
UCLA
UCLA Electronic Theses and Dissertations

Title
Digital Physical Unclonable Functions: Architecture and Applications

Permalink
https://escholarship.org/uc/item/13q4s3c9

Author
Xu, Teng

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13q4s3c9
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Digital Physical Unclonable Functions:

Architecture and Applications

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Teng Xu

2014

c© Copyright by

Teng Xu

2014

Abstract of the Thesis

Digital Physical Unclonable Functions:

Architecture and Applications

by

Teng Xu

Master of Science in Computer Science

University of California, Los Angeles, 2014

Professor Miodrag Potkonjak, Chair

The rapid growth of small form, mobile, and remote sensor network systems

require secure and ultralow power data collection and communication solutions

due to their energy constraints. The physical unclonable functions (PUFs) have

emerged as a popular modern security primitive. They have the property of low

power/energy, small area, and high speed. Moreover, they have excellent security

properties and are resilient against physical and side-channel attacks. However,

traditional PUFs have two major problems. The first is that current designs are

analog in nature and lack susceptibility in environmental and operational con-

ditions, e.g., supply voltage and temperature. The second is that due to the

analog nature, the analog PUFs are difficult to be integrated into existing digital

circuitry.

Therefore, in this thesis, we propose the digital PUF, as a new type of security

primitive. It preserves all the good properties of traditional analogy PUFs and

is stable in the same sense that digital logic is stable. It has a small footprint, a

small timing overhead, a low energy consumption, and can be easily integrated

into existing designs. The key observation is that for any analog delay PUF,

there is a subset of challenge inputs for which the PUF output is stable regardless

of operation and environmental conditions. We use only such stable inputs to

ii

initialize the look-up tables (LUTs) in digital bimodal functions (DBFs) that are

configured in such a way that the digital PUF is formed. We first demonstrate the

concept and the FPGA-based architecture of the digital PUF. Then we present our

security analysis on digital PUFs using standard randomness tests and confusion

and diffusion analysis. Finally, we address security protocols of digital PUF: public

key communication, and remote trust.

iii

The thesis of Teng Xu is approved.

Mario Gerla

Milos D. Ercegovac

Miodrag Potkonjak, Committee Chair

University of California, Los Angeles

2014

iv

Table of Contents

1 Introduction . 1

2 Related Work . 4

2.1 Physical Unclonable Functions . 4

2.2 Attacks on PUFs . 5

3 Delay-based PUF Stability . 7

3.1 Stable Challenges and Outputs 7

3.2 Achieve Stable Challenges . 12

3.2.1 Programmable Delay Line 12

3.2.2 Delay Profile . 13

4 Digital Bimodal Functions . 18

4.1 A Motivational Example . 18

4.2 FPGA-based Implementation . 21

4.3 fcompact and fcomplex Comparisons 25

5 Digital PUF . 27

5.1 Architecture . 27

5.2 Operations . 28

5.2.1 FPGA Configuration . 28

5.2.2 DBF Generation . 29

5.3 Side-channel Attacks . 29

6 Security Properties . 32

v

6.1 Output Randomness . 32

6.2 Avalanche Effect . 34

6.3 Input-based Correlation . 34

6.4 Output-based Correlation . 35

6.5 Comparisons . 36

7 Structure Exploration . 39

8 Protocol . 42

8.1 Public Key Communication . 42

8.1.1 Time Gap . 44

8.1.2 Performance Comparisons 45

8.2 Remote Trust . 47

9 Conclusion . 53

References . 55

vi

List of Figures

3.1 Applying a 3-bit input challenge to a delay-based PUF. The chal-

lenge is intentionally chosen in this example in such a way that the

delay difference between the two paths (red and blue) are maximized. 8

3.2 Distributions of delay ratios for a 32-bit PUF and a 64-bit PUF. . 10

3.3 Architecture for stable challenge-response testing. 13

3.4 The distribution of delay difference given different hamming distance. 16

4.1 An example of the FPGA-based DBF fcompact LUT network. . . . 23

4.2 A combinational logic implementation of DBF fcompact LUT network. 23

4.3 A sequential logic implementation of DBF fcompact LUT network. . 24

5.1 Architecture of the digital PUF. Note that the stable outputs from

the analog PUF are used only once at startup to initialize and

configure the LUTs in the DBF. 28

6.1 Distribution of output hamming distances testing the avalanche

effect. The error bars depict the max, 0.75 quantile, mean, 0.25

quantile, and min frequencies. 35

6.2 Colormap of conditional probabilities between output bits Oi and

input bits Ij. 36

6.3 Distribution histogram of conditional probabilities between output

bits Oi and input bits Ij. 36

6.4 Colormap of conditional probabilities between output bits Oi and

Output bits Oj. 37

6.5 Distribution histogram of conditional probabilities between output

bits Oi and Output bits Oj. 37

vii

7.1 Examples of feed forward structures applied to the digital PUF. (a)

Inputs arrive from all previous levels. (b) Inputs arrive from and

are controlled by previous levels. 40

8.1 Example calculation flow and corresponding cuts. Each node in

the graph represents a basic operation (e.g. +,−,×,÷) or even

blocks of operations (e.g. if-else, while, functions). Cut 1 to cut n

represent random cuts in the calculation flow which can be thought

of as intermediate results or states of the procedure. 48

8.2 An example of a Hash tree for our low overhead remote trust pro-

tocol. The intermediate results at each cut in the calculation flow

(e.g. cut i, i ∈{1, 2, ..., n} in Figure 8.1Example calculation flow

and corresponding cuts. Each node in the graph represents a basic

operation (e.g. +,−,×,÷) or even blocks of operations (e.g. if-

else, while, functions). Cut 1 to cut n represent random cuts in the

calculation flow which can be thought of as intermediate results or

states of the procedure.figure.caption.30) are hashed as leaf nodes.

The arrow shows the direction of calculation flow. 49

8.3 Passing ratio with the proportion of right calculation. The 3 curves

respectively shows the passing ratio under the circumstance that

the client requests 10, 20, and 30 pairs of adjacent nodes to test. . 50

viii

List of Tables

3.1 Delay differences between all possible paths in the example delay-

based PUF in Figure 3.1Applying a 3-bit input challenge to a delay-

based PUF. The challenge is intentionally chosen in this example

in such a way that the delay difference between the two paths (red

and blue) are maximized.figure.caption.4. 8

3.2 Probability that the delay ratio (R) is larger than the labelled

threshold value for a 32-bit and 64-bit PUF. 9

3.3 Probability that outputs of the 32-bit PUF are stable over varying

temperatures for different delay ratios. 11

3.4 Probability that outputs of the 64-bit PUF are stable over varying

temperatures for different delay ratios. 11

4.1 Size comparison between fcompact and fcomplex with different number

of iterations and different number of primary inputs. The average

number of products are tested with 95% interval confidence. . . . 21

4.2 Average synthesis resources compared between DBF form fcompact

and form fcomplex. The Input # does not have to be twice as the

circle #, we set it here as an example. The tests are based on the

Spartan-3 XC3S50-5 FPGA and synthesized using the Xilinx ISE. 24

4.3 Comparisons between fcompact and fcomplex. The results show an

average implementation/simulation time with the standard deviation. 25

6.1 NIST randomness test results on the digital PUF. 1,000 bitstreams

of 10,000 bits are provided to each test. Each test passes for p-

value≥ σ, where σ = 0.01. 33

ix

6.2 Statistical test results comparison between the FPGA-based digital

PUF and the traditional delay PUF. The ideal case for output

frequency is 0.5, for hamming distance is 32, and for P (Oi = 1|Ij =

1) is 0.5. The results shown in the table are the average values and

corresponding standard deviations. 38

7.1 Output hamming distance averages and standard deviations across

20 random instances of each digital PUF structure. The input size

is 32 bits. Each column corresponds to a given number of LUT

levels in the PUF structure. 41

8.1 Comparisons for DBF based cryptography with the traditional block

cyphers and RSA. The results for Present, HIGHT and AES are

cited from [37], the results for RSA are the parts of multiplication

modular and are cited from [38], the results for DBFs are tested on

the Spartan-3 XC3S50-5 FPGA and generated by the Xilinx ISE

Design Suite 14.3. 46

x

CHAPTER 1

Introduction

The rapid proliferation of mobile systems and devices that operate in potentially

hostile environments has elevated security to one of the most important design

metrics. For example, security is essential in smart phones, laptops, and wire-

less sensor networks. Classical software-based public-key cryptography provides a

spectrum of elegant and powerful security protocols. However, it is also subject to

several important limitations and drawbacks including susceptibility to physical

and side channel attacks and high implementation and energy costs.

The physical unclonable function (PUF) is a cryptographic primitive that has

been suggested for sensor network security due to its low power requirements.

PUFs are physical devices that have a random but deterministic mapping of inputs

to outputs. Their unclonability—and functionality—are often inextricably tied to

the physical characteristics of the device components (e.g. gate delay, leakage

energy). While PUFs receive and generate digital inputs and outputs, they are

analog in nature due to their reliance and design based on their inherent physical

characteristics. Thus, current PUFs have many limitations. The most limiting

of which includes stability and susceptibility to environmental and operational

conditions. Many PUFs, including the standard delay-based PUF require arbiters

to operate. These memory components limits the PUF in terms of placement

and coordination in circuitry since their outputs cannot be used directly in the

current cycle like a combinational module, but require an additional clock cycle

to be used.

1

These main limitations can be removed by creating a purely digital PUF. The

digital PUF must be stable in the same sense that digital logic is stable against

environmental and operational conditions and must produce deterministic outputs

for all input vectors. The digital PUF must integrate with existing combinational

logic without requiring additional clock cycles to use its outputs. And lastly,

the digital PUF must be flexible in the sense that its structure can be altered for

different tradeoffs between security, energy, and delay as required by the pertinent

task.

In this thesis, we present a digital PUF design with such characteristics. Its

underlying architecture consists of a series of lookup tables (LUTs) which are

initialized using standard delay-based PUFs. The standard PUFs enable both

unclonability and configurability in our design. Despite the inherent instabilities

known to exist in them, we ensure stability through two means: (a) through a

slight modification in the standard delay-based PUF design that enables stable

output validation and input selection, and (b) through a reduction in use to only

circuit initialization, thus tremendously reducing the impact of device aging on

its gate delays.

We analyze the security of the digital PUF as it stands alone by applying the

NIST randomness benchmark test suite [1] and demonstrating that it passes all

tests. We also analyze the outputs of our digital PUF using the security principles

of confusion and diffusion, as presented by Shannon [2], through demonstration

of the avalanche criterion.

However, despite the theoretically sound and mathematically proven security

properties of many digital cryptographic systems, there exist many potential side-

channels which can effectively bypass these mathematical constructs altogether by

reading internal memory or inferring internal procedures through power analysis

and memory attacks. Since our digital PUF utilizes memory cells, such as arbiters,

SRAM, and flip-flops in its LUTS, it is potentially susceptible to side-channel

2

attacks [3]. We demonstrate that these attacks can be prevented through analysis

of modern feature sizes, the use of 3D integrated circuitry, and the use of inspection

resistant memory [4].

Lastly, we explore two important security protocols. Our first protocol is pub-

lic key communication with DBF. It utilizes the unique property of DBF to enable

low-energy, high-speed, small-area public key communication. The second proto-

col is remote trust, which utilize digital PUF to enable authentication between

parties remotely.

3

CHAPTER 2

Related Work

2.1 Physical Unclonable Functions

Pappu et al. introduced the concept of the first PUF and demonstrated it using

mesoscopic optical systems [5]. Devadas’ research group at MIT developed the

first family of silicon PUFs through the use of intrinsic process variation in deep

submicron integrated circuits [6]. Guarardo and his coworkers at Philips Research

in Eindhoven demonstrated how PUFs can create unique startup values in SRAM

cells [7]. Consequently a great variety of technologies were used for PUF creation

including IC interconnect networks, thyristors, memristors, and several nanotech-

nologies. Although a variety of PUF structures have been proposed, arbiter-based

(APUF) [6], ring oscillator-based (RO-PUF) [8], and SRAM PUFs [7] are by far

most popular.

PUFs were immediately applied to a number of applications including authen-

tication, cryptographic key generation and secure storage [9], anti-counterfeiting

[10], FPGA intellectual property (IP) protection [11], remote enabling and dis-

abling of integrated circuits [12], and remote trusted sensing [13] [14]. PUFs are

also used in conjunction with traditional creation and operation of remote secure

processors [15]. The security role of the PUF has been greatly enhanced with

several proposals for employing PUFs in public key security protocols in systems

such as the public PUF (PPUF), SIMPL, and one time pads [16] [17]. Recently,

the matched PPUF (mPPUF) [18] has been proposed as a new public key security

4

primitives. mPPUF uses both process variation and device aging to create pairs

of identical PPUFs that can be matched only with negligible small probability. It

is a very energy efficient security primitive that can be used in a variety of cryp-

tographic protocols. However, mPPUF poses high implementation requirements

in terms of measurement accuracy and environmental stability [19].

There have been two efforts that aim to remove the limitations of analog

PUFs. The first is the digital bimodal function (DBF) [20]. The DBF easily

passes several security and randomness tests, but is not unclonable and cannot

be integrated with regular digital logic without significant time overhead. In the

second effort, Fyrbiak et al. proposed the creation of software security primitives

using hardware random generators [21]. Hardware-software security primitives

require relatively long execution times and depend on unspecified reproducible

random generators.

2.2 Attacks on PUFs

A large number of security attacks on essentially all types of PUFs have been

explored. They can be classified into two groups: reverse engineering (also called

characterization) and manufacturing or emulation attacks. Non-invasive charac-

terization attacks mainly target the delay-based PUFs (e.g. APUF and RO-PUF).

These attacks mainly use numerical algebra and machine learning techniques. For

example, Majzoobi et al. demonstrated how linear programming can be used to

characterize delay PUFs [22]. By far the most popular statistical attack was

reported by Rührmair at al. in which a relatively small number of challenge-

response pairs yielded highly accurate prediction models [23]. Most recently, Xu

and Burleson proposed coordinated side-channel and machine learning attacks

[24].

There are a number of well studied side-channel attacks either on cryptographi-

5

cal protocols and devices or directly on PUFs including timing, power, electromag-

netic emanation, optical, and variety of memory reading attacks including the use

of focused ion beams [25] [26]. Note that attacks such as cache behavior attacks

are not applicable to PUFs. For instance, it has been practically demonstrated

that several side-channel attacks can read data stored in DRAM and SRAM cells

[27]. For example, the security research group at Technische Universität Berlin

reported successful physical cloning of SRAM PUFs [3].

Side-channel attacks use a variety of physical phenomena and sophisticated

engineering approaches, often with high effectiveness. Still, there is a strong

belief that APUFs and other delay-based PUFs are either safe or at least much

more resilient against side-channel attacks due to their small difference in physical

signals and dependency on difficult-to-measure threshold voltages that depend on

the number of dopants and their distribution in transistor channels along with

other physical characteristics of the device.

6

CHAPTER 3

Delay-based PUF Stability

3.1 Stable Challenges and Outputs

Figure 3.1 depicts an example of a 3-bit delay-based PUF. Each challenge bit

controls the inputs of two multiplexers. An output bit is generated by assigning

a challenge vector and sending a rising edge through the PUF. The two paths

traverse the three delay segments, swapping positions (top and bottom) depending

on the input bit at each segment, before arriving at the arbiter which determines

the final output. For example, an input challenge of 011 generates the blue and

red paths depicted. An arbiter will set its value to 0 or 1 depending on which path

(top or bottom) arrives first, effectively selecting the path that has the smaller

delay. Table 3.1 consists of the delay differences between the top and bottom

paths for all possible paths in the example PUF in Figure 3.1.

A key observation is that for each unique delay-based PUF there exists a

Figure 3.1: Applying a 3-bit input challenge to a delay-based PUF. The challenge

is intentionally chosen in this example in such a way that the delay difference

between the two paths (red and blue) are maximized.

7

Challenge Delay Difference

000 3

001 -3

010 -11

011 11

100 -3

101 3

110 -5

111 5

Table 3.1: Delay differences between all possible paths in the example delay-based

PUF in Figure 3.1.

set of challenges that produce stable outputs. Consider the situation in which

environmental conditions affect the physical characteristics of the circuit. For

example, variations in temperature cause variations in individual gate delays,

thereby affecting the overall path delays in the analog PUF. Since challenges 011

and 010 result in a large difference in delay between the two racing paths, it is

still with high possibility that the red path will have a larger delay compared to

the blue path despite the effects temperature may have on the individual gate

delays. We label this challenge, and any other challenges that are resilient to such

environmental changes, as stable inputs.

For path delay analysis we introduce a delay ratio metric, which is defined as

the delay differences of two paths divided by the delay of the shorter path. For

the purposes of testing, we assume that gate delays follow a normal distribution

due to the effects of process variation.

Delay Ratio =
Delayp1 −Delayp2

min(Delayp1, Delayp2)
(3.1)

8

P (R ≥ 0.04) P (R ≥ 0.06) P (R ≥ 0.08) P (R ≥ 0.1)

32-bit PUF 12.51% 4.27% 1.07% 0.21%

64-bit PUF 9.34% 2.44% 0.43% 0.05%

Table 3.2: Probability that the delay ratio (R) is larger than the labelled threshold

value for a 32-bit and 64-bit PUF.

We use the the delay ratio, as defined in Equation 3.1, to evaluate the relative

delay difference between the two PUF paths. In the following test we assume

that the gate delays of the PUF follow a normal distribution due to the effects of

process variation.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

Delay Ratio

P
ro

ba
bi

lit
y

D
en

si
ty

32−bit PUF, µ=0, σ=0.0348

64−bit PUF, µ=0, σ=0.0304

Figure 3.2: Distributions of delay ratios for a 32-bit PUF and a 64-bit PUF.

The distribution of the delay ratio for random challenges on a 32-bit PUF and

a 64-bit PUF are depicted in Figure 3.2. In both cases, they follow a normal

distribution with their means at 0. The standard deviation of the 64-bit PUF is

smaller than the 32-bit PUF. To better visualize the probability that the delay

ratio is larger than some value, we use Table 3.2 to show the quantified result.

9

Temperature Delay Ratio (T=300K)

0.04 0.05 0.06 0.07 0.08 0.09 0.1

250K 0.979 0.987 0.994 0.997 1 1 1

350K 0.969 0.975 0.989 0.994 0.997 1 1

400K 0.937 0.951 0.959 0.977 0.988 0.996 1

Table 3.3: Probability that outputs of the 32-bit PUF are stable over varying

temperatures for different delay ratios.

Temperature Delay Ratio (T=300K)

0.04 0.05 0.06 0.07 0.08 0.09 0.1

250K 0.984 0.986 0.996 0.998 1 1 1

350K 0.982 0.986 0.993 0.998 1 1 1

400K 0.954 0.974 0.986 0.991 0.997 1 1

Table 3.4: Probability that outputs of the 64-bit PUF are stable over varying

temperatures for different delay ratios.

10

We simulate and test the stability of our PUF under different environmental

temperatures. In our test, we assume that the original distribution of the gate de-

lay Dold at temperature 300K follows the Gaussian distribution Dold ∼ N (µ, σ2).

When temperature changes, the delay changes: Dchange ∼ N (αµ, |α|σ2) where α

is a ratio which is decided by the new temperature, thus yielding the new delay

Dnew = Dold + Dchange. We use the Hotspot tool [28] to compute α under dif-

ferent temperatures. For example, α under 400K is approximately 1. Based on

this assumption, under different original delay ratios and after applying temper-

ature changes, we measure the probability that the same challenge produces the

same stable outputs. Table 3.3 shows the results of a 32-bit delay-based PUF. As

expected, a higher original delay ratio yields higher probabilities for stable out-

puts. For example, for an original delay ratio of 0.1, the probability that the PUF

output remains stable across temperatures ranging from 250K to 400K remains 1.

The results of our 64-bit PUF tests are shown in Table 3.4. Compared to

the 32-bit test case, the 64-bit test case demonstrates a similar trend and exhibits

even better stability under the same conditions. As long as the original delay ratio

reaches a particular threshold (e.g. 0.1 in this experiment), the outputs remain

stable for a wide range of temperatures. Hence, we select those challenges that

satisfy this delay ratio threshold as the stable challenges.

3.2 Achieve Stable Challenges

One important issue is how to obtain these stable challenges. We have proposed

two easy but feasible solutions. The first is to use programmable delay line and

the second is to use statistical information of delay profile. Before describing the

approaches, we assume that a n-bit delay-based PUF has n stages in total. Each

stage is in charge of one bit and it has two delays racing through each other.

11

Figure 3.3: Architecture for stable challenge-response testing.

3.2.1 Programmable Delay Line

The programmable delay line allows the user to put adjustable additional delay to

the PUF paths. In this approach, we take advantage of the programmable delay

line as shown in Figure 3.3. Before the two paths reach the arbiter, we intentionally

put certain extra delay to one of the paths, then we apply random challenges to

the PUF. For example, for a k-bit delay-based PUF, if the expectation of the delay

for each stage is D, then the expectation of the total delay for a path is k∗D. Now

we put 0.1 ∗ k ∗D extra delay to one of the paths, then apply random challenges.

Suppose under such circumstance, the path being added extra delay can still reach

the arbiter earlier than the other path, then we claim that the current challenge

enables one path approximately 0.1 times faster than another path if the extra

delay is not added, hence, a stable challenge. The detailed algorithm is described

in Algorithm 1. According to Table 3.2, although the portion of stable challenges

is small, but due to the fact that each trial for a random challenge only requires

one clock cycle, the time required to get a large number of stable challenges is

still negligible.

3.2.2 Delay Profile

This approach takes advantage of the statistical information of delay profile. This

approach involves two steps, the fist is to acquire the delay profile information

12

Algorithm 1 Programmable Delay Line Approach

Input: D - additional delay by programmable delay line.

Input: Ci - random challenges.

Input: path0 - path that outputs 0 in arbiter.

Input: path1 - path that outputs 1 in arbiter.

1: Add additional delay D to path0 (path1)

2: for random challenge Ci do

3: if path0 (path1) is shorter than path1 (path0) then

4: Ci is stable

5: end if

6: end for

7: Output: all the acquired stable challenges.

and the second is to use the profile information to get stable challenges.

We first assume that in the delay-based PUF, path0 and path1 represent the

two paths in the PUF. path0 is the path that outputs 0 in the arbiter while path1

is the opposite. For stage i, 2 delays di and d̂i are racing with each other while the

challenge bit in this stage determines in which path each delay is included. For

example, when the challenge bit is 1, di is contained in path0 and d̂i is contained

in path1 and vice verse. Therefore, with this as a starting point, we apply random

challenges to the delay-based PUF and build statistical model in this process. To

be more specific, we calculate the possibility that the path that includes di is

shorter and the possibility that the path that includes d̂i is shorter. Suppose that

di is smaller than d̂i, then after a large enough testing set of random challenges,

the path that contains di will be shorter than the path that contains d̂i with higher

likelihood than the vice verse. The specific probability is determined by the delay

difference between di and d̂i. For instance, after 1000 trials of random challenges,

the paths with di are shorter with 550 times and the paths with d̂i are shorter

13

with 450 times. From there, we can conclude that di is more likely to be shorter

than di. Therefore, after this step, the relation between the two delays in each

stage can be determined.

The second step is to produce the stable challenges based on the achieved

delay profile. The way we do it is to first assign some random bits as part of

the challenge and based on the already filled bits, then we adjust the rest bits to

achieve the largest delay difference between the two paths. For example, in Figure

3.1, we assume that the 4-bit challenge from left to right is b1 to b4. Then we

randomly fix 1 bit, e.g., b1 = 1 or b1 = 0 and adjust the rest 3 bits b2, b3, and b4.

We adjust the bits from the stages that are closer to the arbiter to the stages that

are away from the arbiter so that as the adjustment goes on, we know exactly in

each stage, each of the 2 delays contributes to which output bit in the arbiter. For

instance, in Figure 3.1, we start the adjustment from b4 and continues towards

b2. Due to the fact that we already have the delay profile information, we know

which delay is larger in each stage. Therefore, we can assign b2b3b4 = 010 so that

the maximum delay difference is achieved. However, the solution for adjustment

is not unique, e.g., when b2b3b4 = 011, the challenge is also stable. The detailed

algorithm is described in Algorithm 2. Note that when more bits are fixed in the

beginning of the algorithm, the space for adjustment is diminished, so that the

stability of the challenge is decreased, but correspondingly, the diversity of the

acquired stable challenges increases.

Assume that we have m random bits in the beginning for a 64-bit delay-based

PUF, and we can adjust n bits later where m + n = 64. The two delays for

stage i is di and d̂i where both delays are random values following the same

Gaussian distribution, then the delay difference between the two paths can be

expressed as illustrated in Equation 3.2. In Figure 3.4, for each hamming distance,

we plot the distribution of the delay difference between the two paths. We can

see that as the hamming distance gets smaller which means m is smaller in the

14

16
14

12
10

8
6

4
2

0

−50
−40

−30
−20

−10
0

10
20

30
40

50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Hamming DistanceDelay Difference

p
d

f

Figure 3.4: The distribution of delay difference given different hamming distance.

beginning, the average delay difference increases. Therefore, we can observe an

obvious tradeoff between the hamming distance of the achieved challenges and

the challenge stability.

Delay Diff =
i=m∑
i=1

|di − d̂i|+
j=m+n∑
j=m+1

(di − d̂i) (3.2)

15

Algorithm 2 Delay Profile Approach

Input: delay profile information.

Input: Ci - random challenges.

Input: m - number of fixed bits.

Input: Bj - adjustable bits.

Input: path0 - path that outputs 0 in arbiter.

Input: path1 - path that outputs 1 in arbiter.

Input: di&d̂i - two delays in stage i.

1: for random challenge Ci do

2: assign m bits to Ci randomly.

3: for all Bj in Ci (from the bit closest to arbiter to the

farthest) do

4: if di ≥ d̂i then

5: assign Bj to put di to path0 (path1).

6: else

7: assign Bj to put d̂i to path0 (path1).

8: end if

9: end for

10: end for

11: Output: all the acquired stable challenges.

16

CHAPTER 4

Digital Bimodal Functions

4.1 A Motivational Example

The concept of the digital bimodal function (DBF) was first proposed by Xu et al.

[20]. The essential idea behind the DBF is to represent a set of binary functions

in two forms, one which is fast and compact (fcompact) and the other which is slow

and complex (fcomplex). Both forms have exactly the same functionality, in other

words, given the same inputs, both forms produce the same outputs.

Equation 4.1, 4.2, and 4.3 illustrate an example of a DBF. As a prerequi-

site, ai, bi, and ci are binary values, and the function sets f and g are Boolean

functions in the form of sums of products (SOP) and/or products of sums (POS)

representing fcompact and fcomplex, respectively. Equation 4.1 represents the rela-

tionship between ai and bi and Equation 4.2 represents the relationship between

bi and ci. Note that each function f has 4 binary inputs assigned in a random

and permanent order.

Equation 4.3 is generated by substituting 4.1 into 4.2, yielding a direct rela-

tionship between ai and ci. Note that substitutions are expanded and simplified

so that each sub function in g is in the form of a SOP or a POS. The key obser-

vation here is that while both f and g implement the same functionality, f can

be computed much more rapidly than g since it is in a compact format in which

each subfunction requires only four inputs, while g is in an expanded format in

which each subfunction requires up to n variables. It has been shown that the size

17

Inputs: ai ∈ {0, 1}, i ∈ {0, 1, 2...n− 1}

Outputs: ci ∈ {0, 1}, i ∈ {0, 1, 2...n− 1}

Variables: bi ∈ {0, 1}, i ∈ {0, 1, 2...n− 1}

rj ∈ {0, 1, 2...n− 1}, j ∈ {0, 1, 2...8n− 1}

b0 = f0(ar0 , ar1 , ar2 , ar3)

b1 = f1(ar4 , ar5 , ar6 , ar7)

b2 = f2(ar8 , ar9 , ar10 , ar11)

· · ·

bn−1 = fn−1(ar4n−4 , ar4n−3 , ar4n−2 , ar4n−1)

(4.1)



c0 = fn(br4n , br4n+1 , br4n+2 , br4n+3)

c1 = fn+1(br4n+4 , br4n+5 , br4n+6 , br4n+7)

c2 = fn+2(br4n+8 , br4n+9 , br4n+10 , br4n+11)

· · ·

cn−1 = f2n−1(ar8n−4 , ar8n−3 , ar8n−2 , ar8n−1)

(4.2)



c0 = g0(a0, a1, a3, . . . , an−1)

c1 = g1(a0, a1, a3, . . . , an−1)

c2 = g2(a0, a1, a3, . . . , an−1)

· · ·

cn−1 = gn−1(a0, a1, a3, . . . , an−1)

(4.3)

difference between fcompact and fcomplex increases exponentially with an increase

in input variables and additional levels of substitution [20].

In order to visualize the size difference between fcompact and fcomplex, we first

18

set up a few premise, then quantify their size difference.

The first premise is that we put both fcompact and fcomplex into the form of a sum

of products and simplify them by using the tool Simple Solver. We then compare

the total number of products. Note that the simplification procedure reduces the

size of the Boolean functions, but only by a constant factor. In Example I, after

simplification, fcompact can be expressed by the group of functions in (1c), which

has 19 products, and fexpanded can be expressed by the functions in (1e), which

have 67 products.

The second premise is that each single sub-function in fcompact has at most 4

inputs, just as shown in Example I, which is used to limit the size of fcompact.

The third one is that the number of outputs is the same as the number of

inputs in each iteration, e.g., in Example I, the number of ai equals to the number

of bi and ci, i ∈ {0, 1, 2, ..., 7}.

The last premise is that the number of iterations is half of the number of

inputs. While iterations can create size difference between fcompact and fcomplex,

the size is also limited by the number of inputs. Therefore the number of iterations

should be proportional to the number of inputs, as an example, we set it to be

half.

Based on the above definition, with the increase in the number of inputs, we

randomly generate a group of functions as fcompact and the corresponding fcomplex,

then compare the number of products.

The size difference between fcompact and fcomplex determines their difference

in computation complexity. According to Table 4.1, the number of products in

fcompact grows linearly while the number of products in fcomplex grows exponen-

tially. For example, when the number of inputs is 20, the average # of products in

fcompact is 57.8 while the average # of products in fcomplex reaches approximately

370000 which is 6400 times larger. Therefore, by increasing the number of inputs

19

of iterations # of inputs avg. # of products avg. # of products

(fcompact) (fexpand)

4 8 23.2±2.8 259.2±16.1

5 10 28.7±3.1 765.6±68.7

6 12 34.6±3.5 3816.0±245.2

7 14 39.0±3.8 11454.8±758.1

8 16 46.7±4.1 49206.4±2684.8

9 18 52.1±4.3 142491.6±7520.1

10 20 57.8±4.6 369656.8±19265.5

Table 4.1: Size comparison between fcompact and fcomplex with different number

of iterations and different number of primary inputs. The average number of

products are tested with 95% interval confidence.

as well as the number of iterations, it is very easy to create a huge computation

gap between fcompact and fcomplex.

4.2 FPGA-based Implementation

Figure 4.1 depicts the FPGA-based implementation of the fcompact of the DBF

defined in Equations 4.1, 4.2, and 4.3. The architecture is composed of two levels

of 4-input LUTs. Note that each 4-input LUT implements a 4-input Boolean

function from f . A hierarchy structure is constructed by feeding the outputs

of the previous level of LUTs to the inputs of the next level of LUTs which is

equivalent to the function substitution. Therefore, the LUT network directly

implements fcompact in the DBF. As the number of inputs and number of levels in

the LUT network grows, the expanded form of fcomplex becomes very difficult to

implement in hardware (grows exponentially) while fcompact remains in a relatively

compact form (grows linearly).

20

Figure 4.1: An example of the FPGA-based DBF fcompact LUT network.

An even more compact FPGA implementation is to use sequential logic. The

key idea is to iteratively use one level of LUT networks. This requires each level of

sub functions in fcompact to have the same format. For example, the combinational

logic in Figure 4.2 can be replaced with the sequential logic in Figure 4.3. Com-

pared to the combinational logic, the sequential logic saves the number of LUTs

required. It takes iterations (each iteration is corresponding to a clock cycle) to

produce the outputs while the number of clock cycles is equal to the levels of LUT

in the combinational logic.

Now we consider the hardware implementation of fcomplex. We use the Xilinx

ISE Design Suite to synthesize fcomplex and compare the resources it requires with

fcompact. For a SLC with a given number of inputs and cycles, we generate the

corresponding fcomplex, then convert it to a netlist and synthesize it to acquire

the number of LUTs required in order for it to be implemented on the FPGA.

We change the input # in the experiment and set the cycle # to the half of

the inputs #. Table 4.2 indicates that fcomplex requires many more LUTs than

fcompact and the difference keeps growing with the increase of the input #, which

21

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

b0 b1 b2 b3

a[0:11]

c0 c1 c2 c3

b[0:3]

c[0:3]

Level 1

Level 2

Figure 4.2: A combinational logic implementation of DBF fcompact LUT network.

4-input
LUT

4-input
LUT

4-input
LUT

4-input
LUT

flip-flops

b0 b1 b2 b3

a[0:11]

b[0:3]

Figure 4.3: A sequential logic implementation of DBF fcompact LUT network.

22

could easily reach the extent that the hardware implementation of fcomplex costs

so much that it can only be simulated. Through this technique, due to the time

difference between implementation and simulation, the time difference between

fcompact (private key) and fcomplex (public key) can be further expanded.

Levels Inputs fcompact LUT # fcomplex LUT #

4 8 8 81

5 10 10 396

6 12 12 1616

7 14 14 4353

8 16 16 13576

9 18 18 31155

10 20 20 98282

Table 4.2: Average synthesis resources compared between DBF form fcompact and

form fcomplex. The Input # does not have to be twice as the circle #, we set it

here as an example. The tests are based on the Spartan-3 XC3S50-5 FPGA and

synthesized using the Xilinx ISE.

4.3 fcompact and fcomplex Comparisons

Based on the above discussion, Table 6.2 shows the comparisons between fcompact

and fcomplex. Both of them can be simulated, but only fcompact can be implemented

by the sequential logic on an FPGA using a reasonable amount of resources.

As implementation is generally faster than simulation, we choose to implement

fcompact rather than to simulate it. When applying 20 inputs and 10 iterations,

the implementation of fcompact takes only 77.2ns while the simulation of fcomplex

takes more than 1.6× 107ns. The time difference reaches 2×105. Note that for an

SLC with a larger size, the time difference can grow easily very large. For different

23

applications, the size of SLC can vary.

fcompact fcomplex

Operation implementation simulation

Time (8 inputs, 4 iterations) 29.2± 3.67(ns) (1.18± 0.08) ∗ 104(ns)

Time (10 inputs, 5 iterations) 37.0± 4.02(ns) (4.33± 0.49) ∗ 104(ns)

Time (12 inputs, 6 iterations) 45.1± 5.48(ns) (1.63± 0.12) ∗ 105(ns)

Time (14 inputs, 7 iterations) 53.9± 5.51(ns) (5.77± 0.48) ∗ 105(ns)

Time (16 inputs, 8 iterations) 61.4± 6.49(ns) (2.31± 0.25) ∗ 106(ns)

Time (18 inputs, 9 iterations) 69.5± 7.36(ns) (6.75± 0.49) ∗ 106(ns)

Time (20 inputs, 10 iterations) 77.2± 7.99(ns) (1.61± 0.19) ∗ 107(ns)

Table 4.3: Comparisons between fcompact and fcomplex. The results show an average

implementation/simulation time with the standard deviation.

The LUT network architecture based on configurable logic blocks (CLBs) on

FPGA provides a very intuitive and simple way to implement fcompact, while for

fcomplex the implementation on FPGA takes too many resources, requiring it to

be simulated. The time and efficiency difference between fcompact and fcomplex on

FPGAs, which would be utilized for security purposes, offers us a strong reason

to choose FPGA as an ideal platform.

24

CHAPTER 5

Digital PUF

5.1 Architecture

The ideal of digital PUF is first proposed by Xu et al. [29][30]. Figure 5.1 depicts

the architecture of the digital PUF. At startup, the user selects and applies stable

challenge vectors, supplied by the digital PUF manufacturer, to an array of delay-

based PUFs. The resultant stable outputs are then used to initialize and configure

individual LUT cells in the DBF. This procedure is applied to a random subset of

LUT cells, while the remaining cells are initialized by the user. This bifurcation

in initialization enables self trust by preventing malicious manufacturers from

completely controlling the DBF configuration process.

After PUF initialization, the user generates an input-output mapping for the

DBF which serves as a specification of fcomplex. This is easily done by traversing

all the possible inputs and generating the corresponding output. The mapping is

stored as Boolean functions in both SOP and POS forms.

By applying only stable challenges to the delay-based PUF at initialization we

ensure that the entire digital PUF system is completely stable. Furthermore, the

intrinsic unclonability of the delay-based PUF along with its integration with the

DBF guarantees that the overall architecture is unclonable. Since the delay-based

PUF is used only at initialization and is subsequently disregarded and the rest of

the digital PUF operation is delegated to the DBF, we inherit the small power,

area, and low delay properties of the DBF.

25

Figure 5.1: Architecture of the digital PUF. Note that the stable outputs from

the analog PUF are used only once at startup to initialize and configure the LUTs

in the DBF.

5.2 Operations

In order to use the FPGA-based digital PUF, a set of operations need to be done,

we divide them into the following two steps: (i) FPGA configuration and (ii) DBF

generation.

5.2.1 FPGA Configuration

The essential step before using the DBF is to reconfigure the FPGA for DBF ini-

tialization. As we mentioned in the previous section, in every clock cycle the user

needs to choose a stable challenge vector {C0, . . . , Ck−1} and feed it to the delay-

based PUF. Each challenge is randomly chosen from a pool of stable challenges

that is provided by the manufacturer. Note that if we reverse all the challenge

bits to {C0, . . . , Ck−1}, the output is reversed too. Hence, there will not be any

bias between the number of stable challenges that produce the 0 output and the 1

26

output. As a result, the output randomness of the delay-based PUF is not reduced

because of the use of only stable challenges. Each of the generated output will be

used to initialize one cell in a LUT. This procedure is repeated until a random por-

tion of the LUT cells in the DBF are initialized, and the rest are initialized by the

user. The reason to choose only a random part of LUTs to initialize is to enable

self trust in order to prevent malicious manufacturers, because the manufacturers

have no clue how the rest of the LUTs are initialized.

5.2.2 DBF Generation

After initialization of the DBF in the FPGA, the user generates the input-output

mapping for the DBF which serves as fcomplex. This can be easily done by travers-

ing all the possible inputs and generating the corresponding outputs. The mapping

is stored in the form of Boolean functions. Therefore, until now, the initialized

DBF embedded in the FPGA serves as fcompact and the mapping is fcomplex.

5.3 Side-channel Attacks

In this section we discuss solutions for protecting the digital PUF against side-

channel attacks on the LUT memory cells.

MicroSemi/Actel’s antifuse-based FPGA employs one-time programmable con-

nections that are non-volatile [31]. After each fuse is programmed, its probe and

programming interface is automatically disabled. Actel fuses are smaller than

the regular feature size of the FPGA and therefore are much less susceptible to

destructive reverse engineering techniques. They have a very small power foot-

print (below 40µJ) that is significantly smaller than the footprint of a transistor.

There are many millions or fuses and recovering their values is at best a very

time consuming task. Note that in our approach, the fuses would be programmed

in a unique way for each circuit. While dynamic reprogramming of fuses is not

27

feasible, one can easily organize several combinations of fuses in such a way that

their software activated combination produces a unique digital PUF.

The second potential approach to side-channel prevention is the use of inspec-

tion resistant memory proposed by Valamehr et al. [4]. They employ a combina-

tion of secret sharing and secure hashing to reduce the probability of correct key

or device recovery to 10−12 even if the probability of incorrectly recovering a value

from a particular location is only 5%. The overall hardware overhead is equal to

slightly more than 7 SRAM cells. Note that as observed by Valamehr et al. their

techniques can be combined with antifuse mechanisms.

Our most preferable solution against side-channel attacks is the use of 3D

integrated circuit technology [32]. Recently, 3D integrated circuits have emerged

as a practical industrial option that reduces some design constraints, such as long

interconnect, yield, and levels of integration. 3D has been proposed several times

for security application [33] [34], but only very recently has it been advocated as

a platform for the detection of intrusive side-channel attacks [35]. Also, the use

of configurable shields against side-channel attacks has been explored [36].

We propose the use of 3D implementation in which the security device, in

our case, the digital PUF, is placed in the middle-most layers. Devices with the

same architecture but with randomly selected parameters are placed both above

and below the actual device. Another alternative is that all these devices are

used in a standard secret sharing mode. Therefore, no backside access is possible,

and the performance of electromagnetic attacks are drastically reduced or even

eliminated. Finally, to prevent attacks through the same layers we can employ an

active shield [36]. Our final observation is that all three discussed techniques are

orthogonal and can be combined. Each technique does introduce some overhead

but is relatively small. 3D techniques are applicable only if 3D technology is used.

28

CHAPTER 6

Security Properties

In this section, we adopt a set of standard statistical tests to analyze the security

properties of the digital PUF. We describe possible statistical attacks and test the

resilience of our digital PUF against such attacks. We use the standard digital

PUF structure with 64-bit inputs and outputs and 32 levels of substitution. We

assume that the digital PUF is initialized randomly.

6.1 Output Randomness

We quantify the output randomness of the digital PUF by applying the industry

standard statistical test suite provided by the National Institute of Standards

and Technology (NIST). We generate a stream of outputs in the following way:

a random seed is used as the primary inputs to the digital PUF after random

configuration and the corresponding outputs are generated. In each subsequent

clock cycle, the outputs are XORed with the previous inputs to generate the

inputs for the next clock cycle. We repeat the process until we collect enough

outputs required by the benchmark suite. The results in Table 6.1 indicate that

the output stream of the digital PUF passes the NIST randomness tests.

6.2 Avalanche Effect

In this attack, an adversary attempts to predict the outputs of the digital PUF us-

ing the knowledge of outputs for similar inputs. In cryptography, cipher diffusion

29

Statistical Test Avg. Success Ratio

Frequency 100%

Block Frequency (m=128) 98.7%

Cusum-Forward 97.8%

Cusum-Reverse 97.9%

Runs 98.4%

Longest Runs of Ones 97.9%

Rank 99.3%

Spectral DFT 97.5%

Non-overlapping Templates (m = 9) 97.5%

Overlapping Templates (m = 9) 97.5%

Universal 100%

Approximate Entropy (m = 8) 98.1%

Rand. Excursions (x = 1) 98.8%

Rand. Excursions Variant (x = −1) 97.6%

Serial (m = 16) 99.3%

Linear Complexity (M = 500) 98.0%

Table 6.1: NIST randomness test results on the digital PUF. 1,000 bitstreams

of 10,000 bits are provided to each test. Each test passes for p-value≥ σ, where

σ = 0.01.

30

is achieved if a change in the input by one bit results in a dramatic change in the

outputs in an unpredictable manner. This is otherwise known as the avalanche

effect. To test this, we measure the hamming distance between two output vectors

whose input vector differ by one bit. Ideally, the distribution should be in the form

of a binomial distribution with the peak at half of the number of output bits. The

result in Figure 6.1 shows an almost perfect binomial distribution which indicates

our matched device satisfies the avalanche criterion and is highly resilient against

this type of attack.

0 3 6 9 13 17 21 25 29 33 37 41 45 49 53 57 61

0.
00

0.
05

0.
10

0.
15

Output Hamming Distance

R
el

at
iv

e
F

re
qu

en
cy

Figure 6.1: Distribution of output hamming distances testing the avalanche ef-

fect. The error bars depict the max, 0.75 quantile, mean, 0.25 quantile, and min

frequencies.

6.3 Input-based Correlation

Another type of attack utilizes correlations between individual output bits, Oi, and

input bits, Ij, for prediction. The goal in this attack is to predict the conditional

31

probability, P (Oi = c1|Ij = c2), where c1 and c2 are either 1 or 0. For example,

if the attacker observes that output Oi is equal to 1 when the input Ij is 1 a

large majority of the time, then he can guess with a high probability that output

Oi is 1 when Ij is 1. The ideal situation is when all conditional probabilities are

0.5. Figure 6.2 and Figure 6.3 depicts the distribution of conditional probabilities,

P (Oi = 1|Ij = 1), for the digital PUF. The majority of probabilities cluster around

0.5, thus indicating low potential for prediction.

10 20 30 40 50 60

10

20

30

40

50

60

Input Ij

O
ut

pu
t O

i

P(Oi=1|Ij=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2: Colormap of conditional probabilities between output bits Oi and

input bits Ij.

6.4 Output-based Correlation

Similar to the previously described attack, this attack attempts to predict an

output bit Oi according to the value of a corresponding output bit Oj. In this

case, if two output bits have a strong correlation, then the attacker can deduce

the output vector through knowledge of a subset of output bits. We present the

distribution of conditional probabilities, P (Oi = 1|Oj = 1) in Figure 6.4 and the

32

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P(Oi=1|Ij=1)

F
re

qu
en

cy

Figure 6.3: Distribution histogram of conditional probabilities between output

bits Oi and input bits Ij.

corresponding histogram of the probability distribution Figure 6.5 which depicts

low potential for prediction based on output to output correlation.

10 20 30 40 50 60

10

20

30

40

50

60

Output Oj

O
ut

pu
t O

i

P(Oi=1|Oj=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.4: Colormap of conditional probabilities between output bits Oi and

Output bits Oj.

33

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P(Oi=1|Oj=1)

F
re

qu
en

cy

Figure 6.5: Distribution histogram of conditional probabilities between output

bits Oi and Output bits Oj.

6.5 Comparisons

Finally, we briefly compare the statistical test results of our FPGA-based digital

PUF with the traditional delay PUF. The results depicted in Table 6.2 are tested

on the 64-input 64-output FPGA-based digital PUF and 64-input 64-output tra-

ditional delay PUF. We conclude that both our PUF and the traditional delay

PUF demonstrate excellent properties regarding output frequency and conditional

probability, but only our digital PUF demonstrates an ideal output hamming dis-

tance satisfying the avalanche criterion.

34

Output Freq. Hamming Dis. P (Oi = 1|Ij = 1)

Digital PUF 0.5± 0.07 30.9± 3.6 0.49± 0.01

Delay PUF 0.5± 0.09 1.4± 0.4 0.52± 0.01

Table 6.2: Statistical test results comparison between the FPGA-based digital

PUF and the traditional delay PUF. The ideal case for output frequency is 0.5,

for hamming distance is 32, and for P (Oi = 1|Ij = 1) is 0.5. The results shown

in the table are the average values and corresponding standard deviations.

35

CHAPTER 7

Structure Exploration

The core architecture of the digital PUF is the randomly connected LUT network.

In this section we address how to connect the LUTs to achieve optimal security,

while ensuring that the the structure has a small area and delay overhead. The

following factors can directly influence the LUT structure:

• Number of Inputs. The size and the complexity of fcomplex is directly

dependent on the number of inputs to fcompact. Thus, the number of inputs

should be selected in such a way so as to satisfy the application requirements

for security, delay, and area.

• Number of Levels. Adding more LUT levels to the digital PUF causes

more diffusion, however, also increases the delay and area costs.

• LUT Connections. In Figure 5.1, LUTs are connected in such a way that

all the outputs feed into the inputs of the next level. However, this is not

a mandatory requirement for the digital PUF. For example, feed forward

structures can be used. Specifically, the inputs to a specific level of LUTs

can come from or be controlled by the outputs from any previous level up

to and including the primary inputs. Figure 7.1 illustrates two examples of

feed forward structures for the digital PUF.

We explore the impact of input size on the digital PUF by measuring the suc-

cess of the NIST tests for varying input sizes. Only when the digital PUF’s output

stream can pass all NIST tests do we claim that the configuration is acceptable.

36

(a) (b)

Figure 7.1: Examples of feed forward structures applied to the digital PUF. (a)

Inputs arrive from all previous levels. (b) Inputs arrive from and are controlled

by previous levels.

We begin with a digital PUF with 8 bit inputs and increment its input size by 8

after each test. We find that once the digital PUF reaches an input size of 32 bits

it can consistently pass all NIST randomness tests.

We compare the different structures depicted in Figure 7.1 against the original

digital PUF with varying levels of LUTs. We use the output hamming distance

test from the avalanche criterion to compare the structures. Since the input size of

each structures is 32 bits, the best structure will yield an average output hamming

distance of close to 16.

Table 7.1 shows the results across the three types of structures. Two obser-

vations can be drawn from this table. The first is that the average hamming

distance increases with more LUT levels for smaller sized digital PUFs but even-

tually stabilizes as the digital PUF grows. It can be concluded that after some

growth, more levels would not significantly increase overall input diffusion. The

37

second observation is that the feed forward structure in Figure 7.1b is the most

secure of the three structures (in terms of satisfying the avalanche criterion) since

its average output hamming distance reaches closest to 16.

Levels 4 8 12 16

Original Structure 8.8± 0.6 12.7± 0.2 12.8± 0.5 13.1± 0.4

Feed Forward in Figure 7.1a 6.7± 0.4 10.9± 0.7 12.6± 0.6 13.3± 0.4

Feed Forward in Figure 7.1b 9.9± 0.9 13.9± 0.8 14.8± 0.8 15.1± 0.5

20 24

13.3± 0.5 12.9± 0.7

12.9± 0.5 13.1± 0.9

15.1± 0.5 14.8± 0.7

Table 7.1: Output hamming distance averages and standard deviations across 20

random instances of each digital PUF structure. The input size is 32 bits. Each

column corresponds to a given number of LUT levels in the PUF structure.

38

CHAPTER 8

Protocol

8.1 Public Key Communication

Public key communication is one of the most widely used communication proto-

cols. We use it as an example to explain how digital PUF works as a security

primitive in security protocols. The basic setting for this protocol is shown below.

• Private Key − fcompact, denoted by Kpriv.

• Public Key − fexpanded, denoted by Kpub.

• Alice − the owner of Kpriv. The party to receive and decrypt messages.

• Bob − the party to send and encrypt messages.

• TTP − trusted third party. The party that administrates Kpub.

Before explaining how this protocol works, we need to note that the private

key fcompact is actually a piece of the digital PUF, in which the hardware im-

plementation of fcompact is offered but not detected. By using Kpriv, given input

vectors, the output vectors can be calculated promptly. Meanwhile, the public

key is the functions in fexpanded.

The core idea in Protocol 1 is to take advantage of the calculation time differ-

ence of fcompact and fexpanded, making only the holder of Kpriv be the only person

who can calculate Rj (j ∈{1, 2, ..., N}) in a reasonable amount of time. Another

39

Algorithm 3 Public Key Communication

1: Bob has a message m to send to Alice, m is in the form of binary vector.

2: Suppose there are l single Boolean sub-functions in Kpub, all of which have

the form of a sum of products and the form of a product of sums. In the first

round, for the ith (i ∈{1, 2, ..., l}) function fi in Kpub, Bob randomly requests

either one product from the a sum of products or one sum from the a product

of sums from TTP. According to that product or sum, Bob generates a binary

input vector pi, making ri = fi(pi) = 1 (case of product) or ri = fi(pi) = 0

(case of sum). Then Bob concatenates p1 to pl to generate binary vector P1

and concatenates r1 to rl to generate binary vector R1.

3: Bob repeats step 2 for N rounds, generates Pj and Rj (j ∈{1, 2, ..., N}).

4: Bob calculates E = m⊕R1 ⊕R2...⊕RN .

5: Bob broadcasts E and all Pj (j ∈{1, 2, ..., N}).

6: Alice computes all the sub vector pi (i ∈{1, 2, ..., l}) in each Pj

(j ∈{1, 2, ..., N}) with Kpriv to find out the corresponding value of ri, then

Alice concatenates all the ri to form each vector Rj.

7: Alice computes m = E ⊕R1 ⊕R2...⊕RN and gets Bob’s message.

40

important design is that we use the trusted third party to administrate Kpub.

Note that whenever Bob wants to send a message to Alice, he only needs to re-

quest one product or one sum of each function in Kpub from TTP, then he can

create the binary vectors to encrypt his messages. This makes use of the sum

of products and product of sums; by knowing one product in a sum of products,

one input vector that makes the output to be 1 can be deduced and by knowing

one sum in a product of sums, one input vector that makes the output 0 can be

deduced. This design minimizes the key size as well as the energy for calculation

that Bob requires during the encryption of public key communication. However,

for an attacker, if he/she wants to find out the right cx in C, since he/she does

not have Kpriv, he/she can only request all the information of Kpub from TTP to

simulate. Therefore, for an attacker, the public key size and the calculation scale

are not minimized at all, the expected effort of an attacker is to scan half of a

sum of products as well as half of a product of sums. In Protocol 1, N rounds

of operations are used to boost the calculation expense of fcompact and fexpanded

N times simultaneously. As it takes much more time to calculate fexpanded than

fcompact, after both calculation expense increasing N times, the calculation time

for fcompact is still trivial but the time for fexpanded increases significantly. N is a

flexible number that can be adjusted according to the size of fcompact and fexpanded.

8.1.1 Time Gap

We estimate the decryption time gap between the private key holder and the

attacker in Protocol 1. Suppose the private key holder uses an SLC with 64 inputs

and 32 cycles to implement fcompact and the attacker simulates the corresponding

fexpanded. For fcompact, the implementation time is tested on the Spartan-3 XC3S50-

5 FPGA and was measured at approximately 239ns. For the computation of

fexpanded, the simulation time is too long and can only be estimated. It is obvious

that the simulation time is proportional to the size of the fexpanded. According

41

to Table 4.1, we find that the size of fexpanded increases by at least 2.5 times

with an increase of 1 iteration and 2 inputs. As a consequence, we can assume

the simulation time for fexpanded also grows similarly. Therefore, by combining

the results in Table 6.2, the simulation time for an SLC with 64 inputs and 32

iterations can be estimated at 1.61 × 107 × 2.522 = 9.15 × 1015(ns). We further

assume that the number of roundsN in public key communication is 103, therefore,

the time for private key calculation is 239 × 103 = 2.39 ∗ 105(ns) while the time

for public key calculation is 9.15× 1015 × 103 = 9.15 ∗ 1018(ns)≈290years, which

is not acceptable. Note that N can be designed to be smaller with a larger size

public key.

8.1.2 Performance Comparisons

We estimate the performance of the digital PUF based public key communica-

tion protocol and compare it with other cryptographic methods. For decryption,

suppose the digital PUF uses a 64 input SLC, as a result, the area of 64 LUTs is re-

quired. The static power value of the Xilinx FPGA is approximately 24µW/CLB.

Suppose each CLB contains 4 LUTs, then 16 CLBs are required with a total power

of approximately 384µW . According to the synthesis result, the maxmium delay

of the SLC circuit is 7.47ns and 32 cycles are needed to compute the outputs. We

repeat step 2 in Protocol 1 N=103 times, so that the total clock cycle that decryp-

tion requires is 3.2×104. For encryption, according to the protocol, the public key

user only needs to calculate one product or one sum of each function in fexpanded

in step 2 of protocol 1, compared to the decryption part, the expense of the en-

cryption can be neglected. We therefore have an energy consumption estimation

for digital PUF based public key communication through equation (2).

Energy = Power × ClockCycle #×MaximumDelay (8.1)

42

Design Flip Flops LUTs
Area Maximum

Clock Cycles
Energy

(Slices) Delay (ns) (µJ)

Present[37] 114 159 117 8.78 256 3.16×10−3

HIGHT[37] 25 132 91 6.12 160 1.07×10−3

AES[37] 338 531 393 14.21 534 3.58×10−2

RSA[38] 1870 2811 1553 7.62×103 907 128.80

RSA radix-2[38] 7564 11496 6282 8.21×103 1058 654.80

RSA radix-4[38] 9944 14907 8328 4.23×103 560 236.73

DBF 64 64 32 7.47 32000 9.18×10−2

Block Size Throughput Throughput/Energy
Device

(bits) (Mbps) at fmax (Mbps/µJ)

64 28.46 9.01×103 xc3s50-5

64 65.48 6.12×104 xc3s50-5

128 16.86 4.71×102 xc3s50-5

- 0.15 1.16×10−3 xc3s500e

- 0.12 1.83×10−4 xc2v6000

- 0.43 1.82×10−3 xc2v6000

- 267.74 2.92×103 xc3s50-5

Table 8.1: Comparisons for DBF based cryptography with the traditional block

cyphers and RSA. The results for Present, HIGHT and AES are cited from [37],

the results for RSA are the parts of multiplication modular and are cited from [38],

the results for DBFs are tested on the Spartan-3 XC3S50-5 FPGA and generated

by the Xilinx ISE Design Suite 14.3.

43

Table 8.1 shows the comparisons for DBF based public key communication

with traditional block cyphers and RSA with respect to area, delay, and energy

in FPGAs. The DBF in the table utilizes one SLC with 64 primary inputs and

32 iterations, and we suppose that the number of rounds N in the protocol is 103.

We can obviously conclude from the table that DBF, as a security primitive, owns

the implementation of ultra low energy that is competitive with the traditional

security key block cyphers and outperforms the RSA with at least three orders of

magnitude.

8.2 Remote Trust

When using a data centre to adopt remote computations, trust plays a very im-

portant role. On one hand, users need to authenticate the data centre, on the

other hand, users also want to monitor the flow of their requested calculations

to ensure the processing of the data is being carried out correctly. Digital PUFs

provide an ultra low-energy and easy solution to authenticate the data centre as

well as monitor the calculation flow. The basic approach is to use a hash tree.

The calculation flow shown in Figure 8.1 is an example of how a data centre

processes calculations to generate the outputs. Four basic calculations (+,−,×,÷)

are adopted as operation nodes in the flow. The data centre is required to ran-

domly choose n places to “cut” the calculation flow, and generate n corresponding

intermediate results. The calculation expense between the adjacent intermediate

results is trivial. A hash tree is constructed based on the n intermediate results.

Figure 8.2 shows an example of a hash tree with 4 leaf nodes, where each node

represents a intermediate result from the data flow. A binary tree structure is

generated in which every non-leaf node is the hash of the its two children nodes.

Depends on the scale of the calculation, a hash tree may includes millions of

intermediate results, and the leaf nodes from left to right coordinates with the

44

Inputs Outputs

Cut 1 Cut 2 Cut n

Figure 8.1: Example calculation flow and corresponding cuts. Each node in the

graph represents a basic operation (e.g. +,−,×,÷) or even blocks of operations

(e.g. if-else, while, functions). Cut 1 to cut n represent random cuts in the

calculation flow which can be thought of as intermediate results or states of the

procedure.

sequence of the intermediated results generated in the data flow.

To apply a digital PUF on the structure of hash tree, we us the following basic

settings.

• Use DBF as the hash function.

• Only the data centre has the digital PUF, which is the hardware implemen-

tation of DBF form fcompact.

• DBF form fexpanded is public.

Based on these settings, every time a client wants to monitor the calculation,

he/she randomly chooses a leaf node of the hash tree and requests the data centre

to offer the “corresponding hashed results” to calculate the path from the leaf

node to the top node. For example, in Figure 8.2, the top value of the hash tree

can be verified by iteratively hashing intermediate result 2 with the results in hash

45

Intermediate
Result 1

Intermediate
Result 2

Intermediate
Result 3

Intermediate
Result 4

Hash 1 Hash 2 Hash 3 Hash 4

Hash 5 Hash 6

Hash 7

Calculation Flow

Figure 8.2: An example of a Hash tree for our low overhead remote trust pro-

tocol. The intermediate results at each cut in the calculation flow (e.g. cut i,

i ∈{1, 2, ..., n} in Figure 8.1) are hashed as leaf nodes. The arrow shows the

direction of calculation flow.

1 and hash 6. In this case, the results in hash 1 and hash 6 are the correspond-

ing hashed results for intermediate result 2. After acquiring the “corresponding

hashed results”, the client hashes the chosen intermediate result and confirms the

rightness of the hashing path afterwards. By repeating this procedure the consis-

tence of the whole hash tree is checked. Another verification that a client can do

is to check the calculation between the adjacent intermediate results, e.g., inter-

mediate result 2 and 3. By knowing intermediate result 2, the client can follow

the calculation flow to calculate and confirm the intermediate result 3. As the

calculation expense between adjacent results is trivial, the client can easily verify

the consistence of the adjacent nodes. Therefore, the client can detect the hash

46

Figure 8.3: Passing ratio with the proportion of right calculation. The 3 curves re-

spectively shows the passing ratio under the circumstance that the client requests

10, 20, and 30 pairs of adjacent nodes to test.

tree both horizontally and vertically. Due to the randomness of every request,

only the party that has the whole structure of the hash tree can respond to all

the requests correctly, therefore, the calculation flow is monitored and detected.

Monitoring of the calculation flow is used to verify whether the data centre is

processing the flow correctly. Now suppose the data centre is not honest and mixes

some wrong or irrelevant calculations in the flow. Figure 8.3 shows the possibility

that the data centre can pass all the adjacent nodes tests from the client with

only some percentage of right calculations in the flow. The results show that with

a linear decrease of the proportion of right calculation, the passing ratio drops

exponentially. For example, when the right calculation proportion reaches 1% in

the case of 10 test pairs, the passing ratio drops to be 10−20, which is ridiculously

small.

Note that since the data centre needs to hash millions of intermediate results

during the calculation flow, to complete the hashes in a reasonable short time,

47

fcompact must be used. Any unauthenticated party who only has fexpanded suffers

a long time of hashing. As an example, suppose we use the SLC with 20 inputs

and 10 iterations in remote trust. Again, we emphasize that we have flexibility

in choosing SLC’s size for different applications. Suppose that the number of

intermediate results is 106 and the client makes 10 hash operations. According to

Table 6.2, the calculation time for the data centre is 77.2× 106ns = 0.0772s and

the calculation time for the client is 1.61 × 107 × 10ns = 0.161s. However, the

calculation time for an attacker reaches 1.61×107×106ns = 1.61×104s = 4.47hrs.

As a consequence, only the party that can offer requested hash results correctly

in a reasonably short period of time will be certified by the client. In this way,

the only party that can be authenticated is the data centre with the digital PUF.

48

CHAPTER 9

Conclusion

We have presented the concept of digital PUF which resolves two essential prob-

lems in traditional analog PUF. The first problem is stability. Analog PUF is

unstable in the same sense that analog system is unstable. Digital PUF resolves

this by leveraging a stable delay-based PUF for initializing its connected network

of LUTs of digital bimodal functions (DBFs). The stability in the delay-based

PUF is ensured by selecting challenges that have a delay ratio of at least 10%

which ensures that the output is always stable for temperatures ranging from

250K to 400K. This process guarantees the system to be both unclonable and

stable. The second problem of analog PUF is hard to be integrated with digital

logic. Digital PUF resolves this problem by employing completely digital system.

Digital PUF is built based on the strutter of digital bimodal functions. DBF

has two forms of functions, among which one form is fast and compact, the other

form is slow and complex. We proposed the architecture of DBF on FPGA and

analyzed the security properties. The security analysis indicates that DBF can

pass all benchmark tests from the NIST randomness suite, as well as the avalanche

criterion. Based on the standard statistical tests, we further compared and dis-

cussed the possible structures of digital PUF.

Finally, Two security protocols are demonstrated, respectively security proto-

cols and remote trust. For security protocols, a fast speed, low overhead public

key communication protocol is proposed. It employs the huge computation gap

between the two forms of functions in DBF. We have also demonstrated the ap-

49

plication of the digital PUFs in a remote secret key exchange protocol in which

both communicating parties experience very low overhead in terms of both time

and energy.

50

References

[1] “A Statistical Test Suite for Random and Pseudorandom Number Genera-
tors for Cryptographic Applications,” National Institute of Standards and
Technology (NIST) Special Publication 800-22, Rev. 1a, Apr. 2010.

[2] C. E. Shannon, “Communication theory of secrecy systems,” Bell System
Technical Journal, vol. 28, no. 4, pp. 656715, 1949.

[3] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert, “Cloning physically
unclonable functions,” in HOST, pp. 16, 2013.

[4] J. Valamehr et al., “Inspection resistant memory: architectural support for
security from physical examination,” in ACM SIGARCH Computer Archi-
tecture News, vol. 40, pp. 130141, 2012.

[5] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way func-
tions,” Science, vol. 297, no. 5589, pp. 2026-2030, 2002.

[6] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random
functions,” ACM Conference on Computer and Communications Security,
pp. 148-160, 2002.

[7] J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs
and their use for IP protection,” in CHES, pp. 6380, 2007.

[8] G. E. Suh and S. Devadas, “Physical unclonable functions for device authen-
tication and secret key generation,” in DAC, pp. 914, 2007.

[9] J. W. Lee et al., “A technique to build a secret key in integrated circuits
for identification and authentication applications,” in Symposium on VLSI
Circuits, pp. 176179, 2004.

[10] S. Devadas et al., “Design and implementation of PUF-based unclonable
RFID ICs for anti-counterfeiting and security applications,” in IEEE Inter-
national Conference on RFID, pp. 5864, 2008.

[11] E. Simpson and P. Schaumont, “Offline hardware/software authentication for
reconfigurable platforms,” in CHES, pp. 311323, 2006.

[12] Y. Alkabani and F. Koushanfar, “Active hardware metering for intellec-
tual property protection and security,” in USENIX Security Symposium, pp.
291306, 2007.

[13] M. Potkonjak, S. Meguerdichian, and J. L. Wong, “Trusted sensors and re-
mote sensing,” in IEEE Sensors, pp. 11041107, 2010.

51

[14] J. B. Wendt and M. Potkonjak, “Nanotechnology-based trusted remote sens-
ing,” in IEEE Sensors, pp. 12131216, 2011.

[15] G. E. Suh et al., “Design and implementation of the AEGIS single-chip secure
processor using physical random functions,” in ACM SIGARCH Computer
Architecture News, vol. 33, pp. 2536, 2005.

[16] N. Beckmann, M. Potkonjak, “Hardware-Based Public-Key Cryptography
with Public Physically Unclonable Functions,” Information Hiding: 11th In-
ternational Workshop, pp. 206-220, Darmstadt, Germany, 2009.

[17] U. Rührmair, “SIMPL systems, or: can we design cryptographic hardware
without secret key information?,” in SOFSEM, pp. 2645, 2011.

[18] S. Meguerdichian, M. Potkonjak, “Matched public PUF: ultra low energy
security platform,” IEEE/ACM ISLPED, pp. 45–50, 2011.

[19] S. Meguerdichian, M. Potkonjak, “Security Primitives and Protocols for Ultra
Low Power Sensor Systems,” IEEE SENSORS, pp. 1225-1228, October 2011.

[20] T. Xu, J. B. Wendt, M. Potkonjak, “Digital Bimodal Function: An Ultra-
Low Energy Security Primitive,” International Symposium on Low Power
Electronics and Design (ISLPED), pp. 292-297, 2013.

[21] M. Fyrbiak, C. Kison, and W. Adi, “Construction of software-based digital
physical clone resistant functions,” in International Conference on Emerging
Security Technologies, pp. 109112, 2013.

[22] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design and
implementation of secure reconfigurable PUFs,” ACM Transactions on Re-
configurable Technology and Systems, vol. 2, no. 1, pp. 5, 2009.

[23] U. Rührmair et al., “Modeling attacks on physical unclonable functions,” in
Computer and Communications Security, pp. 237249, 2010.

[24] X. Xu and W. Burleson, “Hybrid side-channel/machine-learning attacks on
PUFs: a new threat?,” in DATE, pp. 349, 2014.

[25] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM side-
channel(s),” in CHES, pp. 2945, 2003.

[26] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in
CHES, pp. 212, 2003.

[27] J. A. Halderman et al., “Lest we remember: cold-boot attacks on encryption
keys,” Communications of the ACM, vol. 52, no. 5, pp. 9198, 2009.

52

[28] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and
M. R. Stan, “Hotspot: A compact thermal modeling methodology for early-
stage VLSI design,” IEEE Transations on VLSI Systems, vol. 14, no. 5, pp.
501-513, 2006.

[29] T. Xu, M. Potkonjak, “Robust and Flexible FPGA-based Digital PUF”, In-
ternational Conference on Field Programmable Logic and Applications, pp.
1-6, September, 2014.

[30] T. Xu, J. B. Wendt, M. Potkonjak, “Secure Remote Sensing and Communi-
cation using Digital PUFs”, Symposium on Architectures for Networking and
Communications Systems, pp.1-12, October, 2014.

[31] “Implementation of security in Actels ProASIC and ProASICPLUS flash-
based FPGAs,” "http://www.actel.com/documents/Flash_Security_AN.

pdf", 2003.

[32] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A study of through-silicon-via
impact on the 3D stacked IC layout,” in ICCAD, pp. 674680, 2009.

[33] T. Huffmire et al., “Hardware trust implications of 3-D integration,” in Pro-
ceedings of the 5th Workshop on Embedded Systems Security, pp. 1, 2010.

[34] J. Valamehr et al., “A qualitative security analysis of a new class of 3-D
integrated crypto co-processors,” in Cryptography and Security: From Theory
to Applications, pp. 364382, 2012.

[35] S. Briais et al., “3D hardware canaries,” in CHES, pp. 122, 2012.

[36] U. Guvenc, “Active shield with electrically configurable interconnections,” in
SECUREWARE, pp. 4345, 2013.

[37] P. Yalla, J-P. Kaps, “Lightweight cryptography for fpgas,” Reconfigurable
Computing and FPGAs, 2009. ReConFig’09. International Conference on.
IEEE, 2009.

[38] E. Oksuzoglu, E. Savas, “Parametric, secure and compact implementation of
RSA on FPGA,” Reconfigurable Computing and FPGAs, 2008. ReConFig’08.
International Conference on. IEEE, 2008.

53

