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Chiral Suppression of Scalar Glueball Decay

Michael S. Chanowitz1

Theoretical Physics Group Ernest Orlando Lawrence Berkeley National Laboratory

University of California

Berkeley, California 94720

Abstract

Because glueballs are SU(3)Flavor singlets, they are expected to couple equally to
u, d, and s quarks, so that equal coupling strengths to π+π− and K+K− are predicted.
However, we show that chiral symmetry implies the scalar glueball amplitude for G0 →
qq is proportional to the quark mass, so that mixing with ss mesons is enhanced
and decays to K+K− are favored over π+π−. Together with evidence from lattice
calculations and from experiment, this supports the hypothesis that f0(1710) is the
ground state scalar glueball.
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1. Introduction. — The existence of gluonic states is a quintessential prediction of

Quantum Chromodynamics (QCD). The key difference between Quantum Electrodynamics

(QED) and QCD is that gluons carry color charge while photons are electrically neutral.

Gluon pairs can then form color singlet hadronic bound states, “glueballs,” like mesons and

baryons, which are color singlet bound states of valence quarks.[1] Because of formidable

experimental and theoretical difficulties, it is frustrating, though not surprising, that this

simple, dramatic prediction has resisted experimental verification for more than two decades.

Quenched lattice simulations predict that the mass of the lightest glueball, G0, a scalar, is

near ' 1.65 GeV,[2] but the prediction is complicated by mixing with qq mesons that require

more powerful computations. Experimentally the outstanding difficulty is that glueballs are

not easily distinguished from ordinary qq mesons, themselves imperfectly understood. This

difficulty is also exacerbated if mixing is appreciable.

The most robust identification criterion, necessary but not sufficient, is that glueballs

are extra states, beyond those of the qq meson spectrum. This is difficult to apply in practice,

though ultimately essential. In addition, glueballs are expected to be copiously produced in

gluon rich channels such as radiative J/ψ decay, and to have small two photon decay widths.

These two expectations are encapsulated in the quantitative measure “stickiness,”[3] which

characterizes the relative strength of gluonic versus photonic couplings.

Another popular criterion is based on the fact that glueballs are SU(3)Flavor singlets

which should then couple equally to different flavors of quarks. However we show here

that the amplitude for the decay of the ground state scalar glueball to quark-antiquark is

proportional to the quark mass, M(G0 → qq) ∝ mq, so that decays to ss pairs are greatly

enhanced over uu + dd, and mixing with ss mesons is enhanced relative to uu + dd. We

exhibit the result at leading order and show that it holds to all orders in standard QCD

perturbation theory.

The result has a simple nonperturbative physical explanation, similar, though different

in detail, to the well known enhancement of π → µν relative to π → eν. For mq = 0 chiral

symmetry requires the final q and q to have equal chirality, hence unequal helicity, so that

in the G0 rest frame with z axis in the quark direction of motion, the total z component of

spin is nonvanishing, |SZ | = 1. Because the ground state G0 gg wave function is isotropic

(L = S = 0), the qq final state is pure s-wave,2 L = 0. The total angular momentum is

zero, and since there is no way to cancel the nonvanishing spin contribution, the amplitude

vanishes. With one power of mq 6= 0, the q and q have unequal chirality and the amplitude

is allowed.

The enhancement is substantial, since ms is an order of magnitude larger than mu and

2Integrating over the gluon direction to project out the s-wave gg wave function is equivalent to integrating
over the final quark direction with the initial gluon direction fixed.
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md.[4] But for scalar glueballs of mass ' 1.5 − 2 GeV, Γ(G0 → ss), is suppressed of order

(ms/mG0)
2, so that it may be smaller than the nominally higher order G0 → qqg process,

which is SU(3)Flavor symmetric. We find that the soft and collinear quark-gluon singularities

of G0 → qqg vanish for mq = 0, as they must if G0 → qq is to vanish at one loop order for

mq = 0. Unsuppressed, flavor-symmetric G0 → qqg decays are dominated by configurations

in which the gluon is well separated from the quarks, which hadronize predominantly to

multi-body final states. The enhancement of ss relative to uu + dd is then most strongly

reflected in two body decays: we expect K+K− to be enhanced relative to π+π−, while

multibody decays are more nearly flavor symmetric.

Glueball decay to light quarks cannot be computed reliably in any fixed order of pertur-

bation theory. However, the predicted ratio, Γ(G0 → ss)/Γ(G0 → uu+ dd)� 1, is credible

since it follows from an analysis to all orders in perturbation theory and, in addition, from

a physical argument that does not depend on perturbation theory. The implication that

Γ(G0 → K+K−)� Γ(G0 → π+π−) is less secure and is best studied on the lattice. Remark-

ably, it is supported by an early quenched study of G0 decay to pseudoscalar meson pairs

for two “relatively heavy” SU(3)Flavor symmetric values of mq, corresponding to mPS ' 400

and ' 630 MeV.[5] Linear dependence on mq implies quadratic dependence on mPS,[6] which

is consistent at 1σ with the lattice computations.[5] Chiral suppression could then be the

physical basis for the unexpected and unexplained lattice result. With subsequent compu-

tational and theoretical advances in lattice QCD, it should be possible today to verify the

earlier study and to extend it to smaller values of mPS, nearer to the chiral limit and to the

physical pion mass. If the explanation is indeed chiral suppression, then the couplings of

higher spin glueballs should be approximately flavor symmetric and independent of mPS, a

prediction which can also be tested on the lattice.

Enhanced strange quark decay changes the expected experimental signature and sup-

ports the hypothesis that f0(1710) is predominantly the ground state scalar glueball. This

identification was advocated by Sexton, Vaccarino, and Weingarten,[5] and is even more

compelling today in view of recent results from J/ψ decay obtained by BES[7, 8] — see [9]

for an overview of the experimental situation.

In section 2 we compute M(G0 → qq) at leading order for massive quarks, with the

expected linear dependence on mq. In section 3 we show that M(G0 → qq) ∝ mq to any

order in αS. In section 4 we describe the infrared singularities ofM(G0 → qqg). We conclude

with a brief discussion, including experimental implications.

2. G0 → qq at leading order. — Consider the decay of a scalar glueball G0 with

mass MG to a qq pair3 with quark mass mq. The effective glueball-gluon-gluon coupling is

3Elastic scattering, gg → gg, contributes to the glueball wave function, not to the decay amplitude.
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parameterized by

Leff = f0G0GaµνG
µν
a (1)

where G0 is an interpolating field for the glueball, Gaµν is the gluon field strength tensor with

color index a, and f0 is an effective coupling constant with dimension 1/M that depends on

the G0 wave function. The gg → qq scattering amplitude can be written as

M(gg → qq) = ε1µε2νMµν(gg → qq) (2)

where εiµ = εµ(pi, λi) with i = 1, 2 are the polarization vectors for massless constituent

gluons with four momentum pi and polarization λi. Using equations (1) and (2), summing

over the polarizations λi, and averaging over the gluon direction in the G0 rest frame to

project out the s-wave, we obtain

M(G0 → qq) =
f0

4π

∫
dΩXµνMµν(gg → qq), (3)

where Xµν = 2pµ
2p

ν
1 −M2

Gg
µν projects out the |(++) + (−−) > helicity state that couples

to GaµνG
µν
a in equation (1).

From the lowest order Feynman diagrams we obtain

XµνMµν = −32π
√

2αS

3

mq

1− β2cos2θ
u(p3, h3)v(p4, h4)δij (4)

where u3, v4 are the q, q spinors for quark and antiquark with center of mass momenta p3, p4,

helicities h3, h4, color indices i, j and center of mass velocity β. Equation (4) includes a color

factor from the color singlet gg wave function,

Cij =
δa,b√

8

λa
ik

2

λb
kj

2
=

√
2

3
δij (5)

Performing the angular integration, the decay amplitude is

M(G0 → qq) = −f0αS
16π
√

2

3

mq

β
log

1 + β

1− β
u3v4δij. (6)

Squaring equation (6), summing over quark helicities and color indices, and performing the

phase space integration, the decay width is

Γ(G0 → qq) =
16π

3
α2

Sf
2
0m

2
qMGβ log2 1 + β

1− β
. (7)

The dissociation process, gg → qq + qq, in which each gluon makes a transistion to a color-octet qq pair,
is kinematically forbidden for mq 6= 0; an additional gluon exchange is required to allow it to proceed
on-mass-shell, which is therefore of order g4 in the amplitude.
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Notice that an explicit factor mq appears in the gg → qq amplitude, equation (4),

which is not averaged over the initial gluon direction and which clearly has contributions

from higher partial waves, J > 0. It may then appear that chiral suppression applies not

just to spin 0 glueballs but also to glueballs of higher spin. However when equation (4) is

squared and the phase space integration is performed, a factor 1/m2
q results from the t and u

channel poles, which cancels the explicit factor m2
q in the numerator, so that the total cross

section σ(gg → qq) does not vanish in the chiral limit, because of the J > 0 partial waves.

3. G0 → qq to all orders. — We now show that M(G0 → qq) vanishes to all orders in

perturbation theory for mq = 0. Consider the Lorentz invariant amplitude

MX(p1, p2, p3, p4) = XµνMµν (8)

where Mµν is defined in equation (2) and Xµν below (3). The perturbative expansion for

MX is a sum of terms arising from Feynman diagrams with arbitrary numbers of loops.

After evaluation of the loop integrals, regularized as necesary, MX is a sum of terms,

MX =
∑

i

u(p3, χ3)Γiu(p4, χ4), (9)

where u3, u4 are respectively massless fermion and antifermion spinors[10] of chirality χ3, χ4.

The Γi are 4× 4 matrices, each a product of ni momentum-contracted Dirac matrices,

Γi =6 ki1 6 ki2 . . . 6 kini
(10)

where each kia is one of the external four-momenta, p1, p2, p3, p4.

Chiral invariance for mq = 0 implies that the number of factors, ni, in equation (10) is

always odd. Since all external momenta vanish and the spinors obey 6 p3u3 =6 p4u4 = 0, by

suitably anticommuting the 6 kia, each term in equation (9) can be reduced to a sum of terms

linear in 6 p1 and 6 p2, which we choose to be symmetric and antisymmetric,

u(p3, χ3)Γiu(p4, χ4) = u(p3, χ3)[Si(s, t, u)(6 p1+ 6 p2) + Ai(s, t, u)(6 p1− 6 p2)]u(p4, χ4). (11)

The coefficients Ai, Si are Lorentz invariant functions of the Mandelstam variables s, t, u.

Since p1 + p2 = p3 + p4, the symmetric term vanishes and equation (9) reduces to

MX = A(s, t, u) u(p3, χ3)(6 p1− 6 p2)u(p4, χ4). (12)

where A(s, t, u) =
∑

iAi(s, t, u).

Next consider the integration over the gluon direction, equation (3). In the G0 rest

frame with the z-axis chosen along the quark direction of motion, ẑ = p̂3, we integrate

over dΩ = d2p̂1 = dφ1dcosθ1. The Mandelstam variables are then s = M2
G and u, t =
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−1
2
M2

G(1 ± cosθ1). Since the color and helicity components of the G0 wave function are

symmetric under interchange of the two gluons, Bose symmetry requires A(s, t, u) to be odd

under p1 ↔ p2. In our chosen coordinate system A is a function only of cosθ1, and must

therefore be odd, A(−cosθ1) = −A(cosθ1). But evaluating u3(6 p1− 6 p2)u4 explicitly[10] we

find

u3(6 p1− 6 p2)u4 = M2
G e−iφ1 sinθ1 (13)

which is even in cosθ1, while the azimuthal factor, e−iφ1 , provides the required oddness under

p1 ↔ p2: e
−iφ1 → e−i(φ1+π) = −e−iφ1 . Consequently the integral

∫
dcosθ1A vanishes, and

M(G0 → qq) = 0 to all orders in the chiral limit. In fact, because of our choice of axis,

ẑ = p̂3, the integral over φ1 also vanishes. For other choices of ẑ the azimuthal and polar

integrals do not vanish separately, but the full angular integral,
∫
d2p̂1, vanishes in any case.

For nonvanishing quark mass, mq 6= 0, chirality-flip amplitudes contribute. With one

factor of mq from the fermion line connecting the external quark and antiquark, the Γi

matrices in equation (9) include products of even numbers of Dirac matrices, i.e., ni in

equation (10) may be even. Beginning in order mq there are then nonvanishing contributions

to M(G0 → qq), like the leading order term shown explicitly in equation (6).

The vanishing azimuthal integration for ẑ = p̂3 reflects the physical argument given in

the introduction. The factor e−iφ1 corresponds to SZ = 1 from the aligned spins of the q and

q, while the absence of a compensating factor in A is due to the projection of the orbital

s-wave by the
∫
d2p̂1 integration and the absence of spin-polarization in the initial state.

4. Infrared singularities of G0 → qqg. — Although it is of order α3
S, Γ(G0 → qqg)

is not chirally suppressed and may therefore be larger than Γ(G0 → ss), which is of order

α2
S × m2

s/m
2
G. Setting mq = 0 we evaluated the 13 Feynman diagrams using the helicity

spinor method[10] with numerical evaluation of the 9 dimensional integral:

Γ(G0 → qqg) =
∑

h3,h4,λ5

∫
PS |M(G0 → q3q4g5)|2

=
f2
0

16π2

∑
h3,h4,λ5

∫
PS

∫
dΩ1

∫
dΩ′

1 ε
∗
5αXµνMµνα(g1g2 → q4q3g5)

× ε5βX
′
σρMσρβ(g′1g

′
2 → q4q3g5)

∗. (14)

Details will be presented elsewhere.[11] We focus here on the infrared singularities, which

provide a consistency check at one loop order that M(G0 → qq) vanishes in the chiral limit.

In general there could be soft IR divergences for Eq, Eq, Eg → 0 and collinear divergences

for θqg, θqg, θqq → 0. In fact, only the qq collinear divergence occurs, as can be seen from the

distributions in figure 1, obtained by imposing only the cut θqq > 0.1 in the G0 rest frame:

neither dN/dEg nor dN/dEq diverge at low energy, and only dN/θqq diverges at θqq → 0.

Instead dN/dEg diverges at the maximum energy, Eg = mG0/2, and dN/dθqg diverges for

θqg → π. Both of these divergences are kinematical reflections of the collinear singularity at
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Figure 1: Distributions for G0 → qqg in arbitrary units. In figure (1a) the dot-dashed line

is dN/dEg and the dashed line is dN/dEq. In figure (1b) the dot-dashed line is dN/cosθqg

and the dashed line is dN/dcosθqq.

θqq → 0, for which the qq pair with mqq = 0 recoils with half of the available energy against

the gluon in the opposite hemisphere.

This is precisely the pattern of divergences required if G0 → qq is chirally suppressed to

all orders and, in particular, at one loop. For if there were soft divergences in any of Eq, Eq, Eg

or collinear divergences in θqg and θqg, then the resulting singularities at mqg,mqg → 0 would

have to be cancelled by virtual corrections toG0 → qq, such as gluon self energy contributions

to the quark propagator. The absence of these singularities is a consistency check (i.e., a

necessary condition) that G0 → qq is chirally suppressed at one loop order. The collinear

divergence for θqq → 0 is cancelled by quark loop contributions to the gg → gg amplitude,

which in the present context are one loop corrections to the G0 wave function.

5. Discussion. — We have shown to all orders in perturbation theory and with a

simple, nonperturbative physical argument that the ground state J = 0 glueball has a

chirally suppressed coupling to light quarks, M(G0 → qq) ∝ mq, with corrections of higher

order in mq/mG. From equation (7) with mu,md,ms varied within 1σ limits,[4] Γ(G0 → ss)

dominates Γ(G0 → uu+ dd) by a factor between 20 and 100. Flavor symmetry is reinstated

for G0 → qqg when the gluon is well separated from the q and q. For sufficiently heavy mG

one can test this picture by measuring strangeness yield as a function of thrust or sphericity,

with enhanced strangeness in high thrust or low sphericity events, but it is unclear if this

is feasible for mG ' 1.7 GeV. It is more feasible for the ground state pseudoscalar glueball,

which is expected to be heavier than the scalar and which we also expect to be subject to

chiral suppression.

For light scalar glueballs, the best hope to see strangeness enhancement is the two
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body decays, G0 → K+K−/π+π−. Since G0 → qqg is not chirally suppressed, naive power

counting suggests Γ(G0 → qqg) ≥ Γ(G0 → ss), so that Γ(G0 → qqg) is probably the

dominant mechanism for multiparticle production. Then KK will dominate two body decays

while multiparticle final states are approximately SU(3)Flavor symmetric, up to phase space

corrections favoring nonstrange final states.

Chiral suppression has a major impact on the experimental search for the ground state

scalar glueball. Candidates cannot be ruled out because they decay preferentially to strange

final states, especially KK, and mixing with ss mesons may be enhanced. This picture of

a chirally suppressed G0 fits nicely with the known properties of the f0(1710) meson. It is

copiously produced in radiative ψ decay in the ψ → γKK channel[7] and in the gluon-rich

central rapidity region in pp scattering,[12] has a small γγ coupling,[13] has a mass consistent

with the prediction of quenched lattice QCD,[2] and has a strong preference to decay to

KK, with B(ππ)/B(KK) < 0.11 at 95% CL.[8] As a rough estimate of the stickiness,[3] we

combine the γγ 95% CL upper limit with central values for ψ radiative decay[7], with the

result S(f0(1710)) : S(f ′2(1525)) : S(f2(1270)) ' (> 36) : 12 : 1. A more complete discussion

of the experimental situation will be given elsewhere[11] — see also [9].

The interpretation of f0(1710) as the chirally suppressed scalar glueball can be tested

both theoretically and experimentally. Lattice QCD can test the prediction thatG0 → KK is

enhanced for the ground state J = 0 glueball but not for J > 0. With an order of magnitude

more J/ψ decays than BES II, experiments at BES III and CESR-C will extend partial

wave analysis to rarer two body decays and to multiparticle decays. They could confirm

B(f0 → KK)/B(f0 → ππ) � 1 and, if, as is likely, the rate for multiparticle decays is big,

the lower bound on B(ψ → γf0(1710) will increase beyond its already appreciable value from

KK alone. A large inclusive rate B(ψ → γf0), a large ratio B(f0 → KK)/B(f0 → ππ),

and approximately flavor symmetric couplings to multiparticle final states would support

the identification of f0(1710) as the chirally suppressed, ground state scalar glueball.
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