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The Determinants of Basic-Level Performance

Frédéric Gosselin (GOSSELIF@PSY.GLA.AC.UK)
Philippe G. Schyns (PHILIPPE@PSY.GLA.AC.UK)

Department of Psychology, University of Glasgow
58 Hillhead St., Glasgow G12 8QB UK

Abstract

SLIP (Strategy Length & Internal Practicability) is a new
model of basic-level performance that postulates two
computational constraints on the basic-levelness of a
category: the number of feature tests required to place the
input in a category (Strategy Length) and the ease with
which these tests are performed (Internal Practicability).
This article reports three experiments that examined the
validity of SLIP in two-level taxonomies of computer-
synthesized artificial objects. Experiment 1 isolated
strategy length, Experiment 2, practicability, and
Experiment 3 explored the interactions of these factors.
Whereas SLIP predicted the RT of these experiments, two
established basic-level models of basic-level performance,
Jones’s (1983) category feature-possession and Corter and
Gluck’s (1991) category utility, did not.

What distinguishes your cellular phone, your fountain
pen, your computer, your house, and other everyday
objects of yours from those of your neighbors is often a
combination of features. For example, to identify your
pink Porsche 911 in a parking lot also comprising a pink
Toyota Tercel and a lime Porsche 911, you must examine
both the color and the shape of the cars. This is so
because real-world things share many features. The
hierarchical organization of categories is a direct
consequence of this sharing of features.

In a seminal article, Rosch, Mervis, Gray, Johnson &
Boyes-Braem (1976) distinguished between three natural
levels of categorization hierarchy (or taxonomy), the
subordinate (e.g., “Porsche 911”), basic (e.g., “car”) and
superordinate (e.g., “vehicule”), from the most specific to
the most general. Of all these levels, they showed that the
basic was the best in many respects. People tend to:
designate things by their basic-level names; list many
more features at the basic level than at any other level;
decide more rapidly that things are members of their basic
categories than of any others; and so on.

SLIP (Strategy Length & Internal Practicability) is
designed to model one of the most important index of
basic-level performance: categorization speed. It
postulates an ideal categorizer that performs the fewest
possible number of features tests to classify things. Its
name is derived from the fact that its attention slips off its
ideal track once in a while.

Going back to the parking lot example, you had to
check both the color and the shape of cars to find your
pink Porsche 911. Fewer tests would have not lead to a
definitive decision (because there were also a lime
Porsche 911 and a pink Toyota Tercel). We call this
optimal series of tests a strategy. Two aspects of strategies
fully determine the response time of SLIP: their length
and their internal practicability. Strategy length is simply
the minimal number of tests required to complete a

strategy. In the parking lot example, strategy length is
equal to 2 (one test on shape; one test on color). The
longer a strategy associated with a category, the more
time it will take to categorize an object in this category.
The second factor of SLIP–internal practicability (or
practicability, for short)–is simply the ease which with a
particular test in a strategy can be executed (e.g., the
number of features that uniquely define this category).
The greater the practicability of a category, the less time it
will take to verify that an object belongs to this category.
SLIP integrates strategy length and internal practicability
to predict categorization time (see the Appendix for
formal details).

In Gosselin and Schyns (1997, 1999) we demonstrated
that the principles of SLIP better predict the results of 22
classic basic-level experiments (from Rosch et al., 1976;
Murphy and Smith, 1982; Mervis & Crisafi, 1982;
Hoffmann & Ziessler, 1983; Murphy, 1991; Lassaline,
1990; Tanaka & Taylor, 1991; Johnson & Mervis, 1997;
and Gosselin & Schyns, 1998) than the leading models
(e.g., Jones’s, 1983, category feature-possession and
Corter & Gluck’s, 1991, category utility).

No matter how successful, these simulations are a
posteriori accounts of data.  The validity of SLIP would
be better tested with a direct examination of strategy
length and internal practicability1.  In three experiments,
we isolated the possible role of these factors on basic-
levelness.  Specifically, Experiment 1 isolated the effect
of strategy length, Experiment 2, the effect of internal
practicability, and Experiment 3 the interactions of the
two factors.

Experiment 1
Experiment 1 examines the effect of strategy length on

basic-levelness. Strategy length is the minimum number
of required feature tests to perform a given categorization.

Experiment 1 is set up as a category verification task of
two two-level taxonomies of artificial objects (see Figure
2). The taxonomies are designed to induce orthogonal
patterns of categorization speed across conditions. In the
HIGH_FAST taxonomy, overlap of geons between
categories defines a shorter strategy at the higher than at
the lower level. In the LOW_FAST taxonomy, different
geon arrangements yield the reverse situation—i.e. longer
strategies at the top than at  the bottom level. SLIP
predicts that shorter strategies are completed faster than
longer strategies, irrespective of categorization levels.

                                                          
1 Furthermore, it must be noted that our data set of 22 published
experiments is itself biased to mid-then-high-then-low level.
Any model that predicts this RT sequence will be 58% right,
irrespective of the actual hierarchy.



Hence, on the basis of only strategy length, SLIP predicts
orthogonal categorization performance across taxonomies.

Method

Participants

Twenty University of Glasgow students with normal or
corrected vision were paid to participate in the
experiment.

Stimuli

Stimuli were computer-synthesized chains of four
geons (see Figure 1) similar to those used in Tarr,
Bülthoff, Zabinski and Blaz (1997) in the context of
object recognition. We designed stimuli with a three-
dimensional modeling software on a Macintosh computer.

Figure 1. A four-geon chain used in Experiment 1.

Five geons defined the categories of the HIGH_FAST
taxonomy. One different geon defined each one of three
high-level categories. Each one of six possible low-level
categories was further specified by one of the two
remaining geons. Figure 2 illustrates this taxonomy.

Figure 2. The HIGH_FAST taxonomy of Experiment 1.
The geons specify the defining information of each
category. The bottom geon chains are the two PIM
exemplars (they are also LAR exemplars) used in the
experiment.

In Figure 2, strategy length equals 1 for the higher-level
categories. A length 1 strategy means that only one
feature needs to be tested (the feature defining each high-
level category) to determine the membership of the
objects at this level. Strategy length equals 2 at the lower-
levels, because these categorizations require two feature
tests. The longer strategies arise from the overlap of
features across lower-level categories. Shortly put, in the
taxonomy of Figure 2, lower-level categorizations require
conjunctions of features to be tested. This difference
between strategy lengths across the levels of a taxonomy
is the backbone of Experiment 1. To create the actual

experimental stimuli, we further added two geons that
served as fillers to obtain six four-geon objects. Fillers
were identical across objects and so could not be used to
categorize them. We created two exemplars per low-level
category by changing the location of the diagnostic geons
in the chain (see Figure 2, the bottom geon chains).

Nine geons defined the LOW_FAST taxonomy. A
unique combination of two geons (sampled from a set of
three) defined each one of three top-level categories (see
Figure 3). High-level strategies had length 2 because a
two-geon conjunction had to be tested. A unique
diagnostic geon further specified the bottom-level
categories. Bottom-level categories had length 1 strategies
because a single feature test determined membership.
Figure 3 shows the LOW_FAST taxonomy. We added
one filler to generate six four-geon chains. From these, we
created two exemplars per category (see Figure 3).

Figure 3. The LOW_FAST taxonomy of Experiment 1.
The geons specify the defining information of each
category. The bottom geon chains the two PIM exemplars
(they are also LAR exemplars) used in the experiment.

Procedure

The procedure followed closely that of Murphy (1991).
In a learning phase, participants were evenly split between
the learning of the HIGH_FAST and LOW_FAST
taxonomies. We instructed participants to learn the names
and the defining geon(s) of nine categories. Participants
saw their taxonomy on a sheet of paper (see Figures 2 and
3); this learning phase was not constrained in time.

We tested participants’ knowledge of the taxonomy by
asking them to list the features associated with each
category name. Learning criterion was to list twice in a
row, without any mistake, the defining features of each
category. Corrective feedback was provided.

When subjects knew the taxonomy, a category
verification task measured categorization time at each
level. Each trial began with the presentation of a category
name. Subjects could then press the “continue” computer
keyboard button to see the list of all learned definitions on
the screen (each definition corresponded to a set of geons
per category). Participants had to identify the list
associated with the previously shown category name. This
insured that subjects accessed the representation of this
category. After a 200 ms delay, an object appeared on the
screen. Subjects had to decide–as fast as they possibly
could–whether or not the named category and the object
matched by pressing the “yes” or “no” computer keyboard
key.  We recorded response latencies. Note that low-level
categories are more numerous than high-level categories.
We normalized the number of positive and negative trials



with the constraint of equating the number of trials per
level.

Results and discussion
We performed the analysis of RTs on the correct

positive trials that were within two standard deviations
from the means. Table 1 reports the mean RTs at the low-
and high-levels for the two taxonomies tested (see
Observations in Table 1).

Table 1. Mean RTs for the Positive Trials of All
Experiments As Well As Predictions of SLIP, Category
Feature-Possession, and Category Utility (Erroneous
Predictions Are Shaded).

Level
Model Low High

Exp. 1, Oservation 1,256 896
HIGH_FAST Possession 2 3

Utility .195 .222
SLIP 6.4 3.2

Exp. 1, Observation 948 1,240
LOW_FAST Possession 1 3

Utility .25 .333
SLIP 3.2 6.4

Exp. 2, Observation 788 660
HIGH_FAST Possession 1 3

Utility .375 .500
SLIP 3.2 2.286

Exp. 2, Observation 740 774
LOW_FAST Possession 3 1

Utility .624 .500
SLIP 2.286 3.2

Exp. 3, Observation 672 680
EQUAL Possession 1 5

Utility .176 .260
SLIP 1.714 1.714

Exp. 3, Observation 920 1,058
SL_DOWN Possession 1 5

Utility .250 .333
SLIP 1.714 3.429

Exp. 3, Observation 928 775
IP_UP Possession 1 5

Utility .250 .333
SLIP 6.857 3.429

A two-way (GROUP x STATEGY LENGTH) ANOVA
of the RTs with repeated measures on one factor
(STRATEGY LENGTH) revealed a main effect of
STRATEGY LENGTH, F(1, 18) = 77.08, p < .0001,
(mean length 1 strategies = 922 ms verification time;
mean length 2 strategies = 1248 ms verification time),
meaning that participants systematically verified length 1
strategies faster than length 2 strategies, irrespective of
the considered level (low vs. high). Neither the interaction
between GROUP and STRATEGY LENGTH, F(1, 18) =
.84, ns, nor the main GROUP effect, F(1, 18) = .02, ns,
were significant. The error rate was low overall and was
not correlated with RT (r = -.17, ns), ruling out a speed-
accuracy trade-off.

Remember that SLIP predicts that length 1 strategies
should be completed faster than length 2 strategies,
irrespective of categorization level (see SLIP in Table 1
for numerical predictions with S = .25). The data reported
here confirms that strategy length, rather than
categorization level, determines participants RTs.

Experiment 2
Practicability refers to the ease with which the features

identify a category at any level of a taxonomy. A category
has high practicability if many of its defining features are
uniquely diagnostic of this category (or if the features
occupy few positions across exemplars). It will have low
practicability if only one feature defines the category (or
if the features can occupy many positions across
exemplars). Practicability has so far been the only factor
under study in basic-level experiments (see Gosselin &
Schyns, 1997). Never has it been shown, however, that
practicability could affect the basic-levelness of all
categorization levels.

Experiment 2 isolates practicability in a two-level
taxonomy using objects similar to those of Experiment 1.
All strategies had length 1 but the high and low levels
differed in practicability. In the HIGH_FAST condition,
high-level strategies had greater practicability than low-
level strategies. The opposite applied to the LOW_FAST
condition, with low-level strategies having higher
practicability. SLIP predicts that categories with higher
practicability will be verified faster, irrespective of their
level in the taxonomy.

Method

Participants

Twenty students from University of Glasgow with
normal or corrected vision were paid to participate in the
experiment.

Stimuli

Stimuli were similar to those of Experiment 1: four-
geon chains synthesized with a three-dimensional
modeling software on a Macintosh computer.

The HIGH_FAST condition used 10 diagnostic geons.
Three different geons defined each one of two high-level
categories; one different geon further defined each low-
level category (see Figure 4). We generated two
exemplars per category by changing the location (either
rightmost or leftmost of the chain) of the three geons

defining the high-level categories (see Figure 4).

Figure 4. The HIGH_FAST taxonomy of Experiment 2.
The geons specify the defining information of each
category. The bottom geon chains are the two NOP
exemplars (they are also LAR exemplars) used in the
experiment.



The LOW_FAST condition involved fourteen
diagnostic geons. A single diagnostic geon defined each
one of two high-level categories, and three different geons
further defined each one of four low-level categories (see
Figure 5). As before, we created two category exemplars
by changing the location (either far right or far left of the
object) of the triplets defining the low-level categories
(see Figure 5).

Figure 5. The LOW_FAST taxonomy of Experiment 2.
The geons specify the defining information of each
category. The bottom geon chains are the two NOP
exemplars (they are also LAR exemplars) used in the
experiment.

Practicability is greater for high-level categories in the
HIGH_FAST condition and for the low-level categories in
the LOW_FAST condition because more unique features
are associated with the top- and bottom-level categories,
respectively. SLIP predicts a faster verification
performance for categories with higher practicability
(high in HIGH_FAST and low in LOW_FAST)
irrespective of the level of the taxonomy considered.

Procedure
The procedure followed in all respects that of

Experiment 1: Participants were randomly assigned to the
HIGH_FAST and LOW_FAST conditions. They were
taught their respective taxonomy before being measured
on the categorization speeds of its levels. Each one of 280
trials consisted in the initial presentation of a category
name followed by an object. Participants had to decide as
fast as they possibly could whether the two matched and
we recorded response latencies.

Results and discussion
We analyzed only the correct positive trials RTs within

two standard deviations from the means. Table 1 shows
the mean RTs at the low and high-levels for the
HIGH_FAST and for the LOW_FAST taxonomies.

A two-way (GROUP x PRACTICABILITY) ANOVA
on the RTs with repeated measures on one factor
(PRACTICABILITY) revealed a main effect of
practicability, F(1, 18) = 16.83, p = .001 (mean
verification time = 700 ms for high practicability
strategies; 781 ms for low practicability strategies). Out of
20 participants, only three did not respond faster to the
greater practicability categories. Neither the GROUP x
PRACTICABILITY interaction, F(1, 18) = 5.53, ns, nor

the main GROUP effect, F(1, 18) = .06, ns, were
significant. The error rate was low overall and was not
correlated with RT (r = .05, ns), ruling out a speed-
accuracy trade-off.

In sum, SLIP predicted that greater practicability
strategies should yield faster categorization decisions (see
SLIP in Table 1 for numerical predictions with S = .25).
The results of Experiment 2 reveal that this factor
determined RTs at different categorization levels.

Experiment 3
Experiments 1 and 2 respectively revealed that strategy

length and internal practicability–the two computational
determinants of SLIP–can contribute independently to
faster categorizations at any level of a taxonomy.
Experiment 3 further explores how these two factors
interact to determine performance.

There are many possible interactions to investigate and
we will not investigate them all. Instead, we have selected
to examine three scenarios that selectively change the
fastest categorization level by selectively modifying either
strategy length or internal practicability.

In the EQUAL scenario, strategies at the high and low-
levels have an equal length of 1 and a constant
practicability. SLIP predicts that in these circumstances,
categorization speeds should be equal across levels.
EQUAL is our baseline condition. In the SL_DOWN
scenario, practicability is constant across levels, but
whereas low-level strategies have length 1, high-level
strategies have length 2. SLIP predicts faster
categorizations at the lower level. The IP_UP scenario
preserves the difference in strategy lengths, but it changes
the fastest categorizations to the higher level by
decreasing the practicability of the low level.

Together, EQUAL, SL_DOWN and IP_UP illustrate
how the faster categorization level can go up and down a
taxonomy by changing strategy length or the internal
practicability, the two factors of SLIP.

Method

Participants

Thirty students from University of Glasgow with
normal or corrected vision were paid to participate in the
experiment.

Stimuli

Stimuli were similar to those of Experiments 1 and 2:
geon chains designed with a 3D-object modeling
software.

Nine diagnostic geons entered the composition of
categories in the EQUAL, SL_DOWN and IP_UP
conditions. In EQUAL, one geon defined each one of the
nine categories of the taxonomy (see Figure 6). We added
four fillers to each defining geon to form a total of six six-
geon chains. We placed the geons defining the high-level
categories at the far left of the chains, and those defining
the low-level categories at the far right (see Figure 6).



Figure 6. This illustrates the EQUAL taxonomy of
Experiment 3. The geons specify the defining information
of each category. The bottom geon chain is the PIM
exemplar (it is also a LAR exemplar) used in the
experiment.

In SL_DOWN, a unique combination of two of the nine
geons defined each top-level category. The addition of
one different geon further defined each lower-level
category. (SL_DOWN employed the Experiment 1,
LOW_FAST taxonomy but with a different set of geons).
We produced six six-geon chains by adding three fillers.
We placed the geon pairs defining the high-level
categories at the far left of the chains, and those defining
the low-level categories at the far right.

These chains also served to construct the exemplars of
condition IP_UP. Here, we generated four exemplars per
category by changing only the location in the chain of the
single geon defining the low-level categories (one of the
four rightmost positions in the six-geon chains).

Procedure

The procedure was almost identical to that of
experiments 1 and 2. Participants were randomly assigned
to one of three conditions (EQUAL, SL_DOWN, and
IP_UP). Following a learning of their taxonomy, they did
240 verification trials. Each trial consisted in the
presentation of a category name followed by an object.
Participants had to decide whether these matched and we
measured response latencies.

Results and discussion
We performed the analysis of RTs on the positive,

correct trials that were within two standard deviations
from the means. Table 1 shows the mean RTs.

A two-way (GROUP x LEVEL) ANOVA with repeated
measures on LEVEL revealed a significant interaction
between GROUP and LEVEL, F(2, 27) = 11.85, p < .001,
simple main effects of GROUP(SL_DOWN) by LEVEL,
F(1, 27) = 10.58, p = .003, GROUP(IP_UP) by LEVEL,
F(1, 27) = 13.09, p = .001, and GROUP(EQUAL) by
LEVEL, F(1, 27) = .04, ns. The error rate was low overall
and was positively correlated with RT (r = .31, p < .05),
ruling out a speed-accuracy trade-off.

SLIP predicted all the results observed in Experiment 3
(see SLIP in Table 1 for numerical predictions with S =
.25). Participants categorized equally fast at both levels in
EQUAL. Increasing the strategy length of the higher level
in SL_DOWN induced faster categorizations of the lower
level.  Diminishing practicability at the lower level then
made the high level faster. Thus, the two computational
factors of SLIP predicted speed of categorization in
taxonomies.

General Discussion
SLIP (Strategy Length & Internal Practicability) is a

new model of basic-level performance. Three verification
experiments tested the two computational determinants of
the model: strategy length and internal practicability. In
Experiment 1, strategy length was shown to decide basic-
levelness. In Experiment 2, practicability was shown to be
a second determinant of basic-level performance. In
Experiment 3, interactions between strategy length and
internal practicability in SLIP predicted the observed RTs.

SLIP performance can be compared to that of two well-
established measures of basic-levelness, category feature-
possession (Jones, 1983) and category utility (Corter &
Gluck, 1990). The predictions of the models are given in
Table 1. The scores of both category utility and category
feature-possession should be inversely proportional to
RTs; SLIP’s scores should be directly proportional to
RTs. The best predictor is SLIP with seven correct RT
patterns out of seven, followed by category feature-
possession with a hit rate of 5/7 (the mistakes have been
shaded in Table 1), and trailed by category utility with a
4/7 hit rate.

It is instructive to decompose these scores into strategy
length and internal practicability scores. For the
conditions testing only practicability (Experiment 2,
HIGH_FAST and LOW_FAST, and Experiment 3,
EQUAL and IP_UP), category feature-possession and
category utility both predict 3/4 of all RT patterns. We
have demonstrated elsewhere (Gosselin & Schyns, 1999)
that these models are biased to faster responses at higher
levels.

Interestingly, for the conditions testing only strategy
length (Experiment 1, HIGH_FAST and LOW_FAST,
and Experiment 3, EQUAL and SL_DOWN) category
feature-possession and category utility only predict 4/8
and 2/8 of the RTs, respectively. (Note that Experiment 3,
EQUAL, is included in the break-down into strategy
length and internal practicability;  it is an extreme case of
both.) This confirms the argument that category feature-
possession and category utility neglect strategy length as a
specific factor of basic level performance (Gosselin &
Schyns, 1997). This is a serious problem because
attributes do overlap between categories in the real-world,
and so strategy length is an important factor of
categorization performance outside the laboratory.

To the extent that any model of categorization
implements computational constraints (even if these are
not well specified), the conclusion is that those of SLIP
are closest to those underlying the speed of access to the
categories of a taxonomy.
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Appendix
A category is defined by a list of features. Typically, some of these

features are unique to this category and some overlap with the defining
features of other categories. An optimal strategy is the shortest series of
tests on the features defining the category. We posit that SLIP
categorizers always use optimal strategies. We call redundant features,
or set of redundant features, the collection of features which,
individually, provide exactly the same information as to the category
membership of objects. In other words, testing one, two, or more
redundant features does not provide more information.

Formally, we will say that a strategy is a series of sets of redundant
features. It has succeeded whenever all sets of redundant features have
been completed in a specific order. And a set of redundant features is
completed as soon as a test on the presence of one of its redundant
features has been performed.

This usually happens after a succession of misses. The probability of

having t-1 successive misses is given by 1 − ψ j( )t −1
 where ψ j –

when redundancy of sets of features and the number of possible
configurations that these can take in objects are taken into account–is
equal to Cj(1-S) + CjSRj that is, the practicability of set of redundant
features j or the probability that it will be completed after a single
attempt. S is the probability of a random slip (it was arbitrarily set to .5
throughout the simulations), and Cj is the probability that the target
features will be in the expected configuration (1 / number of

configurations). Thus the first term of ψ j  is the probability that the

SLIP categorizer will guess the feature configuration correctly and that it

will not slip. Rj is the probability that a random slip will result in a
diagnostic test ([cardinality of j] / [number of features in objects]). The

second term of ψ j  is the probability that the categorizer will slip, but

that it will guess the correct configuration and will perform a diagnostic
feature test.

The probability of a hit is simply 1 minus the probability of a miss.
Thus, the probability that the set of redundant features j will be
completed after t trials is

1 − ψ j( )t −1
ψ j ,

and the probability that a strategy of length n will have succeeded after t
trials in a certain configuration of hits and misses is

1− ψ j( )φ
ψ j

j =1

n

∏ ,

where φ  is a function of j (it will remain unspecified) which gives the
number of misses for the jth set of redundant features for that particular
configuration. Usually, more than one such configuration exist. In fact,
the number of possible configurations is easy to compute. The last hit
necessarily happens at the t th trial; the n-1 other hits, however, can
happen anywhere in the t-1 trials left, in order. Therefore, the number of
possible configurations is the number of combinations of t-1 items taken
n-1 by n-1 that is,

λ =
t −1

n −1

 
 
  

 
=

t −1( )!
t − n( )! n −1( )! .

We can now give the global shape of the probability that a strategy of
lengths n will succeed after t trials:

1− ψ j( )ω
ψ j

j =1

n

∏
i =1

λ

∑ ,

where ω  is a function of i and j that specify the number of misses for
the jth set of redundant features for the ith configuration of hits and
misses. We call this the Response Time Function (RTF). We still have to
specify ω . We will establish a connection between this function and

multinomial expansions. The multinome a1 + a2 +. ..+an( )t − n

expands into λ  different terms, and the sum of the n exponents of each
term is equal to t-n. It follows that ω  gives the jth exponent of the ith
term in this multinomial expansion.

As a global measure of basic-levelness, we use t_mean, the mean
number of tests required to complete a strategy. When internal
practicability is constant within a strategy (this is true for all experiments
reported in this article), the RTF is a Pascal density function and, thus,

t_mean is equal to n ψ .




