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ARTICLE

Disease-modifying therapies and features linked to
treatment response in type 1 diabetes prevention: a
systematic review
Jamie L. Felton1,2, Kurt J. Griffin3,4, Richard A. Oram5,6,7, Cate Speake 8, S. Alice Long 9,

Suna Onengut-Gumuscu 10, Stephen S. Rich 10, Gabriela S. F. Monaco1,2, Carmella Evans-Molina1,11,

Linda A. DiMeglio 1,2, Heba M. Ismail1, Andrea K. Steck12, Dana Dabelea13, Randi K. Johnson14,15,

Marzhan Urazbayeva16, Stephen Gitelman17, John M. Wentworth18,19, Maria J. Redondo16,20,203,

Emily K. Sims 1,2,203✉ & ADA/EASD PMDI*

Abstract

Background Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-

producing beta cells. Prevention efforts have focused on immune modulation and supporting

beta cell health before or around diagnosis; however, heterogeneity in disease progression

and therapy response has limited translation to clinical practice, highlighting the need for

precision medicine approaches to T1D disease modification.

Methods To understand the state of knowledge in this area, we performed a systematic

review of randomized-controlled trials with ≥ 50 participants cataloged in PubMed or

Embase from the past 25 years testing T1D disease-modifying therapies and/or identifying

features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias

instrument.

Results We identify and summarize 75 manuscripts, 15 describing 11 prevention trials for

individuals with increased risk for T1D, and 60 describing treatments aimed at preventing

beta cell loss at disease onset. Seventeen interventions, mostly immunotherapies, show

benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employ

precision analyses to assess features linked to treatment response. Age, beta cell function

measures, and immune phenotypes are most frequently tested. However, analyses are

typically not prespecified, with inconsistent methods of reporting, and tend to report positive

findings.

Conclusions While the quality of prevention and intervention trials is overall high, the low

quality of precision analyses makes it difficult to draw meaningful conclusions that inform

clinical practice. To facilitate precision medicine approaches to T1D prevention, considera-

tions for future precision studies include the incorporation of uniform outcome measures,

reproducible biomarkers, and prespecified, fully powered precision analyses into future trial

design.

https://doi.org/10.1038/s43856-023-00357-y OPEN

A full list of author affiliations appears at the end of the paper.

Plain language summary
Type 1 diabetes (T1D) is a condition

that results from the destruction of a

type of cell in the pancreas that pro-

duces the hormone insulin, leading to

lifelong dependence on insulin injec-

tions. T1D prevention remains a

challenging goal, largely due to the

immense variability in disease pro-

cesses and progression. Therapies

tested to date in medical research

settings (clinical trials) work only in a

subset of individuals, highlighting the

need for more tailored prevention

approaches. We reviewed clinical

trials of therapies targeting the dis-

ease process in T1D. While the

overall quality of trials was high,

studies testing individual features

affecting responses to treatments

were low. This review reveals an

important need to carefully plan high-

quality analyses of features that

affect treatment response in T1D, to

ensure that tailored approaches may

one day be applied to clinical

practice.
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Type 1 diabetes (T1D) results from immune-mediated
destruction of pancreatic beta cells1. Since the discovery
of insulin over a century ago, treatment options for persons

with type 1 diabetes (T1D) have shown remarkable advance-
ments, including improved insulin formulations, delivery meth-
ods, and tools to monitor glycemia2. Even with these
transformative advances, considerable negative impacts remain
on health outcomes and quality of life3–5. In contrast, effective
disease-modifying therapies aimed at the preservation of endo-
genous insulin production could not only improve these out-
comes but also, if given early enough in the disease course,
prevent the need for insulin replacement6–9. Because T1D is an
autoimmune disease, many agents tested as potential disease-
modifying therapies are immunomodulatory, while others target
pathologic contributors such as glucose toxicity and beta cell
health and function10. In 2022, the US Food and Drug Admin-
istration approved teplizumab, a monoclonal antibody targeting
CD3, as the first therapy to delay the onset of clinical T1D in at-
risk individuals11.

The Precision Medicine in Diabetes Initiative (PMDI) was
established in 2018 by the American Diabetes Association (ADA)
in partnership with the European Association for the Study of
Diabetes (EASD). The ADA/EASD PMDI includes global thought
leaders in precision diabetes medicine who are working to address
the burgeoning need for better diabetes prevention and care
through precision medicine. This Systematic Review is written on
behalf of the ADA/EASD PMDI as part of a comprehensive
evidence evaluation of precision prevention in T1D in support of
the 2nd International Consensus Report on Precision Diabetes
Medicine12. The first ADA/ EASD Precision Medicine in Diabetes
Consensus Report defined precision prevention as “using infor-
mation about a person’s unique biology, environment, and/or
context to determine their likely responses to health interven-
tions” and states that “precision prevention should optimize the
prescription of health-enhancing interventions”13. Given that
agents targeting these pathways may have potential adverse
effects, and initial therapies may affect the efficacy and safety of
subsequent treatment approaches, precision medicine is uniquely
poised to identify which individuals stand to benefit the most
from a given intervention and to optimize potential risk-benefit
ratios for treated persons. Additionally, once further T1D disease-
modifying therapies are approved for clinical use, precision
medicine will facilitate the selection of therapies guided by the
individual’s disease, including potential combination regimens of
disease-modifying therapies14,15.

T1D development occurs along a spectrum of progressive beta
cell destruction, beginning with loss of tolerance, reflected by the
appearance of islet autoantibodies, and continuing with pro-
gressive hyperglycemia, abnormal glucose tolerance, and decline
in endogenous insulin production, reflected by a decline in
C-peptide8. Based on this, in 2015, the diabetes research com-
munity adopted a staging system, with the development of mul-
tiple islet autoantibodies now heralding Stage 1 T1D9. At the time
of clinical T1D diagnosis, insulin replacement is required but
endogenous insulin production, though diminished, can still be
detected in most affected individuals. While an ideal goal is
clinical T1D prevention, disease-modifying agents aimed
throughout the spectrum of T1D progression have the potential
to improve long-term outcomes6,7. Furthermore, given widely
available participants and shorter total trial durations, agents
planning to target earlier stages of the disease are often initially
trialed in the new-onset period16. Therefore, we sought to
understand the current state of knowledge regarding precision
approaches to T1D disease modification, either to prevent the
development of early-stage or clinical T1D (referred to as “pre-
vention” studies) or to preserve endogenous insulin function

around the time of clinical T1D diagnosis (referred to as “new-
onset” studies). Specifically, we asked if individual characteristics
have been robustly identified to select persons for therapeutic
optimization of T1D disease-modifying therapies before or at the
time of diagnosis. We reviewed and summarized existing trials in
this area and identified individual characteristics associated with
treatment effects.

Methods
Search strategy. We developed a search strategy using an iterative
process that involved Medical Subject Headings (MeSH) and text
words. This search was refined based on a sensitivity check for
key articles identified by members of the group (Supplementary
Note 1). This strategy was applied to PubMed and EMBASE
databases by librarians from Lund University on 2/22/2022.

Systematic review. The Covidence platform was utilized for
stages of systematic review. To qualify for review, studies must
have tested a disease-modifying treatment in either initially non-
diabetic individuals at risk, or individuals with new-onset type 1
diabetes (within 1 year of diagnosis). Eligible study types included
randomized controlled trials (RCTs); systematic reviews or meta-
analyses of RCTs, or post hoc analyses of RCTs. Selected primary
trials or longitudinal follow-up papers of primary trials had a total
sample size ≥50 and were published as a full paper in English in a
peer-reviewed journal within 25 years of the search (2/21/1997-2/
22/2022). Papers focusing on a precision approach to identify
features associated with a treatment response were also included
if the total sample size was ≥10. Longitudinal follow-up papers of
RCTs were included if they addressed follow-up data on time to
diabetes, C-peptide area under the curve (AUC), or included
“precision analyses” of specific individual features or measures of
treatment response. Studies were excluded if they included mixed
participant populations (i.e., type 1 and type 2 diabetes) or
populations with inconsistent definitions across papers (i.e., latent
autoimmune diabetes in adults). Several additional key articles
previously known to the group of experts that also met inclusion
criteria but were not included in the search results because of
search restrictions designed to improve search feasibility were
also included in the analysis. While systematic reviews and meta-
analyses were included in the original search strategy to identify
any existing meta-analyses aimed at precision approaches, none
that met inclusion criteria were identified. All included papers
were primary trials or post hoc analyses of primary trials.

Investigators independently screened and reviewed each
potentially relevant article according to preliminary eligibility
criteria determined by members of the review team. For Level 1
screening two investigators per article screened each title and
abstract. Discordant assessments were discussed and resolved by
consensus or arbitration after consultation with a member of the
review leadership team (JLF, RO, KJG, MR, or EKS). For Level
2 screening of eligible articles, full texts were retrieved and
reviewed by two independent reviewers using the inclusion/
exclusion criteria. Discordant assessments were similarly dis-
cussed and resolved.

Two separate investigators per article extracted data from each
article meeting inclusion criteria, with consensus determined by a
member of the leadership team. Extracted data included study
and publication name and date, if the study was single or
multicenter, participant characteristics (age, sex, race, ethnicity,
stage of disease), eligibility criteria, intervention details, details of
metabolic monitoring, duration of follow-up, primary trial
outcome, specific data on outcomes of intervention on time to
diabetes (all available results) or C-peptide (at furthest reported
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timepoint from treatment), and methods and findings surround-
ing precision analyses focused on treatment response.

The protocol for this review was registered (PROSPERO ID:
CRD42022310063) before implementation and amended during
review to edit group members and for feasibility, to add further
exclusion criteria (populations defined as latent autoimmune
diabetes and trials or follow-up studies with <50 participants).

Risk of bias assessments. Investigators also independently per-
formed quality assessments using Covidence’s Cochrane Risk of
Bias template in tandem for each eligible study; this included
assessments of sequence generation, allocation concealment,
masking of participants/personnel, masking of outcome assess-
ment, incomplete outcome data, selective reporting, and any
other sources of bias to order to determine the overall risk of bias.

Statistics and reproducibility. Because of the heterogeneity of
clinical interventions (e.g., agent tested, study design, analytical
methodology, etc.), we were unable to perform a meta-analysis
but instead completed summaries of relevant studies. A forest
plot was generated using hazard ratios from all included pre-
vention studies. No studies were missing data or required data
conversion for this. Reproducibility was ensured by a dual
investigator review of each article at each review stage.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Systematic review results. From 1006 studies identified by
PubMed and Embase searches, 75 were eligible for extraction
(Fig. 1). This included original trial papers, trial longitudinal
follow-up papers, and papers focused specifically on a precision
analysis surrounding treatment response in prevention trials (15

papers from 11 prevention trial cohorts)17–31 and in individuals
with new-onset T1D (60 total papers from 45 new-onset trial
cohorts)32–91.

The 15 articles on T1D prevention generated from 11 trials are
summarized in Tables 1 and 2. Primary prevention studies,
conducted prior to autoantibody seroconversion in genetically at-
risk individuals testing development of islet autoantibodies or
time to T1D, comprised 27% (3/11) of trials; 63% (7/11) of trials
were secondary prevention studies testing effects of interventions
after seroconversion in autoantibody-positive individuals on time
to T1D; one trial tested both genetically at-risk infants and
autoantibody-positive siblings. Further inclusion criteria for trials
included measures of beta cell function, with studies testing
antigen-based therapies utilizing specific autoantibody positivity
criteria. The DPT-1 oral and parental insulin studies and TrialNet
oral insulin study identified participants based on insulin
autoantibody positivity and first-phase insulin response on
intravenous (IV) glucose tolerance testing17,24,28. The TrialNet
teplizumab prevention study only enrolled individuals with
multiple autoantibody positivity and dysglycemia on oral glucose
tolerance testing. Finally, a study testing glutamic acid decarbox-
ylase (GAD) antigen therapy was limited to individuals who were
GAD autoantibody positive19. Most prevention trials (9/11; 81%)
were multicenter studies; 9/11 (82%) were also double-masked,
while 2/11 (18%) had no masking. In addition to these 11 papers,
two follow-up papers and two papers focused solely on precision
analysis of treatment response were also identified (for a total of
15 papers). Overall, only two prevention studies reported a
positive impact on time to islet autoantibody positivity or time to
diabetes: the primary prevention study testing whey-based
hydrolyzed vs. cow’s milk formula30 and the secondary preven-
tion study testing teplizumab21 (forest plot showing hazard ratios
for all prevention studies in Fig. 2).

The 60 manuscripts generated from 45 trials in the new-onset
T1D population included 42 primary trial papers, 6 trial
longitudinal follow-up papers and 12 papers focused solely on

Fig. 1 PRISMA flow diagram. Flowchart displaying studies screened and excluded as part of abstract screening, then via full text review/eligibility
assessment. 75 total papers were included in the extraction. AUC area under the curve; T1D Type 1 diabetes. This image was generated using Biorender.
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precision analyses of treatment response (Fig. 1). Additional
characteristics of these 60 papers are summarized in Supplemen-
tary Table 1. Here, except for variable age criteria, inclusion
criteria were more homogeneous than in prevention studies,
typically including participants with a clinical diagnosis of T1D
(usually with islet autoantibody positivity) and C-peptide above a
certain cutoff. Of the 43 trials, 30 (70%) included both adults and
children, 9 (21%) tested only children, and 4 (9%) were
performed solely in adults. Five trials had inclusion criteria that
included positivity for a specific islet autoantibody. Trials
described were typically multicenter studies (39/43; 91%) and
double-masked (35/43; 81%). Two studies were single-masked,
two described only masked outcomes testing, three had no
masking, and masking was not described in one study.

A measure of beta cell function was by far the most common
primary outcome specified amongst new-onset trials (single
primary outcome in 33/43 (77%), co-primary outcome in 2/43;
5%), although other studies used HbA1c and/or insulin dose and
one study used T1D remission. Primary outcome was not
specified in 5 trials. All follow-up studies focused on a measure of
beta cell function. Trials reporting a measure of beta cell function
as the primary outcome most commonly utilized mean C-peptide
AUC from a mixed meal tolerance test; values for these data were
available for 32/35 primary trials and 5/6 follow-up studies and
are summarized in Supplementary Table 2. Of trial manuscripts
reporting these data, less than a fourth identified a positive effect
of the intervention on mean C-peptide AUC. These included
trials testing imatinib mesylate, low-dose anti-thymocyte globu-
lin, teplizumab (anti-CD3 antibody), otelixizumab (anti-CD3
antibody), abatacept (CTLA4-Ig), rituximab (anti-CD20 anti-
body), golimumab (anti-TNF-alpha), recombinant IFN-alpha,
and combination of anti-IL-21 antibody with liraglutide.

Precision analyses focused on features associated with disease-
modifying treatment response. To determine whether there were
specific individual features that impacted response to treatment
(genetic, metabolic, immune), we assessed papers that included
this type of precision analysis. Two papers from prevention and
12 papers from new onset studies focused solely on precision
analyses of treatment response (i.e., no analysis of primary trial or
longitudinal follow-up analysis of primary trial). An additional 43
papers also included some aspect of precision analysis (sum-
marized in Supplementary Table 3). Of 57 total papers identified,
most (38/57; 67%) were primary trial papers with a section
focused on features of treatment response. Just over half (5/8) of
the primary trial follow-up papers included precision analyses of
treatment response; these represented only 8.8% of the 57 papers
including a precision analysis.

While precision analysis of treatment response was commonly
reported, this was rarely pre-specified, occurring in just 16/57
(28%) of papers studied (Fig. 3b). Prespecified precision analyses
were more common in primary trial or primary trial follow-up
papers. For primary trials, 34% (13/38) of precision analyses were
prespecified, and 10.5% (4/38) had both pre-specified and post hoc
analyses. For follow-up papers, 40% (2/5) were pre-specified. In
contrast, only 7% (1/14) of papers focused specifically on precision
analyses described a prespecified analysis plan. Analyses tended to
identify a positive relationship with treatment effect (Fig. 3c), with
37/57 (67%) studies identifying a significant relationship between a
feature and treatment response. This was more prevalent for
precision analyses in primary trial follow-up papers (5/5; 100%)
and in precision analysis-only papers (13/14; 93%).

Because sample sizes inevitably decrease as groups are
subdivided for precision analyses, we next looked at sample sizes
for the precision subgroups. Only slightly over half (30/57) ofT
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papers reported sample sizes for all subgroups defined by
precision features. Within these 30 manuscripts, we observed
wide variability in the sample sizes of the subgroups analyzed.
Figure 3d displays reported values for the smallest subgroup
sample size described. Overall median values were 11 (inter-
quartile range of 7-19) participants, ranging from 2 to 128
participants.

Figure 4a displays the number of precision features tested for
each paper. For all papers, the median number of features tested
was 3 (interquartile range of 1–7). This tended to be higher in
papers focused solely on precision analyses (median of 6.5 with
several papers testing numerous subgroups as part of sequencing,
array, or flow cytometry analysis). Forty-one papers analyzed
multiple precision features. Of these applicable analyses, correc-
tions for multiple comparisons were either not mentioned or not
performed in 35/41 (85%) of papers, particularly for trials (100%
of applicable papers with multiple comparisons not described or
not performed) (Fig. 4b).

We next examined the types of features tested for relationships
with treatment response (Fig. 4c). In trial papers and follow-up
papers, age was most commonly tested (>75% of analyses),
followed by a measure of beta cell function (>50% of analyses).
Only 9/36 (25%) studies testing age identified a significant

relationship with treatment response; these were all in the new
onset period32,41,46,48,54,58,61,84,87. Here, younger age groups
showed improved treatment responses to teplizumab, ChAglyCD3,
and Vitamin E. In contrast, older age was linked to a beneficial
treatment response vs. placebo with high-dose antithymocyte
globulin (ATG) and oral insulin (both studies with negative
findings overall)46,48. One study showed that younger age was
linked to a more rapid decline of C-peptide compared to placebo in
Bacillus Calmette-Guerin (BCG) vaccine-treated individuals32.
Baseline measures of beta cell function were linked to differences
in treatment response in 10/26 (38%) of analyses where this
relationship was tested21,24,40,47,54,60,61,73,88,89. In two papers
focused on prevention studies, measures linked to worsened beta
cell function were associated with an improved response to
treatment (with oral insulin or teplizumab)21,24. Analyses testing
trials in the new-onset period had split results: teplizumab,
ChAglyCD3, linomide, and atorvastatin performed better com-
pared to placebo in groups with better baseline beta cell function
measures40,54,60,61,88. In contrast, canakinumab, imatinib mesylate,
and the anti-IL-21/liraglutide combination showed stronger
treatment effects in individuals with lower baseline beta cell
functionmeasures47,73,89. Taken in aggregate these results highlight
evidence that baseline beta cell function may impact treatment

Fig. 2 Relative effect of prevention therapies in individuals at risk for T1D. Forest plot showing hazard ratio with 95% confidence intervals for primary
prevention studies in genetically at-risk individuals and secondary prevention studies in individuals with elevated islet autoantibody titers. Primary
prevention studies are divided by outcome—either time to islet autoantibody positivity or time to diabetes. All secondary prevention studies used time to
diabetes as a primary outcome. DPT-1 Diabetes Prevention Trial Type 1 ; GAD glutamic acid decarboxylase.

Fig. 3 Precision analyses focused on treatment response were mostly part of primary trial papers, tended to be post hoc, and were biased toward
positive findings. a Stacked bar graphs showing relative frequencies and percentages of papers with precision analyses that were defined as prespecified,
post hoc, or included both prespecified and post hoc analyses in the manuscript text. b Stacked bar graph displaying relative frequencies and percentages
of papers reporting positive findings related to associations with treatment effects. c For papers that listed sample sizes of subgroups tested for differential
treatment effects (only 53% of all papers with precision analyses), the smallest sample size reported is displayed, with mean and SEM indicated. F/u
follow-up; n= 9 for precision papers; n= 16 for primary trials; n= 5 for f/u papers.
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response, but the direction of impact likely varies by treatment used
and stage of disease.

Interestingly, in contrast to primary trial papers, precision
papers most commonly tested relationships of an immune cell
phenotype with treatment response (57%). Because only two
papers identified included a favorable response to time to type 1
diabetes diagnosis, treatment response was assessed using a range
of alternative outcomes (Fig. 4d). For all types of papers, a
measure of C-peptide was most commonly used as an alternative
outcome to gauge treatment response (range of 44-68%).

Risk of bias/quality assessments. A finding impacting studies in
all categories was a lack of racial and ethnic diversity in partici-
pant populations. Data on participant race were available in less
than a third (23/75) of total papers; for reported papers, parti-
cipants self-reporting as white race comprised a median of 92% of
the total study population (interquartile range of 88-96%). Eth-
nicity was reported in 20 papers; within these manuscripts, par-
ticipants self-reporting as identifying with a Hispanic ethnicity
comprised a median of 5% of study participants (interquartile
range of 3–9%).

Fig. 4 Precision analyses tested many features, most commonly age and beta cell function, infrequently corrected for multiple comparisons, and
typically tested for differential impacts on a C-peptide-based measure. a Total number of features tested for association with each treatment response,
with mean and SEM indicated, for all papers with precision analyses. b Stacked bar graph showing relative frequencies and percentages of papers that did
or did not correct for multiple comparisons. c Frequencies of individual features tested for associations with treatment response. d Frequencies of
outcomes utilized to assess for the presence of any features associated with differential treatment response. The C-peptide measure category was
inclusive of any measure of beta cell function, including mixed meal area under the curve, stimulated C-peptide values, fasting C-peptide values, etc. F/u
follow-up, fx function, Hba1c hemoglobin A1c, Aab autoantibody, HLA human leukocyte antigen, BMI body mass index, T1D type 1 diabetes, AGT abnormal
glucose tolerance, CRP C-reactive Protein, DPTRS diabetes prevention trial-type 1 risk score, DKA diabetes ketoacidosis, Dx diagnosis.
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When assessing additional risks of bias, we found that many
papers did not include details sufficient to assess these risks (Fig. 5).
Although over half of primary trial papers were considered to
utilize high-quality methods for sequence generation and allocation
concealment, 32–37% did not describe methods adequately for
assessment. Follow-up and precision papers infrequently described
these methods, commonly citing a primary trial paper instead
(75–100%). Blinding was described more frequently, with at least
double blinding in 63–74% of follow-up and primary trial papers,
although 23–25% had single or no blinding. In contrast, blinding of
outcome assessments was either not described or did not occur in
79% of primary trial papers. Most precision papers referenced
primary papers and so blinding was challenging to assess.
Completeness of outcome data reporting was assessed by
considering reasons and numbers for attrition or exclusion in
studies. Reporting of outcomes was overall high quality for trials
and follow-up studies (75–79%). This was less frequently the case
for precision papers, only half of which reported on reasons for
incomplete outcome data. While the large majority (87%) of trial
papers described a prespecified primary endpoint, only 75% of
follow-up papers and 21% of precision papers solely included
analyses that were noted to be prespecified. Additional sources of
bias were identified in 33/75 total papers (44%), and these biases
were also acknowledged by study authors. These were most
frequently acknowledged funding or support by a pharmaceutical
company. However, another source of bias that was not addressed
as a limitation by the authors was identified in 3 papers (all primary
trial papers). No concerns for other unacknowledged sources of
bias were identified in follow-up studies and precision studies.

Discussion
We filled a gap in the T1D literature by systematically reviewing
25 years of large randomized controlled trials focused on T1D
disease-modifying therapies, as well as precision analyses focused
on identifying features of treatment response. Several themes in
the literature were identified. Immunotherapies were the most
common disease-modifying agents tested, and a resounding

majority of these agents were tested in “new-onset” trials after a
clinical diagnosis of T1D. Of the 17 interventions that showed
benefit in slowing T1D progression or preserving endogenous
insulin secretion, only two were tested prior to clinical disease
onset. Primary trial outcome papers most commonly included
precision analyses testing the impacts of baseline age and beta cell
function on treatment response, while post hoc precision analysis
papers primarily focused on immune phenotypes.

Based on clinical heterogeneity observed in phenotypes of T1D
progression and severity, a precision-based concept that has
gained popularity is the idea of the T1D “endotype”, a T1D
subtype “defined by a distinct functional or pathobiological
mechanism (that is also tractable therapeutically)”14. Along these
lines, trials designed to limit participant heterogeneity based on
features associated with treatment response could theoretically
allow for clearer determinations of effect and a greater number of
positive trials. While trials were overall of high quality, a key take-
home message is that the current review did not identify high-
quality clinical trial data supporting the existence of individual
features consistently linked to therapeutic response and justifying
translation to clinical care. Below, we highlight important con-
siderations identified by this analysis for the future applicability
of precision medicine to T1D disease modification.

Standardization of approaches to outcomes for precision
analyses. Time to T1D was the most consistent primary outcome
of T1D prevention studies, while the vast majority of new-onset
studies used mixed meal-stimulated C-peptide AUC, consistent
with the consensus recommendations by Palmer and colleagues92.
However, precision endpoints were much more variable and
would benefit from a similar consensus definition of “responders”
to disease-modifying agents within larger trial populations.
Strategies applied have included time to diabetes, insulin use,
stratification based on changes in C-peptide, and identification of
individuals exhibiting less C-peptide loss compared to
placebo21,29,61,67. Although C-peptide was by far the most fre-
quent outcome measure used to identify differential treatment
responses, approaches to stratify based on C-peptide were highly
variable. Consistent approaches, such as a quantifiable metric
based on expected values93 will allow better comparison of fea-
tures associated with treatment response across trials.

A recurring role for age and measures of beta cell function. Age
and measures of beta cell function were most frequently identified
as factors associated with differential treatment response in pri-
mary trial and primary trial follow-up papers. For example,
younger age was linked to improved treatment response in several
new-onset trials using CD3-based agents54,58,61,87. The associa-
tion of age with treatment response is in keeping with the strong
associations of age to features of T1D in many observational and
natural history studies, before and after clinical diagnosis14,94–96.
Differences in pancreas histology have been identified in donors
with younger age of diagnosis97,98. However, it is unclear whether
differences in treatment response linked to age are associated with
differences in underlying disease pathophysiology vs. differences
in severity or progression of T1D at the time of treatment. The
observation that age differentially impacts outcomes in different
trials, in addition to stratification of both immune phenotypes
and beta cell function by age, supports the idea that the under-
lying biological reasons for age associations could be linked to
mechanisms and are important to consider in future trial designs
and potentially in future precision therapy.

Thirty-eight percent of studies testing the impacts of baseline
beta cell function showed a significant link to treatment response,

Primary Trial Papersrr Follow-up Papersrr Precision Papersrr

Sequence Generation

Allocation Concealment

Participants/Personnel
Blinding

Outcome Assessment
Blinding

Incomplete Outcome Data

Selective Reporting

Other Sources of Bias

High Quality Not reportrr edLow Qw uality Primary trial referenced

Fig. 5 Risk of bias assessments for each paper category. Bias was
assessed using Covidence’s Cochrane risk of bias tool. For sequence
generation, allocation concealment, and blinding categories, raters had the
option of selecting high quality (green), low quality (orange), not reported
(red), or that a decision could not be made because of primary trial was
referenced in methods (yellow). For incomplete outcome data, raters only
had the option to choose high quality/data provided (green) or low quality/
data not provided (red). For selective reporting, raters had the option to
select high-quality/primary endpoint predefined (green), low-quality/
primary endpoint not defined (orange), or low-quality/not reported (red).
For other sources of bias, raters had the option to select high quality/none
(green), low quality/bias present but identified and considered (orange), or
low quality/obvious bias present and not addressed (red). Data are shown
as absolute frequencies.
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consistent with the substantial body of literature identifying an
ongoing dialog between autoimmunity and the beta cell in
T1D94,99–106. Interestingly, findings somewhat differed depend-
ing on the stage of intervention. Here, two unique prevention
studies testing oral insulin and teplizumab showed that worse
beta cell function was associated with improved treatment
outcomes compared to placebo21,24. In contrast, CD3-based
therapy trials after disease onset showed an association between
higher baseline insulin secretion and improved outcomes54,60,61.
These differences highlight the importance of considering the
disease stage in the design and interpretation of intervention
efforts107. Especially at earlier stages in the disease process,
abnormalities in beta cell function could allow insight into a
therapeutic window during active disease or immune attack, and
optimal timing of therapy108. In contrast, in more advanced
diseases after diagnosis, associations with differences in beta cell
function could reflect differences in the degree of disease
progression, and so amenability to prolonged preservation of a
larger residual beta cell mass. Differences in the relationships
between beta cell function measures and outcomes for different
agents in the new onset period also highlight agent mechanism of
action as a critical consideration for designs incorporating beta
cell function into the stratification of trial populations and
precision approaches to disease-modifying therapy.

Reproducible biomarkers linked to underlying disease pathol-
ogy. Specific autoantibodies and immune cell phenotypes were
also linked to treatment response for multiple agents. An
important consideration in these types of assays is reproducibility.
The T1D field has been strengthened by an international stan-
dardization program for autoantibody measurement that under-
pinned the development of T1D staging criteria109. If novel
mechanistic markers (immune, metabolic, or other) can be used
to predict treatment response, then similar scrutiny and stan-
dardization of these markers will be needed for cross-study
comparisons and successful implementation.

A need for pre-specified, appropriately powered precision
analyses. Our review identified important methodologic con-
siderations with many precision analyses. While there were
multiple notable and interesting results, most trial manuscripts
(primary or follow-up) included precision analyses that were not
prespecified, which decreased the quality ranking of these studies.
Corrections for multiple comparisons were rare. Additionally,
subgroup sizes were infrequently reported, but when available,
these group sizes were highly variable and as small as n= 2
participants. Papers also tended to show positive results, raising
concern for publication bias.

While these issues are a known limitation of hypothesis-
generating exploratory analyses, follow-up studies focusing on
testing positive findings a priori will be critical to the application
of clinically meaningful precision medicine. An example of the
necessity of hypothesis testing was the TrialNet oral insulin
prevention study, which was prospectively designed to test a
responder subgroup identified in the Diabetes Prevention Trial
Type 1 (DPT-1) trial with high insulin autoantibody titers, and
ultimately found no significant impact of treatment within this
group24. Interestingly, within this trial, a significant protective
effect of oral insulin was identified as part of a prespecified
precision analysis of individuals with lower first-phase insulin
response. Testing in future studies will be needed to understand
the reproducibility of this finding. Another example of the
application of this approach moving forward is the DIAGNODE
3 study (NCT05018585), which did not meet inclusion criteria for
the current review but will prospectively test for a preferential

benefit of GAD-alum injections in the HLA DR3-DQ2 popula-
tion that was identified in post hoc analyses71,110. Based on
frequent testing and existing studies suggesting impacts of
baseline age and beta cell function as potential features associated
with treatment response, pre-specified analyses for appropriately
powered studies testing the impact of these precision features
should be considered in trials moving forward.

Impacts of the T1D staging system. Time to T1D was the most
consistent primary outcome of T1D prevention studies, but
inclusion criteria for these studies varied widely across trials,
including combinations of genetic risk, presence of islet auto-
antibodies, and changes in glycemia and/or beta cell function.
Recent progress in understanding the natural history of T1D,
particularly the high lifetime risk associated with progression
from multiple autoantibodies to clinical T1D111, led to a revision
of the definition of T1D to include early stages of disease9,112.
Stage 1 and stage 2 T1D are now defined by the presence of
multiple autoantibodies without or with dysglycemia, whereas
clinical disease is now considered as stage 3 T1D9,113. Because
these stages were developed concurrently with many of the trials
included in this review, these definitions were not applicable at
the time of many of these trials, limiting our ability to apply
staging categories to this review. As noted above, the timing of
T1D stages impacts study feasibility (rate of progression, parti-
cipant availability) and may be critical to intervention efficacy,
highlighting the importance of considering the disease stage in
the design and interpretation of intervention efforts. Moving
forward, widespread adoption of the T1D staging system com-
bined with increased screening efforts spurred by the recent
positive teplizumab trial in stage 2 T1D may allow for increased
numbers of trials in earlier stages of the disease.

Limitations. This study has several limitations. The heterogeneity
of included papers limited our ability to perform metanalysis. For
feasibility, we restricted our review of primary trials to those
enrolling a minimum of 50 total participants. Because of this,
some trials were not reviewed, including positive trials testing
alefacept114,115 and verapamil116. A large pediatric follow-up trial
testing verapamil (positive outcome) and tight metabolic control
with a hybrid closed loop (negative outcome) was published after
the conclusion of our systematic review117,118. In addition, most
studies reviewed did not report data on race or ethnicity. For
those that did report these data, populations studied largely
identified as non-Hispanic white. Barriers to screening of tradi-
tionally underrepresented populations is a recognized issue
amongst T1D natural history and intervention studies93,119. This
is especially important to address moving forward given the rising
incidence of T1D in these populations120.

In summary, our review identified noteworthy progress
towards defining effective disease-modifying therapies for T1D
but a need for better quality data to support the existence of
individual features consistently linked to differences in treatment
response. Our findings specifically highlight the need for
standardization of precision outcome measures, reproducible
biomarkers of disease pathology, and prespecified, adequately
powered precision analyses. Reports of future trials would benefit
from including adequate details to assess potential risks of bias.

Data availability
All studies reviewed were identified via publicly available databases (PubMed and
Embase). All included articles are outlined in Supplementary Information and
Supplementary Data 1. Source data for the figures are included in Supplementary Data 2.
Article review data supporting the findings of this study are available upon reasonable
request from the corresponding author.
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