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Topology of charge density and elastic properties of Ti3SiC2 polymorphs

R. Yu, X. F. Zhang
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720

L. L. He, H. Q. Ye
Shenyang National Laboratory for Materials Science, Institute of Metal Research,

Chinese Academy of Sciences, Shenyang 110016, China
(Date textdate; Received textdate; Revised textdate; Accepted textdate; Published textdate)

Using an all-electron, full potential first-principles method, we have investigated the topology of
charge density and elastic properties of the two polymorphs, α and β, of Ti3SiC2. The bonding
effect was analyzed based on Bader’s quantum theory of “atoms in molecules” (AIM). It was found
that the Ti-Si bonding effect is significantly weaker in β than in α, giving less stabilizing effect
for β. The Si-C bonds, which are absent in α, are formed in β and provide additional stabilizing
effect for β. In contrast to conventional thinking, there is no direction interaction between Ti atoms
in both α and β. The calculated elastic properties are in good agreement with the experimental
results, giving the bulk modulus of about 180 GPa and the Poisson’s ratio of 0.2. The β phase is
generally softer than the α phase. As revealed by the direction dependent Young’s modulus, there
is only slight elastic anisotropy in Ti3SiC2. For α, Young’s modulus is minimum in the c direction
and maximum in the directions 42◦ from c. For β, the maximum lies in the c direction, in part due
to the formation of Si-C bonds in this direction.

Keywords: topology of charge density; electronic structure; elastic constants; ceramics.

I. INTRODUCTION

The layered ternary carbides and nitrides, e.g.
Ti3SiC2, Ti2AlC, Ti3AlC2, and Ti4AlN3 etc., have been
the subject of numerous studies in recent years due to
their unique combination of mechanical, electrical and
thermal properties.1−9 Among the compounds, Ti3SiC2

has the best comprehensive properties and thus has been
investigated most extensively. It has high elastic moduli
and easy machinability, good thermal and electrical con-
ductivities, together with excellent oxidation properties
and fatigue resistance.1 In fact, Ti3SiC2 has become the
model material of the layered ternary compounds.

There are two polymorphs10−12 for Ti3SiC2, α and β
phases. The structures for both α and β polymorphs are
hexagonal in symmetry with a space group of P6 3/mmc
(No. 194). However, Si occupies 2b Wyckoff position in
α, but 2d in β. Note that the 2b and 2d sites are the
largest holes in α and β, respectively. The fact facilitates
the transition between the two polymorphs. The unit
cells of the two polymorphs are schematicaly shown in
Fig. 1 (a) and (b). They can be described as an alter-
native stacking of the Ti and Si layers: ABABACAC for
α and ABCBACBC for β. The underlined letters refer
to the layers of Si atoms; the remainders being the lay-
ers of Ti atoms. Carbon atoms occupy the octahedral
interstitial sites of Ti atoms and are not shown in this
notation.

The possibility of the presence of the β polymorph
was first proposed by Farber et al.10 In the early high-
resolution transmission electron microscopy (HRTEM)
investigations of Ti3SiC2, there was misinterpretation
for the HRTEM images: the α polymorph was thought
as the β polymorph10. Using image simulations, Yu et
al.11−12 clarified the relationship between HRTEM im-

ages and the underlying crystal structure for Ti3SiC2,
and pointed out that the bright spots in HRTEM images
do not necessarily correspond to the atomic columns. In
the same work, they identified the existence of the β poly-
morph. Because β is less frequently observed11 than α, it
was proposed to be a metastable phase, which was con-
firmed by the first-principles calculations of the heats of
formation12 and the Gibbs free energy.13

Due to the improvements in theory, calculation meth-
ods, and computer size and speed, first-principles calcu-
lations are becoming a powerful tool for understanding
and predicting structures and properties of materials.14
Calculation results on Ti3SiC2 have been reported in
literatures,8,9,12,13,15,16 but mainly for the α phase. In
the present work, we calculated the topology of charge
density based on Bader’s quantum theory of “atoms in
molecules” (AIM)17−19 and the elastic properties of the
polymorphs. The chemical bonding and the electronic
structure are analyzed comparatively in detail.

II. CALCULATIONS

A. Computational details

The full-potential linearized augmented plane waves
(FLAPW) method20−22 was used in this study. This
method is one of the most accurate schemes to solve the
Kohn-Sham equations in density-functional theory.23−24

Augmented plane wave plus local orbitals (APW+lo)
were used for valence states; LAPW were used for the
other states. The use of the mixed LAPW/APW+lo ba-
sis set requires considerably less basis functions compared
to the pure LAPW basis set.25−26 In the present study,
about 75 basis functions per atom were used. The gen-
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eralized gradient approximation (GGA) exchange corre-
lation functional of Perdew, Burke and Ernzerhof was
used.27 A fully relativistic calculation was used for core
states, whereas the valence states were treated in a scalar
relativistic scheme. The total and partial densities of
states (DOS) were obtained using a modified tetrahedron
method of Blöchl et al.28 Tests on the k-point sampling
in the Brillouin zone were performed to ensure that the
total energies were converged to 0.1 mRy/atom.

B. Structural optimization and heats of formation

The structural optimization for Ti3SiC2 started
with the structure parameters determined using X-ray
diffraction.29 The whole relaxation process includes four
steps: (1) The atomic coordinations were relaxed with
fixed lattice parameters; (2) With the fixed experimen-
tal c/a ratio and the atomic coordinations obtained in
the previous step, the theoretical volume was obtained
from volume-total energy curve; (3) Using the obtained
theoretical volume and atomic coordinations, the total
energy was calculated as a function of c/a ratio; (4) The
atomic coordinations were relaxed again with the fixed
theoretical lattice parameters.

The heats of formation were obtained by subtracting
the total energies of the elemental crystals from the total
energies of Ti3SiC2 polymorphs. In order to precise the
total energies, all the elemental crystals were also fully
relaxed. For titanium and graphite, the relaxation pro-
cess was similar to that for Ti3SiC2, but simpler because
there are no free internal coordinations for titanium and
graphite.

C. Topology of electron density

In addition to band structure and density of states
(DOS), electronic structure and chemical bonding of
Ti3SiC2 were investigated quantitatively on the basis
of Bader’s quantum theory of “atoms in molecules”
(AIM),17−19 which is a theory about atoms, bonds, struc-
ture, and structural stability. Based on the topology of
electron density, which can be obtained from either quan-
tum mechanics computations or accurate experiments,
the theory provides vigorous definitions for atoms in
molecules/crystals and the bonds which link the atoms,
and thus transform the qualitative concepts into a quanti-
tative description. As its name, the AIM theory concerns
mainly molecular quantum chemistry. Recently, the the-
ory was also applied to solid-state phases.30−35

An atom in a molecule or crystal is an open system,
which is free to exchange charge and momentum with
neighboring atoms. In the AIM theory, an atom is de-
fined as a region containing a single nucleus, with the
flux in the gradient vector field of the electron density
ρ(r) vanishing at its surface, i.e.

∇ρ(r) · n(r) = 0 (1)

where n(r) is the exterior normal vector to the surface
of the region.

Once the atomic basins are determined an atomic prop-
erties of each atom can be obtained by integration of a
corresponding property densities over the basin of the
atom, and each atom makes an additive contribution to
the value of the property of the total system. The elec-
tron population in atom Ω, for example, is given as

N(Ω) =
∫

Ω

ρ(r)dr (2)

In addition to the definition of atomic basins, the
topology of electron density gives the definition of molec-
ular structure in terms of its critical points, where the
gradient of the electron density vanishes, i.e.

∇ρ(r) = 0 (3)

According to Bader’s notation, the critical points are
characterized by the rank and signature of the Hessian
matrix (∇∇ρ(r)) of the electron density. The rank is the
number of non-zero eigenvalues of ρ(r) and the signature
is the number of positive eigenvalues minus the number
of negative ones. In general, the critical points of electron
density for energetically stable molecules or crystals are
all of rank three, and there are just four possible signature
values, i.e. four kinds of critical points: (3,-3) or local
(nucleus or non-nucleus) maxima, (3,-1) or bond critical
points (BCP), (3,1) or ring critical points (RCP), and
(3,3) or cage critical points(CCP). The eigenvalues are
generally denoted as λi (i=1-3) in an increasing order.
Thus for a BCP, λ1 ≤ λ2 < 0 < λ3. For molecules
or crystals with equilibrium geometry, the existence of
a BCP indicates the formation of a bond between two
neighboring atoms.

D. Elastic constants and Debye temperature

We calculated the single crystal elastic constants in
terms of the linear theory of elasticity. For a small lattice
distortion near equilibrium structure, the strain energy
is36−37

Etotal =
1
2
V

∑
i,j

cijεiεj (4)

where V denotes the volume of undistorted system, cij

the elastic stiffness constants, and εi and εj the compo-
nents of the strain tensor in the matrix form
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e =

 ε1
1
2ε6

1
2ε5

1
2ε6 ε2

1
2ε4

1
2ε5

1
2ε4 ε3

 (5)

We use the method described in section A to calculate
Etotal for various strains of the system and find the sec-
ond derivatives of the energy with respect to the strain.
Then the elastic constants cij are evaluated using the
equation (4). To find the distorted lattice vectors we
adopt the matrix procedure given by Jona and Marcus,38
who modified the procedure of Fast et al.39 to get higher
symmetry in distorted structures. In summary, the undis-
torted structure is written in a matrix form as

R =

 a cos 15◦ a sin 15◦ 0
a cos 75◦ a sin 75◦ 0

0 0 c

 (6)

where a and c are lattice constants.
The distorted structure R′ is then ontained by

R′ = R(I + e) (7)

where I denotes the unit matrix. Since there are five
independent elastic constants for the hexagonal phase,
five different strains are needed. The five strains and
the related elastic constants (in parentheses) are listed
as follows:

(i) ε1 = ε2 = ε, (c11 + c12)
(ii) ε3 = ε, (c33)
(iii) ε1 = ε2 = ε3 = ε, (2d11 + 2d12 + 4c13 + c33)
(iv) ε4 = ε5 = ε, (c44)
(v) ε1 = −ε2 = ε, (c11 − c12)
In each above case, the other components of the strain

tensor are equal to zero. Different strain from that of
Jona and Marcus38 is used to calculate c11 − c12. Using
the present strain, the energy of the distorted structure
becomes an even function of the strain. Therefore, only
strains in one direction are needed. All the distorted
structures were relaxed with respect to internal coordi-
nates to obtain accurate elastic constants.

Polycrystalline elastic constants can be evaluated on
the basis of single crystal elastic constants. In this study,
the bulk modulus (B) is calculated directly from case
(iii) strains (9B = 2d11 + 2d12 + 4c13 + c33), the shear
modulus (G) is obtained by averaging schemes developed
by Voigt (GV ),40 Reuss (GR),41 and Hill.42 In Voigt ap-
proximation, the shear modulus (GV ) of polycrystals is
assumed to be the space average of stiffness c44 of crys-
tallites disposed at all possible orientations. The Voigt
approximation is equivalent to assuming that the strain
is uniform throughout the aggregate, but the stress is
not. On the other hand, assuming uniform stress but
non-uniform strain, the shear modulus (GR) is taken as
the reciprocal space average of compliance s44 of the crys-
tallites. For hexagonal crystals:

GV = [(2d11 +c33)− (c12 +2d13)+3(2d44 +c66)]/15 (8)

1/GR = [4(2s11 + s33)− 4(s12 +2s13)+ 3(2s44 + s66)]/15
(9)

where sij are elastic compliances. Using an energy ar-
gument, Hill42 proved that GV and GR represent upper
and lower limits and the true value of G should lie be-
tween them. Emperically, a good approximation is

G = (GV + GR)/2 (10)

Young’s modulus (E) and Poisson’s ratio (ν) are given
by:

E =
9BG

3B + G
and ν =

3B − 2G

2(3B + G)
(11)

The Debye temperature (θD), a fundamental param-
eter of a solid, can also be calculated from elastic con-
stants employing the relationship between θD and the
sound velocity.43 The polycrystalline shear, υs, and lon-
gitudinal, υl, sound velocities are computed from B and
G as follows:

υs = (G/ρ)1/2 (12)

υl = ((B + 4G/3)/ρ)1/2 (13)

The mean sound velocity υm is

υm =
(

1
3

[
2
υ3

s

+
1
υ3

l

])−1/3

(14)

Then the Debye temperature is given by the equation:

θD =
h

k

(
3qNρ

4πM

)1/3

υm (15)

where h denotes Planck’s constant, k Boltzmann’s con-
stant, N Avogadro’s number, ρ the density, M the molec-
ular weight of the solid and q the number of atoms in the
molecule.

III. RESULTS AND DISCUSSIONS

A. Structural optimization and heats of formation

The calculated and the experimental lattice parame-
ters and atomic positions of Ti3SiC2 are listed in Table
I. Note that the calculated C positions are very close to
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those determined recently by neutron diffraction,44 but
are significantly different from those determined earlier
by X-ray diffraction.26 In contrast to the fact that the
X-ray scattering factor of C is much smaller than those
of Ti and Si, the neutron scattering factors of the three
elements are similar.45 Therefore, the positional param-
eters of the light carbon atoms determined from neu-
tron diffraction are generally more precise than those
determined from X-ray diffraction, especially for pow-
der diffraction. The agreement between the calculated
C positions and those determined by neutron diffraction
demonstrates the accuracy of the geometrical relaxation
of the first-principles calculations.

Table II gives the total energies of Ti3SiC2 and ele-
mental crystals, from which the heats of formation of
Ti3SiC2 are obtained as listed in Table II. The heat of
formation for the α phase is -81.2 kJ/mol, while that for
β is -75.7 kJ/mol, confirming the metastability of the β
phase.11−12

B. Charge density and it’s topology

The calculated valence charge densities in (1120) plane
of the polymorphs are given in Figs. 2(a) and 2(b). In
order to visualize the reordering of the electronic charge
density accompanying the formation of bonding, the dif-
ference charge densities were obtained by subtracting the
superposition of free atom densities from the total va-
lence charge density. The results are shown in Figs. 3(a)
and 3(b). The electron density maps show some common
features of the two polymorphs. For example, as demon-
strated by the difference charge densities, there exists
a significant charge transfer from Ti to C; The Ti-C-Ti
bonding demonstrates large directionality, a character of
covalent bonding.

In Fig. 3(b), the charge accumulation between Si and
it’s next-nearest-neighboring C atoms can be observed in
the β phase. Such accumulation suggests the formation
of Si-C bonding in β, which is confirmed in the following
topology analysis (AIM).

The crystallographically inequivalent BCPs, denoted
by the atoms they connect, are listed in Table III. The
bond length, electron density, eigenvalues of Hession of
ρ, laplacian (sum of eigenvalues) and the ratio |λ1| /λ3

are given.
First we notice that a new BCP connecting Si and C

atoms exists in β, indicating the formation of Si-C bonds,
which are absent in α. The Si-C bonding could provide
additional stabilizing effect for β. But from the heats
of formation we know that the β phase is a metastable
phase relative to α. By examining the properties of the
BCPs, it is found that the electron density at the Ti2-Si
BCP in β is significantly smaller than in α. It means that
less charge is accumulated in the bonding region between
Ti2 and Si atoms in β, giving weaker and longer Ti2-Si
bond, and weak stabilizing effect for β.

Since the Si-C bonds exist only in the β phase,

the transformation from one polymorph to the other
should involve bond breaking and rearrangement. That
means the transformation is reconstructive, although
the two polymorphs differ slightly in structure. Fur-
thermore, such a reconstruction can not be accom-
plished by a homogeneous distortion, like in Martensitic
transformations.46 Instead, the diffusion of Si atoms is
required, Si atoms hop from normal 2b sites to 2d sites
(the largest holes in α) to generate Frenkel defects (va-
cancies at 2b and interstitials at 2d). A Frenkel defect in
α can be regarded as a β nucleus of a half unit cell.

From the bond lengths of Ti3SiC2 listed in Table III,
it is noticed that Ti1-C bond is longer and has a smaller
electron density relative to Ti2-C bond in both α and β.
This might be attributed to the weaker Ti2-Si bonding
relative to Ti2-C bonding, resulting in a charge transfer
from the former to the latter. Thus the Ti2-C bonding
is strengthened.

According to the topology properties at BCPs, there
are two categories of interatomic interactions: shared
interaction and close-shell interaction.17 For a BCP of
shared interaction, the laplacian is negative, the elec-
tion density is large (order 1 in eÅ−3), and the ratio
|λ1| /λ3 is larger than unity, corresponding to covalent
bonds. Close-shell interaction means positive laplacian,
lower electron density and a smaller ratio |λ1| /λ3 at the
BCPs. Ionic bonds, hydrogen and Van der Waals bonds
fall in this category. According to these definitions, all
the bonding interactions in Ti3SiC2 belong to close-shell
interaction. This is in accordance with the large charge
transfer between the atoms of Ti3SiC2, as listed in Table
IV.

The above classification scheme, like other bonding
classification schemes, is not a quantitatively rigorous
scheme, but a qualitative one for easy understanding.
Not all the bonds can be classified unambiguously in such
a way. For example, due to the strong covalent inter-
action between Ti and C, the charge densities at Ti1-C
and Ti2-C BCPs are not small enough as for typical ionic
bonds.

Si-Si and Si-C bonds are typical covalent bonds in Si
and SiC crystals. However, they are categorized as close-
shell interaction in Ti3SiC2. Although this should not
be regarded as the failure of above classification scheme
since both the Si-C and Si-Si bond lengths here are much
larger than their normal values (2.35 Å in Si and 1.89 Å in
SiC), it suggests the necessity to generalize above scheme
developed from molecular quantum chemistry by taking
into account the constraints the atoms receive in crystals.

Finally, it should be noted that there is no direct Ti-Ti
bonding interactions in Ti3SiC2. While it’s in contrast
to traditional thinking, we will show that it’s a com-
mon feature in most of the transition metal carbides and
nitrides.47
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TABLE I: Experimental and calculated lattice parameters (a, c in nm), atomic positions (in fractional coordination) of Ti3SiC2.
For both α and β, Ti1 and Ti2 refer to the Ti atoms occupy 2a Wyckoff position (0, 0, 0) and 4f position (1/3, 2/3, z),
respectively. C atoms also occupy 4f position, but with different z value from that of Ti2. Si atoms occupy 2b position (0, 0,
1/4) in α, while 2d position (2/3, 1/3, 1/4) in β.

a c c/a zTi2 zC

α Neutron diffraction44 0.307 1.763 5.75 0.135 0.572

X-ray diffraction25 0.307 1.767 5.76 0.135 0.568

Calculation 0.308 1.772 5.75 0.135 0.573

β Calculation 0.306 1.807 5.91 0.134 0.571

TABLE II: Calculated lattice parameters (a, c in nm), total
energies (E in Ry), and heats of formation (∆H in kJ/mol)
of Ti3SiC2 and the elemental crystals.

a c E ∆H

α 0.308 1.772 -11711.428 -81.2

β 0.306 1.807 -11711.376 -75.7

Ti 0.243 0.466 -3415.244

Si 0.547 -1160.140

C 0.247 0.672 -304.815

C. Band structure and DOS

The band structures of α and β are shown in Figs. 4(a)
and 4(b), respectively. The four lower and the next two
bands are s states of C and Si atoms. The dispersion of
Si s bands is larger than that of C s bands due to the
more diffuse character of the Si s orbitals. The higher
bands from about -6.0 eV are valence Ti 3d and (Si, C)
p states. Due to the large dispersion of Si s states, no
energy gap is formed between the lower s bands and the
higher p and d bands.

By comparing the band structures of the two poly-
morphs, the differences in orbital interactions are re-
vealed. It is found that, at K and H points, the bands
near -2.1 eV in α increase to near -1.4 eV in β, while
those close to the Fermi level of α decrease to -0.3 eV
in β. From the band character plotting, as shown in
Figs. 5(a)-5(d) for β, the compositions of the featurered
bands are obtained. The figures show that the bands of β
near -1.4 eV consist mainly of the contributions from the
states C 2pz, Si 3pz, and Ti2 3dxz+3dyz, which form the
interactions between base planes. The bands near -0.3
eV consist mainly of the contributions from 3dxz+3dyz

and 3dx2−y2+3dxy of Ti2 atoms, which interact within
the base planes. Because of the decreased electron den-
sity between Si and Ti2 atoms in β (Fig. 2(b) and Fig.
3(b)), the interplane bonding interactions between Si 3pz

and Ti2 3dxz+3dyz are weak in the β phase. The energy
of these interactions increase from -2.1 eV in α to -1.4 ev
in β. The Si-C interactions in β are not strong enough
to stabilize the interplane interactions. The energy of
the bands near Fermi level of α decreases by about -0.3
eV, demonstrating that the interactions within the base

planes are stabilized.
Many features in band structures can also be illus-

trated in electron densities of states (DOS), as shown
in Fig. 6(a) and 6(b). Corresponding to the shift of Si
3pz band near K and H points, the highest peak of Si
3p shifts from -2.1 eV in α to -1.4 eV in β. The minor
peak of Ti2 atoms also shifts due to the Si-Ti2 hybridiza-
tion. Similarly, corresponding to the shift of 3dxz+3dyz

and 3dx2−y2+3dxy bands of Ti2 atoms, the peak near the
Fermi level of α shifts down to -0.3 eV in β, resulting in
a decrease of N(EF ), the DOS at the Fermi level, from
4.4 states/(unit cell eV) for α to 3.6 for β. The lower
N(EF ) may lead to lower conductivity of β relative to α.

The partial DOS (PDOS) curves do not show de-
tectable hybridization between Si s states and the elec-
tronic states of Ti and C atoms. It means that the dis-
persion of Si s bands originates mainly from the two-
dimensional interaction within the Si planes. Due to
Bloch’s theorem, a phase factor is associated to every
translation.48−49 At K point (2π/3, 2π/3, 0) in the Bril-
louin zone of Ti3SiC2, the phase factor linking a Si s
orbital with its neighbor is equal to e±i2π/3 and so the
Bloch function looks like that shown in Fig. 7, where the
phase is denoted by different colors. Therefore, the in-
teractions between all the nearest neighbouring s orbitals
are antibonding, and the K point should be at the top of
Si s band as shown in Fig. 4.

D. Elastic properties

Because of the difficulty to grow Ti3SiC2 single crys-
tals, there are only polycrystalline elastic constants avail-
able from the reported experiments.50−53 However, single
crystal elastic constants can be obtained from first prin-
ciple calculations. The elastic constants of Ti3SiC2 were
calculated using the pseudopotential method7,13. In the
present study, we adopted the all-electron F(L)APW+lo
method21 to calculate the single crystal elastic constants.
The results are given in Table V. Polycrystalline elas-
tic constants, sound velocities and Debye temperature
were calculated from the single crystal elastic constants
as listed in Table VI. The calculated values match the
experimental data very well. For example, the bulk mod-
ulus of the α phase was measured experimentally,50−52

most of the results, including the latest one,53 showed a
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TABLE III: Bond length (l in Å), electron density (ρ in eÅ−3), eigenvalues of Hessian and laplacian (λi, ∇2ρ in eÅ−5) of ρ,
and the ratio |λ1| /λ3 at the bond critical points in Ti3SiC2 polymorphs.

Bond l ρ λ1 λ2 λ3 ∇2ρ |λ1| /λ3

α Ti1-C 2.20 0.473 -1.62 -1.57 5.42 2.23 0.30

Ti2-C 2.10 0.576 -2.06 -2.06 5.56 1.44 0.37

Ti2-Si 2.70 0.269 -0.64 -0.53 2.18 1.00 0.29

Si-Si 3.08 0.198 -0.21 -0.12 0.78 0.45 0.27

β Ti1-C 2.18 0.483 -1.67 -1.62 5.49 2.20 0.30

Ti2-C 2.10 0.589 -2.22 -2.14 5.48 1.12 0.41

Ti2-Si 2.75 0.239 -0.42 -0.40 2.03 1.22 0.21

Si-Si 3.06 0.194 -0.22 -0.10 0.81 0.49 0.27

Si-C 3.23 0.206 -0.19 -0.19 1.05 0.67 0.18

TABLE IV: Atomic charges for Ti3SiC2 polymorphs.

Ti1 Ti2 Si C

α 1.623 1.421 -0.874 -1.795

β 1.633 1.363 -0.800 -1.779

B value of close to 180 GPa, matching well with present
calculations. Comparison between the two polymorphs
shows that the β phase is generally a little softer than
the α phase.

The Cauchy relations were examined. For hexago-
nal materials it was demonstrated that the following
Cauchy relations held if the interatomic forces were cen-
tral: c12 = c66 = (c11 − c12)/2 and c13 = c44, i.e.,
the Cauchy ratio (c12/c66 and c13/c44) was unity. The
Cauchy ratio shown in Table V indicates that its devi-
ation from unity is notable, similar to many hexagonal
transition metals.39

Elastic anisotropy exists in real crystals and plays
an important role in determining properties of crystals.
Here we calculate the change of Young’s modulus with
direction to investigate the elastic anisotropy in Ti3SiC2.
For hexagonal systems, the reciprocal of Young’s modu-
lus (E) in the arbitrary direction is defined as36

1/E = (1− l23)
2s11 + l43s33 + l23(1− l23)(2s13 + s44) (16)

Note that the Young’s modulus of hexagonal crystals
depends only on one direction cosine, l3 = cos θ, where
θ is the angle between the arbitrary direction and the
crystallographic c-axis. This is because the hexagonal
crystals are isotropic in the basal plane. The direction
dependent Young’s modulus of Ti3SiC2 is shown in Figs.
8(a) and 8(b) for α and β, respectively. From these fig-
ures one can see that the Young’s modulus of the α phase
is larger in directions between the a and c axis, the mini-
mum of 303 GPa is in the c direction, and the maximum
of 355 GPa in the directions 42◦ from c. In contrast, the
Young’s modulus of the β phase is smaller in directions
between the a and c axes, maximum (325 GPa) in c and

minimum (300 GPa) in the directions 50◦ from c. It’s in-
teresting to note that, although the β phase is generally
softer than the α phase, it’s Young’s modulus in the c
direction is larger than that of the α phase. This could
be attributed to the formation of additional Si-C bonds
in the c direction of β.

IV. CONCLUSIONS

An all-electron and full potential first-principles
method has been used to calculate the heats of forma-
tion, electronic structure, and elastic properties of the
two polymorphs of Ti3SiC2.

(1) It was found that the energy of the β phase is
higher than α, in agreement with the observation that β
is a metastable phase;

(2) The topology analysis showed that Ti-Si bonding
effect is significantly weaker in β than in α, giving less
stabilizing effect for β. Si-C bonds, which are absent in
α, are formed in β to provide additional stabilizing effect
for β. In contrast to conventional thinking, there is no
direction interaction between Ti atoms in both α and β;

(3) The DOS peak near the Fermi level of the α phase
shifts to lower energy in the β phase, resulting in the
decreased DOS at the Fermi level of β;

(4) The polycrystalline elastic constants and sound ve-
locities deduced from calculated single crystal elastic con-
stants were found to be consistent with the experimental
results. The β phase is generally a little softer than the
α phase;

(5) As revealed by the direction dependent Young’s
modulus, there is only limited elastic anisotropy in
Ti3SiC2. For α, Young’s modulus is minimum in the
c direction and maximum in the directions 42◦ from c.
For β, the maximum lies in the c direction, presumably
because of the formation of Si-C bonds in this direction.
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TABLE V: Calculated elastic constants (cij in GPa) and Cauchy ratio of the Ti3SiC2 polymorphs.

c11 c12 c13 c33 c44 c12/c66 c13/c44

α 360 84 101 350 158 0.61 0.64

β 360 86 89 348 120 0.63 0.74

TABLE VI: The bulk, shear, Young’s moduli (B, G, E in GPa), Poisson’s ratio (ν), density (ρ in g/cm3), longitudinal,
transverse, average elastic wave velocity (vl, vs, vm in km/s), and the Debye temperature (θD in K) for polycrystalline Ti3SiC2

obtained from experiments or the calculated single crystal elastic constants.

B G E ν ρ υl υs υm θD

α Experiment52,a 185 139 333 0.20 4.47 9.10 5.57 6.14 795c

Experiment52,b 187 142 339 0.20 4.5 9.14 5.61 6.20 804c

Experiment51 179 134 322 0.20 4.5 8.95 5.45 6.02 784d

Experiment54 181

Experiment53 206

Calculation 182 142 338 0.191 4.47 9.12 5.64 6.22 805

β Calculation 177 129 311 0.207 4.45 8.86 5.39 5.95 769
aFine-grained samples; bCoarse-grained samples; cCorrected based on ρ and υm; dBased on results reported in Ref. 51, but

corrected in Ref. 52.
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FIGURE CAPTIONS:
FIG. 1. Structure models of Ti3SiC2. α and β refer to

the two polymorphs, respectively. α and β phases have
the same space group (P63/mmc). The carbon atoms
located in the octahedral interstices between Ti layers
are represented by the smallest balls, one of which is
indicated by an arrow.

FIG. 2. Calculated total valence charge densities
(electron/Å 3) for the (1120) plane of (a) α, and (b) β.

FIG. 3. Difference charge densities (electron/Å3) of
(a) α, and (b) β. Dotted and solid lines denote negative
and positive values in difference densities respectively.

FIG. 4. Band structures of (a) α, and (b) β.
FIG. 5. Band structure of the β phase in character

plotting mode, showing (a) Si pz, (b) Ti2 (dxz+dyz), (c)
C pz, and (d) Ti2 (dx2−y2+dxy) character bands.

FIG. 6. The total and partial DOS curves of (a) α,
and (b) β.

FIG. 7. Schematic of the Bloch function of Si s or-
bitals at K point (2π/3, 2π/3, 0) in the Brillouin zone of
Ti3SiC2.

FIG. 8. Direction dependent Young’s modulus of (a)
α, and (b) β.
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FIG. 1. Structure models of Ti3SiC2. α and β refer to the two polymorphs, 
respectively. α and β phases have the same space group (P63/mmc). The 
carbon atoms located in the octahedral interstices between Ti layers are 
represented by the smallest balls, one of which is indicated by an arrow. 
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FIG. 2. Calculated total valence charge densities (electron/Å3) for the ( 0211 ) 

plane of (a) α, and (b) β. 
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 FIG. 3. Difference charge densities (electron/Å3) of (a) α, and (b) β. 
Dotted and solid lines denote negative and positive values in difference 
densities respectively. 
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FIG. 4. Band structures of (a) α, and (b) β. 

(a)                                        (b) 

Note: two column figure 
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FIG. 5. Band structure of the β phase in character plotting mode, showing (a) 
Si pz, (b) Ti2 (dxz+dyz), (c) C pz, and (d) Ti2 (dx2-y2+dxy) character bands. 
 

(a)                                    (b) 

(c)                                    (d) 

Note: two column figure 
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FIG. 6. The total and partial DOS curves of (a) α, and (b) β. 
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1    e+i2π/3   e−i2π/3 

FIG. 7. Schematic of the Bloch function of Si s orbitals at K point 
(2π/3, 2π/3, 0) in the Brillouin zone of Ti3SiC2.  
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FIG. 8. Direction dependent Young's modulus of (a) α, and (b) β. 




