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ABSTRACT 11	
Harvest-aid robots that transport empty and full trays during manual harvesting of specialty crops such as 12	
strawberries or table grapes can increase harvest efficiency, by reducing pickers' non-productive walking 13	
times. In Part I of this work, a modeling framework, and a stochastic simulator were presented for all-14	
manual and robot-aided harvesting. This paper reports Part II of our work, which utilized data gathered in 15	
two strawberry fields during harvesting, to estimate the stochastic parameters involved in modeling 16	
pickers, and evaluate the prediction accuracy of the simulator for all-manual picking. Then, as a case 17	
study, non-productive time and harvest efficiency were estimated for robot-aided harvesting, for various 18	
picker-robot ratios and three priority-based reactive dispatching strategies for the robots. The simulator 19	
predicted the pickers' non-productive time during all-manual harvesting, with 6.4%, 3%, and 1.2% errors 20	
for the morning, afternoon, and "all-day" harvesting shifts, respectively. Statistical testing verified that 21	
predicted non-productive times followed the same distributions as the measured non-productive times 22	
(5% significance level). Simulations robustness was assessed by using morning data to simulate afternoon 23	
harvesting and vice-versa: non-productive times distributions were predicted accurately (10% significance 24	
level). Robot-aided simulation results – using the calibrated simulator for a 25-picker crew – showed that 25	
all-manual harvest efficiencies of 81.8% and 78.2% for morning and afternoon shifts increased to 92% 26	
and 86.5%, respectively, when five robots were deployed. Different scheduling policies did not affect 27	
efficiency when more than five robots were used, because there were always enough robots to serve 28	
pickers' requests immediately. Also, harvest efficiency plateaued when more than five robots were used, 29	
as a consequence of the time needed for a robot to travel to a picker.  30	
 31	
Keyword: Specialty crops harvest mechanization; human-robot collaboration; multi-robot dispatching; 32	
harvest simulation. 33	
 34	

1 INTRODUCTION 35	
Labor for manual harvesting of open-field fresh market crops, like strawberries, blackberries and table 36	
grapes, contributes 55% (Bolda et al., 2016), 53% (Bolda et al., 2018) and 47.8% (Fidelibus et al., 2018) 37	
respectively, of the total operating cost per acre. In addition to labor cost, increasing farm labor shortages 38	
are driving the introduction of harvest mechanization (Charlton et al., 2019). Plant architectures and fruit 39	
sensitivity of the above mentioned crops do not allow for shake-catch mechanical harvesting approaches, 40	
such as those investigated for trellised apple trees (He et al., 2019). Furthermore, robotic harvester 41	
prototypes for such crops have not successfully replaced yet the perception, dexterity and speed of 42	
farmworkers, at a competing cost (Bac et al., 2014; Defterli, 2016). As an intermediate to complete 43	



 

 

mechanization, mechanical labor aids have been introduced. These machines can increase worker 44	
productivity by reducing workers’ unproductive times. For example, orchard platforms eliminate the need 45	
for climbing ladders and walking to unload fruits in bins (Baugher et al., 2008). Autonomous vehicle 46	
prototypes have been developed to assist in bin management in orchards (Bergerman et al., 2015; Ye et 47	
al., 2017), to reduce the need for forklift operators. In strawberry production, mobile conveyors have been 48	
introduced to reduce the time pickers spend on walking, to get the produce from the plants to the 49	
designated loading stations and return to resume picking (Rosenberg, 2003). However, such conveyors 50	
are specific to strawberries and cannot be adapted to other crops. Furthermore, their adoption has been 51	
very slow, partly because of their high purchase cost, but mainly because the efficiency gains from their 52	
use can be limited. One reason for inadequate efficiency is that row-turning in the field is time-consuming 53	
because of their large size, but more importantly, because conveyors move slowly to accommodate slower 54	
pickers, often resulting in underutilization of faster pickers (Rosenberg, 2003).  55	
 56	
As an alternative to large harvest aids, teams of small harvest-aid transports robots have been proposed 57	
and are being developed (USDA REEIS, 2013; Jang, 2018; Khosro Anjom & Vougioukas, 2019). These 58	
robots reduce pickers’ walking and increase harvest efficiency, by providing human pickers with empty 59	
trays, and carrying filled trays to a collection station. Given that one tray-transport robot serves multiple 60	
pickers, i.e., it is a shared resource, proper scheduling of the robot team in real-time is essential, to 61	
minimize picker waiting times, and equivalently maximize labor savings and efficiency, in a cost-62	
effective manner (Jang, 2018). Computing picker waiting times and harvest efficiencies for different 63	
robot scheduling algorithms, harvest scenarios (field size, crop load, crew) and robot teams (size, robot 64	
speeds, and capacities) requires validated models and simulators of manual and robot-aided harvesting.  65	
 66	
Simulation has been used extensively to evaluate scheduling and routing algorithms for agricultural 67	
machinery executing field operations. Conceptually, the problem has been modeled in the context of 68	
operations research (Bochtis & Sørensen, 2010), and simulations have been developed for generic 69	
precision agriculture operations (Emi et al., 2013; Conesa-Muñoz et al., 2016a; Conesa-Muñoz et al., 70	
2016b), and specific applications such as potato production (Zou et al., 2015); sugarcane harvesting 71	
(Santoro, Soler & Cherri, 2017); corn stalk cutting and anhydrous ammonia application (Seyyedhasani & 72	
Dvorak, 2018), large-scale seeding (Ahsan & Dankowicz, 2019). Also, workers’ manual operations have 73	
been modeled in the context of tomato trellising and harvesting (Bechar, Yosef, Netanyahu, & Edan, 74	
2007), sweet pepper harvesting (Elkoby, van’t Ooster, & Edan, 2014), cherry harvesting (Ampatzidis, 75	
Vougioukas, Whiting, & Zhang, 2014), rose cultivation (van't Ooster, Bontsema, van Henten, & 76	
Hemming, 2015), and vineyard harvesting (Mesabbah, Mahfouz, Ragab, & Arisha, 2016).  77	
 78	
Although farm worker activities and machine operations have been modeled separately, modeling and 79	
simulation of the collaboration of human pickers and transport robots in the context of harvesting has not 80	
been addressed. A methodology based on hybrid automata with stochastic parameters was developed and 81	
reported as Part I of this work by Seyyedhasani, Peng, Jang & Vougioukas (2019) to model the all-82	
manual and robot-aided harvest and crop-transport operations. The model describes the picking and 83	
walking actions of human pickers and traveling and transport actions of robots, for specialty crops harvest 84	
operations. A finite state machine approach was adopted to model the discrete operating states of the 85	
agents (i.e., pickers and robots), including state transitions and interactions among human and robot 86	
states. Due to its foundation on hybrid automata, the model was developed to be used for harvesting 87	
simulation, but also to serve as an executable task model for robots to represent human actions, in the 88	
context of human-robot collaboration (Sheridan, 2016). Based on the developed model, a Monte-Carlo 89	
harvesting simulator was developed to sample the stochastic parameters from the corresponding 90	
frequency distributions and execute the hybrid automata that represent pickers, robots, and their 91	
interactions. The simulator integrated a robot scheduler module to evaluate different scheduling policies.  92	
 93	



 

 

Given the model and simulation platform, the first goal of the work reported in this paper was to calibrate 94	
the Monte-Carlo strawberry harvesting simulator, and evaluate the prediction accuracies of the 95	
simulator’s harvest efficiency metrics, based on real harvest data. The predicted picking efficiencies of 96	
the developed model and simulator were evaluated based on statistical analyses of ground truth data 97	
(worker walking speeds, picking speeds, and idle times) obtained from video footage of strawberry 98	
harvest operations; footage was obtained from several cameras that were dynamically positioned in the 99	
field during harvesting with a large crew of pickers. The second goal of this work was to utilize the 100	
simulator in a case study, and predict the waiting times and harvest efficiencies of a crew of strawberry 101	
pickers when transport robot teams of increasing sizes were deployed, and three different priority-based 102	
reactive scheduling strategies were used to dispatch robots.  103	
 104	
The rest of the paper is organized as follows. Section 2 presents the methodology used to collect and 105	
process data to calibrate the harvesting simulator, and the three different reactive scheduling policies used 106	
in the case study. Section 3 presents and discusses the calibration experimental results and analyses of the 107	
calibrated simulator’s prediction performance, and the results from using the calibrated simulator to 108	
predict the performance of robot-aided harvesting, under different scheduling policies and robot team 109	
sizes. Finally, section 4 summarizes the results and conclusions from this work and suggests possible 110	
future work.  111	
 112	

2 METHODOLOGY 113	

2.1 SIMULATION PLATFORM CALIBRATION 114	
Within each defined state in the developed model, difference equations with stochastic parameters were 115	
used to model the agent motion and mass transfer during harvest and tray-exchanges between picking and 116	
transport agents. Stochastic parameters consisted of picker picking speed, 𝑉!, picker walking speed 117	
to/back from the collection station, V", picker travel speed between furrows, 𝑉#, picker picking time, 118	
∆t$%, and picker idle time waiting at the collection station, ∆𝑡&'. The distributions of the simulator’s 119	
stochastic variables (𝑉! , 𝑉( , 𝑉) , ∆𝑡*+ , and	∆𝑡&') were estimated by monitoring the activities of 28 pickers 120	
during the harvest of two strawberry fields, in two consecutive days. The field experiments took place 121	
during the high-yield season, in the morning (06/28/2018) and afternoon (06/27/2018) to capture the 122	
performance of pickers in different ties, before and after their lunch breaks. The fields were in Santa 123	
Maria, California [34.9472, -120.524], [34.9477, -120.519], and covered approximately 2.58 ha and 2.56 124	
ha respectively. 125	
 126	
2.1.1 Data Collection Approach 127	
The picker moving speeds and the picking times were estimated by: a) installing flags in the picking 128	
fields, before harvest, at known – measured – distances between them; b) video-recording the activities of 129	
the picking crew with digital cameras placed at appropriate locations, and c) having human observers (lab 130	
members) watch the videos with a timer to record the time intervals when pickers crossed consecutive 131	
flags.  132	
 133	
Flag and Camera Placement 134	
The raised beds in the field of study (Figure 1), were labelled for unique and easy identification, and flags 135	
were planted along the furrows - on the raised beds - prior to the start of harvesting. The distance between 136	
each pair of consecutive flags was 30 ft, and was measured using a measuring wheel. The terrain was flat 137	
and the wheel was moved slowly, so errors introduced by traversing uneven terrain and wheel slip were 138	
kept minimal (albeit not quantified). Five GoPro HERO6 cameras (GoPro Inc., San Mateo, CA, USA) 139	
were used to record picker activities. Camera #1 was deployed close to the collection station and recorded 140	
the tray delivery process (Figure 1a); cameras #2 and #3 were deployed inside furrows and recorded 141	



 

 

pickers’ in-furrow activities (i.e., picking, transporting, and travelling) (Figure 1b); and cameras #4 and 142	
#5 were deployed in the field’s headland and recorded pickers’ in-headland activities (i.e., transporting 143	
and travelling), pickers’ picking cycle (picking time and non-picking time), and pickers’ transitions to the 144	
next furrow (Figure 1c). 145	
 146	

  

 

Figure 1. Cameras deployed to monitor a) tray delivery process; b) in-headland activities, and c) in-furrow 147	
activities. 148	

The cameras were set up (Figure 2) to collectively capture activities in a distinct region of interest (ROI), 149	
which was the most densely picker-populated area. Even though the horizontal field of view (hFOV) of 150	
camera #4 covered the ROI completely, camera #5 was deployed with significant hFOV-overlap to 151	
document the pickers’ transition patterns from one furrow to the next. Footage examination revealed that 152	
after finishing a bed, pickers would almost always proceed to the closest unoccupied furrow associated 153	
with an unharvested bed. Unlike the headland cameras, the furrow cameras (#2 and #3) were 154	
complementary, so each of them covered half of the length of the ROI. After harvesting the beds in the 155	
ROI, the harvest crew moved on to the adjacent area of unharvested beds. The collection station also 156	
moved to pre-positioned positions (where empty trays had been stacked before harvesting) as the crew 157	
moved. Therefore, the cameras were also moved during harvesting to follow the crew activities in the new 158	
ROIs. In total, 40 hours of harvesting operation were recorded.  159	



 

 

	160	

2.1.2 Data Point Generation 161	
Data points for the walking speed parameters (𝑉! , 𝑉) , and	𝑉() were estimated from the footage. The time 162	
instants 𝑡, and 𝑡- (Figure 3b) when a picker passed in front of two consecutive pre-positioned flags were 163	
recorded manually, with a timer. Given the known inter-flag distance in the field, 𝑑, the corresponding 164	
picker walking speed – for the corresponding discrete state - was computed as: 165	
  𝑉 =	

𝑑
𝑡! − 𝑡"

 
 

(1) 

As an example, the two frames (a, b) in Figure 3 correspond to 𝑡, and 𝑡- in the PICKING state, and were 166	
used to generate a single data point for parameter VP. The curvilinear distortion of the camera lens or 167	
delays when the human observer clicks the timer may have introduced errors in the recording of the exact 168	
flag-crossing time instants, while viewing the footage.  169	
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Figure 2. Layout of the field, the region of interest (ROI)where pickers harvested, and placement of the 
five cameras (#1 through #5). 



 

 

Figure 3. Frames a and b correspond to t0 and t1, which are used to estimate a single data point for VP in the 170	
PICKING state. 171	

The estimation of data points for the picking time and idle-in-queue time parameters didn’t rely on the 172	
flags, as the traversed distance was not relevant to the measurements. Picking time measurements (∆𝑡*+) 173	
were made by observing changes in a picker’s body posture; such changes served as triggers for starting 174	
and stopping the timer.  The time instants  𝑡* when a picker with an empty tray bent over a bed (following 175	
a return from delivery), and the time instants 𝑡+ when (s)he stood up with the tray being full (to travel 176	
outwards a furrow for tray delivery) were recorded. The picking time was computed successive 𝑡* , 𝑡+ 177	
measurements, as ∆𝑡*+ =	 𝑡+ −	𝑡*. The picker non-productive times ∆𝑡+* were also computed by 178	
subtracting successive 𝑡+ , 𝑡* measurements, as ∆𝑡+* =	 𝑡+ −	𝑡*. The idle-in-queue times (∆𝑡&') were 179	
measured by recording the successive time instants when a picker arrived with a full tray at the collection 180	
station and left with an empty tray. 181	
 182	
2.2 CASE-STUDY: REACTIVE DISPATCHING STRATEGIES 183	

As a case study, non-preemptive reactive robot dispatching for strawberry harvesting was considered, 184	
utilizing transport-robots with a capacity of one tray. The Robot Scheduler module prioritized requests 185	
using temporal (chronological order) or spatial (proximity) criteria. Three well-established heuristic 186	
policies were considered: 187	
 188	

a)  

  
b) 

 



 

 

1) First Come First Served (FCFS): requests are served in the chronological order they arrive.  189	
2) Shortest Processing Time (SPT): the request that is closest to the collection station - where the robots 190	
are stationed - is served first. 191	
3) Longest Processing Time (LPT):  the request that is farthest from the collection station is served first. 192	
 193	
Both morning and afternoon harvesting operations were simulated for scenarios with 25 pickers and 194	
different sizes (N) of robot teams (i.e., N = 2, 3, 4, 5, 6, 8, and 10 robots). The robot speed was 𝑉. =195	
2	𝑚𝑠/-, and the TRAY-LOADING state lasted ∆𝑡0 = 5 s. Each scenario was executed 100 times, and 196	
each run used random sampling of the stochastic parameters. The mean harvesting efficiency, 𝐸, was 197	
computed as follows (Seyyedhasani, et al., 2019):  198	
 199	

𝐸 = 	
∑ ∑ (∆𝑡𝑒𝑓)𝑖𝑗

𝑛𝑖
𝑗=1

𝑃
𝑖=1

∑ ∑ (∆𝑡𝑒𝑓)𝑖𝑗
𝑛𝑖
𝑗=1

𝑃
𝑖=1 + ∑ ∑ (∆𝑡𝑓𝑒)𝑖𝑗

𝑛𝑖
𝑗=1

𝑃
𝑖=1

 (2) 

where P is the size of the harvest crew, and 𝑛& is the number of containers harvested by picker i. The 200	
mean and standard deviation of the waiting time (𝑡5̅6&7, 𝜎𝑡𝑤𝑎𝑖𝑡) were computed from all trays of all 201	
pickers. 202	
 203	

3 RESULTS AND DISCUSSIONS 204	

3.1 FREQUENCY HISTOGRAMS OF PICKERS’ STOCHASTIC PARAMETERS 205	
Figure 4 and Figure 5 present the frequency histograms of the pickers’ stochastic parameters, 206	
𝑉! , 𝑉) , 𝑉( , ∆𝑡*+ , and	∆𝑡&', as these were measured from morning and afternoon harvest operations. 207	
 208	

  

  



 

 

 

 

Figure 4. Frequency histograms of the pickers’ stochastic parameters (morning harvesting);	𝑉): picker picking 209	
speed;	𝑉*:	picker walking speed to/back from the collection station;	𝑉+: picker travel speed between furrows;	∆𝑡,-: 210	
picker picking time; ∆𝑡./: picker idle time waiting at the collection station.(𝜇, 𝜎, 𝑛: mean, standard deviation, and 211	
number of data points, respectively) 212	

  

  

 

 

Figure 5. Frequency histograms of the pickers’ stochastic parameters (afternoon harvesting);	𝑉): picker picking 213	
speed;	𝑉*:	picker walking speed to/back from the collection station;	𝑉+: picker travel speed between furrows;	∆𝑡,-: 214	



 

 

picker picking time; ∆𝑡./: picker idle time waiting at the collection station.(𝜇, 𝜎, 𝑛: mean, standard deviation, and 215	
number of data points, respectively)  216	

The two-sample Kolmogorov-Smirnov (KS) and the two-sample t-test were used to compare the 217	
afternoon and morning distributions of each parameter, at the 5% significance level. The tests showed that 218	
the picking speeds 𝑉! came from the same distribution, whereas 𝑉) , 𝑉( ,	and ∆𝑡*+ followed different 219	
distributions (Figure 6). Therefore, as a first step, the simulator was evaluated separately for morning and 220	
afternoon operations. In a second step, the evaluation was performed on the mixed/aggregated data from 221	
morning and afternoon, i.e., “all-day” harvesting.  222	
  223	

a b 

  
𝑉! (cm/s) 𝑉) (m/s) 

c d 

  
𝑉( (m/s) ∆tef (min) 

Figure 6. Cumulative probability distributions of the collected data from morning and afternoon harvesting: a) 224	
picker walking speed during picking, b) picker walking speed with empty tray, c) picker walking speed with full tray, 225	
and d) picking time; );	𝑉): picker picking speed;	𝑉*:	picker walking speed to/back from the collection station; 𝑉+: 226	
picker travel speed between furrows;	∆𝑡,-: picker picking time. 227	

3.2 EVALUATION OF THE SIMULATOR 228	
A total of 160 ground-truth data points were generated from the footage of the strawberry harvesting 229	
operations for the non-productive time ∆𝑡+*. Table 1 contains some descriptive statistics. ∆𝑡+* was 230	



 

 

significantly larger in the morning than in the afternoon. This can be partially attributed to the larger size 231	
of the field that was harvested in the morning, which resulted in pickers spending more time walking to 232	
deliver trays and moving to another bed. The standard deviations are large because ∆𝑡+* involves walking 233	
time from field locations that may be very far from or very close to the collection station. As expected, 234	
the mean and standard deviation of ∆𝑡+*for the mixed, “all-day” operation were between the 235	
corresponding values of the morning and afternoon operations, since it combined data from both. 236	
However, its standard error of the mean and 95% confidence interval were lower than those of morning 237	
and afternoon harvesting, because the calculation of these numbers involves a division by the total 238	
number of data points, which is bigger (160).  239	
 240	
Table 1. Descriptive statistics of experimentally-derived ∆𝑡-, (ground truth). 241	

Operation Time # of Data 
Points 

Mean Value 
of ∆𝒕𝒇𝒆 (s) 

Standard Error 
of Mean ∆𝒕𝒇𝒆 

Standard 
Deviation (s) 

95% Confidence 
Interval of Mean 

Morning 100 64.5 3.3 32.7 6.6 

Afternoon 60 53.3 3.2 24.3 6.4 
Mixed (“all-day”) 160 60.3 2.4 30.2 4.8 

 242	
The frequency histograms of ∆𝑡+* are shown in the left column of Figure 7, for morning, afternoon and 243	
combined (all-day) harvesting; The right column of Figure 7 presents the corresponding histograms of the 244	
simulator-predicted ∆𝑡9+* . 245	
 246	
a) 247	

 248	
b)  249	



 

 

 250	
c)  251	

   252	
Figure 7. Frequency histograms of pickers’ non-productive time during harvesting: a) morning, b) afternoon, c) 253	
mixed morning and afternoon operations. The left column (green bars) contains the measured non-productive times, 254	
∆𝑡+*, and the right column (blue bars) indicate the simulator-predicted non-productive times, ∆𝑡-,0 .  255	

Adopting	as	null	hypothesis,	𝐻,,	that	the	distribution	of	∆𝑡9+* 	followed	the	distribution	of	the	256	
measured		∆𝑡+* ,	the	two-sample	Kolmogorov-Smirnov	test	was	performed	on	all	operations,	at	5%	257	
significance	level.	The	test	confirmed	𝐻,	with	p-values	of	0.13,	0.66,	and	0.21	for	morning,	258	
afternoon,	and	mixed	operations	respectively	(Figure	8).	259	
 260	
a) 261	



 

 

 262	
b) 263	

 264	
c)  265	

 266	
Figure 8. The measured and predicted cumulative distribution functions of a) morning, b) afternoon, c) mixed 267	
morning and afternoon operations 268	

	269	
	270	
Table	2	presents	the	comparison	between	the	ground	truth	non-productive	times,	∆𝑡+* ,	with	the	271	
predicted	ones,	∆𝑡9+* .	The	two-sample	t-test	showed	that	∆𝑡+* 	and	∆𝑡9+* 	have	equal	means	at	5%	272	



 

 

significance	level,	with	p-values	of	0.17,	0.95,	and	0.82	for	morning,	afternoon,	and	mixed	273	
operations,	respectively.	274	
 275	
Table 2.Comparison of pickers' measured and predicted non-productive times 276	

Operation Time  Measured ∆𝒕𝒇𝒆 Predicted ∆𝒕9𝒇𝒆 

 # of Data 
Points 

Mean  
Value (s) 

Standard 
Deviation (s) 

Mean  
Value (s) 

Standard 
Deviation (s) 

Morning 100 64.5 32.7 68.6 41.6 
Afternoon 60 53.3 24.3 54.9 26.9 
Mixed (“all-day”) 160 60.3 30.2 59.6 33.8 

 277	
The simulator predicted accurately the expected mean of the pickers’ non-productive time during manual 278	
harvesting, with errors of 6.4%, 3%, and 1.2% for morning, afternoon, and all-day harvesting 279	
respectively. The predicted ∆𝑡9+* is overestimated in the morning because the parameter that affects ∆𝑡9+* -  280	
picker walking speed with a full tray (𝑉)) - is skewed toward lower values (Figure 4; 𝑉)	skewness = -281	
0.26) thus resulting in 6.4% larger simulated non-productive mean walking time. Afternoon walking 282	
speeds are skewed toward higher values (Figure	5; 	𝑉)	skewness = 0.55) and the overestimate of the 283	
predicted ∆𝑡9+* drops to 3%. The merged 𝑉) data has slightly larger positive skewness = 0.65 and ∆𝑡9+* is 284	
slightly underestimated (-1.2%).  285	
 286	
To investigate the simulator’s robustness when the same crew picks at different places and times, the 287	
picker parameters of the morning operation in one field were used to predict the non-productive times of 288	
the afternoon operation in the other field, and vice versa. The null hypothesis was that ∆𝑡+* and ∆𝑡9𝑓𝑒 289	
followed the same distributions. The two-sample Kolmogorov-Smirnov test validated the null hypothesis 290	
in both cases, at the 10% significance level; the measured and predicted CDFs were ±8	𝑠 apart (Figure 9).  291	
 292	
a) 293	

 294	
b) 295	



 

 

 296	
Figure 9. The measured and predicted cumulative distribution functions when a) the pdfs of morning operation 297	
predicted the non-productive time for afternoon operation and b) vice versa. 298	

3.3 CASE-STUDY: REACTIVE DISPATCHING STRATEGIES 299	
ERROR! REFERENCE SOURCE NOT FOUND. ERROR! REFERENCE SOURCE NOT 300	
FOUND.shows the statistics of the waiting times of twenty-five pickers served by robot teams of 301	
increasing size, N, during morning and afternoon harvesting.  302	
 303	
Table 3. The statistics of the picker waiting time when twenty-five pickers are served by different numbers of robots 304	
during morning (a) and afternoon harvesting (b) 305	

 306	

a 
Number 
of robots 

N 

FCFS SPT LPT 
Mean 

(s) 
STD 
(s) 

95th Percentile 
(s) 

Mean 
(s) 

STD 
(s) 

95th Percentile 
(s) 

Mean 
(s) 

STD 
(s) 

95th Percentile 
(s) 

2 222 88 370 227 1275 595 248 428 1232 
3 71 46 160 66 131 198 78 118 287 
4 32 21 73 30 30 70 34 34 81 
5 24 12 45 24 14 45 24 15 44 
6 21 10 39 21 10 39 22 10 39 
8 21 9 36 20 9 36 21 9 37 
10 20 9 36 20 9 36 21 9 37 

b 
Number of 

robots 
N 

FCFS SPT LPT 
Mean 

(s) 
STD 
(s) 

95th Percentile 
(s) 

Mean 
(s) 

STD 
(s) 

95th Percentile 
(s) 

Mean 
(s) 

STD 
(s) 

95th Percentile 
(s) 

2 279 92 410 290 1973 465 1419 3898 1001 
3 123 57 213 121 615 362 148 283 749 
4 55 36 119 51 80 159 65 104 240 
5 30 20 68 28 26 69 33 36 83 
6 23 13 47 23 15 45 24 16 46 



 

 

 307	
Regarding the effect of adding more robots, it was verified that, for all policies, the means, standard 308	
deviations and 95th percentiles of the waiting time followed closely (R2 > 0.99) the power law a×bN+c, 309	
with b < 1. The fitted equations for morning harvesting are given in Table 4; results for afternoon 310	
harvesting are similar. The power law explains why the statistics of the picker waiting times improved 311	
dramatically as the number of robots, N, increased from two to three, regardless of the scheduling policy. 312	
The improvement continued further when 4 and 5 robots were deployed; however, it reached a plateau as 313	
the number of robots increased further. The reason is because the pickers’ waiting time is lower-bounded 314	
by the distance between the collection station and picker location - at the point when the tray become full 315	
- divided by the robot travel speed. Even when at least one robot is always available for service, a picker 316	
has to wait for the robot to travel to him/her; this is a limitation of all reactive scheduling policies. 317	
  318	
Table 4 Fitted power-law curves of the waiting time’s mean value, its standard deviation and 95th percentile, for 319	
morning harvesting, for three harvesting policies (FCFS, SPT, LPT); results for afternoon harvesting are similar. 320	

 
FCFS:  

Mean  3,245.29×0.25N+20.37;              RMSE=0.49 s 
Std.  426.15×0.44N+7.48;  RMSE=1.77 s 
95th %  2,583.37×0.36N+33.20;              RMSE=3.18 s 

 
SPT:  
 

Mean  4,250.91×0.22N+20.45;              RMSE=0.59 s 
Std. 138,294.97×0.09N+11.59; RMSE=3.09 s 
95th %  7,012.15×0.28N+33.74;              RMSE=4.11 s 

 
LPT:  
 

Mean  3,647.00×0.25N+20.76;  RMSE=0.45 s 
Std.  6,279.60×0.26N+11.59;  RMSE=1.07 s 
95th %  27,616.33×0.21N+35.06; RMSE=2.83 s 

 321	
Regarding the effect of the different scheduling policies on waiting time, overall, LPT had the worst 322	
performance. When there were few robots (between two and five), the FCFS policy resulted in 323	
comparable values for the mean waiting time with the other two policies (with 3-5 robots, FCFS was 324	
slightly worse than SPT). However, the waiting time’s standard deviation was much smaller for FCFS 325	
than for SPT and LPT.  Standard deviation is related to service consistency, i.e., with FCFS scheduling, 326	
robot arrival delay times deviate less around the mean delay time. It is expected that pickers will prefer 327	
consistent service. When more than five robots were deployed, different scheduling policies did not 328	
introduce differences in the waiting time statistics, because there was always at least one available robot 329	
for each new tray transport request, so there was no need for prioritization.  330	
 331	
The bar chart in Figure 10 depicts the mean of the harvest operation efficiency,	𝐸, and its standard 332	
deviation, as more robots were deployed. The measured mean manual harvesting efficiencies were 81.8% 333	
and 78.2% for morning and afternoon harvesting, respectively. As the number of robots increased from 2 334	
to 5, the mean robot-aided harvest efficiency improved from 55% to 92% for the morning operation, and 335	
from 41% to 86.5% for afternoon harvesting. Deploying 2, 3 or 4 robots to aid 25 pickers would make no 336	
sense, since their operation resulted in worse harvest efficiencies than all-manual harvesting. Deploying 5 337	
robots increased harvest efficiency from 81.8% to 92% in the morning, and from 78.2% to 86.5% in the 338	
afternoon. There was marginal or no improvement when 6 or more robots were used, and efficiency 339	
peaked at 93.2% and 91% for morning and afternoon harvest, respectively. This was expected, since non-340	
productive time plateaued also. The SPT, performed slightly better than FCFS, and consistently 341	
outperformed LPT. However, it caused significantly higher variance compared to the other dispatching 342	
policies, when utilized for deploying two or three robots (Figure 10). The standard deviation in picker 343	
efficiency decreased as more robots are deployed, with all policies.    344	

8 20 10 38 20 10 38 20 10 38 
10 19 9 36 19 9 37 20 9 38 



 

 

 345	

 346	

 347	
Figure 10. The pickers’ mean efficiency and standard deviation when different number of robots are deployed 348	
during a) morning and b) afternoon operations 349	

4 SUMMARY AND CONCLUSIONS   350	
In Part I of this work, a model and a simulator were presented for robot-aided manual harvesting of 351	
specialty crops, with robots carrying empty and full trays, and workers performing the fruit picking. The 352	
picker model involved stochastic parameters. In the work presented in this paper, the distributions of the 353	
pickers’ stochastic parameters were estimated from a crew of twenty-five pickers in commercial 354	
strawberry harvest operations. The calibrated simulator predicted the distribution of the non-productive 355	
time of the crew, with errors of 6.4%, 3%, and 1.2% for morning, afternoon, and all-day harvesting 356	
operations respectively. Also, statistical testing verified that the predicted non-productive times followed 357	
the same distribution as the measured non-productive times. As a case study, three reactive scheduling 358	
policies were implemented for the simulator’s robot scheduler module: First-Come-First-Serve (FCFS), 359	
Shortest-Processing-Time (SPT) and Longest-Processing-Time (LPT). Overall, LPT had the worst 360	
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performance.; serving distant pickers first, was not a good policy. With two robots available, the FCFS 361	
policy outperformed the SPT and LPT policies in reducing pickers’ mean waiting time. When deploying 362	
3, 4, or 5 robots, the SPT outperformed the other two scheduling policies; however, FCFS generated 363	
results with lower variance, resulting in more consistent service. Deploying five crop-transport robots 364	
enhanced the harvest efficiency up to 92% and 86.5% for morning and afternoon harvesting respectively, 365	
which was 81.8% for morning and 78.2% for afternoon manual harvesting. With more than five robots, 366	
the dispatching policies performed similarly, as there were always enough robots to serve pickers requests 367	
immediately. The mean harvest efficiency plateaued for more than five deployed robots, as a consequence 368	
of the mean travel distance that robots need to travel to get to a picker. Using more reactively-scheduled 369	
robots could not improve efficiency; predictive scheduling is one way to increase the harvest efficiency 370	
further.  371	
 372	
The harvest efficiency– and efficiency increases - predicted by our methodology depend on the statistics 373	
of the operating parameters of the crew, which depend on picker performance, yield, field geometry and 374	
field and crop conditions. The data used in this work were collected in California during high-yield 375	
season, in a typical commercial strawberry field, with an experienced crew that was paid “piece-rate” (a 376	
fixed amount per hour plus an amount per harvested tray). However, the same methodology can be used 377	
to study manual and robot-aided harvesting in different settings, even with different crops (if they are 378	
picked similarly). Future work includes using the simulator to develop advanced – predictive – scheduling 379	
policies for the robots, and evaluating and comparing them for various crew-to-robot team size ratios. 380	
Also, transport robots are currently being developed and will be deployed in field experiments during 381	
commercial strawberry harvesting. Finally, detailed economic analysis will be conducted to assess under 382	
what conditions the introduction of such robots makes economic sense. 383	
 384	
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