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Supergraph techniques and two-loop beta-functions
for renormalizable and non-renormalizable operators

Stefan Antusch

Physik-Department T30, Technische Universitat Minchen
James-Franck-Strafie, 85748 Garching, Germany
E-mail: antusch@ph.tum.dd

Michael Ratz

Physik-Department T30, Technische Universitat Minchen
James-Franck-Strafle, 85748 Garching, Germany
E-mail: pratz@ph.tum.dq

ABSTRACT: We present a construction kit for calculating two-loop beta functions in N =1
supersymmetric theories for the operators of the superpotential using supergraph tech-
niques. In particular, it allows to compute the beta functions for every desired, even
higher dimensional, operator of the superpotential from the wavefunction renormalization
constants of the theory. We apply this method to calculate the two-loop beta functions for
the lowest-dimensional effective neutrino mass operator in the Minimal Supersymmetric
Standard Model (MSSM) and for the Yukawa couplings in the MSSM extended by singlet
superfields and the mass matrix for the latter. Our method can be applied to any N =1
supersymmetric theory.
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ptandard Model, Neutrino Physicd.

© SISSA/ISAS 2002 http://jhep.sissa.it/archive/papers/jhep072002059 /jhep072002059 .pdf


mailto:santusch@ph.tum.de
mailto:mratz@ph.tum.de
http://jhep.sissa.it/stdsearch?keywords=Renormalization_Group+Supersymmetric_Effective_Theories+Beyond_Standard_Model+Neutrino_Physics
http://jhep.sissa.it/stdsearch?keywords=Renormalization_Group+Supersymmetric_Effective_Theories+Beyond_Standard_Model+Neutrino_Physics

Contents

=

Introduction

=

(V]

Review of the supergraph method
@ Wavefunction renormalization constants
R.9 pB-functions from wavefunction renormalization constants

B Applications
B.J Two-loop 3-functions in the MSSM extended by singlet superfields

B3 Two-loop B-function for the effective neutrino mass operator

EE@I@ E = [

B.J Two-loop 3-function for the mass of the singlet superfield

Is

@. Discussion and conclusions

1. Introduction

In order to compare experimental results with predictions from models beyond the Standard
Model (SM), like unified theories, it is essential to evolve the parameters of the models
from high to low energies. This is accomplished with the renormalization group equations
(RGE’s) for the operators in the theory. Besides the renormalizable operators there can be
higher dimensional, non-renormalizable operators if the theory is considered as effective.

In a previous study [I], we derived a general method for calculating S-functions from
counterterms in MS-like renormalization schemes, which works for tensorial quantities.
It is simplified considerably in supersymmetric (SUSY) theories, since due to the non-
renormalization theorem [, ff] only wavefunction renormalization has to be considered for
operators of the superpotential. However, in a component field description, no use can be
made of the theorem with respect to gauge loop corrections since it is no longer manifest
when a supergauge, as for example Wess-Zumino-gauge, has been fixed. The supergraph
technique [H-[fq], on the other hand, allows to use the non-renormalization theorem, since
SUSY is kept manifest. Moreover, it has the advantage that the number of independent
diagrams is clearly reduced compared to the component field calculations.

We therefore present a method to calculate G-functions in supersymmetric theories
for operators of the superpotential from wavefunction renormalization. These operators
may be non-renormalizable since for the latter the non-renormalization theorem holds as
well [}, and they do not affect the wavefunction renormalization constants in leading
order in an effective field theory expansion. As an application, we consider the Minimal
Supersymmetric Standard Model (MSSM) extended by singlet superfields, which contain
right-handed neutrinos relevant for models of neutrino mass. We compute and specify



the wavefunction renormalization constants. From these, the two loop RGE’s for the
Yukawa couplings and for a possible mass matrix for the singlet neutrino superfields are
obtained by the supergraph method. The technique can be used to compute the two loop
RGE’s for every desired higher dimensional operator of the superpotential, since the non-
renormalization theorem guarantees that no vertex corrections contribute. Furthermore, we
consider the lowest dimensional neutrino mass operator. Its RGE is known at the one loop
level for the SM [0, [0, fl], Two Higgs Doublet Models [[[0, [T} and for the MSSM [f), [0} [T].
With the supergraph method we calculate the two loop RGE for the neutrino mass operator

from the MSSM wavefunction renormalization constants.

2. Review of the supergraph method

Consider a general supersymmetric gauge theory with a gauge part described by the usual
lagrangian

Ng S
_ 4 =(4) j 1 2 ny /Mo
Z = /d 0 Z ¢ [exp(2g - V)], V) 4 Z/d 0 ZWaW +he | +

i,j=1 n=1
+ [/ d29 v/ 4 + hC:| + gGhost + gGauge Fixing (21)
where
1
W = . D> lexp(2g, V") D, exp(—2g,VY")], (2.2a)
9n
S dim Gy,
g-Vi=3Y gV and V'= > VAT (2.2b)
n=1 A=1
The renormalizable part of the superpotential reads
R
7 j k
Wier = G Z )\(ijk)qp( ) o) k) (2.3)

i k=1

Possible mass terms are ignored for the present as they do not affect the G-functions of the
model. The Ng superfields ) transform under the irreducible representations (irreps)
Rgi) X e X Rgi) of the gauge group G1 ® - - - ® Gg. {(Tfl‘)g}iiff" denote the generators of
G- The indices i, j,... run over all irreps, families and the representation space.

2.1 Wavefunction renormalization constants

Due to the non-renormalization theorem, the RGE’s for operators of the superpotential are
governed by the wavefunction renormalization constants for the superfields Z;; = 1;; +0Z;;

which relate the bare <1]>](3i) and the renormalized superfields,

. Ne )
oy =3 7200, (2.4)
j=1



Results are obtained with dimensional regularization via dimensional reduction [[2, [3].
At the one loop level and in d = 4 — € dimensions, 0Z;; is given by

- 52(1

ZAM}\]M 429n02< ) il - (2.5)

k=1

In equation (P.§) and in the following, we use the group-theoretical constants

a(G) P =" AP Pop, (2.6a)
C,D

ca(R)bap =Y _(TATA) g, (2.6b)
A

U(R) 048 = To(TATP), (2.6¢)

with the matrix representations {TA}%flG of the generators of G corresponding to the
irrep R and the structure constants f4pc. £(R) is known as Dynkin index of the irrep R
and c(R) as the quadratic Casimir. They are related by

dim G
dim R

c2(R) = U(R), (2.7)

with dim G and dim R being the dimension of the group G and the irrep R, respectively.
Often the generators of the irrep N of SU(V) are normalized such that ¢(IN) = 1/2 holds.
¢y can then be obtained via co(IN) = % while for a U(1) theory both ¢(R) and cy(R)
are replaced by g% where ¢ is the U(1) charge of ®. For any non-trivial irrep of SU(NV) the
invariant ¢;(IN) is given by N.

On the two-loop level the renormalization group equations are determined from the

formula [[[4]

+2 Zgi Co (Rﬁ?) (Zn — 301(Gn)) 0ij +

D)

n=1

gi (— C2 (Rg?) + 2c¢9 <Rn£)>) )\;M)\jkg —
1

= I
z M7

Z AlkeN st )\ist)\jkr . (2.8)
k,l,r.st=1

Here ¢,, is defined by '
ly = % ﬂ : (2.9)
i—1 dim <R,(1i))
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Figure 1: One-loop supergraphs which contribute to the $® propagator.

In addition to the superpotential of equation (P.3), higher dimensional operators may
appear in the superpotential of an effective theory. These operators are generally sup-
pressed by inverse powers of a large mass scale Mx. Though these operators are non-
renormalizable by power counting, in the effective field theory approach one can renormalize
the theory in an expansion in inverse powers of Mx. In the leading order of this expansion,
the higher dimensional operators do not contribute to the wavefunction renormalization.

In supergraphs, we represent chiral superfields as straight double lines while vector-
superfields are indicated by wiggly double lines,

b : - :

Vo v
The diagrams relevant for the calculation of the wavefunction renormalization constants
for the matter superfield, equation (R.H) and (R.§), are shown in figure [] and P} respectively.

2.2 p-functions from wavefunction renormalization constants

To calculate G-functions from the wavefunction renormalization constants, it is convenient
to subdivide the general indices {i,7, ...} into indices {r,s, ...} for the irreducible repre-
sentations, {f,g,...} for the particle families and {a,b,...} for the representation space,
i.e. i = (r, f,a). The wavefunction renormalization constants Z;; are diagonal with respect
to the representation and the representation space indices and are matrices in flavour-space.
In the rest of the paper we will write Z;; = Z, and suppress flavour and representation
space indices.

Due to the non-renormalization theorem, in a supersymmetric theory a bare quantity
Q@B of the superpotential and the corresponding renormalized one, (), are related by

on- (112 vt (1122, o

rel seJ

where matrix multiplication with respect to flavour indices is implicit and the sets of
superfield indices I = {1,...M} and J = {M +1,... N} denote the wavefunction renor-
malization constants multiplied from the left and the right respectively. Q may correspond

to a renormalizable or non-renormalizable operator.



(9) (h) (4)

Figure 2: Two-loop supergraphs which contribute to the & propagator. A blob denotes the rel-
evant one-particle irreducible graph including any one-loop counterterm that may be required .

The wavefunction renormalization constants Z, can be expanded in e,

Z
Zy=1+Y =E. (2.11)

€
k>1

Following the steps of the derivation in [[[, we find

) )

where {V4} denotes the set of all variables of the theory including the variable @) under

Q. (212)

dZ,1
T S (5

rel

fa=Q- 3 n [ZDVA (2
A

sed

consideration and g is the usual g-function, defined by

d
B0 = nge- (2.13)



Note that in equation (R.12), for complex quantities V4 we have to treat the complex
conjugates V} as independent variables. We use the notation [[]

(dF

—y for scalars x,y

dx qF
. Z o for vectors @ = (), y = (Ym)
ar N )4 (2.14)
dr dF .

Ymn for matrices x = (acmn), Yy = (ymn)
m,n dxmn
etc.

and Dy, is related to the mass dimension of V4 as indicated in equation (P.10)). Equa-
tion (R.12) allows to compute the §-functions directly from the wavefunction renormali-
zation constants, calculated with the supergraph technique.! It has a form that can easily

be used for computer algebra calculations.

3. Applications

3.1 Two-loop (-functions in the MSSM extended by singlet superfields

We consider a supersymmetric model containing the same fields as the MSSM and addi-
tionally the singlet “neutrino” superfield which we will denote by v. In order to obtain the
(B-functions for the Yukawa matrices and a mass matrix for the neutrino superfield, we will
omit the soft SUSY breaking terms,? since they do not affect the considered B-functions
above the scale of the soft supersymmetry breaking mass terms. Threshold effects at low
energy scales are e.g. discussed in [[[9].

Thus the Yukawa part of the superpotential is given by

WYukawa = (Ye)gfecglhgl)ffabu{: + (Yy)gfﬂ/Cg[}'\g)&“abUI{ +
+ (Ya)gpd“9h(Veq] + (Vo) ru®h( (e7) %] . (3.1)

The superfields €, d© and u® contain the SU(2)p-singlet charged leptons, down-type
quarks and up-type quarks, respectively, and q contains the SU(2)y, quark doublets. Their
quantum numbers are specified in table [ In addition we consider a mass term for the
singlet neutrino superfield

Wiass = % 'VCfogU/CQ > (32)

that may be relevant for generating neutrino masses in the see-saw scenario.

! Another way of calculating superpotential S-functions is based on the superfield anomalous dimensions,
which have been calculated to the 3-loop level in [@]
2The calculation of the RGE’s for the soft SUSY breaking operators can be found in [E, E, B]



Field |hD 1K g d¢ ¢ 1 ¢ o€
N I i e i S B
SU2)L 2 2 1 1 1 1
SUB)c | 1 1 3 3 3 1 1 1

Table 1: Quantum numbers of the superfields. ¢y denotes the U(1)y charge in GUT normalization.

The quantum numbers of the superfields are listed in table . Note that we use GUT
charge normalization for the U(1)y charge.

Using equation (R.J), this leads to the 1/e-coefficients of the wavefunction renormali-
zation constants

—(47)? Z&}M — 6 Tr(Y] - Yg) +2 Tr(Y) - Y,) — ggf —3g2, (3.32)
—(47)? zngg),l =6 Tr(Y] Y, +2 Te(Y) - Y,) — gg% —3¢2, (3.3b)
~(am?zl) =2v] vy +2v) .y, - 1—15gf —3g%— 1—369?%, (3.3¢)
~(m? 2, = av Y] - - D, (3.3d)
(2 20, =4y YT - gt k. (3.3¢)
~(nP ) =2V Yov2vi v, - St -3, (3.30)
(2 2, = vy YT - 2 g, (3.32)
—(@4m)? 2\ =4y v (3.3h)

where the Y's as well as the last six Z-factors are of course matrices in flavour space. From
the two-loop diagrams we get

—(@m) Z8) = =9 Te(Y Y Y] Ya) =3 Te(Y) Yo YY) -
-3 Te(Y) Yo YY) -T(YS Y, YY) -
2 6
=208 (Y] Yo) + < gf Te(Y] - Ye) + 1665 Te(Y] - Ya) +
207 , 9 ,, 15,
el SR = 3.4
+10091+109192+4927 (3.4a)
—(@m)tZ8) = =3 (VY Y] ) -9 Te(vf Y, YY) -

—Tr(Y Yo YY) =3 Te(V) Y, - V- Y,) +
4
+ = g1 (Y- Vo) + 163 Te(V] - Va) +

07 , 9 5, 15,
— — — 3.4b
+10091+109192+4927 ( )



—(m) 28 = —2Y] YooY Yo-2v]-v, v Y-
—3Y] Yy Te(Yy-Y)) =3V v, Tx(Y, - V) -
—Y Yy Te(Y, YD - Y Y, Ty, Y +
) 4
+3g%Yj-Yd+gg%YJ'Yu+
199 , 1 5 5 15 4

+%91+1—091gz+192+
8 8 ,
+ 5 9195 +80505 — 595 (34c)
—(n)t 2 = —evy vl vp v —evg vl vy -
—6Y; Y] (Y, Y] —2Y) Y] Te(Y, - YI) +
2
+59%Yd*'YdT+69%Y;'YdT+
202 , 32 ,, 8,
el SRl B 3.4d
togs 1t E 9193~ 95 (3.4d)

—(471')4Zu%)’1 = 2y Yl vy vT oy vl .y vl -

-2V Y Te(Y, -V —6Y,) - Y.L Te(Y, - Y)) -
2 *
856 , 128 5 5 8 4

SV 222 2 3.4
+22591+45 9193 — 4 93> (3.4e)

—(4m)? Zu(,21) =2V} v..vh-v.-2v]-v, - vi -y, -
—3Y) .Y, Tr(Yy- ydT) —YI Y, Te(Y, - Y)) -
3V Y, TH(Y, - Y — VY, Ty, - YD)+

207 , 9 15

6
+59%Yj'ye+ﬁ91+1—0919%+193, (3.4f)

SC AN DD G A IR DA I A Al

—6Y) - Y (Y, v —2Y) YT Tre(Y, Y -
234,

6 .
— Y Y 66 Y Y + o (3.4g)

() 28, = —2Y; YT Y YT Yy YT Yy YT -
—6Y) - Y Te(Y, - Y,) -2V Y Te(Y, - Y)) +
6
Y Y 6 YY) (3.4h)
respectively. From these, the two-loop Yukawa RGE’s are derived,

day, 1 (1) 1 )
K du - (41)2 Y. T (4m)4 Yz 0

(3.5)

where z € {d, u,e,v}. Using equation (R.19), the one-loop contributions to the S-functions



are given by

By :Yd.{3YdT.Yd+YJ.Yu+3 Te(Y]  Yy) + Te(Y) - v,) —

7 16
—759%—393—393}, (3.6a)

By = Yu-{YJ-Yd+3YJ-Yu+Tr(Yj-YV)+3 Te(Y,) - Y,) -

13 , 16

—1—591—395—393} (3.6b)

By Ye'{3YeT'Ye+YJ-Yy+3Tr(Yj-Yd)+Tr(YeT.Ye)_

9
~ =913 } 7 (3.6¢)

By, :yu-{32*-1@+3YJ-YV+3Tr(YJ-YuHTr(YJ-Yu)

3
“2g-sg } | (3.6d)

and the two-loop contributions are

u

5@ :Yd.{_4YdT-Yd-YdT-Yd—2YJ-Yu-Yj-Yd—2YJ-Yu-YT-Yu—
—OTH(Y] Yy Y] Yy =3 T(Y) Y, - YY) —
—3Te(Y) Y, YY) —Te(Y] Y, Y] -Y,) -
—OY] Y, Te(Yy-Y)) = 3Y] vy Te(Y, - V) —
—Y Y, (Y, - Y)) =3y Y, Te(Y, - Y +
+6g§Yj-Yd+éngj-Yd+éngJ-Yu—

5 5

9 6
-z Tr(Y; - Yq) + =91 (Y] Ye) + 1663 Te(Y,) - Yy) +

287 15 8 16
+ng‘+g%g§+79§+§g%g§+89§9§—59§}, (3.7a)

& :Yu-{—QYdT-Yd-Yj-Yd—2YdT-Yd-YJ-Yu—ZLYJ-Yu-YJ-Yu—
—3Y) Yy Te(Yy-Y)) = Y] - Yy Te(Ye - Y]) —
—9Y, Y, Tr(Y, - V) —=3Y,) Y, Tr(Y, -Y,)) —
—3Te(Y) Yy Y] v -9 (Y)Y, YY) -
—Tr(Y Yo Y] Y) =3 Te(Y] Y, - V] -Y,) +
2 2 @BY Yu+ 6gRY] Y+

5 5
4 2743
+z g2 Te(Y,] - Y,) +16 g2 Te(Y] - V) + =— g}

150
15 , 136

16
+g?95+592+ggfg§+89§g§—59&‘}, (3.7b)

FIAY Y+



5(2) :Ye-{—4YJ'Ye'YJ'Ye—QYVT'Yu'YeT'ﬂ—QYJ'Yu'YJ'Yu—

— V]V, Te(Yq-Y)) =3V Y, Tr(Y, - Y,) -

—Y] Y, (Y, - Y,))) =3V, -V, Tr(Y, - Y)) —

—9Te(Y) Yy Y] Yy =3 Tx(Y) Y, - Y Yy) -

—3Te(Y) Y, YY) —Te(Y) Y, - YY) + gg% Te(Y,) - Y.) +

2
+6g3YS Y, — 39% TY(YJ'Yd)Jrng% TI“(YdT'Yd)Jr
9 2

27 15
+79?+3919§+393}, (3.7¢)

5(2”) :Yy'{—2Y6T'Ye'3d'5@—2yg'3@'yj'Yy—4YJ'Yu'Y,,T'Yu—

=3V Y. Yy Y)) - VY TV, V) -
—3Y,) Y, Te(Y, - Y))) —9Y,] -V, Te(Y,-Y]) -
—Tr(Y Yo YY) =3 Te(Y) Y, - V] Y,) -
—3 (Y Yy Y] Y) -9 (Y)Y, YY)

6 6
+gngJ-n+gg%YJ-Yy+ﬁg§YJ-Yy+

4
+ 2ot (Y- Ya) + 163 Te(V] - Vo) +

207 4,9 20

15 ,
=L Z - . 3.7d
+5Og+59192+292} (3.7d)

Note that the two-loop MSSM RGE’s for Yy, Y, and Y. are easily obtained by setting
Y, = 0. The effort is clearly reduced compared to component field calculations [0, 2.
3.2 Two-loop [-function for the effective neutrino mass operator
We now apply our method to calculate the S-function for the lowest dimensional effective

neutrino mass operator, which is contained in the F-term of the superpotential

1
Y MSSM _ — s uggcdhgf) ﬂggbaﬂ‘\((;) +h.e.. (3.8)

[

It can e.g. be obtained by integrating out the singlet superfield v of the model described in
section B.1] at leading order in the effective theory. The S-function can easily be computed
using our method. Substituting Dy, = Dy, = % with i € {1,2,3} and z € {u,d, e}, we get
from equation (P.12)

1 1
Br =Ty k=5 Zt k- 5k G (3.9)

We can thus write the S-function for x in the form

Be=XT - k+r-X+ak, (3.10)

,10,



where the complete flavour diagonal part is contained in oe. We further split X = X ()4 x®)
and o = M + a@ into their one loop and two loop part. Plugging in the wavefunction
renormalization constants of equation (B.3H) and (B.3f) and setting Y, = 0, our method
reproduces the one loop results of [}, [L0,

(4r)?xW =vi.y,, (3.11a)
(47)2 oV = —g 92 —6g2+6 Te(Y] -Y,). (3.11b)

Note that for U(1)y, we use GUT charge normalization as specified in table [l At two-loop,
with the wavefunction renormalization constants given in equations (B.4b) and (B.4), we
obtain

6
(m)t X® = 2y v, V] v, + (g gi = Tr(Ye - V) =3 Te(Yy- YJ)) viv. (312
and
(4mta® = 6 Tr(Y] - Yy Y] V) =18 Tx(Y) -V, - Y] -V,) +

8
+ =01 (V] Ya) + 3295 Te(V] - Ya) +

207 18
+ oo gt 9195 + 155 (3.13)
25 5
3.3 Two-loop [-function for the mass of the singlet superfield

From the wavefunction renormalization constants of the MSSM extended by singlet super-
fields given in section B.J], the S-function for the bilinear coupling of equation (B.2) can
easily be computed using the formula of equation (R.12). At one-loop, we find

(4m)?8Y =2 v v 12, Y- M (3.14)
and the two-loop part of the G-function is given by
2 * * * *
(am)*® = M - [—2}; YTy yT oy v .yr .yl -
—6Y Y Te(Y, -V -2V VT Te(Y, - Y))
6
Yy Y oy v |
+[—2YV-Y6T-Ye-Yj—2Yy-Yj-Yy-Yj—
—6Y, Y, Te(Y, - Y))) =2V, - Y] Te(Y, - Y))) +
6
+gg%Yy-Yj+6g§Yy-YJ} M. (3.15)

In typical models of neutrino masses based on the see-saw mechanism, the effective neutrino
mass operator of equation (B.§) is obtained by integrating out the singlet superfields, which
leads to the relation x = 2Y, M~1Y,,. The S-function for M, together with the 3-function
for Y, of equation (B.6d)), is therefore required to evolve the neutrino mass matrix from the
GUT scale to the scale of the largest eigenvalue of M, if the singlets have a direct mass
term.

— 11 —



4. Discussion and conclusions

We have presented a general method to calculate two loop G-functions for renormalizable
and non-renormalizable operators of the superpotential using superfield techniques. This
method is very useful for model building since it provides a construction kit which allows to
calculate the G-functions in a given supersymmetric GUT model with little effort. We have
applied this method to calculate the two-loop beta functions for the lowest-dimensional
effective neutrino mass operator in the MSSM and for the the Yukawa couplings and the
mass matrix in the MSSM extended by singlet chiral superfields. We have computed
and specified the wavefunction renormalization constants in the latter model, from which,
using our method, the two loop RGE’s for every, even higher dimensional, operator of the
superpotential can directly be computed. A classification of several higher-dimensional
operators for generating neutrino Majorana masses is e.g. given in [R3]. Many of them
can be generalized for supersymmetric models. Their G-functions can easily be obtained
with our method. The two loop (-function for the lowest-dimensional effective neutrino
mass operator is required to increase the accuracy of many studies based on the one loop
RGE [, [Ld, 1]}, e.g. [4]-[BY). This accuracy may be needed for the neutrino sector since
due to the absence of hadronic uncertainties, high precision measurements of the neutrino
parameters may be achieved in future experiments.
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