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ARTICLE

The concurrence of DNA methylation and
demethylation is associated with transcription
regulation
Jiejun Shi 1, Jianfeng Xu2, Yiling Elaine Chen 3, Jason Sheng Li 1, Ya Cui 1, Lanlan Shen 4,

Jingyi Jessica Li 3 & Wei Li 1✉

The mammalian DNA methylome is formed by two antagonizing processes, methylation by

DNA methyltransferases (DNMT) and demethylation by ten-eleven translocation (TET)

dioxygenases. Although the dynamics of either methylation or demethylation have been

intensively studied in the past decade, the direct effects of their interaction on gene

expression remain elusive. Here, we quantify the concurrence of DNA methylation and

demethylation by the percentage of unmethylated CpGs within a partially methylated read

from bisulfite sequencing. After verifying ‘methylation concurrence’ by its strong association

with the co-localization of DNMT and TET enzymes, we observe that methylation con-

currence is strongly correlated with gene expression. Notably, elevated methylation con-

currence in tumors is associated with the repression of 40~60% of tumor suppressor genes,

which cannot be explained by promoter hypermethylation alone. Furthermore, methylation

concurrence can be used to stratify large undermethylated regions with negligible differences

in average methylation into two subgroups with distinct chromatin accessibility and gene

regulation patterns. Together, methylation concurrence represents a unique methylation

metric important for transcription regulation and is distinct from conventional metrics, such

as average methylation and methylation variation.
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DNA methylation at CpG dinucleotide(5mC) is introduced
and maintained by DNA methyltransferases (DNMT
family)1,2. Meanwhile, through hydroxymethylation, 5mC

is removed by 10–11 translocation dioxygenases (TET family)3,4.
Besides their opposing effects, the two enzyme families present
complementary DNA-binding patterns. While TET1 protein
prevents de novo methyltransferases from binding to regulatory
elements5,6, DNMT3A also blocks TET1 binding, especially in
promoter regions6. Interestingly, these two ‘competing’ enzyme
families are observed to be jointly associated with tumor malig-
nancy. For example, in a conditional knockout study in the
mouse hematopoietic system, the Dnmt3a and Tet2 double-
knockout mice show worse survival than single-knockout
counterparts7; notably, mutations in DNMT3A and TET2 also
significantly co-occur in human T-cell lymphoma8. These find-
ings suggest that the concurrence of methylation and demethy-
lation processes is related to tumorigenesis. However, to what
extent this concurrence contributes to cancer gene regulation
remains largely unknown.

For years, DNA methylation levels have been quantified in an
‘average’manner. The increased average methylation level of CpG
islands (CGIs), i.e., CGI hypermethylation, is a well-established
mechanism for gene silencing9. Numerous differentially methy-
lated regions have been identified based on the between-sample
comparison of average methylation levels10,11. Besides the average
methylation, DNA methylation has been quantified by its varia-
tion as ‘methylation heterogeneity’12 or ‘epigenetic
polymorphism’13. Methylation heterogeneity scores are defined
based on the frequencies of methylation patterns (epialleles) at
multiple CpGs inferred from bisulfite sequencing reads12–15.
Previous studies reveal that methylation variation is associated
with global transcription variation12,16,17. However, to capture
more accurate heterogeneity information, these methylation
variation quantifications require at least 4 CpGs covered by each
sequencing read, and thus can only utilize ~20% of total reads in
the genome (Supplementary Fig. 1). Moreover, neither average
methylation nor methylation variation can delineate the degree of
concurrence between active methylation and demethylation.

Recently, a mathematical model has been applied to decon-
volute methylation and demethylation rates from average
methylation levels of individual CpGs in stem cells18. However,
the spatial coupling of methylation concurrence at adjacent CpGs
has not been considered, and such coupling may be critical for
transcription factor (TF) binding and cancer gene regulation19.

Bisulfite sequencing has enabled the measurement of DNA
methylation of adjacent CpGs within the same read20, and thus is
able to capture methylation concurrence if there exist unmethy-
lated CpGs in a partially methylated read. We demonstrate that
methylation concurrence unveils a unique type of methylation
abnormality, which is distinct from both the change of average
methylation and methylation variation in many aspects. We find
that methylation concurrence is associated with a previously
undetected repertoire of epigenetically regulated tumor sup-
pressor genes (TSGs), and that it can be used to stratify large
undermethylated regions into two subgroups with distinct char-
acteristics in chromatin accessibility and gene regulation.

Results
Delineating the concurrence of active DNA methylation and
demethylation. We quantify the concurrence of active DNA
methylation and demethylation within the same cell by dissecting
reads from bisulfite sequencing. The methylation concurrence
events are captured by the unmethylated CpG(s) within a par-
tially methylated read (red circles in Fig. 1a) because each read
comes from one cell. Fully methylated and unmethylated reads, in

contrast, do not possess information on DNMT and TET con-
currence, as they are dominated by methylation and demethyla-
tion, respectively. Hence, we dissect bisulfite sequencing reads
into three categories of fragments (or sub-reads), i.e., methylated
fragments which consist of consecutive methylated CpG(s) (solid
circles in Fig. 1a, denoted as ‘M’), unmethylated fragments which
are the fully unmethylated reads (blank circles, denoted as ‘U’),
and methylation-concurrence fragments which are segments of
unmethylated CpG(s) in partially methylated reads (red circles,
denoted as ‘C’). We define the ‘methylation concurrence ratio’ of
a genomic region as the sum of methylation-concurrence frag-
ments’ weights divided by the sum of all fragments’ weights in
that region (Eq. (1) in Methods). Each fragment’s weight is set as
its number of CpGs (see Methods).

We compare the methylation concurrence ratio with two
measures of the average methylation (i.e., the traditional mean
methylation and the cellular heterogeneity-adjusted clonal
methylation (CHALM)21, see Methods) and three measures of
the methylation variation (i.e., Shannon’s entropy15,
Epipolymorphism13, and the proportion of discordant reads
(PDR)12, see Methods). Supplementary Figure 1b compares the
calculations of different metrics with simulated data. The
methylation variation scores are window-based and only take
reads covering at least 4 CpGs (only ~20% of total reads), while
methylation concurrence has no such limitation and utilizes all
reads (Supplementary Fig. 1c). Furthermore, methylation con-
currence detects more regulatory elements (e.g., promoters) than
methylation variation (Supplementary Fig. 1d).

Using whole-genome bisulfite sequencing (WGBS) data from
mouse embryonic stem cells (mESCs), we observe that these six
methylation measures are correlated to different degrees with
DNA-binding intensities of DNMT3A1 and TET1 enzymes at
gene promoters in matched samples measured by ChIP-seq
(chromatin immunoprecipitation followed by high-throughput
sequencing). We observe that the average methylation measures
are correlated positively and negatively with the binding
intensities of the methyltransferase DNMT3A1 and the demethy-
lase TET1, respectively, consistent with the known enzymatic
activities of the two enzymes (Supplementary Fig. 2b and 2c). The
three methylation variation measures show similar correlation
patterns (Supplementary Fig. 2d, 2e, and 2f). In contrast, the
methylation concurrence ratio is positively correlated with both
DNMT3A1 and TET1 binding intensities (Supplementary Fig. 2a).
To further explore the two enzymes’ joint effects, we define the
DNMT3A1-TET1 ‘joint regulation score’ (Π) of a promoter as
the product of DNMT3A1 and TET1 binding intensities within
that promoter (see Eq. (2) in Methods). This joint regulation
score depicts the extent to which the promoter is co-occupied by
both enzymes, and it takes a low value if either enzyme has a low
binding intensity. As expected, the joint regulation score has a
strong positive correlation with the methylation concurrence ratio
(Fig. 1b) but not as much with the average methylation measures
(Fig. 1c and Supplementary Fig. 2c) or the methylation variation
measures (Fig. 1d and Supplementary Fig. 2e and 2f). This result
is consistent with the fact that average methylation and
methylation variation are neutralized by the additive effects of
two opposing enzymes and that only the methylation concur-
rence ratio characterizes the concurrence of DNMT3A1 and
TET1. In the following text, we use the traditional mean
methylation as the average methylation measure and Shannon’s
entropy as the methylation variation measure.

Based on DNMT3A1 and TET1 colocalization patterns, we
categorize promoters into four groups: DNMT3A+ TET1+,
DNMT3A+ TET1−, DNMT3A− TET1+, and DNMT3A−
TET1−, where + and − indicate strong and weak binding,
respectively. As shown in Fig. 1e, the methylation concurrence
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ratio is significantly higher in ‘DNMT3A+ TET1+ ’ promoters
than in the other three groups of promoters, which are bound by
only one or none of the two enzymes. For example, Prok2 (Fig. 1f
and Supplementary Fig. 3a) has a DNMT3A+ TET1+ promoter
and a high methylation concurrence ratio, while Ogt (Fig. 1g and
Supplementary Fig. 3b) has a DNMT3A− TET1− promoter and
a low methylation concurrence ratio. Notably, only the methyla-
tion concurrence ratio can distinguish the different colocalization
patterns of Prok2 and Ogt, while the average methylation and the
methylation variation cannot. Moreover, only the methylation
concurrence ratio is predictive of the expression levels of Prok2
and Ogt (Prok2 has a high ratio and low expression, while Ogt has
a low ratio and high expression), while the average methylation

and the methylation variation are not (both genes have similar
average methylation and methylation variation levels).

In addition to DNMT3A and TET1, the methylation concur-
rence ratio correlates with other methylation/demethylation
enzymes, such as DNMT3B (Supplementary Fig. 4a) and TET2
(Supplementary Fig. 4b). Furthermore, the methylation concur-
rence ratios are also positively correlated with the joint regulation
scores of additional combinations between the methylation/
demethylation enzymes, such as DNMT3A1-TET2, DNMT3B-
TET1, and DNMT3B-TET2 (Supplementary Fig. 4c, d, e).

These findings are supported by additional evidence in mouse
samples with Dnmt or Tet knockout. As expected, Dnmt3a1 and
Dnmt3a2 double-knockout22 leads to genome-wide hypomethylation
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Fig. 1 The methylation concurrence ratio measures the antagonism between methylation and demethylation processes in mESCs. a Schematic of DNA
methylation concurrence captured by bisulfite-seq. Solid circles are methylated cytosines. Blank circles are unmethylated cytosines. Red circles are
unmethylated cytosines in partially methylated reads, i.e., methylation- concurrence cytosines. The equation below shows the calculation of methylation
concurrence ratio using the example above. b Methylation concurrence is positively correlated with the ‘DNMT3A1-TET1 joint regulation score’ (Π) in gene
promoter regions. Average methylation (c) and methylation variation (d) are not correlated with Π at gene promoters. Spearman’s rank correlation was
calculated. P values were calculated by the two-tailed correlation test for Spearman’s correlation. LOWESS lines were plotted to describe the relationships
between variables (indicated by red curves). e The methylation concurrence ratio is significantly higher at DNMT3A1&TET1 co-occupied promoters. Gene
numbers of each groups: ‘DNMT3A1+ TET1+’, n= 1294; ‘DNMT3A1+ TET1− ’, n= 1238; ‘DNMT3A1−;TET1+’, n= 1370; ‘DNMT3A1− TET1− ’, n= 1595.
The two-tailed Mann–Whitney U test was used for the significance test. The line in the box center refers to the median, the limits of box refer to the 25th
and 75th percentiles and whiskers are plotted at the highest and lowest points within the 1.5 times interquartile range. f UCSC Genome Browser tracks show
DNMT3A1 binding (orange), TET1 binding (purple), methylation concurrence (red), average methylation (black), methylation variation (blue), and gene
expression data (green) at Prok2 gene. CpG islands are shown in gray. g Same as (f), but for gene Ogt. h Dnmt3a knockout leads to a decrease in average
methylation, while Tet knockout leads to hypermethylation. i Both Dnmt3a knockout and Tet knockout lead to more concurrence depletion than elevation.
According to the original paper, the ‘Dnmt3a1, Dnmt3a2 double knockout’ sample is generated by reintroducing DNMT3B1 into stem cells that lack DNA
methylation due to deletions of all Dnmt genes (Dnmt3a1, Dnmt3a2, and Dnmt3b1). The genomic binding of the reintroduced DNMT3B1 in knockout cells
resembles that in wild-type ES cells22.
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in mouse ESC, whereas Tet1, Tet2, Tet3 triple-knockout leads to
global hypermethylation (Fig. 1h). We observe that either knockout
results in more regions with decreased methylation concurrence
ratios than regions with increased ratios, an observation consistent
with our definition of methylation concurrence ratio (Fig. 1i). The
knockout experiments in human ESC23 also reach a similar
conclusion. As in Supplementary Fig. 5a, DNMT3A and DNMT3B
double-knockout (DKO) leads to a substantial decrease of average
methylation, while TET1, TET2, TET3 triple-knockout (TKO) leads
to hypermethylation. The DNMT3A, DNMT3B, TET1, TET2, and
TET3 pentuple knockout (PKO) sample shows a relatively ‘balanced’
change of average methylation. In line with our previous findings in
mouse ESC (Fig. 1i), there are more depleted regions than elevated
regions of methylation concurrence in DKO (Supplementary Fig. 5b).
In agreement with the mouse data, methylation concurrence appears
more sensitive to changes in DNMT activity than TET activity,
suggesting additional mechanisms may be involved in its negative
regulation. For example, some unmethylated regions in WT become
partially methylated in TKO, so the methylation concurrence is
elevated rather than depleted (Supplementary Fig. 5c). Intriguingly, as
indicated in the bottom row of Supplementary Fig. 5b, the knockout
of both enzyme families (PKO) leads to a dominant trend of depleted
concurrence. Overall, these results confirm that the methylation
concurrence ratio, an emerging quantitative measure of methylation,
can delineate the antagonism between methylation and demethyla-
tion processes.

Methylation concurrence is negatively correlated with gene
expression. Our previous analysis of genes Prok2 and Ogt (Fig. 1f
and 1g) suggests that the methylation concurrence ratio may be a
better predictor of gene expression than the average methylation
and the methylation variation. To further examine the relation-
ship between these quantitative measures of methylation and
gene expression, we first calculate the methylation concurrence
ratios, the average methylation, and the methylation variation of
every CpG site as well as transcription regulatory elements/
regions of three types (promoters, gene-body regions, and
enhancers, see Methods) using WGBS data of primary cells and
normal tissues from Epigenomic Roadmap Consortium24. Then,
we quantify gene expression levels using the RNA-sequencing
(RNA-seq) data from matched samples (Supplementary Data 1)
and separate all genes into four equal-sized groups based on
expression quantiles (0–25%, 25–50%, 50–75%, and 75–100%).
As indicated in Fig. 2a and Supplementary Fig. 6a, more highly
expressed genes are characterized by lower methylation con-
currence ratios, lower average methylation (by both the tradi-
tional mean and CHALM), and lower methylation variation in
promoters. However, unlike the average methylation and the
methylation variation, the methylation concurrence ratios in TSS-
proximal regions (<2 kb) are higher than in more distal regions
(>2 kb), suggesting that the antagonism between methylation and
demethylation is more intense near transcription start sites. Our
findings are in line with a previous knockout study, which reveals
that DNMT3A and TET1 prevent binding of each other mainly in
TSS-proximal regions6.

Compared with the average methylation (measured by both the
traditional mean and CHALM) and the methylation variation, the
methylation concurrence ratio is better correlated with gene
expression, and this phenomenon is consistent across all three
types of regulatory elements in CD3+ T cells (Fig. 2b and
Supplementary Fig. 6b). In contrast, the correlations between
gene expression and the average methylation or the methylation
variation are not consistent across the three types of regulatory
elements; for example, CHALM values in gene-body regions and
enhancers have much lower correlations with gene expression

than CHALM values in promoters do (Supplementary Fig. 6b).
We further confirm this phenomenon using WGBS and RNA-seq
data of other primary cells, fetal tissues, and adult tissues
(Supplementary Fig. 7).

In addition to being associated with baseline gene expression
level, the differences (Δ) of methylation concurrence are also
negatively correlated with gene expression changes (Supplemen-
tary Fig. 8a) across its full dynamic range. In contrast, the
differences of average methylation (Supplementary Fig. 8b) and
methylation variation (Supplementary Fig. 8c) only show a
negative correlation in half of their dynamic range (Δ > 0).
Altogether, the methylation concurrence ratio is a more unbiased
predictor of gene expression than both the average methylation
and the methylation variation.

Effects of sequencing depth and CpG density on quantification
of methylation concurrence. Sequencing depth is a key factor
that affects quantitative analysis of high-throughput sequencing
data. Using a down-sampling strategy, we observe that all of the
three measures (methylation concurrence, average methylation,
and methylation variation) are negatively associated with gene
expression at sufficient sequencing depth (Supplementary
Fig. 9a). Notably, across sequencing depths from ~4× to ~86×, the
methylation concurrence ratio has consistently better correlations
with gene expression than the average methylation and the
methylation variation.

Besides sequencing depth, CpG density also affects the
correlations between methylation measures and gene expression.
To investigate this issue, we stratify genes into three groups based
on the CpG densities in their promoters, i.e., high-CpG promoter
(HCP) genes, intermediate-CpG promoter (ICP) genes, and low-
CpG promoter (LCP) genes25. For all three methylation measures
(the methylation concurrence ratio, the average methylation, and
the methylation variation), the correlations between their values
in promoters and gene expression decrease from HCP genes to
ICP genes and further down to LCP genes. Among the three
measures, the methylation concurrence ratio consistently has the
strongest negative correlation with gene expression for all three
groups of genes (Supplementary Fig. 9b).

Methylation concurrence is associated with the repression of
tumor suppressor genes. To investigate whether methylation
concurrence is involved in tumorigenesis, we apply gene set
enrichment analysis (GSEA) to profiles of promoter methylation
concurrence ratios in 8 TCGA normal samples. As shown in
Supplementary Fig. 10a and 10b, the curated tumor suppressor
genes (TSGs) in the COSMIC Cancer Gene Census (CGC)
database26 are associated with low methylation concurrence
ratios. In contrast, cell lineage genes such as Homeobox genes are
associated with high methylation concurrence ratios. In addition,
housekeeping functions such as ‘pentose phosphate pathway’ do
not exhibit associations with methylation concurrence. Further
analysis of 56 normal samples’ methylomes shows a conserved
pattern of low methylation concurrence at the promoter of TP53,
a well-known TSG (Supplementary Fig. 10c), and high methyla-
tion concurrence at the promoter of NKX1-1, a Homeobox
transcription factor related to organ development and
regeneration27 (Supplementary Fig. 10d).

Promoter hypermethylation is a well-established mechanism
for TSG silencing in tumors28. We compare the three methylation
measures between the normal and tumor uterus samples from the
same patient in TCGA. Using local-FDR, a statistical criterion
that assesses the credibility of individual discoveries under the
Bayesian framework29, we identify 2557 genes, 2056 genes, and
871 genes whose promoters have significant changes of average
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methylation, methylation concurrence, and methylation varia-
tion. Through an overlap analysis between methylation concur-
rence and average methylation, we identify three gene groups: 487
methylation-concurrence elevated and average-methylation stable

genes (P1), 842 methylation-concurrence stable and average
methylation increased (hypermethylated) genes (P2), and 265
methylation-concurrence elevated and average methylation
increased (hypermethylated) genes (P3) (Fig. 3a). For the three

Fig. 2 Methylation concurrence is negatively associated with gene expression. a Average profiles in TSS-proximal regions of four gene groups, divided by
quantiles of expression levels, in CD3+ T cells. Methylation-concurrence ratios are on the left, average methylation ratios are in the middle, and
methylation variation scores(entropy) are shown on the right. 0–25%, lowest expressed; 25–50%, lower expressed; 50–75%, higher expressed; 75–100%,
highest expressed. The gene number of each group is 3600. b The promoter/gene-body/enhancer methylation concurrence ratios (1st column) are
strongly negatively correlated with gene expression level in CD3+ T cells, and this correlation is stronger than that of the average methylation (2nd
column) and the methylation variation (3rd column). Promoter regions are from 1 kb upstream to 500 bp downstream of TSS. Gene-body regions are from
500 bp downstream of TSS to TTS. Enhancer regions are defined based on chromatin interactions validated by Hi-C data (see Methods). The WGBS data
are from the Roadmap project with GEO accession number GSM1186660. The CD3+ primary cells are from a 37-year-old male. To increase reliability, we
select regulatory elements whose CpGs are all sufficiently covered (≥4 reads). To make fair comparisons, only the elements which can be detected by all
three metrics are included. This results in 9876 promoter regions, 14,868 gene-body regions, and 3351 enhancer regions. Spearman’s rank correlation and
Pearson’s correlation were calculated based on all data points. P values were calculated by the two-tailed correlation test. LOWESS lines were plotted to
describe the relationships between variables (indicated by red curves).
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gene groups, the average profiles of the methylation concurrence
ratios and the average methylation in TSS-proximal regions are
illustrated in Fig. 3b. Compared with randomly selected genes, all
three groups of genes demonstrate more significant transcrip-
tional repression (i.e., smaller p-values) in the tumor uterus
sample compared with the matched normal uterus sample by the
Wilcoxon signed-rank test (Fig. 3c). We find 17 TSGs in the three
gene groups, and 41% (7/17) of them cannot be explained by
promoter hypermethylation alone (P1 TSGs in Fig. 3d). For
example, ZBTB16 (also known as PLZF) is a P1 TSG that inhibits
prostate cancer tumor growth through its interplay with PTEN
and FOXO3a30, and its genetic alterations have been found in
metastatic prostate cancer samples31. Although ZBTB16 has an
unclear function for uterine cancer, a previous study revealed that
overexpression of ZBTB16 inhibited proliferation in cervical
carcinoma cells and induced apoptosis32. Given the visible
association between high methylation concurrence in promoter
regions and reduced gene expression (Supplementary Fig. 11a),
these results suggest that ZBTB16 may also act as a tumor
suppressor in uterine tumors, although additional functional
studies are needed to test this hypothesis.

To check whether methylation variation (i.e., the methylation
entropy) is able to explain TSG repression, we perform a similar
overlap analysis between methylation entropy and average
methylation. We find that the 214 entropy elevated and
average-methylation stable genes (Q1, Supplementary Fig. 11b)
are not significantly repressed in the tumor uterus sample
compared to the matched normal sample (Supplementary
Fig. 11d, p value= 0.2), and that the single known TSG (MLF1,
Supplementary Fig. 11e) in the Q1 group can also be detected by
methylation concurrence (Fig. 3d). This result shows that
methylation concurrence better associates with the repression of
TSGs compared to methylation entropy.

We also analyze the methylomes of normal and tumor breast
samples from the same patient in TCGA (Supplementary Fig. 12).
The overlap analysis indicates that 63% (7/11) of repressed TSGs
can be explained by elevated methylation concurrence but not by
hypermethylation, and ZBTB16 is again an example (Supple-
mentary Fig. 12d). Collectively, our analysis suggests that the
methylation concurrence reveals a repertoire of epigenetically
regulated tumor suppressor genes that cannot be detected by the
average methylation or the methylation variation.

Fig. 3 Tumor repressors can be repressed by methylation concurrence elevation rather than hypermethylation in uterus tumor. a Venn diagram shows
the overlap between promoter methylation concurrence altered genes and average methylation altered genes in TCGA uterus tumor (UCEC). P1,
methylation concurrence elevated but average methylation stable genes; P2, hypermethylated but concurrence-stable genes; P3, concurrence-elevated and
hypermethylated genes. b Average profiles of methylation concurrence (upper panel) and average methylation (lower panel) in TSS regions of P1, P2, and
P3 genes. UCEC normal is in blue, and UCEC tumor is in red. c Gene expression change of P1, P2, P3, and 1000 randomly selected genes. The fold changes
between median values (log2 scale) are indicated below. The two-tailed Wilcoxon signed-rank test was used for the significance test. The line in the box
center refers to the median, the limits of box refer to the 25th and 75th percentiles and whiskers are plotted at the highest and lowest points within the 1.5
times interquartile range. The lists of repressed genes in three groups are in Supplementary Data 2. d COSMIC tumor suppressor genes which are
overlapped with P1, P2, and P3 genes. Gene expression fold changes (log2 scale) are indicated. Darker green signifies higher repression in the UCEC tumor
sample. e The percentages of tumor suppressors in P1, P2, and P3 genes.
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Methylation concurrence in large undermethylated regions.
Undermethylated regions (UMRs) are the clusters of adjacent,
lowly methylated CpGs spanning from hundreds to thousands of
base pairs33. Large UMRs, which are also termed as methylation
‘canyons’33 or ‘valleys’34, are conserved across cell types33 and
involved in chromatin interactions35, and their target genes are
associated with cell lineages34. Although all of the methylation
canyons are poorly methylated (with the average methylation
≤0.1), their methylation concurrence ratios range from 0 to 0.4
(Supplementary Fig. 13d). To examine the role of methylation
concurrence in their function, we classify the methylation can-
yons into high-concurrence canyons (blue in Fig. 4) and low-
concurrence canyons (red in Fig. 4), based on a cutoff derived
from the genome background (see Supplementary Fig. 13 and
Methods). Although the two groups do not differ in their average
methylation, their chromatin accessibilities are dramatically dis-
tinct (Fig. 4a). Accordingly, we refer to the low-concurrence
canyons, which are enriched with active markers (H3K4me3,
H3K27ac, H3K36me3, and DNase I hypersensitive sites), as active
canyons (aCanyons); we refer to the high-concurrence canyons,
which are enriched with H3K27me3, as Polycomb canyons
(pCanyons). To validate their distinct chromatin activities, we
perform the same analysis in human embryonic stem cell H1, for
which ChIP-seq data of 28 types of histone modifications/variants
are available. Similar to the case in CD3+ T cells, active markers
(H3K4me3, H3K27ac, H2A.Z, H3K9ac, etc.) in H1 ESCs are more
enriched in aCanyons. In contrast, the repressive markers
(H3K27me3, H3K9me3, etc.) in H1 are more enriched in
pCanyons (Supplementary Fig. 14).

Although the methylation variation measures (entropy,
Epipolymorphism, and PDR) also differ between aCanyons and
pCanyons (Supplementary Fig. 15a), they do not provide the
same information as the methylation concurrence ratio does:
only the methylation concurrence ratio is higher inside pCanyon
than in the flanking regions. This phenomenon is consistent with
the finding of a previous study that TET1 binding is elevated in
canyons in Dnmt3a knockout sample6. In addition, the average
differences (Δ) of methylation concurrence between pCanyons
and aCanyons are more substantial than for methylation
variation scores. The Δmethylation-concurrence inside Canyon
is ~2.8-fold higher than the Δmethylation-concurrence in
Canyon flanking regions. For methylation variation, this fold
decreases to ~1.5 for ΔEntropy, ~1.8 for ΔEpipolymorphism, and
~1.3 for ΔPDR (Supplementary Fig. 15b). These data indicate
methylation concurrence can better distinguish aCanyons from
pCanyons.

Furthermore, the TF binding patterns are consistent with the
definitions of aCanyons and pCanyons. The aCanyons are bound
by TFs involved in active transcription, such as transcription
initiation factor TFIID subunit 1 (TAF1), TATA-box binding
protein (TBP), and RBBP5, a subunit of MLL complex. In
contrast, the pCanyons are bound by subunits of the PRC2
complex, such as SUZ12 and EZH2 (Supplementary Fig. 16a). To
exclude bias that may be introduced by Canyon length differences
(Supplementary Fig. 16b), we perform the same analysis for the
Canyon gene promoters, which feature the same length for
different genes. The results confirm the different TF binding
preferences in aCanyon gene promoters and pCanyon gene
promoters (Supplementary Fig. 16c). Recently, Zhang et al.
revealed that methylation canyons are involved in chromatin
loops that rely on Polycomb binding instead of cohesion or
CTCF35. Consistent with this finding, we find that pCanyons are
more enriched with chromatin interactions than aCanyons
(Supplementary Fig. 16d).

To gain further insights into the functions of canyons, we
define canyon targets as the genes whose promoters or gene-body

regions overlap with canyons. Again, consistent with the
definitions of aCanyons and pCanyons, aCanyon targets are
highly expressed, while pCanyon targets are almost silenced
(Fig. 4b). Gene ontology analysis reveals that aCanyon targets are
enriched with TSGs and cancer pathways, while pCanyon targets
are enriched with cell fate commitment and Homeobox genes.
Both negative control (Ctrl) groups of non-Canyon-target genes
—Ctrl group with similar expression distributions as aCanyon
targets and Ctrl group of randomly selected lowly expressed genes
—are not enriched with these functional terms (Fig. 4c).

Finally, we correlate the expression of canyon targets with the
average methylation in a locus-specific manner36. Specifically, we
first divide the promoter and downstream region (−2 to +10 kb)
of each gene into 120 equal-length bins. Then we compute the
correlation between gene expression and the average methylation
in each bin across aCanyon targets, pCanyon targets, and Ctrl
genes. As expected, the average methylation in promoters is
negatively correlated with gene expression for all four gene sets,
albeit to varying degrees (Fig. 4d). Previous studies also report
positive correlations between the average methylation in gene-
body regions and gene expression10,37. However, we observe that
this phenomenon occurs for pCanyon targets, but not for
aCaynon targets (Fig. 4d). Furthermore, although both highly
expressed (Fig. 4b) and highly methylated at gene-body (Fig. 4e),
the aCanyon targets present a unique regulating model compared
to the higher expressed Ctrl group (Fig. 4d). The surprisingly
negative correlations between the average methylation in gene-
body regions and gene expression for aCanyon targets suggest
that these genes may have a distinct methylation regulation
mechanism.

Using in vitro SELEX assays, Yin et al. profile human TFs for
binding preferences towards 5mC38. They classify these TFs as
‘methyl-plus’ and ‘methyl-minus’ groups, such that methyl-plus
TFs’ binding is enhanced by 5mC, while methyl-minus TFs’
binding is inhibited by 5mC. To further understand aCanyons
and pCanyons, we utilize this SELEX data and perform
differential analysis of TF motif enrichment. We find that the
TF motifs’ 5mC preferences are negatively correlated with their
fold enrichment between aCanyon and pCanyon (Fig. 4g). In
other words, methyl-plus TF motifs are more enriched in
pCanyons, while methyl-minus TF motifs are more enriched in
aCanyons. Therefore, when methylation increases, the aCanyons
would lose TF binding, and the aCanyon targets would have
decreased expression. On the other hand, when methylation
increases, the pCanyons would have more TF binding, and the
pCanyon targets would have increased expression. To avoid the
bias due to Canyon length differences (Supplementary Fig. 16b),
we also perform the same analysis for the Canyon gene
promoters. The results agree with previous observations in
Canyons (Supplementary Fig. 16e). This model helps explain the
distinct regulations of aCanyon and pCanyon targets in one
particular cell type. However, how methylation concurrence
captures their transcriptional changes from one condition to
another is unclear and will need to be elucidated in follow-up
investigations.

Together, methylation concurrence shows that the dynamics of
methylation and demethylation are unique for aCanyons and
pCanyons and strongly associate with additional distinguishing
features (e.g., chromatin accessibility) of their regulation.

Discussion
Cytosine methylation is a reversible biochemical modification39.
The global pattern of mammalian methylome is formed by two
antagonizing processes: methylation and demethylation. The
methylation concurrence ratio defined in this paper utilizes
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unmethylated fragments inside the partially methylated reads to
measure this antagonism. Through reanalyzing bisulfite sequen-
cing data, we reveal that the methylation concurrence ratio is
strongly correlated with gene expression. Compared to the
average methylation, the methylation concurrence ratio in dif-
ferent types of regulatory elements, e.g., promoter, gene-body,
and enhancer, consistently has stronger correlations with gene
expression. Another advantage of methylation concurrence is that
it utilizes all reads, while the methylation variation scores are

window-based and only take reads covering at least 4 CpGs. To
make a fairer comparison, we recalculate methylation con-
currence using the same reads used by methylation variation. The
results confirm that methylation concurrence still performs better
than average methylation (Supplementary Fig. 19) and methyla-
tion variation (Fig. 1d and Fig. 2b). It is worth noting that
although its global correlation with expression is superior to the
other compared metrics, methylation concurrence is not a perfect
indicator for all genes. Other metrics have unique value in

Fig. 4 Distinct characteristics of methylation canyons categorized by methylation concurrence. Average profiles of methylation concurrence, average
methylation, DNase I hypersensitive sites, H3K4me3, and H3K27me3 in methylation canyons in CD3+ T cell. ‘aCanyons’ (red) are low-concurrence
canyons. ‘pCanyons’ (blue) are high-concurrence canyons. The X-axis indicates the distance to canyon borders. b Expression of aCanyon target genes (red,
n= 1212), pCanyon target genes (blue, n= 438), control group which features a similar expression distribution as aCanyon Targets (purple, n= 1212), and
control group of randomly selected lowly expressed genes (gold, n= 1,000). The line in the box center refers to the median, the limits of box refer to the
25th and 75th percentiles and whiskers are plotted at the highest and lowest points within the 1.5 times interquartile range. Lists of aCanyons and
pCanyons are in Supplementary Data 3, together with their target genes. c Functional enrichment analysis of aCanyon target genes, pCanyon target genes,
and control groups. Enriched gene counts in each group are indicated on the left side. P-values were measured by two-tailed Fisher’s Exact Test and
adjusted by the Benjamini–Hochberg method. d Spearman correlation between gene expression and average methylation of 100 bp-bin in gene regions. In
total, 120 bins from −2 kb to 10 kb were measured. e The profiles of average methylation for each gene group. The standard deviations are indicated by the
width of the shaded area. f The Canyon distribution around the TSS. In each position from TSS−10 kb to TSS+10 kb, the percentage of aCanyon (red) and
pCanyon (blue) target genes covered by Canyon is shown on the Y-axis. g Relationship between fold enrichment and 5mC preference of TF motifs. Each
dot represents a motif. Y-axis indicates the fold change (log2) between enrichment at aCanyon and enrichment at pCanyon of the same motif (see
Methods). The X-axis shows the 5mC preference of motifs measured by the SELEX technique. ‘methyl-plus’ TFs prefer to bind methylated sequences, while
binding of ‘methyl-minus’ TFs are not favored by 5mC. The list of ‘methyl-plus’ and ‘methyl-minus’ TFs are in Supplementary Data 4. Spearman’s rank
correlation was used. P values were calculated by the two-tailed correlation test for Spearman’s correlation. A linear model was plotted to describe the
relationships between variables (indicated by the dashed line).
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depicting methylation dynamics (Supplementary Fig. 20c) and
sometimes show a similar trend with methylation concurrence
(Fig. 2b and Supplementary Fig. 15). In the future, a better
indicator may be proposed by integrating different methylation
metrics. Overall, our analysis confirms the negative impact of
methylation concurrence on gene transcription, which extends
the interpretation of DNA methylation data.

In terms of cancer gene regulation, we find that TSGs are
characterized by conserved low methylation concurrence ratios
across normal samples. During tumorigenesis, the elevation of
methylation concurrence serves as an emerging mechanism that
can explain the repression of 40–60% of TSGs, which cannot be
explained by hypermethylation. Thus, our definition of methy-
lation concurrence expands our understanding of aberrant tumor
methylation in addition to promoter hypermethylation.

There are limitations to the methylation concurrence metric.
First, 5mC can be oxidized to 5-Hydroxymethylcytosine (5hmC)
by the TET proteins, but the conventional bisulfite-seq cannot
distinguish 5hmC from 5mC, so the methylation concurrence
ratio is an underestimation of the real concurrence. This can be
improved by applying oxidative bisulfite-seq, a technique that can
discriminate between 5mC and 5hmC40. Additionally, the current
study only associates methylation concurrence ratio with the
colocalization of de novo methyltransferases DNMT3A/B and
active demethylase TET. The maintenance methylation by
DNMT1 and passive demethylation due to DNA replication are
not discussed. In future work, a more comprehensive model is
needed to incorporate all these factors.

Polycomb repressive complex 2 (PRC2) is responsible for
methylating histone H3 on Lys27 (H3K27)41, a crucial chromatin
mark for gene silencing in early development and oncogenesis42.
Both single-molecule43 and genome-wide44 analysis reveal that
PRC2 depositing is not favored by DNA methylation. Consistent
with these findings, the PRC2 catalytic subunit EZH2 (enhancer
of Zeste homologue 2)45, the stimulating subunit SUZ12 (sup-
pressor of Zeste 12)46, and H3K27 trimethylation (H3K27me3)
are all negatively associated with the average methylation in
promoters in human stem cells (Supplementary Fig. 17b). How-
ever, they are all positive indicators of methylation concurrence
(Supplementary Fig. 17a). Bisulfite sequencing data in Ezh2
conditional knockout mice47 also confirm that the removal of
PRC2 would cause more regions to have higher average methy-
lation but lower methylation concurrence (Supplementary
Fig. 17c), suggesting that methylation concurrence can be pro-
moted by PRC2 binding. Previous studies suggest that TET1 is
associated with the repression of Polycomb targets48,49, but have
not detected any direct interaction between PRC2 and TET1. Our
analysis indicates that methylation concurrence may serve as the
missing link in the PRC2-TET1 association. Although the
methylation concurrence corresponds with transcription silence,
however, the current data are not sufficient to prove its
mechanistic connection. Future works are needed to investigate
its difference from the well-known Polycomb repression model.

Nucleosome positioning is essential for gene regulation by
altering chromatin accessibility50. Nucleosome fuzziness mea-
sures the randomness of a nucleosome’s position. Through rea-
nalyzing human brain MNase-seq (micrococcal nuclease
digestion with deep sequencing) data51, we reveal that the
methylation concurrence ratio is not associated with nucleosome
fuzziness (Supplementary Fig. 18), suggesting that methylation
concurrence regulates gene expression independent of nucleo-
some positioning.

Methylation canyons are poorly methylated and have negligible
differences in the average methylation, so they serve as an ideal
context to investigate the methylation concurrence. A previous
study of mouse hematopoietic stem cells (HSCs) finds that some

canyons are active while the others are silent, and that such a
difference is explainable by the enrichment of H3K4me3 or
H3K27me333. Thanks to our definition of methylation con-
currence, the distinct activities of different canyons can be
explained by methylation data alone, suggesting that methylation
concurrence indicates chromatin accessibility. Besides, we find
that the active canyon (aCanyon) target genes present a unique
regulating model: negative correlation between gene expression
and gene-body methylation (Fig. 4d). Although we have con-
firmed this observation by analyzing in vitro SELEX data of the
5mC preferences of TFs, it is worth noting that current model
(Fig. 4g) can only explain the association between methylation
change and binding of transcription activators but not repressors.
In the future, further efforts are required to elucidate this
mechanism.

With its different characteristics from the average methylation
and methylation variation, the methylation concurrence high-
lights local methylation abnormality in the epigenetic landscape
and will serve as a unique layer of methylation biology.

Methods
Quality control and reads alignments. FastQC v0.11.7 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used for general quality
checks of sequencing reads in FASTQ files. Trim Galore v0.6.4 (https://github.com/
FelixKrueger/TrimGalore) was used to trim the sequencing adaptor and remove
low-quality bases. WGBS reads were aligned to human (hg19) or mouse (mm9)
genome using BSMAP v2.9052 with default parameters. RRBS reads were also
aligned by BSMAP, while an extra option ‘-D C-CGG’ was added to activate the
RRBS mode53. The overlapping bases of two read mates were only counted once to
avoid duplicate counting. RNA-seq reads were first mapped to human (hg19)
genome by STAR v2.6.0c54 with the option ‘–quantMode TranscriptomeSAM’, and
then gene expression level in FPKM (fragments per kilobase per million reads) was
quantified using RSEM v1.3.155. MNase-seq reads from the human brain were
mapped to the human genome (hg19) by bowtie2 v2.2.756, then nucleosome
binding positions and nucleosome fuzziness scores were called by DANPOS
v2.2.257 with the ‘dpos’ command. The Hi-C reads from CD3+ T cells were
mapped to the human genome (hg19) by bowtie2. Chromatin interactions under
2-kilobase resolution were then called using the ‘analyzeHiC’ module in Homer
v4.858. Samtools v0.1.19 (http://samtools.sourceforge.net/) was used to process
reads alignment files.

Genome annotation and genomic features. The NCBI RefSeq gene annotation
files (hg19 and mm9) were fetched using the Table Browser tool in the UCSC
Genome Browser (http://genome.ucsc.edu/cgi-bin/hgTables). Gene promoter
regions were defined as 1 kb upstream of TSS to 500 bp downstream of TSS.
Promoters’ CpG ratios were calculated by the following formula: (number of
CpGs × number of bp)/(number of Cs × number of Gs)25. Then promoters were
stratified into three groups according to their CpG ratios, i.e., high-CpG promoters
(HCPs), intermedium-CpG promoters (ICPs), and low-CpG promoters (LCPs).
Gene-body regions were defined as 500 bp downstream of TSS to the transcription
termination site (TTS). CpG-island positions were fetched using the UCSC Table
Browser, which was derived based on the published formula59. Enhancers and their
target genes in CD3+ T cell were defined based on Hi-C data. First, the pairs of
anchors, which have chromatin interaction were annotated to the genome. Then
for each pair, if only one of them located in promoter or gene-body regions, it was
assigned as an enhancer-target pair.

The quantification of concurrence between active DNA methylation and
demethylation. The methylation concurrence events are represented by the
unmethylated CpGs in partially methylated reads (red circles in Fig. 1a). Bisulfite
sequencing reads were thus dissected into three categories of fragments, i.e.,
methylated fragments (consecutive solid circles in Fig. 1a), unmethylated fragments
(consecutive blank circles in Fig. 1a), and methylation concurrence fragments
(consecutive red circles in Fig. 1a). Thus, the methylation concurrence ratio of a
particular genomic region was measured by the following equation.

Methylation concurrence ratio ¼ ∑C
c¼1ωc

∑C
c¼1ωc þ∑M

m¼1ωm þ∑U
u¼1ωu

ð1Þ

M, U, and C represent the numbers of methylated, unmethylated, and
methylation-concurrence fragments, respectively. ωm, ωu, and ωc are the weights
for each fragment. They can be set as the CpG counts of each fragment (weighted)
or 1 (unweighted) (Supplementary Fig. 1a). Comparing the weighted and
unweighted ratios, we found that the weighted ratio (Fig. 2b; left panel) has slightly
better correlations with gene expression than the unweighted ratio does
(Supplementary Fig. 20a). Hence, the weighted methylation concurrence ratio was
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used in this study. Note that the weighted methylation concurrence ratio is
equivalent to the proportion of CpGs in methylation-concurrence fragments
among all the CpGs. Therefore, the methylation concurrence ratio is also applicable
to a single CpG site. Theoretically, methylation concurrence ratios vary between 0
and 1 (not equal to 1). In real data, however, as more than half of reads are either
fully methylated or fully unmethylated (Supplementary Fig. 20b), methylation
concurrence ratios of most regions are lower than 0.5 (Supplementary Fig. 20c). To
reduce false positives, we only retained CpGs covered by at least four reads in the
analysis. We integrated the calculation of the methylation concurrence ratio and
the average methylation ratio in a single Python script available at https://
github.com/JiejunShi/CAMDA.

Quantifications of the average methylation. Two measures of the average
methylation are used in this study: traditional mean methylation and cellular
heterogeneity-adjusted mean methylation (CHALM)21. The traditional mean
methylation of a region is calculated as the proportion of methylated CpGs among
all CpGs covered by reads. The CHALM value of a region is computed as
nm=ðnm þ nuÞ, where nm and nu are the counts of methylated reads and unme-
thylated reads, respectively.

Visualization of the methylation concurrence ratio and the average methy-
lation. Methylation-concurrence ratios and average methylation measures at base-
pair resolution were generated in the ‘wiggle’ format using our ‘methylation con-
currence’ tool (https://github.com/JiejunShi/CAMDA). The ‘wigToBigWig’ program
from UCSC binary utility directory (http://hgdownload.soe.ucsc.edu/admin/exe/) was
used to transform ‘wiggle’ files to ‘bigWig’ files. For viewing specific gene loci, the
‘bigWig’ files were uploaded to ‘custom tracks’ in UCSC Genome Browser (http://
genome.ucsc.edu/), with genome assembly of hg19 or mm9. The ‘computeMatrix’
module of deepTools v3.2.160 was used to extract the scores of interested regions into
matrix format. Then the averaged profiles and heatmaps were visualized using ‘plot’
and ‘image’ functions in R.

The colocalization analysis of DNMT3A1 and TET1. The ChIP-seq reads density
profiles of DNMT3A1 and TET1 in mouse ESCs were downloaded from the GEO
database (GSE100951 and GSE100955). They have been corrected for input
background using DANPOS. The reads densities in promoter regions were then
extracted and transformed into log2 RPKM values by normalizing for promoter
lengths and total reads counts. Hence, the promoter binding intensities of
DNMT3A1 or TET1 were defined as the standardized values π ¼ x�μ

σ , where π is
the binding intensity, x is the log2 RPKM, μ is the mean of x across promoters, and
σ is the standard deviation of x across promoters. The ‘DNMT3A1-TET1 joint
regulation score’ (Π) of a promoter region is defined in the following equation.

Π ¼ πD � πDmin

πDmax � πDmin
� πT � πTmin

πTmax � πTmin

; ð2Þ

where πD and πT represent the respective binding intensities of DNMT3A1 and
TET1 in the promoter region; πDmin and πTmin indicate the minimum of πD and πT

across promoters; πDmax and πTmax indicate the maximum of πD and πT across
promoters. By definition, Π is between 0 and 1.

Quantifications of the methylation variation. DNA methylation variation is
quantified by the ‘methylation heterogeneity’(MH) scores. In the MH algorithms,
reads that cover fewer than 4 CpGs are excluded. As with the quantification of the
methylation concurrence, only CpGs covered by at least four reads were included
in the analysis to reduce false positive. The proportion of discordant reads (PDR)
was calculated as previously described12. The PDR for a 4-CpG locus was the
proportion of partially methylated reads among all reads, which cover the four
adjacent CpGs. Epipolymorphism13 for a 4-CpG locus was calculated as 1�∑ðp2i Þ,
where pi is the frequency of all possible methylation patterns of this locus.
Methylation entropy for a 4-CpG locus is measured by the equation of Shannon’s
entropy,−∑ðpi ln piÞ, where pi is the same as in Epipolymorphism. The entropy/
Epipolymorphism/PDR of a region is calculated as the average value of all 4-CpG
locus in that region. The entropy value of 4-CpG loci ranges from 0 to 4. We thus
set a cutoff of 0.4 to define a notable entropy change. A comparison study61 has
implemented the above MH algorithms, and the codes are available on GitHub
(https://github.com/MPIIComputationalEpigenetics/WSHScripts).

Differentially methylated regions (DMRs) and differential methylation-
concurrence regions (DMCRs). DMRs and DMCRs are identified by Metilene
v0.2-862 in ‘de novo’ mode with the option of ‘-m 5’ to get regions of at least 5
CpGs. For DMRs (hypermethylated and hypomethylated regions), ‘-d 0.4’ is used
to detect the regions with at least 40% average methylation difference. For DMCRs
(concurrence-elevated and concurrence-depleted regions), because methylation
concurrence scores of most regions are lower than 0.5 (Supplementary Fig. 20c), ‘-d
0.2’ is applied to find regions with at least 20% methylation concurrence difference.
The p value cutoff for both DMR and DMCR is 0.05.

Gene set enrichment analysis (GSEA) and gene ontology (GO) analysis. GSEA
was applied by GSEA software v4.0.363 in the ‘pre-ranked’ mode with default
parameters. The genes were decreasingly sorted by the promoter methylation
concurrence ratio. All the functional terms are collected in GSEA Molecular Sig-
natures Database (MsigDB, v7.1), except ‘COSMIC Tumor Suppressors’, ‘COSMIC
Oncogenes’, and ‘PANCAN Driver Genes’. ‘COSMIC Tumor Suppressors’ and
‘COSMIC Oncogenes’ were fetched from COSMIC Cancer Gene Census (CGC).
‘PANCAN Driver Genes’ were downloaded from a previous study64, which inte-
grated cancer drivers from 33 cancer types. The normalized enrichment scores
(NES) and FDR values were calculated by GSEA software. The heatmap of NES was
plotted using the ‘image’ function in R. Running enrichment scores were replotted
using codes published on GitHub (https://github.com/PeeperLab/Rtoolbox/blob/
master/R/ReplotGSEA.R). The GO analysis of methylation altered genes was
conducted using the DAVID online tool (https://david.ncifcrf.gov/)65.
Benjamini–Hochberg adjusted p values were calculated by DAVID. The functional
enrichment of methylation canyon target genes was measured by two-tailed
Fisher’s Exact Test, and the p values were adjusted using the Benjamini–Hochberg
method.

Identifying differential methylated genes between tumor and normal samples.
The promoter differential methylation was defined by Metilene (‘pre-defined
regions’ mode) if the methylation data contained replicates. The cutoff for sig-
nificant methylation is p value < 0.005.

Because there is no replicate for WGBS data in the matched normal/tumor
biopsy samples for UCEC and BRCA, the classical p-value-based hypothesis testing
framework for identifying differential signals does not apply. To identify the
statistically reliable difference, we used the local false discovery rate (local-fdr), a
statistical criterion that assesses the credibility of individual discoveries under the
Bayesian framework29.

Let dj denote the difference between matched tumor and normal samples based
on any methylation measure (e.g., average methylation) for gene j, j ¼ 1; ¼ ; p.
Local-fdr assumes that genes come from two populations: differential and
nondifferential. Let p0 denote the prior probability that a gene is nondifferential.
Let f0(d):= PðD ¼ djnondifferentialÞ and f1(d): = PðD ¼ djdifferentialÞ denote the
conditional probability density of D at d given that D comes from the
nondifferential and the differential gene population, respectively. Thus, by Bayes’
theorem, the posterior probability of a gene being nondifferential given its
summary statistics is PðnondifferentialjD ¼ dÞ ¼ p0f 0ðdÞ=f ðdÞ, where f(d):=
p0f 0ðdÞ þ ð1� p0Þf 1ðdÞ is the marginal probability density of D. The local-fdr of

gene j is then defined as local� fdrj ¼
f 0ðdjÞ
f ðdjÞ : Because p0 ≤ 1, local� fdrj is an upper

bound of PðnondifferentialjD ¼ djÞ. Notably, local-fdr differs from the traditional
FDR in that FDR ensures the reliability of the identified differential genes as a set
while local-fdr focuses on the reliability of each identified differential gene. To
implement local-fdr, f0 is assumed to be normal distributed and is estimated from
middle-ranged dj’s and f is estimated nonparametrically from fd1; � � � ; dpg, as in the
R package ‘locfdr’.

To set the same threshold for both hyper and hypomethylated genes, we used
the absolute differences rather than the signed differences and assumed that f0
follows half-normal, a normal distribution with mean 0 and non-negative support.
In the DNA methylation field, the conventional threshold for methylation
difference is 10%66. To control this posterior probability, we selected genes whose
methylation difference lower than 10% to estimate f0. To make sure the data used
for fitting f0 looks like normal, we picked genes whose methylation difference reside
in the middle one-third interval. We excluded the left one-third region to avoid
high peaks close to 0, which deviate from the shape of a normal distribution; we
also excluded the right one-third region to avoid fitting a mixture of differential
and nondifferential genes. To estimate f, we used kernel density estimation. Given
f̂ 0 and f̂ , the estimates of f0 and f, we estimated local-fdr of gene j by

dlocal� f drj ¼ f̂ 0ðdjÞ=f̂ ðdjÞ. Finally, we call a differentially methylated gene if its
estimated local-fdr is lower than 0.2, the cutoff suggested by the original local-fdr
paper.

Defining undermethylated regions (UMRs). UMRs were detected using the
published method33 based on the Hidden Markov model. To reduce false positives, we
retained only CpGs covered by at least four reads. CpGs with an average methylation
ratio lower than 10% were defined as undermethylated CpGs. UMRs were then
identified as regions that include at least four consecutive undermethylated CpGs. The
adjacent UMRs were merged into a single UMR if the average methylation ratio of the
merged UMR was lower than 10% after merging.

Determining the threshold for categorizing methylation canyons. Methylation
canyons are large (≥3.5 kb) and conserved UMRs33,35,36. UMRs longer than 3.5 kb
were identified as canyons. Canyon target genes were defined as genes whose
promoter or gene-body region is overlapped with canyons. To set the threshold for
canyon categorization, we calculated the methylation concurrence ratios for 10,000
nonoverlapped random genomic regions to determine the distribution of genome
backgrounds. ‘fitdist’ function in R package ‘fitdistrplus’ was then used to fit these
to the classical distributions, including ‘normal’, ‘log-normal’, ‘beta’, ‘gamma’,
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‘uniform’, ‘exponential’, and ‘logistic’ distributions (Supplementary Fig. 13a). The
parameters for each distribution were estimated by ‘maximum likelihood estima-
tion’. By using the Cramér–von Mises criterion, we found the fitness to ‘gamma’
has the minimum distance with the distribution of genome background methyla-
tion concurrence ratios, which means ‘gamma’ distribution is the best fit (Sup-
plementary Fig. 13b). This was also confirmed by the Q–Q plot (Supplementary
Fig. 13c). Given the estimated parameters ‘shape’ and ‘rate’ from ‘gamma’ fitness,
the threshold was determined as the 90th percentile of the background distribution,
which aims to select the regions with significantly higher methylation concurrence
ratios. Canyons were categorized based on this threshold. Canyons with methy-
lation concurrence ratios higher than this threshold were assigned as ‘pCanyons’
(Polycomb canyons), while the remiander were designated as ‘aCanyons’ (active
canyons) (Supplementary Fig. 13d).

Locus-specific correlation between average methylation and gene expression.
The gene promoter and downstream regions (2 kb upstream to 10 kb downstream
of TSS) were equally divided into 120 bins. The average methylation ratio was
calculated for each bin, which is 100 bp in length. Aligning the TSS of different
genes, all of the average methylation ratios were organized into a matrix, in which
rows are genes and columns are bins. Then, Spearman’s rank correlation coeffi-
cients were computed between the gene expression vector and each column of this
matrix. The resulting vectors of correlation coefficients were visualized as bar plots.

Enrichment of motifs with different 5mC preference. The 5mC preferences of
TF motifs were quantified by the SELEX method introduced by the previous
study38. The motifs with preference values (termed as ‘mCG enrichment’ in ref. 38)
higher than 0 were assigned as ‘methyl-plus’ motifs, whose binding can be
enhanced by 5mC. Motifs with preference value lower than 0 were defined as
‘methyl-minus’ motifs, whose binding is not favored by 5mC. Besides these two
categories, there are also motifs with either multiple effects or little effect on 5mC.
Removing these ambiguous motifs and motifs with identical sequences, we received
105 nonredundant motifs that are confidently assigned as ‘methyl-minus’ or
‘methyl-plus’. The‘findMotifsGenome’ module in Homer software was then used to
call the motif positions in canyon sequences. The enrichment score of a particular
motif was calculated as motif counts per kilobase (CPK) of the canyon. The fold
enrichment of this motif was defined as the fold change between its CPK at
aCanyons and CPK at pCanyons. Spearman’s rank correlation between fold
enrichment and 5mC preference was visualized in a scatter plot. The p value was
calculated by correlation test. A similar analysis was also performed on canyon
gene promoters.

Transcription factor binding difference between methylation canyon groups.
Positions of TF binding peaks determined in H1 human stem cells were down-
loaded from the Roadmap website. The percentages of TF-occupied aCanyons and
pCanyons were then calculated based on whether the canyon overlaps with TF
binding peaks. The binding difference was measured by the odds ratio between
these two percentages, i.e., TF-occupied aCanyons (%)/TF-occupied pCanyons (%).
TFs with odds ratios higher than 1 are more enriched in aCanyons, while the others
are more enriched in pCanyons. A similar analysis was also performed on canyon
gene promoters.

Chromatin interaction at methylation canyons. Chromatin interactions were
defined by pairs of Hi-C anchors. The overlap between anchor pairs and canyons
was detected using bedtools v2.25.067. To exclude Canyon length bias, we also
checked chromatin interactions in two control groups. Using the ‘shuffleBed’
function in bedtools, we generated a random genomic region for each Canyon
whose length is equal to the Canyon. Then, the random regions whose lengths are
equal to aCanyons were designated as the control group of aCanyons, while the
random regions whose lengths are equal to pCanyons were designated as the
control group of pCanyons. For each anchor pair, if both are located in the same
canyon or random genomic region, the anchor pair is denoted ‘self-interacting’. If
only one of them is located in a canyon or random region, that anchor pair is
denoted ‘distant-interacting’.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the public or controlled data used by this study are summarized in Supplementary Data 1.
In total, 75 methylomes (WGBS and reduced representation bisulfite sequencing (RRBS))
were collected from the Roadmap Epigenomics project (http://www.roadmapepigenomics.org/
), Encyclopedia of DNA Elements (ENCODE) project (https://www.encodeproject.org/), The
Cancer Genome Atlas (TCGA) project (https://portal.gdc.cancer.gov/), Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), and DNA Data Bank of Japan (DDBJ,
https://www.ddbj.nig.ac.jp) databases, including 69 human and 6 mouse datasets. All of them
are publicly available except two matched normal-tumor pairs from TCGA, which need to
apply for accession from GDC portal (https://portal.gdc.cancer.gov/). Ten RNA-sequencing

(RNA-seq) datasets were downloaded from Roadmap and TCGA, which are from the
matched samples with methylomes. 69 ChIP-seq, 2 DNase-seq, 1 MNase-seq, and 1 Hi-C
datasets were fetched from Roadmap or GEO. Source data for Fig. 3 and Fig. 4 are provided as
Supplementary Data with the paper. Other data that support the findings of this study are
available at https://github.com/JiejunShi/CAMDA/tree/master/paper-data.

Code availability
The open-source software for methylation concurrence is freely available at https://
github.com/JiejunShi/CAMDA.
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