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Abstract

We describe a framework where DNA sequence information and expression arrays data are

used in concert to analyze the effects of a collection of regulatory proteins on genomic expres-

sion levels. The search for potential binding sites in sequence data leads to the identification of

potential target genes for each transcription factor. The analysis of array data with a Bayesian

hidden component model allows us to identify which of the potential binding sites are actually

used by the regulatory proteins in the studied cell conditions, the strength of their control, and

their activation profile in a series of experiments. We apply our methodology to 35 expression

studies in E. Coli.

1 Introduction

The complete sequencing of a large number of genomes, and the growing amount of information

stored in databases allows us to identify genes, introns and exons, splice sites, binding sites for

regulatory proteins, etc. As a consequence we can start tracing with some accuracy a picture

of the possibilities inscribed in DNA sequences such as which proteins a cell could make, which

transcription factors may regulate the expression of which genes, which alternative forms of a gene

are possible. This complex collection of wiring systems has been described by Davidson [8] as a

“view from the genome” of the cell. This static picture describes the realm of possibilities, rather

than what actually happens in the cell.

Alternatively, one can talk about a “view from the nucleus”, that offers a dynamic image

capturing which genes are actually expressed, under the control of which transcription factor at

any moment. Gene expression arrays, with all their limitations, by being a relatively low cost,

high throughput experiment, conducted in a wide range of laboratories, offer a very important

data source towards the gathering of such dynamic pictures. Indeed, there is a growing literature

documenting attempts to reconstruct biological networks by applying statistical models to gene
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expression data. Many of these attempts are exploratory in nature, in that very little prior informa-

tion on the structure of the network is assumed. While this line of work is clearly very important

to help formulate hypotheses regarding yet unexplored mechanisms, in many cases enough infor-

mation has been accumulated to enable us to take a more confirmatory approach. The knowledge

derived from sequence analysis and experimentally verified binding sites for regulatory proteins,

from which we can extract a static picture of cell regulation, can be taken as a starting point for fur-

ther investigations that, with the addition of gene expression array data, aim to gather a dynamic,

quantitative version of the same snapshot. This paper describes such an approach with regard to

the very specific process of transcription regulation, which is perhaps the first step linking the static

information encoded in the genome with the dynamic system of the cell life.

To clarify our goal, we illustrate the transcription network with the graph in figure 1. Figure

1 contains a two layer network, where directed edges connect two types of nodes, parent nodes

(indicated with R) represent transcription factors and descendant nodes represent genes whose ex-

pression is regulated by the ancestral transcription factors. A node can be either a parent or a

descendent but not both. This excludes feedback processes that may be important, but are not

necessary in a first order model of transcription regulation in simple systems such as E. Coli. A

transcription factor will typically control multiple genes and each gene will be controlled by at

least one transcription factor, and typically not more than three. The presence of an arrow connect-

ing a transcription factor with a gene indicates the presence of a binding site for the transcription

factor in the up-stream region of the gene, i.e. the potential role in regulation. The information

represented in this network corresponds to the “view from the genome” picture we alluded to pre-

viously. We will refer to the information represented in figure 1 as topological: a list of nodes and

directed edges. Aside from the topology of the network, there are other quantitative and dynamical

characteristics of the biological system that one wishes to learn. For instance, a transcription factor

influences genes with different degrees of strength. Hence, it is desirable to attach to each arrow

in the network a numerical value signifying the control strength. Alternatively, while all arrows
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correspond to possible binding sites, a given transcription factor will bind in front of a gene only

in certain conditions and we want to be able to capture this dynamical behavior.

In this paper, we develop a Bayesian methodology to estimate the strengths of the effect of

each transcription factor on each gene, the activation patterns of the transcription factors and the

topology of the regulatory network. The Bayesian paradigm is particularly well suited to a problem

of this nature because one can easily update prior information about the network topology, for ex-

ample from experimentally verified binding sites, with new gene expression data to produce a new,

more accurate, picture of the entire network. We illustrate this approach using E. Coli data, not

only because it is a simple and well studied system, but also because it is widely used in biotech-

nical and bioengineering settings, so that the ability to simulate intracellular processes responds to

a real practical need and its results will be tested by a large community of interested researchers.

The choice of E. Coli as an initial organism of study also informs our choices of data sources.

To define the topology of the network, we will rely substantially on sequence information—in the

form of sequences upstream of the genes, where we will identify putative binding sites of regula-

tory proteins—and on database collections of experimentally identified binding sites for regulatory

proteins of interest. There are other forms of high throughput experiments that can give some in-

formation on the location of binding sites, such as ChIP-Chip experiments. When such information

is available, one would be wise to use it. However, such experiments are still rather rare and costly,

and have not been carried out for E. Coli, which is why we decided to rely only on sequence

data. To reconstruct the dynamical and quantitative aspects of the transcription regulation network

we will rely on gene expression array experiments: a number of laboratories have now carried out

large scale studies of this type for E. Coli and made their results publicly available, and this appears

to be the case for a large number of organisms. The general flow of our procedure is illustrated in

figure 2: we initially analyze sequence data to obtain an initial guess at the network topology and

we then resort to array data to reconstruct activation profiles of transcription factors, their control

strengths, and update the network topology.
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The paper is structured as follows. Section 2 gives the basic model that we use to fit the

network. A Bayesian framework is introduced in Section 3 to incorporate prior information we

have about the network topology. In Section 4 we discuss the posterior distributions that this

model induces and outline a Gibbs sampling procedure for fitting the model. Section 5 provides

illustrations of the method on an E-coli data set. We conclude with a discussion.

2 A model for gene expression data

ConsiderN genes that are known to be regulated (over all) byL transcription factors. Suppose that

the expression values of the genes can be measured with gene expression arrays, leading to a vector

of background corrected, normalized and log transformed valuese = (e1, . . . , eN)′ (see [21, 29])

Note that the terminology we use is typical of cDNA spotted arrays, but the analysis is unchanged

when a different experimental platform is used. Furthermore, if cDNA arrays are used, typically

e will represent changes from a baseline value of expression and all the quantitative values in the

network will need to be interpreted in relation to changes from this baseline. For simplicity we

will refer to e as the expression level, an absolute quantity.

We want to relate gene expressions to quantitative values representing the activity of transcrip-

tion factors. Since their concentration in the nucleus is crucial in defining how often they bind to

recognized DNA sites, we letp, aL× 1 vector, represent the concentrations of active forms of the

transcription factors. LetA be aN ×L matrix, whose elementsaij quantify the control strength of

transcription factorj on genei, whereaij = 0 signifies no relationship. Suppose that we perform

M different experiments. Then our model can be written as

et = Apt + γt, γt ∼ N (0, σ2I), t = 1, . . . ,M (1)

with et andγt respectively representing the observed expression levels and an error term for ex-

perimentt, andpt andA unknown quantities. Our model poses a linear relation betweenet, the
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gene expression values, andpt, the concentration of active forms of transcription factors. We are

not assuming that such a relation corresponds to the biological reactions underlying transcription

regulation, but simply suggesting it as a viable approximation for the purpose of our data analysis.

Indeed, there are a number of contributions in the literature where such a simple model appears to

be useful in capturing at least first order effects ([5, 14, 6]). A crucial component of our linear for-

mulation is that it excludes the presence of interactions between transcription factors. While this

hypothesis may be too restrictive in general, it is quite adequate for E. Coli, where there are very

few examples of known interactions between transcription factors. Note that the model presented

in (1) is identical to the one adopted in [17] and [13] and called network component analysis.

These articles also provide motivation for the biological grounding of this simple bilinear model.

We further assume that the error terms inγt be independent, with a Gaussian distribution and

zero mean. The error distribution clearly depends on the quality of the data. As we mentioned

before, we assume that the valueset have been pre-processed with state of the art techniques that

correspond to the specific array platform used which insure that the measurement error is as close

to white noise as possible. Independence is not a very strong assumption, if one believes that the

linear terms in the model have captured the dependence between genes, as it is due to regulation

by common factors. The choice of a Gaussian distribution is more arbitrary, but does provide

significant reductions in computational difficulty and, in addition, once we deal with estimation,

leads to the same least squares criteria that was adopted in [17].

In a more general setting, models with the form given in (1) are often called factor analysis

models [3]. There are, however, some aspects that make our problem quite different from the stan-

dard factor analysis. First, in our setting the factorsp are considered parameters and not random

quantities: this is because in different experiments one expects different and unique concentration

values that depend on the cell enviroment. Secondly, often, in factor analysis an a-priori interpre-

tation of the factors is not available, while in our setting, each factor in the model corresponds to

one specific regulatory protein. A third departure from the most common venue of factor analysis
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depends on how we approach the problem of identifiability.

Let us comment on the nature of the unknowns,pt andA. The regulation of transcription

factors mainly occurs post-translationally. In response to varying cell enviroments, these molecules

undergo chemical modifications which transform them between active and inactive forms. These

modifications are substantially faster than the synthesis of new proteins and hence enable the cell to

efficiently respond to stimuli. The fact that these changes happen post-translationally implies that

measuraments of the mRNA transcripts of these genes do not provide relevant information. For

instance, in E. Coli the vast majority of transcription factors are expressed by the cell at a constant

rate over time. In some other organisms, such as yeast, the transcription factors involved in cell

cycles appear to undergo changes in expression level [27]. Nevertheless, this is the exception rather

than the rule. As the expression levels of transcription factors are typically constant and not directly

related to their activity, the dataet does not provide direct information on the concentration of the

active form of transcription factors. Additionally, direct measurements of these concentrations are

very difficult, given their typically very low levels. For these reasons, we considerpt an unknown

parameter.

The matrixA contains information on the arrows, i.e. the topology, in the transcription net-

work. A value ofaij = 0 implies that there is no arrow, or equivalently no relationship, between

transcription factorj and genei. Other numerical values ofaij indicate the control strength of tran-

scription factorj on genei. If no information is available for network topology then one is forced

to perform a blind deconvolution ofet to estimate the two unknown quantitiesA andpt. Typically,

this will require using methods such as principal components analysis which make strong statis-

tical assumptions aboutpt andA (see [2], for example). Alternatively, ifA is completely known,

then the problem of estimatingpt based on the expression levels,et, can be performed using stan-

dard least squares. However, in reality we have partial information aboutA and we find ourselves

somewhere between these two scenarios. For instance, because of the topological characteristics

of our network, we know that the majority of the elements ofA will be zero. In addition, we
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can identify putative binding sites of regulatory proteins (potential non-zero elements ofA) using

sequence information, in the form of sequences upstream of the genes and database collections

of experimentally identified binding sites for regulatory proteins of interest. Hence, we adopt a

Bayesian framework which allows us to incorporate this partial information into the model given

by (1) in the form of priors onA andpt. We discuss these priors in the following section.

3 Prior distribution

An essential characteristic ofA is that it contains a large number of zeroes so our prior onA has to

incorporate this knowledge. For this purpose, we define a matrixZ with the same dimensions as

A such that each element,zij, is either zero or one. Values ofzij = 0 imply aij = 0 and hence no

relationship between genei and transcription factorj. Values ofzij = 1 imply thataij 6= 0. In this

formulationZ defines the network topology andaij the strength with which transcription factorj

acts on genei. For each element ofZ we assign a probability of a connection,πij = Pr(zij = 1),

and we assume independence across thezij ’s. Where there is documented experimental evidence

of a binding site for transcription factorj in the promoter region of genei, we setπij = 1. For

the remaining elements ofZ we calculateπij based on an analysis of the sequence upstream of

the gene under consideration. While this approach can be taken with a variety of methods to

identify binding sites, we used our ownVocabulonalgorithm ([26]) that assumes a dictionary

model with variable spelling and is precisely apt to scan long sequences for the occurrence of

multiple motifs. Vocabulon identifies, for each transcription factor in the dictionary, a series of

putative locations and evaluates, for each of these, a probability of occurrence. Technically, a

probability of occurrence is evaluated for each binding site at each location but a user discretional

threshold can be used to select locations that have a substantial probability. In our case we chose

to setπij equal to the predicted probability for estimated values larger than 0.05 andπij = 0 for

lower values. This strategy assumes that the Vocabulon algorithm contains no false negatives. This
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assumption is certainly a limitation, but not a serious one given that we can fix the threshold for

detection as low as desired and the fact that in general false positive are a much more serious

problem than false negatives for these algorithms. This choice greatly reduces the set of possible

non-zeroaij ’s and hence the computational burden associated with their exploration.

Givenzij, the prior probability onaij is simply set by letting

aij =


N (0, σ2

a) zij = 1

0 zij = 0,

independently acrossi andj. The choice of a Gaussian distribution is dictated by convenience. Its

mean is set to zero as a priori one does not know if a transcription factor would act as a promoter

or a repressor of a given gene. The constant variance acts as a regularization parameter.

The prior distribution we choose for thept parameters is very similar to the one of the non

zero components of the matrixA. We assumeL transcription factors observed overM different

experiments. Hence we can form aL × M matrix P of parameters. Our prior takes eachpjt as

a priori independent with a Gaussian distributionpjt ∼ N (0, σ2
p). Again, Gaussianity is chosen

for computational convenience. The zero mean reflects the fact that a priori we do not know if

the activity of the transcription factorj will be enhanced or reduced with respect to baseline in

experimentt and the common variance and independence a priori are useful for identifiability pur-

poses. Note that assuming that factors are independent a-priori is not unrelated to the assumption

of independence that is common in factor analysis models where factors are often considered ran-

dom variables. Both contribute to identifiability but when, as in our case, factors are modeled as

parameters, their independence is merely in the prior distribution, with their posterior most likely

incorporating some dependence whereas when factors are modeled as random variables, indepen-

dence remains one of their structural characteristics.

Finally, we modelσ2, the variance ofγt, as the inverse of a gamma distribution with parameters

α and β. Note that assuming the same error variance for all genes may be unrealistic and is
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indeed unnecessary. We do so purely for notational convenience, as none of the formulas we will

derive changes substantially if we assume a different variance for each gene. The value of the

hyperparametersα andβ can be determined using information derived from calibration slides or

replicates of the array experiments. Indeed, often, the vectoret is the average of the results of

multiple replicate experiments in which case their variance can be adequately used to formulate a

prior guess on the error variance.

Combining these priors with the model from (1) we obtain:

et = Apt + γt, γt ∼ N (0, σ2I), t = 1, . . . ,M,

with priors on the parametersaij, pjt andσ2 of

aij|zij = 1 ∼ N (0, σ2
a), pjt ∼ N (0, σ2

p), P r(zij = 1) = πij,
1

σ2
∼ Gamma(α, β). (2)

In this formulationσ2
a, σ

2
p, πij, α andβ are considered hyperparameters. It is useful to compare this

model to that used in the studies [17, 13]. There, a model similar to (1) was used except no priors

were assumed forA, pt or σ2 and thezij ’s were taken to be known parameters. In other words the

network topology was supposed to be completely specified with only the strength of the effect of

transcription factors unknown. Such an assumption is unrealistic in practice because, while some

transcription factor-gene relationships are well documented, most are only hypothesised relation-

ships based on methods such as the Vocabulon algorithm. The Bayesian approach using the priors

given by (2) has two advantages. First, by placing a prior on thezij ’s, or equivalently the network

topology, we can incorporate partial information without assuming full knowledge of the network.

Second, through the generation of posterior distributions, described in the following section, one

can easily produce estimates of uncertainty associated with each of the model parameters.
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4 Posterior distribution and inference

The central instrument of inference in our Bayesian model is the posterior distribution of the pa-

rameters,Z,A, P andσ2. Once we evaluate the posterior distribution we can produce point esti-

mates, using the posterior means, and confidence intervals, using the appropriate posterior quan-

tiles. In Section 4.1 we derive the posterior distribution. Section 4.2 shows how we use a Gibbs

sampler to sample from the posterior distribution and Section 4.3 discusses identifiability issues.

4.1 The posterior distribution

In order to write out the posterior density of our parameters with some compactness, we introduce

some notation. Ifx andy are twor dimensional vectors, we denote byxy the product of all the

components of the first vector raised to the power of the corresponding components of the second

i.e. xy =
∏r

i=1 xyi

i . If Z is a matrix, we denote the vector corresponding to itstth column byzt,

and the column vector corresponding to itsith row byzi. If z is a vector of zeros and ones, anda

a vector of the same dimension, we indicate witha[z] the vector of elements ofa corresponding to

ones inz. Similarly, if P is a matrix that has as many rows asz, P [z] is the submatrix obtained by

selecting the rows ofP that correspond to ones inz. Moreover, ifA has the same dimension asZ,

AZ indicates a matrix identical to A, except with all its elements corresponding to a zero inZ set

to zero.

Then, sinceA, P andE|Z,A, P all have a Gaussian distribution the posterior can be written
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as

Pr(Z,A, P, σ2|E) ∝ Pr(Z,A, P, σ2, E) = Pr(E|Z,A, P, σ2)Pr(σ2, Z, A, P ) (3)

= Pr(E|Z,A, P, σ2)Pr(σ2)Pr(Z)Pr(A|Z)Pr(P )

∝
(

1

σ2

)MN
2

+α−1

exp

{
− 1

2σ2

(
2β +

N∑
i=1

(ei − P [zi]′ai[zi])′(ei − P [zi]′ai[zi])

)}
×[

N∏
i=1

πi(zi)(1− πi)(1−zi)

]
exp

{
−1

2

(
N∑

i=1

ai[zi]′ai[zi]/σ2
a +

M∑
t=1

p′
tpt/σ

2
p

)}
(4)

Notice that the form of the likelihood function,Pr(E|Z,A, P, σ2), derives from the fact that the

sum that appears in the exponential of the likelihood can be written in a few alternative forms:

N∑
i=1

M∑
t=1

(eit−
L∑

j=1

aijpjt)
2 =

N∑
i=1

(ei−P [zi]′ai[zi])′(ei−P [zi]′ai[zi]) =
M∑
t=1

(et−AZpt)
′(et−AZpt).

4.2 Exploration of the posterior and inference

In order to sample from, and hence estimate, the posterior distribution, it is convenient to use a

collapsed Gibbs sampler, which is an example of a Markov chain. A Gibbs sampler works by

iteratively producing a random sample from one of the parameters conditional on the previously

sampled values of the other parameters. In order to implement such an algorithm we must identify

the conditional distributions of the four parameter groupsZ,A, P andσ2. Notice, firstly, thatai

is independent fromaj for i 6= j conditionally onZ andP . Similarly, pt is independent from

ps conditionally onA andZ. Then the four conditional distributions derived from the posterior
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distribution, given by (4), are:

P(zi|P, σ2) ∝ πi(zi)(1− πi)(1−zi) ×
det(P [zi]P [zi]′/σ2 + I|zi|/σ

2
a)

− 1
2

σ
|zi|
a

exp{ 1

2σ4
ei′P [zi]′(P [zi]P [zi]′/σ2 + I|zi|/σ

2
a)

−1P [zi]ei}(5)

ai|P, Z, σ2 ∼ N ((P [zi]P [zi]′/σ2 + I|zi|/σ
2
a)

−1P [zi]e
i/σ2, (P [zi]P [zi]′/σ2 + I|zi|/σ

2
a)

−1) (6)

pt|A, Z, σ2 ∼ N ((A′
ZAZ/σ2 + IL/σ2

p)
−1A′

Zet/σ
2, (A′

ZAZ/σ2 + IL/σ2
p)

−1) (7)

1

σ2
|A, Z, P ∼ Gamma(α + MN/2, β +

N∑
i=

M∑
t=1

(eit −
L∑

j=1

aijpjt)
2/2). (8)

The conditional distributions given by (6), (7) and (8) are easily identified from the joint posterior.

The posterior probability for each vectorzi conditional onP andσ2, (5), is obtained by integrating

out ai and only keeping track of the terms that depend onzi. This is the collapsing step of the

Gibbs sampler and it is useful to resort to it in order to maximize the mixing of the chain. Note that

we need to calculate (5) for all possiblezi and then sample according to a multinomial probability.

This is a potentially heavy computational burden. However, in general this will not be a problem

because of the large number of zeros inZ i.e. for each gene, the number of potential binding

sites is rather limited and hence so to is the space of possible values ofzi. Once a sample from

the posterior distribution is obtained, one can summarize it by calculating expected values and

confidence intervals for each of the parameters.

Another significant advantage of our approach is the ease with which missing data in the

expression matrix,E, can be handled. We simply add a fifth step to the Gibbs sampling algorithm

described above where we impute any missing values. From (1) the distribution ofeit|ai, pt is

Gaussian with mean
∑L

j=1 aijpjt and varianceσ2. Hence, at each iteration of the sampler, we

imputeeit using its conditional mean, whereai andpt are obtained from the most recent Gibbs

sample.

Furthermore, note that in some cases one may not want to assume independence a priori among

pjt andpjs ast ands are experiments in a time series. To describe cases of this generality, we can
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assume a prior distributionpj ∼ N (0, Λ); the posterior distribution ofp, then, cannot be separated

in the independentpt components, but can nevertheless be explored with a Gibbs Sampler chain.

4.3 Identifiability

There is a fundamental indeterminacy in any factor analysis type model such as the one we propose

in (1). Indeed, if one takes any invertibleL×L matrix, and defines̃A = AX andP̃ = X−1P , one

obtains a new set of parameters that lead to exactly the same likelihood for any set of observations

since

ÃP̃ = AXX−1P = AP. (9)

In classical statistics such models are called unidentifiable because it is not possible to discrim-

inate, on the basis of the data, among a class of possible parameter values. In factor analysis a

series of restrictions are imposed onA andP to overcome this impasse [3]. The nature of these

constraints depends on the specific type of factor model considered: for example, when factors

are taken as random variables with a Gaussian distribution, one can impose constraints on the

variance-covariance matrix. When factors are considered parameters, other options are available.

For example, in [3] it is shown that identifiability can be achieved by constraining certain elements

of theA matrix to be zero. A sparsity constraint of this form is biologically sensible, as we know

that genes are generally influenced by a small number of transcription factors, and we have con-

siderable prior knowledge to identify these zero elements. Indeed, [17] provides a general set of

conditions on the sparsity ofA under which the only matricesX for which (9) holds are diagonal

and henceA andP are identifiable up to multiplicative constants. Unfortunately, while the con-

straints in [17] are overall rather reasonable, it is unrealistic to assume that the true transcription

network will respect all the identifiability constraints given in [17].

In this paper, we take a Bayesian approach, which has implications with regard to identifia-

bility. Generally speaking, the fact that multiple parameter values are equally favored by the data
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does not represent a radical difficulty for Bayesian inference, as long as the posterior distribution

is proper (it is still possible, for example, to calculate the posterior expected value). Neverthe-

less, unidentifiable models may lead to posterior distributions that have multiple modes of equal

value, which represent an impasse if we are interested in maximum a posteriori estimates and also

creates computational difficulties when we need to explore the posterior distribution with MCMC

methods. For these reasons, it is preferable to choose the prior distribution so that the posterior is

unimodal.

In our case, the combination of restrictions onA and the prior distributions, allow us to obtain

a posterior distribution that is easy to deal with, except for an indeterminacy in the signs ofA and

P i.e. one can obtain identical results by flipping the sign on the jth column ofA and the jth row of

P . To deal with this sign indeterminacy, one can adopt a series of possible conventions. We opted

to constrain the mean value for each row ofP to be positive. This constraint was achieved using a

two step approach. First, for any iteration of the Gibbs sampler where a row ofP had a negative

mean we flipped the signs on the corresponding row ofP and column ofA. This approach has

the potential disadvantage of incorrectly flipping the sign simply because random fluctuation in

a Gibbs iteration caused a sample row mean to be negative even though the true row mean was

positive or vice versa. Hence, for the second step we computedP̄j, the mean value of the jth row

of P over all the Gibbs samples. We then calculated the mean squared difference both betweenPj

andP̄j and between−Pj andP̄j for each Gibbs iteration. If−Pj was closer tōPj we again flipped

the sign. In addition we standardize each row ofP to have norm one and correspondingly adjust

the columns ofA. In theory, this normalization is not required because of the priors onA andP .

However, we have found in simulations that the estimates are far more stable when normalized,

especially when the priors are weak.

In addition to the direct estimates forA andP we also compute the average effect of each

transcription factor on the genes it regulates (regulon expression)p̃jt, and the average control
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strength over all experiments,ãij. In particular

p̃jt =

∑
i aijpjt∑

i 1(aij! = 0)
and ãij =

∑
t aijpjt

M
.

These quantities are more directly related to the expression values of genes in a regulon and for

this reason we prefer them when conducting descriptive data analysis. The normalized values of

A andP described above may be more useful for prediction purposes.

5 Data analysis

We illustrate the applicability of our method with the analysis of35 microarray experiments of E.

Coli that are either publically available or were carried out in the laboratory of Professor James C.

Liao at UCLA. The experiments consist of Tryptophan timecourse data (1-12) [15], glucose acetate

transition data from the Liao lab (13-19) [18, 19], UV exposure data (20-24) [7] and a protein

overexpression timecourse data also from the Liao lab (25-35) [20]. To reduce spurious effects due

to the inhomogeneity of the data collection, we standardized the values of each experiments, so that

the mean across all genes in each experiment is zero and the variance one. Merging these different

datasets we have expression measurements on 4289 genes across 35 experiments. In general terms,

biological knowledge of the nature of the microarray experiments suggests that the LexA regulon

should be activated in the UV experiments, the TrpR regulon should be activated in the Tryptophan

timecourse, and the RpoH regulon in the protein overexpression.

To define the network and our prior on the connectivity structure, we relied, as described

previously, on literature knowledge and the results of a genomewide investigation for binding

sites using a dictionary model. For details on the latter we refer to the original paper [26]. We

categorized a location as a potential binding site if the Vocabulon algorithm assigned it a probability

higher than 0.5. By merging these potential binding sites with the known sites from the literature,

and with the expression data, we obtained a set of1433 genes, potentially regulated by at least one
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of 37 transcription factors and on which expression measurements were available (missing values

in the array data were allowed). The top portion of Figure 3 illustrates the level of sparsity implied

in the prior distribution. For example, our prior suggests that14 of the 37 transcription factors

each regulate at most20 genes and that approximately1000 of the genes, the vast majority, are

regulated by only1 transcription factor. Each transcription factor is expected to regulate a rather

small number of genes, with the notable exception of CRP, which potentially regulates over500

genes.

Figures 3 through 5 give a global view of the results from our analysis of the35 experiments.

Figure 3 (lower portion) illustrates how the analysis of the array data modifies our prior belief in

the network structure: a significant portion of the potential binding sites are discarded. To better

interpret the differences between the prior and posterior network, it is useful to underscore some

characteristics of the process that leads us to the formulation of the prior. The search for binding

sites carried out by Vocabulon is based uniquely on sequence information: it is quite possible that

a portion of the E. Coli genome sequence looks just like a binding site for a TF, resulting in a

high probability as estimated by our algorithm, but is actually not used by the protein in question.

Moreover, the search for binding sites in the regulatory region of each gene is carried out inspecting

600bp upstream the start codon: given the size of E. Coli genes, this often results in investigating

the same region for multiple (close together and short) genes. If a binding site is located in such

a sequence portion, it will be recorded for all of the genes whose “transcription region” covers

it. It is quite reasonable to assume that only one of the genes are actually regulated by the TF in

question. In particular, one could decide in favor of the closest gene. However, such a choice is

arbitrary. We have used the output of Vocabulon in a non-curated form for our prior, preferring

to rely on array data to make such choices. In order, however, for this to be possible, given the

relatively small size of the array data set, we had to down-weight the probabilities calculated by

Vocabulon, which will be uniformly high in case of the overlap described above. In particular, we

have, quite arbitrarly, set equal to 0.5 the probability of each binding sited detected by Vocabulon,

18



but not known to be true in the literature.

Figure 4 illustrates the regulon activities as reconstructed by our model: green dots indicate

the expected value and the vertical bars span the regions that receive 0.99 probability according

to the posterior distribution. The first piece of information quickly conveyed by Figure 4 is that

the majority of the analyzed regulons are not perturbed by any of the experiments. This is to be

expected, in that any shock induces a relative small number of changes in the expression pathways.

We repeated the analysis of the dataset, including only the transcription factors that appear to

experience some changes in activation, and the genes that they regulate, and we obtained (for

these TF) results entirely comparable to the ones shown here. This is not a surprise, given the

sparsity of the connectivity, which makes it highly unlikely that one gene is regulated by more

than one transcription factor. An other global observation is that the location of the posterior

distribution, and sometimes its spread, seem to vary across sets of experiments, even when the

expected value of the regulon is not different from zero. This suggests that, despite our initial

standardization, there may be residual differences in the noise levels of different experiments,

which may be worth modeling. Additionally, note that not surprisingly the spread of the posterior

distribution is inversely proportional to the number of genes in the regulon.

Focusing on the regulons that are activated in some of the experiments, we notice that our

framework successfully brings to the attention of the researcher the regulons that are known to be

affected by the type of shock experienced by the cell. In particular, the first 8 experiments [15]

are two 4-point time courses of tryptophan starvation. The absence of tryptophan induces the de-

repression of the genes regulated by trpR, and a clear increase in expression for this regulon can be

observed. The experiments 9-12, instead, consider the effect of providing the cells with extra tryp-

tophan, leading to opposite expectation for the trpR regulon: the posterior expected value is lower

than zero, but the difference is not statistically significant. Additionally, it has been previously

reported that addition of trpR downregulates several genes controlled by tyrR—and indeed, we

notice a similar phenomenon. The patterns of argR and fliA regulon also correspond to previous
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literature observation [15]. Figure 4 also suggests other effects (on the rpoH, narL, lexA regulon)

that warrant further investigation. Experiments 20-24 are a comparison of wild type E. Coli cells

with cells that were irradiated with ultraviolet light, which results in DNA damage. Many of the

DNA damage-genes are known to be regularly repressed by lexA. Indeed, according to our recon-

struction, the lexA regulon experiences an increase in expression during these five experiments.

Finally, we notice activation of a few regulons in the protein overexpression data. In particular,

notice that rpoH2 and rpoH3 present the same profile across experiments (and increased expres-

sion in the last dataset): this is reassuring, since these two really represent the same protein, and

are distinct here because they correspond to two different types of binding sites of the TF. Overall,

hence, it appears that our algorithm successfully captures the activation dynamics of the studied

transcription factors. The fact that a considerable number of TF, however, do not seem to expe-

rience any change in the experiments, must significantly limit our ability to refine information on

their binding sites and especially on the strength of their control.

Figure 5 gives an overall image of our results in estimating control strengths. While it is

difficult, and arguably not too meaningful, to extract general patterns, one can notice that a large

portion of the confidence intervals for̃a cover zero, as one might expect due to the lack of in-

formation about the TF’s that do not experience changes in activation in the set of considered

experiments. It is more relevant to discuss the case of the activated regulons. We focus on trpR and

lexA. Figure 6 presents information onZ andã for the trpR regulon. There were 4 genes known

to be regulated by trpR and an additional 3 imputed ones. Actually, the binding site suggesting

the potential regulation of these three additional genes, is the same as that in the transcription re-

gion of two of the known genes, that is we have a couple of cases of the overlapping regulatory

regions described above. The b-numbers, chosen to identify the genes, roughly correspond to their

genomic location, so it is easy to see that the top three genes in the table are adjacent, and so are

the bottom two. In the case of b1264, b1265, b1266, the last two genes appear to not be regulated

by trpR. b1265 can be excluded by at the posterior probability of regulation. b1266 has posterior
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probability higher than 0.5, but its control strength is not significantly different from zero and is

in the opposite direction to that of the four genes known to be regulated by trpR—which is known

to act only as a repressor. Thus it was possible to use our model to rule out the regulation of two

genes by trpR, that are within a reasonable distance from a trpR real binding site. The case of the

last gene in the list is similar, however this time both the posterior probability of regulation is high

and the majority of the sampled̃a values agree with the ones of the close-by gene, truly regulated

by trpR. We can either hypothetize that these genes form a weak operon, or that there are some

errors in transcription so that b4359 is often transcribed when b4393 is.

Figure 7 gives some details of the analysis of the lexA operon (that contains 45 genes). The

first two genes, b0958 and b0959, adjacent, with b0958 truly regulated by lexA, and the second

hypothetized to, because its regulatory region contains the lexA binding site for b0958. A look at

the posterior values forZ andã clearly rules out the possibility that b0959 is regulated by lexA.

The last group of genes represent a similar situation, but this time array analyis leadsone to believe

that both genes are regulated. Indeed, the latest version of the database regulonDB documents this

as a potential operon.

6 Discussion

The literature on gene networks and their reconstruction using microarray expression experiments

contains so many articles that it is almost impossible to review them entirely and contrast them with

the specific approach reported here. Hence, we will utlize some overarching themes to organize

the discussion, with the very specific goal of identifying the contributions that are closest to ours,

clarifying its originality.

Firstly, we want to point out that while the number of studies that attempt reconstruction of

gene networks from array data is large, the biological relations implied in these networks are very

diverse. For example genes may be connected with an edge if they are coregulated, or if they be-

21



long to the same signaling or metabolic pathway, etc. We have focused on the much more specific

domain of transcription regulation networks. Other contributions in this direction can be found

in [17],[4],[27],[11], [10]. One of the fundamental characteristics of transcription regulation net-

works is that the activity of transcription factors is determined by the concentration of their active

form, which depends largely on post-translational mechanisms. In other words, changes in mRNA

levels for transcription factors are unlikely and are not necessary to cause substantial changes in

their activity levels. This implies that typically one has to augment the data on expression values

with information on transcription factors derived from other sources (sequence analysis, ChIP-

Chip data, experimental measurements on TF levels, literature knowledge, etc.) and/or model

changes in the activity levels of transcription factors as hidden components. Few studies have been

able to use measurements of transcription levels of regulatory proteins (see for example, [27]);

this strategy, however, is appropriate for only a relatively small fraction of transcription factors,

typically cell-cycle related. We assume that changes in TF activities are unobserved and we use

sequence analysis to guide our reconstruction of these hidden factors. We now briefly consider

other contributions that share similar premises.

Sequence and expression array information have been previously used in concert. Indeed,

there are a large number of cases where a novel regulatory motif is discovered after analysis of

the upstream sequences of genes that exhibit a common regulatory mechanism. In such cases,

array analysis precedes sequence analysis, which is the opposite order to that of our approach. A

few studies start with the analysis of sequences by identifying a long list of putative regulatory

elements and then refine these results by looking at expression values. In particular, [5, 14, 6] use a

regression approach, which also resembles our linear model, to identify significant motifs, but their

intentions differ substantially from ours. Their contributions aim to identify novel binding sites,

not to quantify the extent of the control of a known regulatory protein on a gene. Additionally,

they focus on the analysis of one array experiment.

We are by no means the first to use hidden components methodology to analyze gene expres-

22



sion data. Starting from [2] there have been a number of applications of principal components or

SVD to microarray data. The goals of these studies are mainly dimensionality reduction. There

have also been a number of efforts to pursue more biologically minded analysis, using factor-like

models. Perhaps the earliest work in this direction is [28], who suggests factor models to reduce

the dimension of expression data to be used in linear models, paying particular attention to the

development of sparse models, in order to achieve a biologically realistic representation. Note

that this same principle is reflected in our prior onZ. A very recent contribution is [12], where

the authors focus on different distributional assumptions. In [1] a Bayesian version of state-space

models is used to capture dynamical changes in gene expression in time series experiments as a

function of unobserved biological changes, that can include activity levels of transcription factors.

Our work differs substantially from others that use hidden components as in our case these, while

unobserved, are specifically identified with known transcription factors through the use of prior

knowledge. This means our approach is uniquely tailored to this problem, particularly powerful,

and produces easy to interpret results.

Perhaps the contributions closest to ours are [4] and [17]. The methodology described in [4]

identifies possibly relevant sequence elements from the analysis of upstream regions of genes that

appear to have similar expression behavior. No prior information on regulatory proteins and the

form of their binding sites is assumed. On the contrary, one of our aims is precisely to quantify

the role of known transcription factors. Furthermore, the relation between sequence elements and

gene expression is modeled in [4] using a Bayesian network, while we propose a simple factor

model. A factor model is also adopted in [17]. However, our contribution differs from [17] in

that we adopt a Bayesian framework, which greatly relaxes the identifiability conditions as well as

providing an easy mechanisim for the inclusion of partial information about the network topology.

We do not require absolute knowledge on the position of binding sites from the literature. Instead

we analyze sequence data with the Vocabulon algorithm to gather prior information on possible

sites. Out method also has little difficulty dealing with expression array data containing missing
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information.

A limitation of our current implementation is in the assumption of an absence of false negative

results in our sequence analysis for identification of binding sites. This would require modifying

our prior probability so that any regulatory protein has a non zero prior of having a binding site in

front of any gene, while ensuring sparsity. The approach of [9] may provide some suggestions in

this regard. Concrete implementation is likely to considerably increase the computational burden.
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Figure 1: A network for transcription regulations. Parent nodes, indicated as empty circles, repre-

sent regulatory proteins, or transcription factors. Descendents, filled circle, targeted genes.
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Reconstruction of TF activities

Prior Information: a dictionary of regulatory proteins binding sites
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First Data Input: upstream sequences for all the genes in E. Coli

Initial topology for regulatory network
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Second Data Input: expression array values in M experiments
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p
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Figure 2: Schematic representation of our algorithm. Initially a known dictionary of transcription

factors is used to evaluate all the regulatory regions in E. Coli to identify potential binding sites.

This information is combined with the available litterature knowledge to define a prior on the reg-

ulatory network. The analysis of expression array data with the model described in this paper leads

to a posterior probability on the topology of the network, the quantification of control strength, and

the reconstruction of the activation profiles of the transcription factors.
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Figure 3: Comparison of the sparsity of prior and posterior network. The top portion of the graph

refers to the prior distribution onZ and the lower portion to the posterior. In both cases, we

consider as “present” an edge that has probability greater than or equal to 0.5. On the left hand

side, we present the distribution of the number of genes regulated by each transcription factor; on

the right hand side, the distribution of the number of transcription factors regulating each gene.
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Figure 4: Representation of regulons activities for the 37 transcription factors in the study. Green

dots indicate the expected value and the vertical bars span the regions that receive 0.99 probability

according to the posterior distribution. Vertical dotted lines are used to separate the four groups

of experiments for ease of reading. At the expense of an optimal scale for the visualization of

the profile of each transcription factor, we have used the same scale in each of the graphs to aid

comparison. 31
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Figure 5: Summary representation of the average impact across experiments of the transcription

factors on the genes they appear to regulate (posterior probability ofzij = 1 larger than 0.8). Each

transcription factor is described in one row display, and each gene correspond to one position on

the x axis. Dotted lines indicate the position of zero in the displays. Red and blue are used to

indicate effects of opposite signs within the group of genes regulated by the same TF. Confidence

intervals (99%) are represented by vertical bars.
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Figure 6: The trpR regulon: connectivity and control strength information. Each row corresponds

to one gene that can be potentially regulated by trpR. Genes are indicated by their “b-numbers.”

The first column represents the initial probability with which trpR is thought to regulate the target

genes. The second column gives the corresponding posterior probability. The third column gives

the histogram of sampled values ofãij for the considered gene.
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Figure 7: Connectivity and control strength information for part of the lexA regulon. Each row

corresponds to one gene that can be potentially regulated by lexA. Genes are indicated by their

“b-numbers.” The first column represents the initial probability with which lexA is thought to

regulate the target genes. The second column gives the corresponding posterior probability. The

third column gives the histogram of sampled values ofãij for the considered gene.
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