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JAKOB BERNOULLI’S THEORY OF INFERENCE

JOAKIM EKSTRÖM

Abstract. This review of Ars Conjectandi, written on the eve of its 300th anniversary,
discusses an aspect of Bernoulli’s magnum opus which hitherto has not received the
attention it merits. Bernoulli envisioned a theory for the advancement of science based
on the idea of pairing empirical evidence with the then-novel concept of probability. This
theory of inference, which he termed “ars conjectandi”, was intended to complement the
predominant axiomatic-deductive method where the latter could not be applied successfully.
In the 300 years since its publication, Bernoulli’s idea went through ups and downs, but
eventually ended up as the defining characteristic of statistical science and a cornerstone of
modern science. This review discusses the historical context from which Bernoulli’s idea
was conceived, his sources of inspiration, and provides a detailed account of his theory of
inference.
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1. To the Reader

Jakob Bernoulli’s Ars Conjectandi (1713) is widely recognized as a seminal text in
the early history of probability theory. It is particularly noted for introducing the first
probabilistic limit theorem: Bernoulli’s limit theorem, or the law of large numbers.
According to the theorem, the arithmetic mean can be made arbitrarily accurate through
repeated observation; a result of immense importance to the theory of statistics.

Numerous reviews of Bernoulli’s book have been written, including Pearson (1925),
Hacking (1971), Shafer (1978), Schneider (1984), Sheynin (1986), Stigler (1986), Hald (1990),
and Sylla (2006). In light of all these reviews, it would be rather natural to call into
question the added value of writing another review; what more could possibly be said
about this treatise? Well, the answer is that I feel that there is a fundamental aspect of
Ars Conjectandi that has not yet been effectively discussed: Bernoulli’s very motivation for
writing the book, his theory of inference.

While Bernoulli’s limit theorem is undoubtedly a vital result for the development
of probability theory, the theorem occupies only eleven of Ars Conjectandi’s 305 pages,
excluding the 35-page Lettre à un Amy. Furthermore, the limit theorem is arranged into
what could almost be likened to an appendix. Yet reviews have hitherto focused almost
solely on the limit theorem (Pearson (1925), Sheynin (1986), Stigler (1986), Hald (1990) and
Sylla (2006)) and Bernoulli’s use of the word probability (Hacking (1971), Shafer (1978),
Schneider (1984) and Hald (1990)). Only Hald (1990) touches upon the focal point of the
present review, but does not quite articulate the matter.

With Ars Conjectandi, Jakob Bernoulli developed a theory for the advancement of science
through empirical evidence; a theory of inference. Central to the theory is that the concept
of probability should be used as a device for transparent, reproducible and relatively
objective valuation of empirical evidence. Ars Conjectandi is the first published text that
proposes pairing empirical evidence with the concept of probability, an idea that presently
constitutes the defining characteristic of statistical science and is a cornerstone of modern
science.

On the eve of the 300th anniversary of its publication, I feel that discussing this aspect
is a worthwhile contribution to the statistical community, and one that can enhance the
understanding of the role and purpose of statistics in modern science.

2. Historical context

When Jakob Bernoulli (1654-1705) wrote Ars Conjectandi, probability theory was in
its infancy and the philosophy of science was predominated by a school of thought,
known as rationalism, according to which the use of empirical observation in science was
not completely accepted. This section aims to summarize the aspects of the historical
context up to and through Bernoulli’s lifetime that are important to understanding his
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treatise. Section 6 discusses some of the developments from Bernoulli’s passing through
the twentieth century.

Circa 387 b.c., 2100 years before Ars Conjectandi was published, Greek mathematician
Plato (c. 428-348 b.c.) returned to his native Athens with his mind set on realizing one
of his long-held dreams: starting a mathematical society (Taylor, 1936). The society
soon became referred to as Akademia, the site of the meetings was named after Greek
mythological hero Akademos, and thus the first academy, and in a wider sense the
scientific community, was founded.

Besides his mathematical work, Plato was active in the political arena and wrote
extensively on constitutional issues, public policy, education, morality, et cetera. Scholars
of Plato have identified a fundamental axiom that appears in all of his works (Ross, 1951),
which has been named Plato’s theory of forms. The axiom, in a condensed form, is
formalized as follows.

Axiom (Plato’s theory of forms).
(i) Each and every phenomenon has an underlying true nature, a Platonic ideal form.

(ii) The senses are inherently unreliable and observations inevitably subject to flux.

Flowing naturally from the axiom, Plato held the opinion that the task of science is
to gain and build knowledge about the ideal forms, and that the senses, i.e. empirical
observations, are inherently unsuitable for meaningful advancement of science (White,
1976). The logical consequence is that science must be advanced through use of the
so-called axiomatic-deductive method.

An axiom is a formalized self-evident truth, and an axiomatic system is a set of
noncontradictory axioms that work in conjunction. Within the system, the truth values of
statements can be derived through logical deduction. Euclid’s Elements, a mathematical
treatise written circa 300 b.c., is a magnificent early example of the use of the axiomatic-
deductive method. To this day, the axiomatic-deductive method and mathematics are so
closely associated that the two terms are sometimes used interchangeably.

In the third century b.c., Archimedes (c. 287-212 b.c.) employed the axiomatic-deductive
method for advancing the science of physics, see e.g. On floating bodies (c. 250 b.c.). In
doing so, Archimedes also introduced the axiomatic-deductive method to a practical
field beyond the abstractions of mathematics; a milestone in the history of science. The
method has since been used in physics with great success, examples include Galilei (1638),
Newton (1726), and Einstein (1905).

Attempts of applying the axiomatic-deductive method to other scientific disciplines,
however, have met more challenge. In fields such as chemistry, biology and economics,
predictions produced by axiomatic systems, no matter how carefully constructed, often
do not represent experimental outcomes particularly well. Microeconomics, as a concrete
example, represents an admirable attempt of creating an axiomatic system, based on
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self-evident truths such as utility maximizing agents, efficient markets and other quite
reasonable axioms, but it has demonstrated limited success in predicting future outcomes.
Even though theoretically infallible, the axiomatic-deductive method in practice bears the
weakness that it often is difficult to apply; thus creating a need for an alternative scientific
method.

Making inference from observations is something that comes natural to most of us
humans, a fact which few would dispute. Throughout history, many people have tried
creating methods that advance science through empirical evidence, for instance Plato’s
student Aristotle. However, early such methods demonstrated limited reproducibility
and questionable objectivity, and through Bernoulli’s lifetime they never gained wide
acceptance. A particular difficulty is unquestionably the valuation of the evidence; even if
all members of the scientific community agreed on what the empirical evidence is, they
would still need to find agreement on its valuation.

It should be noted that the fact that a scientific work is strictly axiomatic-deductive
does not necessarily imply that the author did not use empirical observation; the author
could well have experimented but chosen not to mention it in writing. As an example,
Archimedes does not mention any experiments in On floating bodies, although one may
still imagine that Archimedes, at least to some limited extent, conducted experiments to
properly convince himself that his axiomatic system was correctly constructed. In fact
according to the Eureka legend, Archimedes formulated hypotheses while in a public
bath, hinting at some interplay between logical deduction and experimentation.

Another example is Two new sciences (1638) by Galileo Galilei (1564-1642), which is
an entirely axiomatic-deductive scientific work. However in a carefully constructed
arrangement, Galilei incorporates a layman discussion in which the fictional laypersons
provide detailed accounts of experiments that Galilei had conducted. Hence Galilei,
through an intricate arrangement, gains the ability to include information about his
experiments without tarnishing his scientific work. The fact that Galilei went to such
lengths to distance his work from association with experiments provides circumstantial
evidence that advancement of science through empirical observation at that time was not
entirely accepted.

Throughout the seventeenth century, philosophers such as René Descartes (1596-1650),
Baruch Spinoza (1632-1677) and Gottfried Leibniz (1646-1716) were influential advocates
of Plato’s view that science should be advanced through the axiomatic-deductive method.
This school of thought, commonly referred to as rationalism, was predominant when the
young Jakob Bernoulli studied philosophy and theology at the University of Basel. In his
twenties, Bernoulli taught experimental physics for six years, and at age 32 he received a
professorship in mathematics. With his set of competencies and interests, Bernoulli was in
an ideal position, at the right moment in time, to envision and develop a new method for
the advancement of science through empirical observation. In a letter to Leibniz (1703),
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Bernoulli expresses: “I scarcely think that anyone has thought more than I about these
matters.”

3. The elements of Bernoulli’s method

Jakob Bernoulli never quite finished Ars Conjectandi; it was published posthumously
in 1713. The reason for not publishing the manuscript was most certainly not a lack
of interest; in correspondence with Leibniz (Bernoulli, 1703) Bernoulli expresses both
enthusiasm and sense of purpose, but also mentions weak health and feeble writing.

Ars Conjectandi contains remarkably few references. The only cited reference in the
first part is Huygens’ De ratiociniis in ludo aleæ (1657), and the only reference in part three,
except for the numerous citations of Huygens, is a text on the card game Basset (Sauveur,
1679), which Bernoulli uses for the construction of a problem. The fourth and last part
of Ars Conjectandi, the part of greatest interest to this review, cites only one reference:
Arnauld & Nicole’s La logique, ou l’art de penser (1662).

De ratiociniis is a thirteen page text, largely recreational in nature, on the mathematically
correct valuation of games, lottery tickets and the like. Written by Dutch astronomer,
physicist and mathematician Christiaan Huygens (1629-1695), it was the first published
text on probability theory (Hald, 1990). Its main result is both short and simple:

If the number of chances to gain a is p, and the number of chances to gain
b is q, then, assuming all chances occur equally easily, the mathematically
correct value of the game is (ap + bq)/(p + q).

Huygens’ expression is noted as the first definition of the expected value of a random
variable, but more immediately it is a weighted mean. Hence Huygens gives a formula for
the mathematically correct weighting of different possibilities. The influence this text had
on Bernoulli’s thinking is indisputable; it was reprinted in its entirety, with annotations,
as the first part of Ars Conjectandi.

La logique is a historically influential and widely read textbook on logical deduction.
It was for example used by the Universities of Cambridge and Oxford well into the
nineteenth century (Buroker, 1996). Antoine Arnauld (1612-1694) and Pierre Nicole
(1625-1695) were French philosophers, mathematicians, and Catholic theologians, and
their book discusses axiomatic-deductive theory: constructing axiomatic systems, proving
propositions, deriving conclusions from premises, et cetera. La logique endorses the two
parts of Plato’s theory of forms and is influenced by Descartes’ rationalism. In his early
twenties, Bernoulli had travelled to Paris and studied the works of Descartes’ and his
followers (Hald, 1990), presumably including Arnauld & Nicole.

The fourth and last part of La logique concludes the discussion on scientific methodology
with a summary of the material into eight general rules. The summary is a natural
conclusion of the book, but Arnauld & Nicole state that, “before ending, it will be good to
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discuss another kind of knowledge”. The remaining twenty pages of the 355-page book,
which are arranged into what could be likened to an appendix, discuss faith and are
theological in nature, making the pages distinct from the rest of the book. Interestingly, it
is these twenty pages that Bernoulli expressly cites.

A focus of the final twenty pages of La logique is reconciling the use of the axiomatic-
deductive method with belief in miracles, i.e. events declared by the Vatican to result
from divine interventions. The evidence surrounding putative miracles often consists
exclusively of witness accounts, and therefore, according to strict rationalism, the evidence
typically cannot yield complete certainty as to whether or not a putative miracle really is
the result of a divine intervention. However, Arnauld & Nicole argue that even though
one cannot reach complete certainty, one can sometimes reach moral certainty. Chapter
twelve reads:

Human faith is in itself subject to error because all humans are liars,
according to Scripture, and it can happen that people who assure us
that something is true may themselves be mistaken. As we have already
indicated, however, some things we know only by human faith, which we
ought to consider as certain and as indubitable as if we had mathematical
demonstrations of them. [An example of such an indubitable certainty, discussed
in a later chapter, is that St. Peter visited Rome.] [...]

It is true that it is often fairly difficult to mark precisely when human
faith has attained this certainty and when it has not. [...] We can, however,
mark certain limits that must be reached in order to attain this human
certainty, [...]

Bernoulli seized upon the idea of a continuum of certainty and a limit for moral certainty
which, if reached, ought to make the authors and all readers, i.e. mankind, consider the
statement in question as certain as if it had been mathematically demonstrated. Arnauld
& Nicole had no suggestion as to how this degree of certainty should be determined,
but Bernoulli had a splendid idea: the degree of certainty can be determined through
application of Huygens’ formula.

Idea (Bernoulli (1713)). The concept of probability can be used for the valuation of empirical
evidence, and hence pairing the two yields a method for the advancement of science through
empirical evidence.

As a result, Bernoulli had identified an entirely new use of Huygens’ formula: pairing
it with empirical observations to produce a theory of the correct valuation of empirical
evidence. And thus Bernoulli’s idea was formed; the defining characteristic of statistical
science and a cornerstone of modern science.
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Bernoulli defined ars conjectandi, his theory of inference, as the theory of estimating,
as exactly as possible, our degree of certainty in things. He added: “in this alone lies all
the wisdom of the philosopher”.

4. Bernoulli’s theory of inference

In the fourth and last part of Ars Conjectandi, Bernoulli lays out the details of his theory
of inference. Like Arnauld & Nicole, Bernoulli endorses Plato’s theory of forms through
a theological argument. Every statement is in and of itself either inherently true or
inherently false; however we, mankind, cannot obtain this ideal form through the senses.
Bernoulli defines certainty as our, mankind’s, subjective level of knowledge concerning
a statement’s truth value. Complete certainty corresponds to perfect knowledge that the
statement’s truth value is true, and can be obtained through the axiomatic-deductive
method or, presumably, Scripture. Complete impossibility corresponds to perfect knowledge
that the statement’s truth value is false, and is thus the antipode of complete certainty.

Bernoulli continues by postulating that complete certainty is represented by the number
1, and that degree of certainty relates to complete certainty as the part of a whole, i.e. a
number in the interval [0, 1]. The degree of certainty 0 represents complete impossibility,
and the degree of certainty 0.5, consequently, represents utter uncertainty. A statement is
morally certain if the degree of certainty is such that the difference relative to complete
certainty cannot be perceived. Bernoulli provides the numbers 0.99 and 0.999 as examples
of limits that can be used.

Complete certainty and complete impossibility correspond to the statement’s numeric
truth value, 1 if the statement is true and 0 if it is false. The numeric truth value has the
symmetry property that if a statement has numeric truth value x, then its negation has
numeric truth value 1 − x. Bernoulli does not explicitly discuss whether this symmetry
property holds for degrees of certainty, but alludes to this by stating that if the limit for
moral certainty is 0.999 then the limit for moral impossibility is 0.001.

Bernoulli defines probability as degree of certainty, and uses the two terms interchange-
ably. For the purpose of this review, use of the word probability is slightly problematic
because the word has meanings to the modern scientist that it did not have in Bernoulli’s
lifetime, when probability theory was in its infancy. For instance, the so-called frequency
and Bayesian interpretations, as well as Kolmogorov’s construction, did not exist dur-
ing Bernoulli’s lifetime; the word probable had a pre-numerate sense, as discussed by
Hacking (1971). The best understanding of Bernoulli’s use of the word is likely to accept
his wording precisely as written: that probability is defined as a synonym for degree of
certainty, which has its own definition.

As a historical remark, Locke (1700) defines probability as incomplete proof, which is
a distinct and now defunct sense of the word. As an exemplification: A proof shows a
statement to be true, while a probability induces the mind to judge the statement to be
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true. This sense of the word reflects an older English tradition and has no relationship
with probability theory (cf. Uzgalis, 2012).

In a pair of axioms, Bernoulli postulates the role of his theory of inference relative to
the then-predominant axiomatic-deductive method. By the first axiom, there is no place
for inference if complete certainty can be reached, and by the last axiom, if complete
certainty cannot be reached then necessity and use ordain that a morally certain statement
be taken as if it were completely certain. The last part echoes Arnauld & Nicole’s claim
that some things that attain a particular limit of certainty should be considered as certain
as if there existed mathematical demonstrations of them.

Hacking (1971) and Hald (1990) claim that Bernoulli intended Ars Conjectandi as an
extension of La logique. There are many obvious similarities between the two works: La
logique is named Ars Cogitandi in Latin, and the two works are similarly arranged into
four parts. Moreover, La logique ends with a brief, unfinished discussion on a continuum
of certainty and the concept of moral certainty, which constitute the main foci of Ars
Conjectandi. Bernoulli’s theory of inference complements Arnauld & Nicole’s theory of
deduction; The Theory of Inference is in fact a passably correct English translation of Ars
Conjectandi.

As to the practical application of his theory, Bernoulli proposes two ways of estimating
the probability of a statement: one that uses Huygens’ formula, and one that uses the
arithmetic mean. If all the parts and pieces that are relevant to the statement have known
degrees of certainty, i.e. probabilities, then they can be correctly weighted through use
of the expected value operator. The probabilities that go in to the equation could be
known either through symmetry or because the parts are deemed completely certain or
utterly uncertain. Bernoulli exemplifies the weighting of probabilities through a legal trial
situation in which the court weights different arguments that variously favor or disfavor
the defendant.

If a probability cannot be estimated through Huygens’ formula, the expected value
operator, then Bernoulli proposes a method of empirical estimation through repeated
experiments and the use of the arithmetic mean. This unassuming proposal constitutes
one of the most important contributions to the evolution of modern science. It is in
arguing the merits of this proposed method that Bernoulli states and proves his famous
limit theorem, which Poisson (1837) termed the law of large numbers.

Bernoulli’s theory of inference has many merits. By using the concept of probability
as a device, and Huygens’ formula for the mathematically correct weighting of different
possibilities, the valuation of empirical evidence is made transparent, reproducible and
relatively objective. Further, Bernoulli’s theory does not challenge or seek to overturn
notions of the axiomatic-deductive method, but builds on them. By Bernoulli’s last axiom,
the theory should only be employed if the axiomatic-deductive method cannot be applied
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successfully, and hence the two methods cannot conflict. In fact, Bernoulli’s theory is
itself axiomatic-deductive in nature.

According to the second part of Plato’s theory of forms, the senses are inherently
unreliable and observations inevitably subject to flux. The conclusion that Plato and many
others came to was that empirical evidence cannot yield meaningful knowledge about
the ideal forms of phenomena. But through Bernoulli’s limit theorem, an observation
can be made arbitrarily accurate through repeated observation and use of the arithmetic
mean, regardless of how inaccurate the individual observations are. Remarkably, in the
last paragraph of Ars Conjectandi, Bernoulli reaches out to Plato, discussing how he would
have reacted had he been aware of this result.

5. The originality question

The arithmetic mean is a composition of simple arithmetic operations which has
been employed since ancient times, for instance for division of inheritance. However,
using the arithmetic mean as a statistical method to obtain an estimate more accurate
than a single observation is a more recent practice. This section aims to investigate
whether Bernoulli’s proposal of the method is an original contribution of Ars Conjectandi.
Because of insufficiently detailed historical sources, the originality question may never be
definitively answered, alas moral certainty may never be reached, but analysis of existing
sources is interesting nonetheless.

Galilei (1638) measured the time of descent of a hard bronze ball through experiments
repeated a full hundred times, but did not use the arithmetic mean. Galilei, one of the
foremost scientists of his day, only considered the difference between the greatest and
the smallest observations, which he noted was less than a tenth of a pulse-beat. He did
not in any way combine the observations to obtain a more accurate estimate of the time
of descent. Galilei was a leading astronomer, having improved the telescope and made
several empirical discoveries, such as the moons of Jupiter, and should reasonably have
been acquainted with the most recent advances in empirical observation, including the
method of the arithmetic mean had it existed.

Simpson (1755) argues that it is advantageous to combine observations through the
arithmetic mean rather than relying on a single observation taken with due care. Simpson’s
text implies that the method existed in 1755 but had not yet, as Simpson puts it, been so
generally received. Hence the literature indicates that the arithmetic mean as a statistical
method first appeared sometime between years 1638 and 1755.

Interestingly, Simpson (1755) contains a perceived counter-argument, which facilitates
understanding of why use of the arithmetic mean at the time was not instinctively
favored. An astronomer who measures angles on the celestial sphere may develop,
through experience or intuition, a sense of the accuracy of the individual measurements.
If conditions at one particular instance, atmospheric, technical or other, are such that the
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astronomer deems the observation to be highly accurate, then it could possibly seem
counter-intuitive to contaminate the accuracy of that observation by pooling it with less
accurate observations.

In the nineteenth century, by contrast, it became well accepted that through use of
the arithmetic mean the observational errors, whether small or large, on average cancel.
Therefore the arithmetic mean yields an estimate that is more accurate than any one
observation (see, e.g., Gauss, 1809). However, understanding this result presupposes
probability theory, the first published text being Huygens (1657), and the law of large
numbers, first version published in Ars Conjectandi (1713).

As to Bernoulli’s own writings, in private correspondence with Leibniz (Bernoulli, 1703,
1704), he repeatedly refers to estimation through the arithmetic mean as his method. But
in Ars Conjectandi, Bernoulli emphatically denies that using the arithmetic mean is his
proposal. Besides the denial being out of place, there are a number of reasons to question
the validity of Bernoulli’s denial.

In denying originality, Bernoulli uses a markedly different language relative to the rest
of Ars Conjectandi, claiming: “everyone consistently does the same thing in daily practice.
[...] even the most foolish person”. Simpson (1755) attests that everyone at the time did not
use the arithmetic mean in daily practice, including highly intelligent people. Secondly,
Bernoulli claims that Arnauld & Nicole (1662) contains a similar recommendation, but
this claim is demonstrably false; Arnauld & Nicole (1662) contains no mention of the
arithmetic mean, repeated observation, combination of observations, or any similar notion.

Lastly and most profoundly, Bernoulli argues the merits of the method by stating and
proving his limit theorem; the theoretical result proving with impeccable rigor that the
arithmetic mean can reach any level of accuracy through repeated observation. Bernoulli’s
limit theorem is generally accepted as the first result showing that the more observations
that are taken, the more accurate an estimate becomes (Hald, 1990). A result vital to
the development of probability theory and statistics, Bernoulli expressed that he valued
this result more than if he had solved the ancient open problem of squaring the circle
(Bernoulli, 1688).

A likely explanation for Bernoulli’s denial of originality is that he suspected that
empirical determination of probabilities through the arithmetic mean would be perceived
as a weakness of his work, one that would invoke spontaneous criticism. From the
rationalistic point of view, empirical estimation of a statement’s truth value could well
been seen as a rather absurd proposal. By eschewing ownership of the method, Bernoulli
could preemptively fend off some criticism, since methods, practices and results are
typically subject to less criticism if they are perceived as commonplace rather than original
contributions.

When all are taken together: private correspondence, Bernoulli’s limit theorem, his out-
of-place denial, and the historical context; then existing sources point towards originality.
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The investigation concludes that the arithmetic mean, used as a method to obtain a
more accurate estimate than a single observation, is an original contribution of Ars
Conjectandi and should be credited to Bernoulli. Even if a reader would dismiss this
analysis, according to scientific principles a result should be attributed to the earliest
published text in which it appeared, and as of now the earliest known such text is Ars
Conjectandi.

6. Epilogue

In eulogies of Jakob Bernoulli, Bernard le Bovier de Fontanelle and Joseph Saurin
discussed his work on probability, his limit theorem, and not least that Bernoulli applied
the concept of probability for valuation of evidence, which they claimed held the greatest
originality and promise (Sylla, 2006). According to Hald (1990), Bernoulli’s successors
recognized the importance of his limit theorem, and successful work was continued by
de Moivre (1718) and others, but Bernoulli’s theory of inference was seemingly soon
forgotten.

Although his theory of inference was forgotten, Bernoulli’s idea of pairing empirical
observations with the concept of probability persevered through the years. Jakob’s nephew
Daniel Bernoulli (1778) discussed an objection first raised by Leibniz; that if there are
infinitely many outcomes, each with probability zero, then estimating probabilities of
outcomes is not fruitful. Daniel Bernoulli’s solution consists of instituting a statistical
criterion, i.e. a convention by which certain values are considered relatively probable and
others relatively improbable, that utilizes probability density. Gauss (1809) applied this
density criterion for determining the most probable Kepler orbit given observations of a
heavenly body, which under a normal distribution assumption yielded the method of least
squares. During the nineteenth century, the method of least squares gained widespread
use in astronomy (see, e.g., Airy, 1875), and as a consequence Bernoulli’s idea started to
gain popularity.

In the late nineteenth century, Bernoulli’s theory of inference was reinvented by a fellow
philosopher, physicist and mathematician: Karl Pearson. In The Grammar of Science (1892),
Pearson used Bernoulli’s idea in his verification postulate: that verification through means
of empirical evidence is the demonstration of overwhelming probability. The concept of a
Pearson-verified statement is practically identical to that of a morally certain statement,
and the resurrection of Bernoulli’s theory of inference constitutes a remarkable historical
development. Using a different statistical criterion, the distance criterion, Pearson (1900)
constructed the statistical hypothesis test.

In the year 1911, the method of least squares and Pearson’s hypothesis test were
collected in George Udny Yule’s An Introduction to the Theory of Statistics. The fact that
Yule published these methods, from astronomy and biology, under the name Statistics
greatly affected the scientific discipline in the United Kingdom (Hill, 1984), and gave
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the word statistics its modern meaning. During the twentieth century, aided by the
electronic computer, the adoption of statistics grew enormously. At present it is the de
facto standard methodology in nearly every scientific discipline, save mathematics and
theoretical physics where the axiomatic-deductive method is used successfully.

Jakob Bernoulli envisioned an alternative scientific method, based on pairing empirical
evidence with the concept of probability, that complements the axiomatic-deductive
method where the latter cannot be applied successfully. Today, 300 years after the
publication of Ars Conjectandi, Bernoulli’s vision is reality. Other than Plato’s founding of
the original academy, it is difficult to conceive of a greater contribution to the scientific
community than inventing the principal scientific method that is used daily by nearly all
of its members.
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