are very similar and indicate that the 
simple approximation of Figure 1c is sufficiently accurate and useful because analytical solutions for 
this case are obtained. The main result of Figure 2b is that the sliding crack without crack interaction 
exhibits strain hardening. 

We now extend this result to the case of an axially aligned column of sliding cracks, as shown in Figure 
3a. Using the approach used in the approximations in Figure 1c, the stress intensity factor for an axially 
aligned column of sliding cracks is derived from the stress intensity factor solution for a collinear row of 
straight cracks, on each of which is a set of symmetric point forces at the crack center, and is given by [ 
33]: 

• 
210t coso 

Kl= 
~(bsin(xllb)) 

cr2 ~(2btan(xllb)) (7) 

Following the same procedure as for the non-interacting sliding crack, the loading line solution for the 
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axially aligned row of sliding cracks is given by: 

4sin91o (1 - v2) r 't.1t 21o • tan(mVb) tan(tt/4(1 +lib) 1 
I - + 't 10 cosO In - cr2 b In I (8) 

1tEYb L 8cos9 _tan(1tlo'b) tan(tt/4(1 + lo'b) J 

where again we consider only the strain due to the sliding cracks. The critical stress on each loading 
line Is given by solving equation ( 7) for cr 1 when K1 • Klc• and the stress strain curve is the locus of 

critical points on loading lines of different slopes. Normalized stress strain curves for different values of 
cr2 are presented in Figure 3b. The effects of crack interaction are clearly seen, as it causes both class I 

and class II types of strain softening in addition to initial strain hardening. Also, the model shows a 
strong increase in the peak stress with small increases in cr2, which is in accord with laboratory data 

(e.g., Jaeger and Cook, [2]). The strong sensitivity to changes in cr2 is due to the fact that the driving 

force for axial crack growth in our model comes from sliding at the center of the crack, whereas the 
stabilizing effect of cr2 is felt over the whole crack surface. An important feature of this result is that it is 

only able to model convex strain softening slopes, even though laboratory testing results often exhibit 
low angle concave strain softening slopes. The results in Figure 3b are also in agreement with several 
of the other models for axial crack growth, namely the models of Costin [19] and Horii and 
Nemat-Nasser [28). 

SHEAR FAILURE 

Except at low confining stresses, rocks in general fail by a shear mechanism, and so in this section we 
investigate a simple model for shear failure. We consider the model shown in Figure 4a, which consists 
of a collinear row of cracks at an angle p to horizontal, under the action of axial and confining stresses, 
cr1 and cr2, and it is assumed that the cracks will grow in their own plane. Modifying the solution of 

Kemeny and Cook [27] for a collinear row of cracks under shear and normal stresses, the loading line 
solution for a row of cracks at an angle p under axial and confining stresses is given by: 

4 't•b cosp (1 - v2) 
e1 = In cos (1d/2b) (9) 

where again the strain here is only that due to the sliding cracks. The stress intensity factor governing 
the configuration in Figure 4a is given by (33]: 

Ktl = 't• [2b tan (7tV2b) )112 (1 0) 

Here the critical stress is· calculated by solving for cr1 when the energy release rate, G, given by: 

(1 - v2) 
G= -- Ku2 (11) 

E 
attains a critical value, Gc. Note that Gc here is related to the energy required to propagate the cracks in 
shear, as opposed to the fracture toughness, which is related to the energy required to propagate 
axially growing cracks in tension. Also, these shear driven cracks are an idealization for a complicated 
shearing process that involves microbuckling and kinking, and therefore the appropriate values of Gc 
for different rock types are difficult to determine. Rice [34]presents a methodology for determining Gc 

. 
·.: 

,, 
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from triaxial compression tests, and using this method, Wong [35] has determined Gc values for 
Westerly granite. 

Normalized stress strain curves, calculated from values of the critical stress for loading lines of different 
slopes, are presented in Figure 4b for different values of confining stress. First of all, the curves in 
Figure 4b show that the shear model exhibits class I and class II types of strain softening, but does not 
exhibit strain hardening. Also, class I softening occurs over a larger portion of the stress strain curve 
and has slopes that are initially concave, compared with the very brief occurrence of class I softening 
with only convex slopes in the axial crack growth model. Both of these findings are supported by the 
laboratory work of Wawersik and Brace [6], Hallbauer et al. [7], and others, which show that strain 
hardening is associated with the initial axial growth of microcracks, and that shear faulting, when it 
occurs, usually results in low angle class I slopes that gradually approach a residual friction value. Class 
II behavior in shear faulting can occur, as it does in our shear models, but usually only after a much 
longer period of class I type behavior. The fact that the shear model can produce concave class I 
slopes indicates that the low angle softening slopes seen in laboratory results on many rock types may 
be due to a shearing type mechanism. The curves in Figure 4b show increasing strength with 
increasing confining stresses, but the rate of increase in strength with increasing confining stress is not 
as drastic as seen in the axial crack growth models. This is due to the fact that the driving force for shear 
crack growth is over the whole crack surface, and therefore the stabilizing effect of a2 is not as severe. 

This, therefore, gives a mechanism for the initiation of shear faulting at higher values of confining 
pressure as axial crack growth is stabilized. 

STABILIZATION OF AXIAL CRACK GROWTH 

One of the most interesting aspects of the shear results are the initial concave class I slopes that occur 
due to shear faulting, compared with the rapid progression to class II slopes in the case of axial crack 
growth. It may be expected that when two competing mechanisms are acting in a material, the more 
unstable of the two mechanisms should dominate. This indicates that a mechanism must exist to 
stabilize the axial growth of cracks, allowing the shear mechanism to occur, and preventing the axial 
cracks from growing to the ends of the sample. We briefly look at one mechanism that may be 
responsible for this stabilization. 

We consider the effects of parallel rows of axially growing cracks. SEM studies (e.g., Evans and Wong, 
[11 ]) show very clear1y that the spacing between axially growing cracks can be small compared with the 
length of the cracks. We consider a doubly periodic array of sliding cracks, Figure Sa, as a model that 
includes both parallel and collinear types of crack interaction. The stress intensity factor solution for a 
doubly periodic array of straight cracks, on which at the center of each crack is placed a symmetric set of 
point forces, has been solved by Chang [36]. This solution, however, is mathematically cumbersome, 
and therefore we seek approximations to the solution for the doubly periodic array of cracks. First we 
note that the doubly periodic array of cracks is equivalent to a single column of cracks with fixed 
displacement vertical boundaries. To approximate this configuration, we consider a single column of 
cracks under an axial stress, and apply the confining stress necessary to bring the lateral displacements 
back to zero. This solution can be calculated using Castigliano's theorem, and it is valid when the 
distance between parallel cracks, 2w, is large compared with the axial spacing between cracks, 2b. The 
stress intensity factor solution for a single axially aligned column of cracks with fixed lateral 
displacements, calculated as described above, is given by: 
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r tan(1r/4(1 + Vb) 1 
I In I 

't•210 coso I tan(1r/4(1 + lofb) I 
Kl= I 1 - 2 sin(1tV2b) I (12) 

"(bsin(1tVb)) I iM COS(1tlof2b) I 
I +In I 
L 4b COS(1tV2b) J 

Stress strain curves based on this solution are presented in Figure Sb. Figure Sb shows that the 
effects of parallel cracks can indeed stabilize axial growth, causing class II strain softening slopes to turn 
back around to strain hardening slopes. Thus, parallel interaction can play an important role in 
promoting shear localization and failure, as opposed to further axial propagation. 

CONCLUSIONS 

The axial crack growth and shear failure models developed in this paper show many of the features 
seen in the post failure region of rocks tested in triaxial compression. It is found that the model for axial 
crack growth is much more sensitive to changes in confining pressure than the shear failure model, 
giving a mechanism for the onset of shear failure at larger confining pressures. Also, parallel crack 
interaction is found to stabilize the axial growth of cracks, allowing the more stable shear localization 
process to occur. More could be said about the models, in terms of their response to changes in 
material parameters, and additional calculations such as volume change and effective Poisson's ratio. It 
is found that using reasonable values for material parameters, the models predict actual material 
response very well. 
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