
UC San Diego
UC San Diego Previously Published Works

Title
Divergent Learning-Related Transcriptional States of Cortical Glutamatergic Neurons.

Permalink
https://escholarship.org/uc/item/13f2d4ng

Journal
The Journal of Neuroscience, 44(10)

Authors
Dunton, Katie
Hedrick, Nathan
Meamardoost, Saber
et al.

Publication Date
2024-03-06

DOI
10.1523/JNEUROSCI.0302-23.2023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13f2d4ng
https://escholarship.org/uc/item/13f2d4ng#author
https://escholarship.org
http://www.cdlib.org/


Systems/Circuits

Divergent Learning-Related Transcriptional States
of Cortical Glutamatergic Neurons

Katie L. Dunton,1* Nathan G. Hedrick,2* Saber Meamardoost,3 Chi Ren,2 James R. Howe,4,5 Jing Wang,1

Cory M. Root,4 Rudiyanto Gunawan,3 Takaki Komiyama,2 Ying Zhang,1 and Eun Jung Hwang2,6
1Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston 02881, Rhode Island,
2Department of Neurobiology, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University
of California San Diego, La Jolla 92093, California, 3Department of Chemical and Biological Engineering, University at Buffalo-SUNY, Buffalo 14260,
New York, 4Department of Neurobiology, School of Biological Sciences and 5Neurosciences Graduate Program, University of California San Diego, La
Jolla 92093, California, and 6Cell Biology and Anatomy, ChicagoMedical School, Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin
University of Medicine and Science, North Chicago 60064, Illinois

Experience-dependent gene expression reshapes neural circuits, permitting the learning of knowledge and skills. Most learning
involves repetitive experiences during which neurons undergo multiple stages of functional and structural plasticity. Currently,
the diversity of transcriptional responses underlying dynamic plasticity during repetition-based learning is poorly understood.
To close this gap, we analyzed single-nucleus transcriptomes of L2/3 glutamatergic neurons of the primary motor cortex after 3 d
motor skill training or home cage control in water-restricted male mice. “Train” and “control” neurons could be discriminated
with high accuracy based on expression patterns of many genes, indicating that recent experience leaves a widespread transcriptional
signature across L2/3 neurons. These discriminating genes exhibited divergent modes of coregulation, differentiating neurons into
discrete clusters of transcriptional states. Several states showed gene expressions associated with activity-dependent plasticity. Some
of these states were also prominent in the previously published reference, suggesting that they represent both spontaneous and task-
related plasticity events. Markedly, however, two states were unique to our dataset. The first state, further enriched bymotor training,
showed gene expression suggestive of late-stage plasticity with repeated activation, which is suitable for expected emergent neuronal
ensembles that stably retain motor learning. The second state, equally found in both train and control mice, showed elevated levels of
metabolic pathways and norepinephrine sensitivity, suggesting a response to common experiences specific to our experimental
conditions, such as water restriction or circadian rhythm. Together, we uncovered divergent transcriptional responses across L2/3
neurons, each potentially linked with distinct features of repetition-based motor learning such as plasticity, memory, and motivation.

Key words: L2/3 glutamatergic neuron; motor engram; mouse primary motor cortex; plasticity; single-nucleus RNA sequencing;
water deprivation

Significance Statement

Learning is ultimately supported by coordinated gene expression changes in response to experience. Using single-nucleus
RNA sequencing, we characterized divergent transcriptional states that L2/3 motor cortical neurons undergo during long-
term motor learning. In particular, we discovered two salient transcriptional states that present signatures of motor engram-
like reactivation and arousal-related metabolism, likely reflecting the unique behavioral states of animals in our study such as
motor learning, arousal, and water deprivation. Our rich gene expression dataset will provide valuable information for elu-
cidating electrophysiological and molecular mechanisms regulating multistage neuronal plasticity and developing interven-
tions for behavioral disorders related to abnormal plasticity and learning.
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Introduction
Salient experiences induce structural and functional changes in
neurons, shaping how they process and transmit experience-related
information, thereby supporting learning. For example, motor
learning enhances the plasticity of dendritic spines (excitatory syn-
apses) on neurons in primary motor cortex (M1; Xu et al., 2009; Yu
and Zuo, 2011; Fu et al., 2012; Peters et al., 2014; Hedrick et al.,
2022), corresponding to new, emergent patterns of neuronal output
(Peters et al., 2014; Hwang et al., 2019). Suppressing such plasticity
in M1 impairs learning (Hasan et al., 2013; Chen et al., 2015), sup-
porting a deep connection between these phenomena.

Long-term maintenance of plasticity ultimately requires
changes in gene expression, so neurons must encode the occur-
rence of plasticity as one or many transcriptional states. This
can be observed in part at the level of activity-regulated genes
(ARGs), the expression of which reflects recent neuronal activity
(West et al., 2002; Cao et al., 2015; Yap and Greenberg, 2018).
The primary ARGs, known as immediate early genes (IEGs),
are rapidly transcribed in response to neuronal activity and facil-
itate both direct effects and secondary transcriptional responses
that support diverse forms of plasticity. Since plasticity can be
gated or shaped by numerous signals, including neuromodula-
tors, the ARG network could potentially incorporate information
about internal states such as attention, motivation, and reward
prediction for coordinating plasticity (O’Donnell et al., 2012;
Brzosko et al., 2017; Speranza et al., 2021). Whether
learning-related transcriptional responses are sufficiently diverse
to reflect such information remains poorly understood.

Previous studies using microarray-based transcriptomics have
uncovered broad gene expression changes in M1 during motor
learning (Cheung et al., 2013; Hertler et al., 2016). However, tech-
nical limitations prevented such efforts from differentiating
between cell types. This is critical, as different types respond (or
not) to learning-inducing experiences in various ways (Hrvatin
et al., 2018). Additionally, plasticity phenotypes are divergent
even within neuron types: both excitatory and inhibitory neurons
display divergent forms of structural and functional plasticity
over learning according to their subtype (Chen et al., 2015; Peters
et al., 2017; Tjia et al., 2017; Ren et al., 2022). Therefore, different
neuron types and those within the same type undergo heteroge-
neous activity changes and plasticity phenotypes, which is likely
reflected in their transcriptional responses.

Among the various plasticity-related phenotypes, those
related to forming engrams are of particular interest. Engram
cells are repeatedly activated during continued learning and are
thought to support memory recall (Semon, 1923; Tonegawa
et al., 2015). Cells with such characteristics have been observed
in many brain areas, including motor cortices. In the secondary
motor cortex, for example, the initial expression level of the IEG
Arc predicts a neuron's probability for reactivation on subse-
quent motor training days (Cao et al., 2015), implicating a tran-
scriptional response reflective of engram formation. A recent
study of novel environment exposure discovered a more compre-
hensive set of genes associated with reactivation in hippocampal
dentate gyrus neurons (Jaeger et al., 2018), suggesting that
engram-like reactivation involves a coordinated transcriptional
program of many genes. In these studies, only a subset of cells
exhibited the characteristics of engram cells, indicating that
learning-induced transcriptomic changes are heterogeneous
across neurons.

The recent advent of single-cell and single-nucleus RNA
sequencing (scRNA-seq or snRNA-seq) has permitted the

analysis of transcriptional responses in a way that intrinsically
captures the heterogeneity across neurons. Using this approach,
recent studies have begun to reveal transcriptional programs that
differ both across (Hrvatin et al., 2018; Chen et al., 2020) and
within (Chen et al., 2022) cell types during novel experiences
and learning. However, most such studies have examined tran-
scriptional responses to single-trial learning; thus, it remains to
identify the various plasticity states and their underlying tran-
scriptomic profiles that evolve during repetition-based motor
learning in M1.

Therefore, our collaborative projectMEMOry fromNETwork
(MEMONET) set out to investigate how the transcriptomes of
individual neurons are altered in mouse M1 during repeated
motor learning using snRNA-seq.

Materials and Methods
Animals. All animal procedures were performed in accordance with

guidelines and protocols approved by the University of California San
Diego (UCSD) Institutional Animal Care and Use Committee and the
National Institutes of Health (NIH). Mice (C57Bl/6) were grouped and
housed in disposable cages with standard bedding in a temperature-
controlled and humidity-controlled room (∼21°C and 42% humidity)
with a reversed light cycle (10.00–22.00: dark). All experiments were per-
formed during the dark cycle.

Surgery. The headbar implant surgery was performed on six adult
mice (9 weeks old, male, both train and control groups) under general
anesthesia (1.5%–2% isoflurane). After the skull was exposed by an inci-
sion of the scalp, the periosteumwas removed, and a custom headbar was
glued to the skull near the lambdoid sutures. The exposed skull area was
covered with dental cement, followed by subcutaneous injections of
buprenorphine (0.1 mg/kg) and Baytril (10 mg/kg).

Water restriction. In 9–10 d after the surgery, water restriction
started and lasted for 13 d. All mice received a controlled amount of
water (1 ml/d) on a Petri dish in their home cages on the first 10 d.
On days 11–13, the control group mice (n= 3) continued to receive
1 ml/d in their home cage, whereas the train group mice (n= 3) received
1 ml/d, in part as a reward during a lever-press task (0.3–0.8 ml) and the
rest in their home cage immediately after completing the task.

Lever-press task. Mice in the train group performed a lever-press task
as previously described. Briefly, a lever was positioned for head-fixed
mice to press with their left paw (Fig. 1a). A trial began with a 6 kHz
tone marking a cue period (10 s) during which a successful lever press
was rewarded with water (∼15 μl/trial), followed by an intertrial interval
(8–12 s). Success was defined as lever press crossing two thresholds
(∼1.5 mm and ∼2.6 mm below the resting position) within 200 ms.
With these criteria, a distinct and brisk downward press was considered
a successful lever press. An unsuccessful lever press during the cue period
triggered a loud white noise and an intertrial interval. Lever press during
intertrial intervals was neither rewarded nor punished. Each daily session
ended after mice completed 100 trials.

Tissue extraction and cryopreservation. All sacrifices were performed
within 30 min from the completion of water consumption on water
restriction day 13 (i.e., training day 3 for the train group). Mice were
anesthetized via combined intraperitoneal injection of 150 mg/kg keta-
mine and 15 mg/kg xylazine. Once unconscious, mice were transcar-
dially perfused with ice-cold, carbogen-bubbled (95% O2, 5% CO2),
nuclease-free, 0.22 µm sterile-filtered artificial cerebrospinal fluid
(ACSF) with a composition of 93 mM N-methyl-D-glucamine, 2.5 mM
KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glu-
cose, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM sodium pyruvate,
13.2 mM trehalose, 12 mM N-acetyl-cysteine, 0.5 mM CaCl2, 10 mM
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MgSO4, and 93 mM HCl, at pH 7.3–7.4 (Ting et al., 2014; Tasic et al.,
2018). Following transcardial perfusion, brains were immediately
extracted and submerged into ice-cold carbogen-bubbled ACSF, with
<5 min between the beginning of perfusion and final submersion after
extraction.

All brains were serially sectioned in ice-cold, carbogen-bubbled
ACSF on a VT1000S vibratome (Leica) with polytetrafluoroethylene-
coated razor blades (Ted Pella) at 0.15 mm/s and 100 Hz, dividing the
whole cerebrum into 400 µm coronal slices. Each slice between 0 and
1.2 mm anterior to bregma (2–4 slices per animal) was dissected under
a stereomicroscope using a microsurgical stab knife to cut out the caudal
forelimb area in the motor cortex of the right hemisphere (∼1–2 mm
from the midline). All extracted tissue was recovered in ice-cold,
nuclease-free, 0.22 µm sterile-filtered cryoprotective nuclear storage
buffer, composed of 0.32 M sucrose, 5 mM CaCl2, 3 mM magnesium
acetate, 10 mMTrizma hydrochloride buffer (pH 8.0), 1 mMdithiothrei-
tol, 0.02 U/µl SUPERase•In RNAse Inhibitor (Invitrogen), and 1×
cOmplete Protease Inhibitor Cocktail with EDTA (Roche). Tissue was
then flash-frozen using a metal CoolRack M90 (BioCision) prechilled
to −80°C and stored at −80°C until nuclear isolation.

Single-nucleus RNA sequencing. Single-nucleus RNA-seq was pro-
vided by the Center for Epigenomics–UCSD using the Droplet-based
Chromium Single Cell 3′ solution (10x Genomics, v3.1 chemistry).
Nucleus preparation was adapted from Lacar et al. (2016). The flash-
frozen mouse motor cortex tissues were thawed on ice for ∼30–50 min
before centrifugation for 3 min at 100 rcf in a 4°C, swinging bucket cen-
trifuge with setting run 3/3 (5920, Eppendorf). The supernatant was
removed, and the tissue was resuspended in 1 ml of douncing buffer con-
sisting of 0.25 M sucrose (S1888, Sigma), 25 mM KCl (AM9610G,
Invitrogen), 5 mM MgCl2 (194698, MP Biomedicals), 10 mM Tris-HCl
pH 7.5 (15567027, Thermo Fisher Scientific), 1 mM DTT (D9779,
Sigma), 1× protease inhibitor (05056489001, Roche), 0.1% Triton
X-100 (T8787-100ML, Sigma), and 0.2 U/μl RNasin RNase inhibitor
(PAN21110, Promega) in molecular biology grade water (46000-CM,
Corning). The tissue was then transferred to a dounce homogenizer on
ice and dounced 25 times with a loose plunger and 25 times with a tight
plunger. The suspension was then passed through a Celltrix 30 μM filter
(04-004-2326, Sysmex) and washed with 300 μl of douncing buffer before
being centrifuged for 10 min at 1,000 rcf. The pellet was then washed
with an additional 1 ml of douncing buffer without Triton X-100 and
centrifuged again for 10 min at 1,000 rcf. The supernatant was then dis-
carded, and the pellet was resuspended in 500 μl of sort buffer consisting
of 1 mM EDTA (15575020, Invitrogen), 0.2 U/μl RNasin, and 1% BSA in
PBS before staining with 3 μM DRAQ7 (#7406S, Cell Signaling
Technology). Nuclei were then incubated on ice for 10 min, and ∼20–
30,000 nuclei were sorted using a 100 μm chip in an SH800 sorter
(Sony) into 50 μl of collection buffer consisting of 1 U/μl RNasin and
5% BSA in PBS. Samples were then centrifuged for 15 min at 1,000 rcf;
the supernatant was removed, leaving behind ∼20 μl, and an additional
25 μl of reaction buffer consisting of 0.2 U/μl RNasin and 1% BSA in PBS
was added for a total volume of ∼45–50 μl.

The prepared nuclei were visually inspected and manually counted
using a hemocytometer before loading 15,000 onto a chromium control-
ler for 10x GEM generation in the Single Cell 3′ Kit v3.1 (1000268, 10x
Genomics). Libraries were generated using the Chromium Single Cell
3′ Library Construction Kit v3.1 (1000190, 10x Genomics) according
to manufacturer specifications. cDNA was amplified for 12 PCR cycles.
SPRISelect reagent (Beckman Coulter) was used for size selection and
clean-up steps. Final library concentration was assessed by Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific), and fragment size
was checked using Tapestation High Sensitivity D1000 (Agilent) to
ensure that fragment sizes were distributed normally ∼500 bp.
Libraries (one for each animal) were barcoded independently so that
each cell is linked to the mouse it was derived from, before being pooled
on the same Illumina lane for sequencing. Libraries were first shallow
sequenced using a NextSeq 500 (Illumina) using the following read
lengths: Read 1, 28 bp; Index 1, 10 bp; Index 2, 10 bp; Read 2, 90–
91 bp. Libraries were then deep sequenced using a NovaSeq 6000

(Illumina) using the following read lengths: Read 1, 101 bp; Read 2,
101 bp.

Preprocessing of snRNA-seq data. Raw reads were processed using
the 10X Genomics Cell Ranger v4.0.0 pipeline. Research associates at
the Center for Epigenomics at UCSD used the mkfastq command to
demultiplex the binary base call files and create fastq files; the count com-
mand was used, with parameter “–expect-cells” set to 7,000, to perform
alignment, barcode, and unique molecular identifier (UMI) counting to
generate feature-barcode matrices. The aggr command was used to
aggregate the data for all mice. The parameter “–none” was used to
turn off depth normalization, due to the requirement of the DESC clus-
tering package for unnormalized counts as input.

To determine suitable filtering criteria, violin plots in Seurat v4 (Hao
et al., 2021) were used to visualize the total number of unique genes, UMI
counts, and mitochondrial content. The original dataset comprised
31,053 genes and 51,926 nuclei. Low-quality nuclei were removed based
on the following criteria, with the remaining nuclei indicated in paren-
theses: total unique detected genes <200 (51,926 nuclei), total number
of UMI counts <800 (51,329 nuclei), UMI counts >30,000 (50,688
nuclei), and mitochondrial content >1% (50,576 nuclei). The UMI
counts >30,000 thresholds is a method suggested by Seurat to eliminate
doublets (Satija Lab, 2023), which are pairs of cells that receive the same
barcode in error. Genes that occur in <3 cells were also removed (24,901
genes remain).

AIBS-based cell type identification. Seurat v4 in R offers functions for
single-cell reference mapping (Hao et al., 2021). It compares the gene
expression profiles of cells in both the reference (Allen Institute for Brain
Science, or AIBS, dataset; Yao et al., 2021) and query (our MEMONET
dataset) and uses anchors to project the query cells into the reduced prin-
cipal component analysis space of the reference dataset. Anchors are pairs
of cells that represent the same cell state across both datasets (Stuart et al.,
2019). They are found by jointly reducing the dimensions of both datasets
and then searching for pairs of cells that are mutually closest to each other.
These anchors help align the rest of the cells from the query to the reference.
Every query cell receives a prediction score for every reference label, and the
label with the largest score (prediction.score.max) becomes the predicted
label for a given cell. Query cells are also projected onto the reference uni-
form manifold approximation and projection (UMAP) space computed in
Seurat.

When mapping AIBS L2/3 cells onto MEMONET L2/3 cells, UMAP
coordinates computed from DESC clustering were used in place of the
Seurat-generated UMAP for visualization of the projection (Fig. 6a).

To assess the accuracy of Seurat's single-cell reference mapping on
the AIBS dataset, each cell type (“cluster_label” from the AIBS dataset
metadata file) was downsampled to 25% and used as a query against
the remainder of the dataset. This was done 100 times, and the percent-
age of false classifications was calculated (Fig. 2).

Logistic discriminant analysis. Logistic regression of the weighted
linear sum of gene expression values was performed so as to minimize
classification error of a given cell as originating from the “train” or “con-
trol” populations. Fitting was performed using the MATLAB function
fitclinear with a logistic “learner” setting. Input gene expression values
were z-scored in order to standardize the distributions. Regularization
of logistic models was performed using the lasso method, with the regu-
larization parameter λ selected by minimizing classification loss across a
logarithmic range of λ inputs. The generalizability of the model was
examined by performing a 10-fold cross-validation of the prediction
accuracy of each k-fold logistic model. To this end, cells were indexed
evenly into k= 10 groups using the MATLAB function “crossvalind,”
with each of the k-fold groups being iteratively held out as test data for
the kth logistic model trained on the kept 90% of the data.
Regularization was performed independently for each k-fold model.
Prediction accuracy for each k-fold model was calculated as the fraction
of correct classifications (i.e., the sum of true positives for both labels
divided by the total number of cells). To rank the contribution of each
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gene to the classification, the median value of each gene's calculated
coefficient across the 10 models was sorted in descending order of their
absolute values. The number of “target” genes was selected by optimizing
the prediction accuracy of the cross-validated (CV) model against the
number of top-weighted genes. “Top 3,000-only” and “top
3,000-excluded” models were constructed by using either the optimized
number of target genes (“top 3,000-only”) or the remaining bottom-
weighted genes (“top 3,000-excluded”), respectively.

“Shuffled” variants of the logistic model were generated by random-
izing the labels of train versus control prior to model fitting and then
repeating this process 100 times. All iterations converged on the expected
chance value without any deviation, corresponding to the proportion of
“control” cells.

Clustering. Cells identified as L2/3 were clustered using a deep learn-
ing Python package, DESC v2.4, to identify the subtypes (Li et al., 2020).
DESC uses a deep neural network to reduce the multidimensional data
into a low-dimensional space and is effective at removing batch effects,
which arise when samples from different individuals or samples
sequenced on different sequencing lanes have RNA counts that are not
directly comparable due to technical noise.

Cell-level normalization is calculated as the UMI count for each gene
in each cell divided by the total number of UMIs in the cell, multiplied by
10,000, and then transformed to a natural log scale. The dataset subjected
to DESC consisted of the top 3,000 genes identified by the logistic class-
ifier, termed experience-discriminating genes (EDGs). The expression
level of each gene was standardized by subtracting the mean across all
cells and dividing by the standard deviation across all cells for the given
gene.

After normalization, a deep neural network is trained with the data,
in which the network iteratively clusters the cells to gradually remove
batch effects and refine clusters. The values for the “encoder” and “tol”
parameters were chosen based on the information provided in
Supplementary Table 2 by Li et al. (2020). Based on the clustering dataset
size of 6,433 cells, encoder values were set to 6,432 and tol = 0.001. The
n_neighbors parameter was set to 25 and louvain_resolution was set to
0.65. All other parameters were kept at default values.

Cell proportion difference between the train and control groups per
cluster. To assess significance, the chance proportions of train and con-
trol cells assigned to each cluster in the EDG space were calculated using
a permutation test without replacement, by shuffling the train/control
labels 1,000 times. For each shuffle, the proportion difference between
train and control was calculated for each subtype/cluster and used as
the distribution for the null hypothesis (i.e., there is no difference
between train and control groups).

p-values were calculated using the following formula detailed by
Phipson and Smyth (2010):

p = (b+ 1)/(m+ 1)

where b is the number of shuffles in which |shuffle difference| > |observed
difference| and m is the total number of shuffles.

Differential expression analysis. Differential gene expression (DE)
analysis was run using DESeq2 v1.26.0 in R (Love et al., 2014).
DESeq2 default parameters were optimized for bulk sequencing
data, requiring some changes to be made based on recommendations
tested by Ahlmann-Eltze and Huber (2021) and Zhu et al. (2019). The
following DESeq arguments were set: useT =TRUE, minmu= 1 × 10−6,
and minReplicatesForReplace = Inf. Set sizeFactors using scran::
calculateSumFactors (this is the equivalent of computeSumFactors
but works for non-sce objects) instead of the default function
estimateSizeFactors.

Statistical significance is determined using theWald test, which com-
pares log-fold changes between two groups. A significance threshold of
<0.05 was used for the adjusted p-values, which were based on the

Benjamini–Hochberg method for multiple test correction. Log-fold
change values were shrunken using the “apeglm” method.

Enrichment analysis (statistical comparison of cluster compositions).
Gene ontology (GO) enrichment analysis was performed using
clusterProfiler v4.2.2 in R (Yu et al., 2012; Wu et al., 2021), and visuali-
zation was performed using functions in enrichplot v1.14.2 in R (Yu,
2022).

The function enrichGO() was used for running the overrepresenta-
tion test on differentially expressed gene (DEG) lists of individual clusters
(or the EDG list). The following parameters were set: ontology = “BP”
(biological process), pAdjustMethod = “fdr,” pvalueCutoff= 0.05, and
qvalueCutoff= 0.05. The universe was set to all genes identified in the
L2/3 cells after DESeq2 QC filtering. The results were visualized using
the enrichplot function treeplot().

Reactivation score. The DEG list in Supplementary Table 3, tab
“DG_React_NotReact” by Jaeger et al. (2018) was used as the
reactivation-related gene list. Four numbers were calculated for each
cluster: the number of upregulated genes in the cluster that are also upre-
gulated in the reactivation-related gene list (up/up); the number of
downregulated genes in the cluster that are also downregulated in the
gene list (down/down); the number of upregulated genes that are down-
regulated (up/down); and the number of downregulated genes that are
upregulated (down/up). The up- or downregulated genes in each cluster
were identified from DE analysis of the given cluster in reference to all
others. Then, the reactivation score was calculated using the ratio
between the number of genes regulated in the same direction (proreacti-
vation) as the reference and the number in the opposite direction (anti-
reactivation) as follows:

(up/up+ down/down)/(down/up+ up/down)− 1

Thus, a score >0 indicates that a larger number of genes are regulated in
the direction consistent with reactivation.

Single-cell trajectory analysis. Single-cell trajectory analysis was per-
formed using the Python package scanpy (Wolf et al., 2018), applied to
DESC latent embedding of the cells from clusters C0–C3 (omitting C4
and C5). Specifically, we employed the method called diffusion pseudo-
time (DPT; Haghverdi et al., 2016) within scanpy to evaluate the cell
pseudotimes. Here, the cell neighborhood graph was first constructed
using UMAP (McInnes et al., 2020). The root cell—the starting cell
with a pseudotime of 0—was identified from a force-directed graph rep-
resentation of the DESC latent embedding, specifically using the
Reingold–Tilford tree layout (Reingold and Tilford, 1981) and by choos-
ing the cell from cluster C0 that was located at the root of this graph.
Finally, to visualize the cell trajectory as informed by the pseudotime,
we used a force-directed graph representation using the Large Graph
Layout (LGL; Adai et al., 2004).

Experimental design and statistical analysis. Details of experimental
procedures are described above (see “Water restriction” and “Lever-press
task”). Statistical design for the logistic classifier can be found in
Materials and Methods “Logistic discriminant analysis.” Statistical tests
for cluster proportion are described in Materials and Methods “Cell pro-
portion difference between the train and control groups per cluster.”

Data/code availability. The data and analysis code that support the
findings of this study are available on request. RNA-seq data is available
at GEO under accession number GSE224686.

Results
We performed snRNA-seq of M1 in two groups of water-
restricted mice: train and control (Fig. 1a; N= 3 in each group).
The train group was exposed to a well-established motor skill
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learning paradigm (a lever-press task) for 3 d (∼30 min/d), while
the control group continued to receive a restricted daily amount
of water in their home cage (Methods). In the lever-press task,
mice needed to press the lever as a distinct, brisk movement
within 10 s from the auditory cue to receive a water reward
(Fig. 1a and Materials and Methods). The success rate for the
trained group slightly but significantly increased over 3 d (r=
0.69, p= 0.039, Pearson's correlation), consistent with the trend
observed in mice that performed the same task for 14 d in previ-
ous studies (Fig. 1b). While behavioral improvement becomes
more apparent with further training, learning-related synapto-
genesis peaks during the first 3–5 d in the lever-press task
(Peters et al., 2014), suggesting that gene expressions driving
learning-related plasticity may be most discernible before a rapid
behavioral change. In support of this idea, previous bulk RNA
assay in M1 found that the number of differentially expressed
genes by motor training peaks just before the rapid phase of
behavioral improvement began (Cheung et al., 2013). Thus, we
extracted the M1 forelimb region on training day 3 for
snRNA-seq (Materials and Methods).

While many cell types in M1 display various forms of plastic-
ity that are likely critical to motor learning (Fu et al., 2012; Chen
et al., 2015; Peters et al., 2017; Ren et al., 2022), we focus on L2/3
glutamatergic neurons as they are considered a critical locus
where learning-related changes take place (Chen et al., 2015),
and the time course of their structural and functional plasticity
has been well established during the same learning paradigm
(Peters et al., 2014; Hedrick et al., 2022).

Identification of L2/3 glutamatergic neurons based on
single-cell reference mapping
Prior to analysis, quality control steps were taken to remove low-
quality nuclei based on total RNA counts, unique gene counts,
and mitochondrial gene percentage. The number of nuclei was
reduced from 51,926 to 50,576. We then assigned cell type on a
per-cell basis by using single-cell reference mapping to the previ-
ously published AIBS dataset generated from M1 snRNA-seq
(Yao et al., 2021; Materials and Methods). This allowed us to
levy the detailed cell type annotations in the AIBS dataset. For
example, there are three identified L2/3 subtypes: L2/3 IT_1,

Figure 1. Experimental design and cell type classification. a, After 10 d of water restriction, mice (N= 3 for each group) are either subjected to 3 d of motor skill training or 3 d of home cage
control. During motor training, mice must press a lever past the threshold after the presentation of an auditory cue, which results in a water reward (i.e., success trial). Failure to press the lever
past the threshold results in no reward. After training on day 3, the primary motor cortex (M1) is extracted in both train and control groups for single-nucleus RNA sequencing (snRNA-seq).
b, Lever-press trial success rate. Left: the average fraction of trials where the train mice gained reward from correctly pressing the lever past the threshold (mean ± SEM). By session 3 (1 session/
day), the fraction rewarded is significantly increased (r= 0.69, p= 0.039, Pearson's correlation). Middle: Reward fractions are consistent with previously published data. The red lines indicate the
performance of each mouse in the current study. The gray lines indicate the performance of mice from a previously published study (Hedrick et al., 2022). Right: change in reward rate (session X–
session 1). The red lines indicate the change in reward rate per mouse in this study. The black line is the mean change in reward rate in the previously published data; the gray shaded area
represents SEM. Change in reward rate over the three training sessions is comparable to that seen in Hedrick et al. (2022). c, Good consensus of the AIBS (left) and MEMONET datasets (right) in
common UMAP space. The AIBS dataset is visualized in UMAP space computed by Seurat. During single-cell reference mapping, the MEMONET dataset was projected onto the AIBS UMAP space.
Cells are colored based on cell type. Predicted cell types and prediction scores from mapping are shown in Extended Figure 1-1. d, Comparable neuronal cell type fractions are observed between
the AIBS and MEMONET datasets.
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L2/3 IT_2, and L2/3 IT_3. A side-by-side comparison of the AIBS
dataset (Fig. 1c, left) and our dataset (hereafter referred to as
MEMONET data) projected onto the same UMAP space
(Fig. 1c, right) shows good consensus of the datasets with regards
to cell type distributions. Expectedly, glial clusters are enriched in
the MEMONET dataset compared with AIBS due to the AIBS
dataset selecting for neurons before sequencing (Yao et al.,
2021). Neuronal cell type compositions are comparable between
the datasets (Fig. 1d). Inhibitory neurons account for ∼19% of
neurons based on the mapping, similar to ∼16% in the AIBS
dataset (Yao et al., 2021) and ∼17% according to Bakken et al.
(2021).

The median prediction scores for the mapped cell type
(ranging from 0 to 1) in our MEMONET dataset are 0.98 ± 6.9
× 10−4 across all cells and 0.97 ± 2.8 × 10−3 across the 6,507 L2/
3 glutamatergic neurons (referred to as L2/3 neurons hereafter;
Extended Fig. 1-1 and Table 1). The accuracy of the mapping
pipeline was checked by mapping random subsets that contain
25% of the AIBS dataset onto the remainder of the dataset 100
times. On average, 93.3% of cells were consistently classified
(Fig. 2 and Extended Fig. 1-1). The median prediction scores
are 0.98 ± 9.3 × 10−5 across all cell types and 1.0 ± 3.2 × 10−17

for L2/3 neurons (Table 1). The comparable cell type

compositions and prediction scores between the two datasets val-
idate the integrity of our mapping pipeline and the MEMONET
dataset.

To further ensure that we described the heterogeneity among
true L2/3 neurons, we excluded those cells with lowmapping reli-
ability (defined as the sum of scores for the three L2/3 subtypes
defined by the AIBS dataset: L2/3 IT_1, L2/3 IT_2, and L2/3
IT_3 less than or equal to 0.3) in our subsequent analyses. We
confirmed that the thresholding removes cells with low average
expression of L2/3 marker genes and high average expression
of the glial marker geneMertk (Table 2). This thresholding filters
out 74 cells from the predicted L2/3 neurons, leaving a total of
6,433 cells for downstream analysis.

Table 1. Single-cell reference mapping prediction score summary

Dataset Median prediction score Mean prediction score Standard error

AIBS all cells 0.983 0.897 9.259 × 10−5

AIBS L2/3 cells 1 0.910 3.160 × 10−17

MEMONET all cells 0.977 0.858 6.890 × 10−4

MEMONET L2/3 cells 0.971 0.847 2.800 × 10−3

The mean and median were calculated for the prediction.score.max values of each cell in the respective datasets.
The prediction.score.max refers to the cell type label that has the highest prediction score per cell. The prediction
scores for each cell are shown in Extended Figure 1-1.

Figure 2. Single-cell reference mapping accuracy. The accuracy of single-cell reference mapping was assessed by mapping test cells (25% of each cell type in the AIBS dataset) onto a reference
formed with the remaining 75% of the AIBS dataset. The x-axis represents the original cell type of test cells (i.e., their original cell type label in the AIBS data set), and the y-axis represents
their inferred cell type from the single-cell mapping to the reference. Off-target predictions can be seen as deviations from the diagonal. Counts were normalized per column to add up to a
frequency of 1.

6 • J. Neurosci., March 6, 2024 • 44(10):e0302232023 Dunton et al. • Learning-Related Gene Expression in Cortex

https://doi.org/10.1523/JNEUROSCI.0302-23.2023.f1-1
https://doi.org/10.1523/JNEUROSCI.0302-23.2023.f1-1
https://doi.org/10.1523/JNEUROSCI.0302-23.2023.f1-1
https://doi.org/10.1523/JNEUROSCI.0302-23.2023.f1-1
https://doi.org/10.1523/JNEUROSCI.0302-23.2023.f1-1


Identification of EDGs in L2/3 neurons
We first compared the ARG expression in L2/3 neurons between
the train and control group, which revealed that Arc, BDNF,
Nptx2, Ntrk2, and Scg2 show significantly higher expression levels
in the train group (Table 3). Notably, significant training-induced
activation of Arc, an important IEG for activity-dependent plastic-
ity, is detected only in L2/3 neurons. Nevertheless, the inevitable
variability in gene expression, reflecting both biological and techni-
cal noise, poses a significant challenge when attempting to accu-
rately distinguish the experimental conditions based solely on the
expression of a single gene. To address this, we employed a
population-code approach commonly used in neural data analysis,
which deciphers information encoded collectively by a group of
neurons rather than by each neuron in isolation.
Population-code methods can leverage the correlation structure
among different neurons to enhance decoding accuracy
(Averbeck et al., 2006). Similarly, to account for both individual
gene expression levels and the correlations between them, we
trained a logistic classifier to discriminate “train” versus “control”
neurons based on normalized expression values of all genes

(Materials and Methods). The logistic classifier identified the
weight of each gene such that the weighted sum of all gene expres-
sions and thus its transformed probability to be “train” yielded
good separation between train and control neurons (Fig. 3a).
Consequently, the classifier showed a high CV group discrimina-
tion accuracy of ∼87% (Fig. 3b, left). The discrimination accuracy
was consistently high across all mice [97± 1.7% (mean±SD); 94–
99% (range)]. To understand the predictive power of this model
over chance, we randomized the labels of train and control neurons
100 times and trained a logistic classifier to discriminate these labels
as before. In this context, prediction accuracy consistently con-
verged to ∼60% for each shuffle (Fig. 3b, right). This percentage
is identical to the proportion of control neurons in the population,
as the classifier defaulted to always predicting “control” to maxi-
mize prediction accuracy. Therefore, the high prediction accuracy
of the logistic classifier in our unshuffled data is not due to poten-
tially spurious effects such as a random chance to have a certain
number of genes that are differentially expressed between any
two randomly divided groups of neurons. Instead, this result indi-
cates the existence of genes whose expression levels reflect the true
difference between the two experiences (motor training vs home
cage control), and the logistic regression classifier could discover
those genes that discriminate the experiences. Thus, logistic regres-
sion of gene expression values can accurately predict whether an
L2/3 neuron is derived from a recently trained animal.

We next sought to identify the genes that contributed the
most to discrimination between “train” and “control” neurons.
Since both up- or downregulation of gene expression could con-
tribute to successful discrimination, we ranked the median abso-
lute values of the coefficients (weights) in the logistic regressor for
each gene across all CV iterations. As shown in Figure 3c (left),
the magnitude of gene coefficients decreased sharply in an
approximately double-exponential fashion. While many thou-
sands of genes showed nonzero coefficients, we sought to select
the top-weighted genes that maximized prediction accuracy.
We therefore repeated logistic regression while varying the num-
ber of top genes as inputs. Prediction accuracy began to plateau
with the inclusion of 3,000 top genes (Fig. 3c, right), so we pro-
ceeded to use this value as a cutoff (Materials and Methods).
To test the validity of this cutoff, we retrained logistic models
using either the top 3,000 genes only (“top 3,000-only model”)
or instead using all genes except the top 3,000 (“top
3,000-excluded model”; Fig. 3d). The top 3,000-excluded model
produced CV prediction accuracies at chance level, while the
top 3,000-only model showed a high prediction accuracy
(Fig. 3d). Consistently, the probability to be “train” in the top
3,000-only model was well separated between train and control
neurons across all mice (Fig. 3e). Furthermore, we found that
the top 3,000-only model—despite having fewer regressors—

Table 2. Cutoff mapping scores excluded from L2/3

Mapping
reliability
cutoff

L2/3 markers Glial
marker

Number of
cells
removedCux2 Otof Rtn4rl1 Slc30a3 Cacna2d3 Mertk

0.18 0.000 0.000 0.000 0.000 0.000 0.000 1
0.19 0.000 0.000 0.000 0.000 0.000 0.000 1
0.2 0.000 0.000 0.000 0.000 0.000 0.000 1
0.21 0.000 0.499 0.000 0.000 0.982 0.589 3
0.22 0.000 0.374 0.000 0.549 0.736 0.442 4
0.23 0.000 0.214 0.000 0.314 0.421 1.378 7
0.24 0.055 0.166 0.000 0.244 0.820 1.441 9
0.25 0.028 0.083 0.000 0.122 0.772 1.488 18
0.26 0.052 0.047 0.000 0.133 0.667 1.468 32
0.27 0.096 0.034 0.000 0.097 0.676 1.505 44
0.28 0.080 0.028 0.000 0.114 0.713 1.634 53
0.29 0.064 0.023 0.000 0.124 0.628 1.691 66
0.3 0.057 0.020 0.011 0.111 0.584 1.743 74
0.31 0.093 0.037 0.009 0.115 0.513 1.660 88
0.32 0.127 0.034 0.008 0.107 0.571 1.677 95
0.33 0.123 0.028 0.023 0.123 0.583 1.609 119
0.34 0.119 0.025 0.021 0.151 0.631 1.591 132
0.35 0.157 0.023 0.027 0.143 0.664 1.533 143
0.36 0.158 0.022 0.045 0.147 0.687 1.519 152
0.37 0.173 0.021 0.047 0.156 0.726 1.500 156
0.38 0.168 0.020 0.050 0.168 0.761 1.503 160
0.39 0.185 0.020 0.056 0.169 0.764 1.483 163
0.4 0.188 0.019 0.054 0.182 0.784 1.466 168
0.41 0.197 0.023 0.052 0.181 0.812 1.429 175
0.42 0.210 0.023 0.064 0.179 0.822 1.413 177
0.43 0.213 0.022 0.078 0.183 0.844 1.386 181
0.44 0.226 0.021 0.089 0.177 0.865 1.369 187
0.45 0.244 0.029 0.101 0.182 0.893 1.333 192
0.46 0.260 0.030 0.100 0.188 0.913 1.319 197
0.47 0.270 0.031 0.102 0.194 0.935 1.304 202
0.48 0.316 0.038 0.114 0.194 0.999 1.273 214
0.49 0.340 0.039 0.128 0.198 1.027 1.249 219
0.5 0.354 0.036 0.129 0.204 1.101 1.206 237

Choosing an L2/3 prediction score cutoff threshold to remove cells with low mapping reliability. Mapping
reliability for each cell is defined as the sum of prediction scores for the three L2/3 subtypes identified by the AIBS
dataset (L2/3 IT_1, L2/3 IT_2, L2/3 IT_3). The lowest prediction score in our dataset was 0.179. We aimed to
choose a cutoff value that would remove cells with low mapping reliability. Each row of the table reports the
average normalized expression of marker genes for cells removed at each cutoff value. L2/3 marker genes: Cux2,
Otof, Rtn4rl1, Slc30a3, Cacna2d3. Glial marker gene: Mertk. Normalization is calculated as the UMI count for each
gene in each cell divided by the total number of UMIs in the cell, multiplied by 10,000, and then transformed to a
natural log scale. The 0.3 cutoff represents a balance of removing cells with low L2/3 marker gene expression and
the highest Mertk expression. The prediction scores for each cell are shown in Extended Figure 1-1.

Table 3. IEG expression changes induced by training across neuron types

L2/3 L5 Vip Sst Pvalb

Arc ↑ n.s. n.s. n.s. n.s.
Bdnf ↑ ↑ n.s. n.s. n.s.
Fosb n.s. ↑ n.s. n.s. n.s.
Nptx2 ↑ ↑ n.s. n.s. n.s.
Nr4a3 n.s. ↓ n.s. n.s. n.s.
Ntrk2 ↑ ↑ ↑ ↑ n.s.
Scg2 ↑ ↑ n.s. n.s. n.s.
Syt4 n.s. ↓ n.s. ↓ n.s.

IEG significance from DE analysis of neuron types, train versus control. The results of the DE analysis are shown in
Extended Figure 3-1.
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showed increased prediction accuracy compared with the full
model (Fig. 3f). Thus, while trace discriminating information is
likely to present in the remaining gene list, the top 3,000 genes
returned by the full logistic regression model contain the major-
ity of discriminating information between control and train neu-
rons. Of these 3,000 genes, 1,147 showed significantly different
expression levels in L2/3 neurons between the train and control
group according to the single-gene basis DE analysis (Extended

Fig. 3-1). Therefore, the classifier analysis could identify gene
sets that are coregulated by experience, such that their correlated
response patterns can discriminate experience even though some
individual genes, by themselves, may not reach a significant
difference between different experiences. For example, Kalrn,
Acp4, Syp, Star, and Egr1 are identified by the classifier analysis
but not DE analysis, and are related to regulation of neuronal
synaptic plasticity (Extended Fig. 3-2).

Figure 3. Logistic classifier details. a, Left: placement of sub-sampled cells on the logistic curve fit to the full model. The x-axis represents the weighted sum of all genes with the weights
identified by the full model (i.e., evidence for category “train” vs “control”). The y-axis represents the logistic transformation of the evidence (i.e., the probability to be labeled “train”). The
colored labels correspond to the true identities (i.e., “train” vs “control”) of individual neurons. Right: histogram of the probability to be labeled “train” for train (green) versus control (gray) cells.
Control and train cells are well separated along the y-axis, where 0.5 corresponds to the decision boundary to be labeled as “train.” b, Left: confusion matrix of the full logistic model (i.e., with all
genes included) showing the accordance between true cell labels (train vs control) and labels predicted from the logistic model. The colors represent the fraction of cells for a given true label
(rows) occupying each quadrant. Right: the same as left but for randomly shuffled cell labels. c, Left: sorted absolute values of gene weights (i.e., regressor coefficients) for all genes from the full
model plotted against the number of genes. “Top genes” were defined based on sorted weights. The red dashed line indicates the ultimate selection of the cutoff for inclusion in future analyses
(defined on the right). Right: optimization of the number of genes for consideration based on logistic model prediction accuracy. Logistic regression was repeated using a varying number of top
genes as inputs, with the resulting prediction accuracy for each iteration shown. Prediction accuracies reached a plateau when including ∼3,000 top genes. d, Confusion matrices for logistic
models using only the top 3,000 genes (left) or excluding the top 3,000 genes (right). e, The probability to be labeled “train” in the “top 3,000 genes only” model per cell, sorted/colored by
mouse, showing model performance across animals. Prediction probabilities were calculated using the mean coefficients across all cross-validations. The three shades of green represent the three
train mice. The three shades of gray represent the three control mice. f, The prediction accuracy of the model with various subsets of genes included. The full model (gray) includes all genes; top
3,000-excluded model (black) has the top 3,000 genes removed; top 3,000-only model (red) includes only the top 3,000 genes. The dots represent values for each cross-validation. Prediction
accuracy for the top 3,000-excluded model is chance, indicated by the cyan line (0.6 is the proportion of control cells in the population). The value of the cyan line was calculated by randomizing
the labels of train and control cells 100 times and training the logistic classifier to discriminate the labels. CV discrimination accuracy for the top 3,000-only model is 96.92%. The results of DE
analysis for the top 3,000 genes are shown in Extended Figure 3-1, and GO enrichment analysis results are shown in Extended Figure 3-2.
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To infer the biological processes associated with these 3,000
genes, we performed a GO enrichment analysis (Yu et al., 2012;
Wu et al., 2021). This analysis yielded enrichment for terms such
as learning (padj < 4.7 × 10

−2), regulation of synaptic plasticity
(padj < 3.5 × 10

−3), and synapse organization (padj < 3.2 × 10
−7)

(Fig. 4 and Extended Fig. 3-2) and highlighted coregulation
between commonly studied plasticity-related genes such as kinases
(e.g., Camk2b, Ntrk2) and glutamate receptors (e.g., Gria1, Grin2a;
Fig. 4, red text). These results indicate that the subset of genes dis-
criminating between the train and control neurons in our L2/3
population are related primarily to cellular plasticity and learning.
We therefore hereafter refer to these 3,000 genes as EDGs
(Extended Fig. 4-1). We performed GO analysis separately for pos-
itively versus negatively weighted EDGs and foundmany GO path-
ways that are significantly associated with the positively weighted
EDGs, but none with the negatively weighted EDGs (Extended
Fig. 3-2). The pathways associated with the positively weighted
EDGs include many plasticity-related terms, consistent with the
idea that training results in the upregulation of genes that support
learning-related plasticity.

Distinct modes of coregulation among EDGs in L2/3 neurons
During the lever-press task, activity patterns differ greatly among
L2/3 neurons (Peters et al., 2014); thus, it is unlikely that training
affected the EDGs uniformly across all L2/3 neurons. Instead,
within each neuron, a subset of EDGs might be coregulated in
a manner dependent on their activity, such that neurons with
similar activity patterns show a similar mode of EDG coregula-
tion. To test this prediction, we applied unsupervised clustering
to the 6,433 L2/3 neurons based only on the expression of the
EDGs defined using the above logistic classification (Materials
and Methods). This approach generated six clusters of neurons
(C0–C5) representing distinct coregulation profiles of the
EDGs (Fig. 5a), each with varying proportions of train and con-
trol neurons (Fig. 5b). By comparing the observed versus
expected proportions of train and control neurons in each clus-
ter, we find that C3 has significantly more train neurons, while
C0 and C1 have significantly more control neurons (Fig. 5b).
The increased proportion of C3 in the train group is consistent
across mice, as indicated by the lowest C3 proportion in the train
group being still higher than the highest in the control group.
Despite the proportional differences between the two groups,
nonnegligible representations of both train and control neurons
were present in all clusters. These results suggest that motor
learning does not generate a unique transcriptional state per se
but rather shifts the relative occupancy of states (i.e., the tran-
scriptional landscape) along a conserved transcriptional axis
related to learning. This is consistent with previous observations
that plasticity events, such as dendritic spine dynamics, are
expressed in animals that are not undergoing specific learning
tasks, albeit at lower levels compared with task-learning animals
(Hedrick et al., 2022).

What is the biological basis of the distinct transcriptional
states represented by these clusters? One attractive possibility is
that such delineations reflect sequential stages of plasticity
through which neurons transition as animals learn. Such a model
meshes well with the observation that L2/3 neurons advance
from a stage of enhanced activity and synaptogenesis to synapse
elimination and sparsened activity as motor learning progresses
(Peters et al., 2014). We therefore hypothesized that the tran-
scriptional states captured by our clusters would mirror the
ongoing dynamics of activity and plasticity in these neurons.
To investigate this possibility, we first compared the expression

levels of IEGs that are known to be transcribed by neuronal activ-
ity. We found that IEGs were indeed differentially expressed
across clusters (Fig. 5c and Extended Fig. 3-1), supporting the
possibility that different clusters might represent neurons with
different levels of activity and thus engaging different activity-
dependent genes underlying plasticity. Specifically, we find that
C3, which was enriched by training, shows the highest expression
in 12 out of the 16 profiled IEGs, indicating that the neurons of
this cluster had likely undergone strong recent activity. Indeed,
among the upregulated IEGs was Npas4, the induction of which
is highly specific to neuronal activity as opposed to other activi-
ties (e.g., trophic factor stimulation; Lin et al., 2008) and primar-
ily reflects very recent activity. Thus, C3 likely corresponds to
neurons that were active on the day of tissue collection.
Additionally, C2 and C5 also show some IEG upregulation,
although to a lesser extent than C3. By contrast, C0, C1, and
C4 show lower expression levels in IEGs, suggesting that these
clusters correspond to a relatively inactive population. Thus,
different groups of L2/3 neurons identified from the EDG space
also differ in the levels of recent activity.

Having observed the diversity of IEG expression, we next
sought to define a putative “baseline” cluster that best represents
the neurons with relatively low activity levels and plasticity.
Given the relatively sparse encoding of movements by L2/3 neu-
rons in this lever-press task (typically 20–30% of neurons are
significantly correlated with movements; Peters et al., 2014), we
suspected that any such baseline population would comprise a
large fraction of all neurons and would show the lowest IEG
expression. Consistent with these criteria, C0 represented among
the largest clusters (∼23% of the total population; Table 4), and
overall showed the lowest expression levels of IEGs (Fig. 5c).
Thus, we hypothesized that C0 may represent the baseline state
with low neural activity and low activity-dependent gene expres-
sion. If so, we predict that AIBS L2/3 neurons sequenced after no
explicit novel experience would occupy C0 more frequently. To
further test this idea, single-cell reference mapping was used to
map AIBS L2/3 neurons onto our MEMONET L2/3 clusters,
annotating the AIBS cells by MEMONET clusters (Fig. 6a and
Extended Fig. 1-1). The majority of AIBS L2/3 neurons are
assigned to C0, C1, and C2 (Fig. 6b), with almost half of AIBS
neurons (49.6%) mapped to C0, further supporting C0 as a puta-
tive baseline state.

We, therefore, performed a DE analysis comparing each clus-
ter to C0 as a reference for the baseline state and performed GO
enrichment analysis for the upregulated DEGs of each cluster
(Extended Figs. 3-1 and 3-2). In this context, the top enriched
GO terms for C4 include characteristics of many non-L2/3 cell
types, for example, osteoblast differentiation and kidney epithe-
lium development (Fig. 7), leading us to speculate that C4 may
contain remaining contaminants that were not filtered out with
our L2/3 prediction score cutoff described earlier. To investigate
this, we compared the average expression per cluster of a handful
of L2/3 marker genes (Cux2, Otof, Rtn4rl1, Slc30a3, Cacna2d3)
and the glial marker Mertk. C4 has the lowest expression of
L2/3 marker genes and the highest expression ofMertk, suggest-
ing that C4 may represent contaminating cell types (Table 5).
Therefore, C4, which constitutes <5% of MEMONET L2/3 neu-
rons (294 cells) and only nine AIBS L2/3 neurons, was removed
from subsequent analyses.

Notably, C3 showed significant upregulation for 15 out of 16
IEGs (Fig. 8a). The other clusters also present stronger IEG sig-
nals when compared with C0. C1 showed significant upregula-
tion of multiple IEGs, sharing Arc, Nefm, Nr4a2, and Nr4a3,
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Figure 4. GO enrichment analysis of the 3,000 EDGs. Eight pathways of interest are shown with associated genes. Well-studied genes are highlighted in red. The expression level of train and
control cells is given as the mean z-score per gene, where green and magenta indicate positive and negative scores, respectively. Each pathway is broken down by the positively weighted and
negatively weighted genes produced by the logistic model, and genes are sorted based on the magnitude of their regression weights. Full GO results are shown in Extended Figure 3-2. The 3,000
EDGs are shown in Extended Figure 4-1.
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while C2 and C5 have 7–10 additional IEGs significantly upregu-
lated compared with C0. Specifically, C2, C3, and C5 show upre-
gulated Npas4 and Fos transcription, indicating strong recent
activity. Taken together, these analyses support the notion that
C0 corresponds to a relative floor of IEG expression and thus
recent activity, substantiating its consideration as a baseline state.

To better understand the biological processes in which each
cluster is involved, we examined the enriched terms from GO
enrichment analysis for the upregulated DEGs of each cluster

with respect to C0 (Extended Fig. 3-2). Learning- and
plasticity-related terms dominated the most enriched results
for C1–C3, implicating these clusters as specific transcriptional
states relevant tomotor learning. To identify potential differences
in the gene expression profiles associated with such terms across
clusters, we next compared the mean expression of associated
genes for each term across clusters. C1–C3 showed varying levels
of genes associated with different aspects of plasticity, including
long-term potentiation (LTP), long-term depression (LTD), and
actin filament-based process(es) implicating dendritic spine
morphogenesis (Fig. 8b). More specifically, LTP- and
LTD-related gene expression peaks at C2, indicating that C2
might represent the neurons that were strongly activated recently
and undergoing early LTP and LTD (Fig. 8b). Figure 9 shows an
expanded list of behavioral processes enriched in C2 and C3. C2
is notable for its strong expression of genes associated with
changes in the intrinsic excitability of neurons (Fig. 9), consistent
with reports that such changes can co-occur with synaptic plas-
ticity (Xu et al., 2005). At a higher level, C2 shows the highest
expression for genes related to locomotory behavior and walking

Figure 5. Distinct clusters of L2/3 glutamatergic neurons. a, L2/3 clusters. Left: Clustering was performed using the Python package DESC, based on the normalized expression of the EDGs.
Six distinct clusters (C0–C5), each color-coded, were visualized in UMAP space. Right: The same as the left, but the train and control cells are green and gray, respectively. b, Proportion of train
and control cells in each cluster. C0 and C1 are significantly enriched with control cells (p= 0.012 and p= 0.003, respectively). C3 is significantly enriched with train cells (p= 0.001). *p< 0.05,
**p< 0.01, ***p< 0.001 (permutation test). The dots indicate the proportion of each mouse, where train mice are shades of green and control mice are shades of gray. c, Average IEG expression
across clusters. Z-scoring was applied on a per-gene basis to counts normalized by DESeq2 before averaging across cells in each cluster. Significance is based on DE analysis of one cluster versus
the others, padj < 0.05. The dull results of the DE analysis are shown in Extended Figure 3-1.

Table 4. Distribution of L2/3 neurons across subclusters C0–C5

Cluster Cell count Percent

0 1,486 23.10
1 748 11.63
2 1,133 17.61
3 1,246 19.37
4 294 4.57
5 1,526 23.72

Number and percent of L2/3 neurons per cluster.
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behavior, implicating the transcriptional state represented by C2
in volitional limb movements related to task performance and/or
enhanced exploratory locomotion observed in water-restricted
mice (Tsunematsu et al., 2008). Most genes in C1 show interme-
diate levels of expressions between C0 and C2, suggesting that C1
phenotypes might be an intermediate stage between C0 and C2.

Like C2, C3 exhibits high expression of genes associated with
numerous aspects of synaptic plasticity, including LTP/LTD and
related processes, structural dynamics of dendritic spines, and

terms related to learning and memory. Consistently, both clus-
ters also display higher expression of genes related to molecular
pathways relevant to plasticity, such as kinase activity and neuro-
trophin signaling (Fig. 9). In contrast, however, C3 shows partic-
ularly strong expression of genes associated with the regulation of
actin-related process(es) (Fig. 8b), including the regulation of
filopodium assembly (Fig. 9). As actin is the primary cytoskeletal
constituent of dendritic spines and filopodia represent the struc-
tural predecessors of dendritic spines, these results might reflect

Figure 6. Single-cell reference mapping of AIBS L2/3 neurons to MEMONET L2/3 clusters. a, AIBS L2/3 neurons projected onto MEMONET UMAP space, colored based on the mapped cluster.
Predicted cluster assignment and prediction scores from mapping are shown in Extended Figure 1-1. b, Proportion of AIBS L2/3 neurons mapped to MEMONET L2/3 subclusters. The majority of
AIBS neurons map to C0–C2.

Figure 7. GO enrichment analysis of C4. The top 30 most significant terms (based on adjusted p-value) are shown. The upregulated differentially expressed genes from DE analysis of C4 versus
C0 were used as input for GO analysis. The majority of the top terms include characteristics of other cell types. The full GO results are shown in Extended Figure 3-2.
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the increased requirement for actin polymerization to support
the ongoing spinogenesis expected at this stage of motor learning
(Peters et al., 2014; Hedrick et al., 2022). Further delineating C3,
we also found that this cluster presents the highest expression
levels of genes associated with mRNA processing (Fig. 8b), post-
transcriptional regulation of gene expression, and regulation of
translation (Fig. 9). These processes collectively suggest that C3
represents a more advanced stage of plasticity than C2, such as
late LTP, which requires de novo protein synthesis (Kelleher et
al., 2004; Ho et al., 2011; Baltaci et al., 2019). Compatible with
the idea that this cluster corresponds to later stages of plasticity,
C3 also showed the highest expression levels of genes pertaining
to proteasome-mediated ubiquitin-dependent protein catabolic
process (Fig. 8b), a form of posttranslational control of protein
levels that has been implicated in the maintenance of late stages
of LTP (Dong et al., 2008) and new spine formation (Hamilton et
al., 2012). Further, C3 also presents with high expression of genes
related to histonemodification (Fig. 9), raising the possibility that
the plastic changes observed in this cluster extend tomore endur-
ing changes through epigenetic modification for the control of
future gene expression. C3 thus represents a functional conver-
gence of plasticity-related phenotypes with upregulated posttran-
scriptional and posttranslational mechanisms associated with the
maintenance of learning-related structural and functional
changes to neurons.

Similar to C3, C5 shows high-level IEG expression (Fig. 8a)
but low-level expressions of plasticity-related genes (Fig. 8b).
Instead, C5—equally represented in both train and control
groups—has the highest expression of genes involved in the
ATP biosynthetic process and cellular respiration. In fact,
many of the top enriched GO terms for C5 are related to meta-
bolic processes such as mitochondrion organization and oxida-
tive phosphorylation (Fig. 10a). Brain energy metabolism
supporting neural activity and circuit remodeling is largely regu-
lated by brain states (DiNuzzo and Nedergaard, 2017). In the
active awake state with high arousal, for example, intracellular
ATP levels in cortical excitatory neurons and their firing rates
are increased (Natsubori et al., 2020). The active awake state
has also been associated with increased glycolysis in the brain
(DiNuzzo and Nedergaard, 2017). We found upregulated expres-
sions of glycolysis-related genes in C5 (Fig. 10b), suggesting that
C5 may mediate brain state-related metabolic changes in M1.
The control of arousal and neuronal metabolism highly relies
on norepinephrine (NE), a neuromodulator broadcast mainly
from locus ceruleus (LC; O’Donnell et al., 2012; DiNuzzo and
Nedergaard, 2017). Linking NE, arousal, metabolism, and neural
activity, we found the highest level of NE receptor gene

expressions in C5 (Fig. 10b). These results suggest that experi-
mental conditions common to the train and control groups—
but absent in the AIBS experiments—might enhance the release
of arousal-related NE, revealing a subpopulation of neurons that
responds with increased metabolic activity and neural activity
(viz., C5). Among the notable experimental differences in our
experimental approach that might explain C5 are water restric-
tion and circadian rhythm timing (as our experiments were con-
ducted in the dark cycle, in contrast to the AIBS data, which was
acquired in the light cycle; Hongkui Zeng, personal communica-
tion; Yao et al., 2021, 2023).

Sequential relationship among transcriptionally distinct L2/3
clusters
As described earlier, some clusters were significantly enriched or
de-enriched by training (Fig. 5b), which raises the possibility that
individual neurons can dynamically switch between the states
represented by our clusters and thus that the fraction of neurons
in each cluster can change depending on recent experiences. In
particular, C0–C3 is associated with baseline low neural activity,
early LTP or LTD stages, and late-stage LTP, respectively, sug-
gesting that they represent different stages of activity-dependent
plasticity that gradually and sequentially evolve. To test this idea,
we performed a single-cell trajectory analysis that derives the
sequential relationship among loosely connected clusters, relying
on the transcriptional similarity between L2/3 neurons in the
EDG space (Wolf et al., 2018; Fig. 11a; Materials and
Methods). We found a sequential order among the 4 clusters in
terms of pseudotime as follows: C0→C1→C2→C3. These results
suggest that C3 neurons might have been in a C2 state on previ-
ous days, while some of the C2 neurons would transition to C3 on
the following days. In other words, L2/3 neurons may transition
between these different clusters depending on the recent experi-
ence (i.e., plasticity of transcriptional responses).

In the AIBS dataset, L2/3 cells were further differentiated into
three subtypes IT_1–3 (Yao et al., 2021). To examine how these
subtypes correspond to our functional clusters, we performed
reference mapping of these subtypes onto our clusters C0–C5
(Fig. 6). We found that IT subtypes were mapped almost exclu-
sively to C0–C2, consistent with our earlier interpretations that
(1) C3 and C5 are uniquely emerged functional states in our
study, and (2) C4 primarily comprises contaminated nonneuro-
nal cells. Furthermore, IT1 mapped predominantly to C0, and
IT3 predominantly mapped to C2, while IT2 mapped to both
C1 and C2 (Table 6). This observation suggests that IT subtypes
in the AIBS dataset may be differentiated, at least in part, by
activity-dependent functional states underlying the spontaneous
plasticity of L2/3 cells.

Learning-induced enrichment of reactivation
Strong synaptic activity can induce the potentiation of dendritic
spines via NMDAR-Ca2+-dependent, actin-based morphogene-
sis (Matsuzaki et al., 2004; Okamoto et al., 2004), facilitating their
reactivation in the future (Chen et al., 2013). A previous study has
shown that reversing the plasticity of previously potentiated
spines can erase motor memories, supporting the notion that
the potentiation of dendritic spines facilitates the generation of
synaptic motor engrams (Hayashi-Takagi et al., 2015).
Consistent with this notion, previously synaptically activated
neurons are more likely to be reactivated during motor learning
(Cao et al., 2015). We hypothesized that C3, showing a signature
of late LTP [i.e., high actin filament-based process(es) and post-
transcriptional/translational processes; Fig. 8b] and elevated IEG

Table 5. Glia contamination in the L2/3 subcluster

Cluster

L2/3 markers
Glial marker

Cux2 Otof Rtn4rl1 Slc30a3 Cacna2d3 Mertk

0 1.285 0.275 0.685 0.380 1.916 0.017
1 1.297 0.149 0.558 0.380 2.482 0.022
2 1.068 0.028 0.482 0.379 2.469 0.030
3 1.283 0.201 0.535 0.335 2.155 0.025
4 0.929 0.083 0.442 0.230 1.601 0.911
5 1.141 0.080 0.498 0.385 1.905 0.023

Assessing cell type contamination. Average normalized expression of L2/3 marker genes (Cux2, Otof, Rtn4rl1,
Slc30a3, Cacna2d3) and a glial marker gene (Mertk) per cluster. Normalization is calculated as the UMI count for
each gene in each cell divided by the total number of UMIs in the cell, multiplied by 10,000, and then transformed
to a natural log scale. C4 has the smallest mean expression of most L2/3 marker genes (the exception is Otof) and
the highest expression of Mertk.
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expression (Fig. 8a), might represent repeatedly active (i.e., reac-
tivated) neurons over the course of the 3 d training. To test this
hypothesis, we examined the expression profile of previously
reported reactivation genes (Jaeger et al., 2018) and assessed
the likelihood of reactivation for each cluster (i.e., “reactivation
score”; Materials and Methods). The reactivation score was the
largest in C3, while other clusters show no evidence of reactiva-
tion, agreeing with our hypothesis (Extended Fig. 11b–c). It has
also been shown that the fraction of reactivated neurons is higher
in motor skill-trained animals than in control (Cao et al., 2015).
Thus, the significant enrichment of C3 in our MEMONET data-
set compared with the AIBS dataset, coupled with the enrich-
ment of C3 by motor training versus control as described
earlier, is compatible with the reactivation hypothesis (Figs. 5b,
6b). These results collectively suggest multiple interrelated pro-
cesses in C3 neurons: (1) the upregulated expression of genes
associated with mRNA processing and posttranslational pro-
cesses in C3 neurons, likely reflecting the protein synthesis and
maintenance during late LTP; (2) the de novo synthesis of

proteins involved in forming, enlarging, and maintaining poten-
tiated dendritic spines; and (3) the reactivation of stably potenti-
ated dendritic spines and consequently the soma of C3 neurons.
Additionally, C3 shows upregulated expression of Baz1a, which a
previous study of L2/3 neurons in S1 found to be a marker for
neurons that can maintain plasticity in response to stimuli
(Condylis et al., 2022). Consistent with the single-cell trajectory
analysis above, we propose that L2/3 neurons progressively enter
more advanced plasticity states from C1 to C2 to C3, depending
on their levels of reactivation. Together, these findings suggest
that C3 might contribute to the consolidation of motor learning
across the multiday training, representing possible engram cells.

Discussion
L2/3 neurons have been shown to exhibit high plasticity during
the early stage of motor skill learning, showing an increase in
dendritic spines by day 3 of learning (Peters et al., 2014).
However, the patterns of gene expression that allow for plasticity

Figure 8. Plasticity-related phenotypes of distinct L2/3 clusters. a, IEG expression is shown as Log2 fold change, a metric used by DESeq2 to assess how much a gene's expression has changed
between the two comparisons. A positive value indicates upregulation compared with C0 while a negative indicates downregulation. In the DE analysis of each cluster versus C0, most clusters show
upregulation of a majority of IEGs. Significance is based on padj < 0.05. The full results of the DE analysis are shown in Extended Figure 3-1. b, GO enrichment analysis of selected plasticity-related terms
across L2/3 clusters. Top: mean z-scored expression of all genes contributing to each term (mean ± SEM). Bottom: heat maps of z-scored expression of individual genes in each term. For visualization
purposes, a maximum of 40 genes are shown in heat maps. Data for line plots include all genes for a given term. The full GO results are shown in Extended Figure 3-2.
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states to arise are not fully understood. Here, we used snRNA-seq
of mouse M1 after 3 d of learning a lever-press task to investigate
the transcriptomic profiles of L2/3 neurons during their initial
increase in plasticity. Gene expression levels inherently vary
across cells, even within the same cell type and under identical
experimental conditions, due to biological and measurement
noise. To overcome the inherent variability of a single gene
and accurately classify cells from different experimental groups
(i.e., train or control), we employed a logistic regression-based
approach. This method identifies the optimal linear combination
of gene expression levels that maximizes separation between
these groups by utilizing both the DE of individual genes as
well as correlations between them. The advantages of logistic
classifiers over other commonly used methods have been
reported (Ntranos et al., 2019). The logistic regression-based
classifier revealed EDGs that together can reliably predict
the group identity of each L2/3 neuron. These EDGs were
coregulated in multiple distinct modes, forming separate clusters
among L2/3 neurons. We found that these clusters represent
different levels of neural activity, metabolic activity, and pheno-
types consistent with different phases of plasticity across L2/3
neurons. Learning-inducing experiences produce transcriptional
responses of EDGs, changing the fraction of neurons in these
clusters.

The putative baseline state, C0, that showed the lowest IEG
expression in reference to the other clusters was enriched in
the control group, suggestive of quiescent neurons that are not
stimulated or activated by recent experience. Consistent with
this idea, approximately 50% of AIBS L2/3 neurons mapped to
this cluster, indicating that C0 is the most dominant state in
the absence of salient experience. In our dataset, fewer neurons
occupied C0 (∼23%), suggesting that many neurons under the
water restriction and motor learning during the dark cycle
were active, transitioning to states enriched in our dataset such
as C3 or C5. In addition, 23% is also lower than the estimate
from the fraction of movement-related neurons observed in the
same lever-pressing task (Peters et al., 2014). This discrepancy
is accountable, at least in part, as movement-related neurons
are a subset of active neurons. In other words, the fraction
of active neurons would be larger than movement-related
neurons. By using trajectory analysis with C0 as the starting
point, we found the progression between clusters to be
C0→C1→C2→C3. Trajectory analysis results imply that C1
might be a transitory state that bridges the baseline (C0) and
activity (C2 and C3) states. A confirmation of this idea will
require future longitudinal analyses of gene expression over the
course of learning.

C2 appears to represent neurons activated during motor
training on day 3, but not (consistently) activated on previous
days. While C2 had some IEG upregulation in reference to the
other clusters and even more upregulation in reference to C0,
its reactivation score was near chance, suggesting these neurons

Figure 9. Expanded list of plasticity-related GO terms across clusters. The line plots and
heat maps of mean z-scored expression levels for genes associated with plasticity-related
GO terms, as in Figure 8b. Terms were loosely categorized based on their functional relevance
(vertical labels at left), as follows: (1) “functional (synaptic)” refers to processes related to the
efficacy of chemical synaptic transmission at excitatory (glutamatergic) synapses; (2) “struc-
tural (synaptic)” denotes processes related to the structural basis of dendritic spines or their
filopodial precursors; (3) “molecular” broadly refers to molecular pathways, events, or signal
transduction; (4) “intrinsic” refers to nonsynaptic processes that govern the intrinsic excitabil-
ity of neurons relevant to action potential firing; (5) “behavioral” denotes higher-order

�
phenomena relevant to the intact, behaving animal. As in Figure 8b, the line plots correspond
to the mean z-scored expression for all genes from a given GO term, while the heat maps
depict a maximum of 40 genes for visualization purposes. For the heat maps, genes were
sorted in ascending order according to the clusters that showed the highest expression.
For GO terms with >40 associated genes, the gene list was first sorted according to the
regression weights from the “top 3,000 genes only” logistic model in order to highlight genes
that best discriminated between “train” versus “control” neurons, and the top 40 of these
sorted genes were used. The full GO results are shown in Extended Figure 3-2.
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have only been activated on 1 d of motor training. The upregula-
tion of multiple IEGs, and in particular Npas4, in reference to
baseline suggests that C2 was activated on day 3, rather than
day 2, as such an IEG signature would not be expected when
sequenced a full day later. That is because, unlike other IEGs

that may be upregulated by such signals as trophic factors,
Npas4 has a specific relationship with neuronal action potentials:
it is only induced via calcium influx (Lin et al., 2008;
Ramamoorthi et al., 2011). Additionally, it displays a fast half-
life, with mRNA being degraded within hours (Lin et al., 2008).

Figure 10. GO enrichment analysis of C5. a, Top 30 most significant terms (based on adjusted p-value) are shown for C5. The upregulated differentially expressed genes from DE analysis of C5
versus C0 were used as input for GO analysis. The full GO results are shown in Extended Figure 3-2. b, Upregulated processes in C5. Top: mean z-score of associated genes (mean ± SEM). Bottom:
the z-scored expression of individual genes. The gene set for glycolysis was derived from the PANTHER database (Thomas et al., 2022).

16 • J. Neurosci., March 6, 2024 • 44(10):e0302232023 Dunton et al. • Learning-Related Gene Expression in Cortex

https://doi.org/10.1523/JNEUROSCI.0302-23.2023.f3-2
https://doi.org/10.1523/JNEUROSCI.0302-23.2023.f3-2


Thus, Npas4 is a dependable signal for neurons actively firing,
which in this case is presumed to arise due to repetitive execution
of unfamiliar movements. Genes involved in LTP and LTD pro-
cesses expressed peak expression in C2, suggesting these neurons
are undergoing early LTP and LTD. There exist L2/3 neurons in
the AIBS dataset that map to C2 (∼26%). Given that C2 is also
not significantly enriched in train or control groups, this state
can perhaps arise in the absence of a learning task simply by
the mouse experiencing and interacting with the environment.

On the other hand, C3 was more or less unique to the
MEMONET dataset, representing only 1.68% of AIBS L2/3 neu-
rons. This unique state seems to be attributed to reactivation
during the learning process. One caveat to using the reactivation
genes from Jaeger et al. (2018) is that that study profiled a
different brain region (dentate gyrus) with a different learning
paradigm (novel environment exposure). Our current under-
standing of the mechanism of learning is limited to appreciating
the translatability of their gene list to our study. It is possible that
there is a different, though maybe overlapping, set of genes reg-
ulating reactivation potential in M1. Nevertheless, with the gene
list available to us, we found a reactivation signal in C3 that
appears to be supported by DE and GO analyses. Besides the
reactivation score, we found other lines of evidence linking C3
with reactivation, including dendritic spine morphogenesis that
is preferably targeted to previously activated spines during motor
learning in M1 (Hayashi-Takagi et al., 2015) and the enrichment
by training (Cao et al., 2015). Taken together, the upregulation
of genes for mRNA processing machinery and ubiquitin-
proteasome processes in C3 neurons might support the late
LTP-associated proteins that enlarge andmaintain the previously
potentiated and/or newly formed synapses, resulting in a reliable
reactivation of previously activated neuronal ensemble. That is,

C3 may represent motor engram cells with transcriptional
responses that support the consolidation of learning. In line
with this idea, the fraction of C3 neurons in our train
group (∼25%) closely matches the previously observed fraction
of movement-related neurons in the same lever-press task
(20%–30%).

Another cluster that is unique to our dataset is C5. However,
this cluster was equally represented in both the train and control
groups. An intriguing question is which experimental manipula-
tions in our study elicit transcriptional responses common to
both groups, revealing C5. A prominent candidate is water
restriction, which motivates mice to explore to find water
sources. Water deprivation intensifying thirst promotes locomo-
tor activity via orexin neurons in the hypothalamus that densely
project to monoaminergic nuclei including LC, suggesting that it
can stimulate NE neurons (Tsunematsu et al., 2008). Water
restriction is also known to induce large-scale, global changes
in cortical activity (Allen et al., 2019). However, the mechanisms
underlying such a massive effect remain largely unknown. Our
finding raises the possibility that thirst-driven global changes
might be mediated by C5-like neurons across the cortex via the
NE neuromodulatory system. Alternatively and/or additionally,
C5 could be explained by differences in circadian rhythm; our
experiments were conducted during the dark cycle to facilitate
wakeful engagement in the task, while AIBS experiments were
performed in the light cycle (Hongkui Zeng, personal communi-
cation; Yao et al., 2021, 2023). Circadian changes in gene tran-
scription are well established, are highly conserved across
species, and can even be regulated by neuronal activity (Xu
et al., 2021). The transcriptional state represented by C5 may
therefore at least partially reflect circadian differences.
Disambiguating the contribution of water restriction and circa-
dian rhythm to this transcriptional state will therefore require
additional experiments wherein these features are specifically
controlled. For instance, a number of prominent marker genes
in C5 may be examined using RNAscope in four controlled
groups of samples: (1) water-deprived and collected during the
light cycle, (2) water-deprived and collected during the dark
cycle, (3) nondeprived and collected during the light cycle, and
(4) nondeprived and collected during the dark cycle.

Taken together, we found different clusters in the EDG space
that represent various activity levels and activity-dependent

Figure 11. Trajectory analysis and reactivation score of clusters. a, Single-cell trajectory analysis (DPT) reveals sequential transition between clusters. The cell trajectory informed by the
pseudotime is visualized via a force-directed graph representation using the LGL. b, The number of significantly regulated genes in the direction indicating proreactivation versus antireactivation
in each cluster. Genes that the reference (Jaeger et al., 2018) previously found to be significantly regulated in reactivated neurons were considered. Up/up: upregulated in both the MEMONET and
reference dataset. Down/down: downregulated in both datasets. Up/down: upregulated in MEMONET but downregulated in reference. Down/up: downregulated in MEMONET but upregulated in
reference. The significance of regulation in the MEMONET dataset was based on the DE analysis of each cluster versus the others. Numerical data are shown in Extended Figure 11-1.
c, Reactivation score per cluster, calculated as (up/up + down/down)/(down/up + up/down) − 1. A score greater than 0 indicates that a larger number of genes are regulated in the pro-
reactivation direction.

Table 6. Distribution of AIBS L2/3 subtypes across C0–C5

0 1 2 3 4 5

L2/3 IT_1 3,973 1,078 215 129 5 2
L2/3 IT_2 14 751 1,332 6 2 0
L2/3 IT_3 0 0 534 0 2 0

Single-cell reference mapping of AIBS L2/3 subtypes onto the clusters.
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plasticity phenotypes, including low-IEG baseline (C0), recent
activity and LTP/LTD (C2), and reactivation (C3). The single-
cell trajectory analysis indicates that individual neurons move
along these different transcriptional states as they undergo differ-
ent phases of neuronal plasticity. Furthermore, we found a cluster
(C5) that may promote plasticity inM1 by increasing exploratory
neural activity in response to the NE-mediated arousal signal.
State transitions between clusters are unlikely to be an automatic
program; instead, each transition must be regulated by experi-
ence and internal state, and only selective neurons in a given state
must move to the next depending on their functional relation to
the experience. Certain functional relations may also render
some neurons prone to return to the baseline state during or after
learning, although such transition is missing in the current tra-
jectory analysis.

Our interpretations thus far rely on GO analysis and existing
knowledge, the validation of which requires refined experiments
for direct testing in the future. Nonetheless, our data demonstrate
the emergence of diverse yet classifiable gene expression patterns
within L2/3 neurons during long-term motor learning and pro-
vide a comprehensive set of coregulated genes associated with
each cluster. We focused on L2/3 neurons in our dataset, leaving
many other cell types awaiting exploration. The extensive time
required for analysis and interpretation of results prevented
in-depth exploration of the other cell types for the current study;
however, sequencing data are publicly available for further studies.

In sum, we conclude that learning-inducing experiences like
thirst-driven motor skill training induce a transient change in
the transcriptional landscape of the same cell type neurons, as
individual neurons visit divergent transcriptional states that
underlie distinct phenotypes of neural activity and plasticity.
The gene expression profiles we inferred for each plasticity phe-
notype will help future studies to delineate the molecular mech-
anisms that drive specific phenotypes and state transitions. In
particular, investigating the causal role of the genes that are char-
acteristic of each transcriptional state will illuminate the mecha-
nisms regulating neural plasticity and thus learning.
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