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Abstract

This paper presents a simple approximate procedure for traffic analysis that can be

described geometrically without calculus.  The procedure, which is graphically intuitive,  operates

directly on piecewise linear approximations of the N-curves of cumulative vehicle count.  Because

the N-curves are both readily observable and of direct interest for evaluation purposes (e.g., they

yield the total vehicle-hours and vehicle-miles of travel in a time interval, and the vehicular

accumulation as a function of time) the predictions made with this method should be practical and

easy to test.

Queued traffic is treated first. Predictions of cumulative counts for this traffic regime are

based on three mild assumptions stating the relationship between the linearized input and output

curves of vehicle count.  These assumptions are a simple twist on those of the kinematic wave

(KW) model of Lighthill and Whitham (1955) and Richards (1956); thus, the part of the proposed

procedure that deals with queued traffic is just an efficient way of solving the KW model based

on readily observable data.  The method is somewhat more complicated but also more general than

that in Newell (1993). The paper shows that the particular way in which the data are linearized

prior to the procedure is not important provided one works within certain tolerances, and that

errors in the model parameters also have a limited effect.  These results can help discriminate

between model errors and calculation errors in a validation effort.

The second part of the paper examines traffic streams that include queued and unqueued

traffic, as well as bottlenecks.  Here, unqueued traffic is allowed to obey any reasonable model,

e.g., as could be the result of a simulation with multiple vehicle classes, drivers that wish to travel

at different speeds and certain rules for passing.  The unqueued model, however, cannot include

vehicle classes with speeds lower than the maximum possible in queued traffic. The bottlenecks

are assumed to have a well-defined capacity and always to allow the maximum possible flow

consistent with: (i) the availability of upstream traffic, (ii) the presence of a downstream queue and

(iii)  the capacity.  The capacity can be time-dependent and endogenous. The paper presents the

theory, some examples and a computational framework.
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1      Validation work is now proceeding to see whether waves behave as predicted in this theory--see Cassidy and
Windover (1995,1996).

1.  BACKGROUND AND MOTIVATION

The kinematic wave (KW) model of Lighthill and Whitham (1955) and Richards (1956),

is the simplest theory of traffic dynamics that recognizes that vehicles take space.  However, the

KW theory has two (relatively minor) deficiencies: (i) it does not model unqueued (light) traffic

properly because it does not account for passing, and (ii) it models traffic inside queues as being

smooth-flowing when the reality is sometimes different. The KW theory is also difficult to test

because it is based on variables such as density that are difficult to measure and even define.  In

view of this, it seems that a slight modification of the theory that would alleviate some of these

deficiencies while being based on readily observable data could be more reliable and easier to test.

Newell’s simplification of the KW model (Newell, 1993), which assumed a concave flow-

density relation and used waves to operate on curves of cumulative count was a first step in this

direction.1  The queue analysis methodology in Lawson et al (1997) for time-independent

bottlenecks, which does away with waves, density functions and local flow-density relations

altogether, represents yet another step; its predictions are consistent both with KW theory and

(approximately) with certain forms of traffic instability.  A combination of the ideas in these two

references has been applied to the time-dependent case with concave flow-density relations (Erera

et al, 1997).  

The present paper relaxes the requirement of a concave flow-density relation and extends

the ideas in these references further, so as to address some of the above-mentioned concerns. It

presents an approximate macroscopic model of traffic behavior for an inhomogeneous highway

with bottlenecks that overcomes deficiency (i) but not (ii).  Of course, a model’s inability to

capture the details of traffic behavior inside queues (ii) does not mean that it cannot predict

accurately important measures of performance such as total delay, time-dependent vehicle trip

times and accumulations.  Thus, the paper suggests possible tests for this hypothesis.  It is also

shown that the model predictions of these relevant measures are insensitive to input data errors.

The paper is divided into two main parts: Sec. 2 which focuses on queued traffic, and Sec.

3 which extends the results to mixed traffic.  Section 2 shows how to predict the cumulative N-

curve of vehicle count at a particular location from downstream data at another location when



-3-

traffic is queued.  The method is just a fast and intuitive way of solving a kinematic wave (KW)

problem.    The effect of this approximation, e.g., on calculation errors and the interpretation of

field tests, is examined and discussed. Section 3 then extends the model to mixed

(queued/unqueued) traffic for highways with time-dependent bottlenecks.   A generic, non-KW,

model of unqueued traffic including multiple vehicle classes is used.  This section shows how the

“N-curves” of vehicle count, both by class and aggregated, can be predicted when input counts

are given at the upstream location.  Examples are provided.

2.  TRAFFIC BEHAVIOR INSIDE QUEUES: THE 2-DETECTOR PROBLEM

Our system is a freeway section between two detectors (U-upstream and D-downstream)

in which traffic flow is queued as a result of some unspecified downstream restriction(s).   The

system is assumed to be sufficiently far from any exits or entrances, as would occur for example

in the middle of a long tunnel or bridge, so that the vehicular trip times, J, on all its lanes would

be similar.  Our goal is predicting approximately the time-dependent traffic accumulation and

vehicular trip times between “U” and “D” when the “schedule” of departures is given at “D”; i.e.,

to predict the N-curve at “U” from that at “D”.

2.1 Preliminaries. 

N-curves - The vehicle number function N(t, x), originally proposed in Moskowitz (1965),

later refined in Makigami et al (1971) and more recently introduced to KW theory in Newell

(1993), shall be used throughout this paper to summarize the traffic stream features of interest.

Moskowitz’s function is most easily described in terms of imaginary numbered labels that

are carried by vehicles. It is assumed that each vehicle carries one and only one label at all times,

and that the labels have been numbered consecutively at time t = 0, increasing in unit increments

in the upstream direction along the line of cars.  It is also assumed that labels are exchanged

among passing vehicles so as to ensure that labels do not pass one another even if vehicles do.

Thus, the number on each label indicates at all times the position of its current vehicle in the traffic

stream. Of course, if there is no passing labels also identify vehicles.  In any case, since there is one

and only one label with every vehicle at all times, a count of labels, or label-miles, or label-hours

in a region of the (t, x)-plane, which can be easily derived from the N(t, x) function, always
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matches the corresponding count for vehicles.  If traffic flows in the direction of increasing x, as

is assumed in this paper, then N(t, x) increases with t and decreases with x.  This means that N(t,

x)  is a function of t for a given x and also a function of x for a given t. 

Note that a particular Moskowitz function describes a geometric surface in (t, x, n) space.

The intersection of this surface and the plane x = x' , corresponding to a specific location x' , yields

a (t, n) curve that will be denoted by a capital letter (usually “N”) subscripted by an identifier of

the location; e.g.,  Nx’ .  The capital letter represents the particular geometric surface (traffic

instance) from which the curve comes. When a location is identified by means of a subscript, e.g.,

xp , the subscript may be used to identify the corresponding (t, n) curve, e.g., Np.  A collection of

“N-curves” at different locations along a highway { xp } is useful for evaluation purposes because,

as is well known,  the horizontal separation between two N-curves for a given ordinate, n , (or

their vertical separation for a given abscissa, t) represents the trip time of the nth label between the

two locations (or the vehicle accumulation at time t).  The N-curves readily yield information

about vehicle-miles and vehicle-hours of travel as well.  They will be the object of our analysis.

Tolerances - Because the procedures presented in this paper are based on approximations

to the data and to the parameters of the model, we introduce now the notion of tolerances.   The

paper will show that the numerical error in N due to the approximations is uniformly bounded.

In particular, it will show that if ND and N’D are two input data curves within a tolerance ,

(vehicles) of each other, then the output curves at any upstream location NU and N’U will also be

within the same tolerance.  That is,

1 ND-N’D 1 # ,  Y  1 NU - N’U 1 # ,, (1)

where the vertical bars signify the maximum absolute difference in count between the curves.  The

use of these and related ideas in validation experiments will be discussed.

2.2 The KW Theory Revisited.

This subsection presents a simple method for predicting NU from ND.  The procedure is

based on three postulates equivalent to those of KW theory. It will be described in steps, one
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2    If certain vehicles had to be on certain lanes (e.g., for the purposes of turning) then, depending on which lanes
are obstructed downstream on a particular day, one may observe significantly different trip times and vehicular
accumulations across lanes and days, even if the overall flow is roughly the same every day.  If the overall
accumulation varies across days with the same q , this would give rise to a failure of type (i).   A failure of type (i)
could also arise if traffic was found to be unstable on some days and stable on others (with the same q), and if the
trip times were to be significantly different on stable and unstable days.  A failure of type (ii) could arise if people’s
behavior inside the queue were to depend on how long they have waited or on other events occurring outside our

postulate at a time, while at the same time introducing the (limited) scenarios that can be studied

without the postulates not yet presented.  This incremental approach is useful because if the theory

is found not to match reality then we can see which of the assumptions (if any) can be salvaged

in an effort to construct a better theory and which scenarios can still be studied despite the flaws.

Postulate 1: Reproducibility of stationary conditions inside a queue. If curve ND

becomes straight with slope q, and remains so as time advances, then curve NU should

become  parallel to it and remain to the left of  ND  by an amount   J(q) .   Alternatively, we

can require curve  NU   to stabilize reproducibly  m(q) = qJ(q)  vehicle positions above curve

ND.#

This postulate means that the real curve ÑU should fluctuate within a specified tolerance of NU if

the real ÑD is within a specified tolerance of ND .  This  should be reproduced on every observation

instance independent of the location and/or cause of the obstruction that is generating the queue.

Note that we have not required an absence of stop-and-go oscillations and have not said anything

about the geometry of the highway between the detectors, which can  include lane drops, changes

in grade, etc.  The only condition imposed is that  the observed flow should be strictly less than

the maximum possible stationary flow through the section, qmax , and that the section is queued.

We assume that postulate 1 holds for any pair of locations xi, xj (xi < xj) inside the queue and

therefore that the translations at consecutive locations are additive; i.e., that mij(q) + mjk(q) =

mik(q).  From now on the location-specific subscripts may be omitted when there is no room for

confusion.

The postulate can be violated in at least two ways: (i) if one finds that a reproducible

relation between J (or m) and q cannot be found even though the N-curves become parallel, and

(ii) if the N-curves do not even become parallel.2   Although the postulate can be useful by itself,
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system.  

e.g., as in the model of Lawson et al (1997), more hypotheses are needed in order to treat time-

dependent downstream data.  

It will now be assumed that the highway section is homogeneous, in the sense that the

stationary accumulation between “D” or “U” and any intermediate location “M” which is 100"%

of the way toward “U” ( i.e., such that the following relation holds for the distance coordinates

of the three locations:  (xD-xM) = "(xD - xU) for  0 < " < 1 )  satisfies mDM(q)  =  "mDU(q)  and

mMU(q) = (1-") mDU(q)  for all  q .  This means that accumulations and trip times should be evenly

distributed over the segment for all flows.  Clearly, homogeneity allows us to write all the mx,x’(q)

of a highway in terms of the normalized relation between m and q that holds for a segment of unit

length, K(q); i.e.,  mx,x’(q) = (x-x’)K(q).  Our objective in this section is to find a reasonable set

of rules that will allow us to predict NU from ND for any queued homogeneous segment on which

there is a reproducible  mDU(q)  relation.  

In what follows it will be convenient to describe the performance of the algorithm on a

particular highway by a set of “upstream” operators  U = {Us}, with one operator for each

possible segment length, s.  That is, UsN denotes the result of the algorithm, when applied to a

generic curve “N”  at the downstream end of a length-s segment.  When referring to a specific

highway segment, U will be subscripted by two variables that identify the end points of the

segment (instead of the single variable “length”) with the downstream identifier placed first.  With

this convention the output of the algorithm for a given downstream curve and particular highway

segment can be compactly expressed as NU = UDUND.  Note that when the two identifiers are

coordinates then Ux,x’ = Ux-x’.

The first new postulate is just an extension of postulate 1 to the time-dependent case.  We

shall assume that  ND  is piecewise linear, changing from state “i” to state “i+1” at time ti.  The

reproducibility postulate  indicates that if there is a transition between two lasting stationary states

at detector D, indicated by a change in the slope of ND from q1 to q2 , then the same stationary

states should also arise at the upstream detector.  It is now further assumed that the transitions

between neighboring states occur rapidly and propagate upstream as a wave.  (We anticipate at

this point that not all pairs of states will be allowed to be neighboring in the final version of the
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3    This is not considered a postulate, since it can be taken as our definition of a queued state. 

model for stability reasons.)  We assume the following:

Postulate 1 (Time-dependent reproducibility).  Lasting stationary states are still

reproduced upstream.  Furthermore, transitions between neighboring states propagate

sharply as a wave.#

The procedure implied by this postulate is illustrated in Fig. 1 for the simple case when there is

only one transition.  Part a of the figure shows that the construction of NU is easy, insofar as the

two segments of curve NU must be at specific separations from the corresponding segments of

ND.  The procedure can be made more intuitive with the diagram on part b of the figure.  It

contains both, an  m(q) relation and a companion curve of J(q) vs m(q) with q (the slope of the

ray passing through the origin) as the parameter.  The relationship between m (or J) and q in

queued traffic is generally expected to be declining, as shown in the figure.3  Curve m(q)   will play

the role of the so-called “fundamental diagram” of KW theory.  The companion curve of  m vs.

J can be useful because  the axes of this diagram have the same physical dimensions as those of

the (t, n)-plane, and this can help visually in the construction of the Nx curves.  In particular, if the

diagrams have been drawn with the proper scale then the horizontal and vertical separation

between any two parallel portions of the N-curves that correspond to the same state should be

equal to the coordinates of the state on the companion portion of the “fundamental diagram”.

Furthermore, the slope of an N-curve should always be equal to the slope of the line on the

companion diagram that connects the given state with the origin.  Let us now return to part a of

the figure.

Note from the geometry of the picture that the transition point “C” from the first segment

to the second must occur with a precise delay, w12 , that should only be a function of the two

states “1" and “2" among which the transition occurs.  More specifically, note from the slopes of

the sides of triangle (ABC) that this delay can be written as:

w12 = - [m1-m2]/[q1-q2] (2)
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4    In the parlance of KW theory, this delay is the shockwave trip time.

5      Insofar as the composition operation is obviously closed and associative, postulate 2 implies that the set of
operators and the composition operation is a semigroup that is isomorphic with the semigroup of segment lengths
(the non-negative real numbers) with addition.

and that as a result w12 will be positive for any pair of states if m(q) decreases.  A positive w

means that information (causation) travels in the upstream direction, as one would expect inside

queues.  A graphical interpretation of (2) is possible from the fundamental diagram; namely, that

the negative slope of a line joining two states on the m(q) plot is the delay in the propagation of

information.4

If ND changes stationary state more than once and the times t'i = ti + wi,i+1  which would

indicate upstream state changes satisfy:

t'i  <  t'i+1 ,      for all i ,      where t'i = ti + wi,i+1 , (3)

then curve NU can be obtained by applying the graphical procedure of Fig. 1b to all the states and

the result will contain all the original states with breaks at the t'i .  The time (t'i+1 - t'i ) is the

duration of state i+1 upstream.

If Eq. (3) is not satisfied, additional assumptions are needed.  The following composition

rule for the upstream operator is proposed:

Postulate 2 (Transitivity).  If s = s’ + s” , then Us = Us’Us” .
5 #

This means that if NU is the curve that is obtained from ND using relationship mDU(q), then

NU  should also be the curve that is obtained in two steps: (i) by applying the procedure to curve

ND with relationship mDM(q), and  (ii) repeating the process with the resulting curve (NM) and

relationship mMU(q).  The postulate also implies that a highway section can be divided into many

parts and studied sequentially.

The reader is encouraged to verify that the procedure as it currently stands is divisible and

satisfies this postulate; e.g., that the breaks in the N-curve at any intermediate position that is

100"% of the way toward the upstream detector occur with a delay "w12 . 
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 Postulate 2 can be used to extend the procedure to cases where (3) does not hold.  If

postulate (3) is not satisfied then we look for an intermediate location “M1" with the largest

possible value of the interpolation parameter ", "1 , for which (4a), below holds:

t'i  #  t'i+1 ,      for all i ,      where t'i = ti + "wi,i+1 . (4a)

Note that all the states i for which t'i-1 =  t'i are observed for zero time at location “M1". Thus, they

have vanished.  In order to find the solution for locations upstream of M1 we use the transitivity

postulate and treat these locations as if M1 was the location of the downstream data.  To express

this as a recursion it is convenient to rewrite (4a) as:

t'i  #  t'j ,      for all (i , j) such that i < j,      where t'i = ti + "wi,i+1 , (4b)

and introduce Sk for  the set of surviving states at location Mk after the kth iteration (k = 1, for

now).  Since the straight lines obtained by shifting the segments of the N-curve at location Mk are

the same as those obtained by shifting the original (surviving) segments from the N-curve at

location “D”, we can simply choose "k+1 as the maximum value of " ("#1) that satisfies:

t'i  #  t'j ,      for all  i, j 0 Sk  such that i < j , where t'i = ti + "wi,i+1 . (5)

The recursive process terminates when (5) is satisfied for " = 1.   This algorithm will be named

“A”  and its results expressed by  NU = ADUND.

Although the maximum number of iterations could be as large as the number of states (if

all but one state were eliminated) in actual applications just a few iterations should be needed.  The

procedure is particularly quick when done by hand, and this can help in the interpretation of data.

Consider as an illustration Fig. 2, which shows the result when the downstream state changes from

“1” to “3” with a brief sojourn in state “2”, for the m(q) relation shown on the top left corner. 

The figure also displays the N-curve for a detector “M” which is half way between  “U” and “D”

(" = 0.5).  

The figure shows that the shifted lines corresponding to the three linear segments of ND
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(lines OAB, AC and ED) do not intersect in the order required by (3) because line ED is beyond

the apex of angle OAC.  However, if the same construction is repeated for location “M” by cutting

the three shifts in half then the three lines intersect in the proper way, as shown.  We see at a

glance that the duration of state “2" is reduced in going from “D” to “M”, and that state “2” would

be completely eliminated farther upstream, somewhere between “M” and “U”; i.e., that 0.5 < "1

< 1.   Note that we do not need to find  "1  to obtain NU , since our knowledge that only states “1”

and “3” survive the trip to location “U” already allows us to use Eq. (5).  That is, the final

solution--line OAED-- is simply obtained by connecting the original translations of the two

surviving segments.  In cases with more state transitions and longer separations between detectors

more steps may be needed to determine which states are eliminated but procedure “A” remains

simple.

The third and final postulate of the proposed theory for the description of queues involves

the idea of “stability”.  The proposed algorithm does not rule out the possibility that an

infinitesimal change in ND could trigger a finite change in NU, and we wish to exclude such

“unstable” solutions from the set of possibilities.   In particular, we specify that if a continuum of

transition states of infinitesimal duration are introduced at every corner of ND , i.e., we smooth the

corners of ND, then the final solution should not be affected by the smoothing. We also require this

to be true of any intermediate solution.   That is, if  S denotes the smoothing operator, we assume

that Us = UsS  for all  s; i.e.:

Postulate 3 (Stability).  The operators  Us  and  S  commute.#

Figure 3 is used to illustrate these ideas.  Part (a) shows by means of thick solid lines a

construction for NU similar to that of Fig. 2, with algorithm “A” , when a transition from state “1"

to state “2" has occurred at “D”.  If we imagine that the transition at point  V  has occurred by

way of an infinitesimally quick sojourn through intermediate state “k”, we see that this state cannot

appear into the solution because if we shift the imaginary line passing through “V” corresponding

to this state, the resulting line (labeled Lk in the figure) does not intersect our test  NU  curve. 

Thus, the test curve is not destabilized by “k”.  Further consideration shows that the state will not

enter into the solution as long as its corresponding point “k” on the (q, m)-plane is below or on
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6    Mathematicians would say that they are the vertices of the convex hull of the shaded region.

the chord joining states “1" and “2" on such plane; see figure. Clearly, the higher this point is, the

larger the shift imparted to Lk .  It turns out that if the point is on the chord, then line Lk passes

through the vertex of NU.  However, states that lie above the chord, such as “k' ”, would enter the

solution as shown by line Lk’ and they would destabilize the solution.

If instead of an increase in flow, we had experienced a decrease, then we see from the

geometry that algorithm “A” introduces intermediate states into the solution if they experience a

small shift.  They will appear in the solution if they lie below the chord.  Any solution that can be

modified by means of an infinitesimal perturbation could not be expected to arise in real life and

should be ruled out.  Thus, algorithm “A” needs to be modified and this is done below. The

desired effect is achieved by treating each change, i, in the slope of ND as being gradual and then

determining which sequence of intermediate states appears immediately upstream; this will be

called the “stable transition sequence”.

The logic used earlier on part (a) of the figure reveals that a proposed transition involving

a particular sequence of intermediate states and an increase in flow is stable if and only if the

portion of the m(q) curve joining two consecutive states in a stable transition sequence does not

protrude above the chord joining the two states on the (q, m)-plane.  For piecewise linear m(q)

relations as in Fig. 3b the relevant solution should be a sequence of m(q) break-points that can be

consecutively joined by chords lying entirely on the dotted region of the (q, m)-plane.6   It should

perhaps be intuitive without the need for discussion that: (i)  this procedure will also connect the

two original segments of the NU-curve by the highest possible arc that can be constructed by a

succession of intermediate states, and (ii) that if the m(q) curve is convex no states propagate into

the solution. (The original jump is then said to be “stable”; stable jumps correspond to “shocks”

in the KW theory.)

If the transition involves a reduction in flow, then the results are reversed.  One would look

for the sequence of break-points that can be joined with chords lying entirely within the shaded

area, and would find that the corner of NU is spanned by the lowest possible arc of intermediate

states. The original jump would be stable if the m(q) curve is concave.

Note that in both cases, whether there is an increase or a decrease in flow, the corner of
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the NU-curve is spanned by an arc of new states that is as far away from the original corner as

possible; i.e. in all cases, corners are smoothed as much as possible.  Furthermore, in the piecewise

linear case only break-points of the m(q) curve can appear as new intermediate states.  Obviously,

we can imagine that these are the only states actually introduced by S, and this simplification

allows us to devise a stable procedure  “U”  that requires just a few steps in the piecewise linear

case.

Algorithm “UU” 

Let xD and xU denote the positions of the downstream and upstream detectors, and xM the

position of an intermediate trial location such that  xU # xM # xD .  The intermediate location

represents the most upstream location at which an N-curve, NM , is known. The algorithm starts

with xM = xD and then reduces xM iteratively until xM = xU.  Each iteration has two steps:

“smoothing” and “shifting”:

Step 1: Smoothing.  Smooth NM by introducing the necessary intermediate states at its

corners as described above.  The result is denoted SNM .

Step 2: Shifting.  Find the most upstream location x*,  xM $ x* $ xU , for which the shift

imparted to the segments of SNM with algorithm A does not eliminate any states. 

(This ensures that all the intermediate states are stable.)  The resulting curve is

called N*.   If x* = xU, then NU = N* and the procedure terminates.  Otherwise, we

set  xM = x* , NM = N* and repeat the iterations.

Only one iteration may be needed to obtain the result if the study section is short and/or

the data vary slowly.  Alternatively, and as an approximation that is useful when solving a problem

by hand, we may apply algorithm  A  to curve SND. This may introduce a small error in the

solution on the order of just a few vehicles per lane per kilometer, because the approximation

ignores the smoothings that might have to take place at intermediate locations; thus,  AS . U.

The error arising from this simplification is zero when the m(q) curve is concave or convex

because then, as the reader can verify from the “chord” rules of Figure 4, the elimination of a state

always introduces a jump that is already stable  (AS /U in these cases).  To obtain a set of
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predictions for a large system including many detectors one would then obtain the N-curves in the

upstream direction, stepwise from detector to detector, i.e., “predicting” with  A or  U  and then

“smoothing” the data at each detector.

2.3 Properties of the procedure.

This section examines the effect that errors in the input data ND and the “fundamental

diagram” mDU(q) have on the solution.  It will be shown that the maximum error in the solution

cannot exceed the maximum error in the data.

Let us first consider the effect of the differential operator  dU = Udx  on two similar

(piecewise linear) data curves N and N’.  We are interested in determining the change in the

maximum vertical separation between the curves that is induced by the operation.  

In the neighborhood of the location where this maximum change takes place, one or both

of the curves will bend; e.g., as shown on Fig. 4.  The dashed lines on this figure represent the

upstream curves.  It should be clear from the geometry of the figure that at the time t* where the

separation is at a maximum one or both of the curves must bend, and that the smoothed lines SN

and SN’ must share a common flow q* at that time. (Otherwise their separation would be

changing at t = t*, which is not possible.)  

We then see from the rules of Fig. 4 and the present geometry that the separation between

either of the lines, e.g., N, and an intermediate data line N* with slope q* (also shown in the

figure) cannot increase because otherwise there is a contradiction.  That is, if the separation

between dUN* and dUN was larger, as shown in the figure, then the shifted line corresponding

to state q* of curve N would intersect dUN (since the shift imparted to the line with slope q* is

the same as that imparted to N*), which is impossible given the rules of Fig. 3.  

Since neither of the solution lines can drift away from the intermediate line, it must be true

that: 2dUN - dUN’2 # 2N-N’2.  Clearly now, since  U  is transitive, it follows that:

 2UsN - UsN’2 # 2N - N’2     for all s, N and N’. (6)

Note that the operation  2N - N’2, which is the L4 norm, satisfies the triangle inequality.  

Equation (6) is reassuring because it implies that errors in the input data do not grow into
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7    Note that the operator cannot be applied to the raw data curves because they are step functions.  The statement
assumes that both raw data curves can be approximated by valid piecewise linear curves (with slopes between 0 and
qmax) to within a tolerance , which can be neglected compared with the error in the data ,’; i.e., that the discrete
and continuous curves are undistinguishable for practical purposes. If this is not the case, the discrepancy between
the two raw curves could be anywhere in [,’±2*,*] by virtue of the triangle inequality and this amount could be
(slightly) smaller than the discrepancy in the solution.

the solution.  That is, if we take N and N’ to be the closest possible approximations  respectively

to a discrete data curve  Ñ  that is subject to measurement error and to the true (unknown) data

curve  Ñ’ then (6) indicates that the maximum discrepancy in the two input curves cannot

increase.7

Equation (6) can also be used to decide how many linear segments are appropriate for

approximating a few hours of data, depending on the level of approximation that one desires in

the predictions.  This is illustrated with the following example.

Example.   Figure 5 displays by means of solid lines the periodic N-curves predicted by

the theory at evenly spaced locations upstream of a pretimed oversaturated traffic signal with a

“true” downstream curve N’D  when the m(q) curve for the segments between neighboring

locations is as in the top of the figure.  The dashed lines are the predictions obtained from an

approximation ND where the signal cycles have been smoothed out.  Note how the separation

between the solid and smooth lines declines as one moves upstream, and that their separation

would not increase if the ND curve was shifted but remained parallel to the original.

Note as well that the convex corners of ND are smoothed, but the concave ones remain

sharp.  This is true in general: for concave relations the convex corners are smoothed and for

convex relations the concave corners are smoothed.  Furthermore, corners are never sharpened

for any m(q).#

Insofar as random variations in accumulation on the order of * = 10 vehicles per lane can

be expected for freeway sections comparable with a mile for the same set of downstream

conditions, e.g., due to stop-and-go effects and randomness in vehicular spacings, the above

suggests that raw input data does not need to be linearized beyond this level of precision.  The

ability to work with roughly approximated data should facilitate calculation and data

interpretation, since the required effort grows with the number of state changes. 

Errors in the approximation of the m(q) relation are examined next.  Note first, using the

same logic as above,  that “dU” has the reverse effect of (6) relative to the minimum separation
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between two disjoint N-curves.  That is, the minimum separation operation  s(N, N’) satisfies:

s(UN, UN’) $ s(N, N’). (7)

Inequality (7) implies that  U  is a monotone mapping; i.e., that:

 N > N’  Y  UsN  >  UsN’   for all s. (8)

Monotonicity is reasonable; it means that if every vehicle leaves a (queued) downstream location

on day “1"  earlier than on day “2", then every queued vehicle will also get to pass upstream

(queued) locations earlier on day “1" than on day “2".

Consider now two normalized m(q) relations for a given highway-- true and approximate

--and the  associated operators U’ and U.  We show below that the maximum error in the solution

can never exceed the maximum difference between the true and approximate accumulation curves,

2ms(q) - m’s(q)2; i.e., that:

 2UsN - U’sN2 # s)     for all s and N, (9)

where ) is the maximum discrepancy between the two normalized accumulation curves.

This statement is proven by induction; i.e., by showing that Eq. (9) is true for length ds

(fact “a”); then assuming that Eq. (9) is true for length  s (“b”); and then showing that (a) and (b)

imply Eq.(9) for length s+ds (fact “c”).  A geometrical construction such as that of Fig. 4 reveals

that (a) is true. Then, if we write  Ns  and  N’s  for  UsN  and  U’sN  we just need to show that the

norm of (UdsNs - U’dsNs) = (UdsNs - UdsN’s) + (UdsN’s - U’dsN’s) does not exceed (s+ds)).  To see

that this is true, note that

2UdsNs - U’dsNs2 # 2UdsNs - UdsN’s2 + 2UdsN’s - U’dsN’s2,

by virtue of the triangle inequality, and also that (i) the first term on the right side of this inequality

cannot exceed s) by virtue of (6) and fact (b), and (ii) the second term cannot exceed ds) by



-16-

virtue of fact (a).   It then follows that the first term cannot exceed (s+ds)). Q.E.D.

Taken together, Eqs. (6) and (9) imply:

 2UsN - UsN’2 # 2N - N’2 + s)      for all s, N and N’ ,

again by virtue of the triangle inequality.  This result is important for model validation purposes

because it bounds the portion of the discrepancy between observation and prediction,   1NU - ÑU1 ,
that can be attributed to the combined effect of errors in the N-curve data and in the estimation

of m(q).

3.  LIGHT TRAFFIC AND QUEUED TRAFFIC ON AN INHOMOGENEOUS HIGHWAY

3.1 The three-detector problem

Consider now three locations on a highway x1 # x2 # x3 , and assume that the N-curves at

x1 and x3 are known.   The identifiers “1", “2" and “3" are now used for the locations instead of

U, M and D, because the ideas will soon be generalized to more than 3 detectors.   We also

assume that traffic is queued at x3 , that the queue does not reach all the way back to x1 (traffic

is unqueued at x1),  and that the flow observed at any unqueued location over any period of time

that includes a significant number of cars never exceeds the maximum flow (qmax) that can be

dissipated by a queue.  These assumptions will be relaxed later.  Our immediate goal is to predict

N2 from the available information.

To this end, a general model of (uncongested) traffic with multiple vehicle classes will be

specified in terms of a “downstream operator” that returns the conditions that should prevail at

a downstream location from those observed upstream.  The upstream data consists of a set of

cumulative count curves by vehicle class N1(i) , where the parenthetical subscript  i = 1, 2, 3, ...

refers to the class and the other subscript to the location, and a combined curve N1 = 3i N1(i) .  The

boldface symbol N1 will denote the complete set of curves, including the combined curve. 

It will be assumed that there is no passing within each vehicle class and that passing is

possible among vehicles of different classes.  Note that this assumption does not reduce generality

because one can always define a separate class for each individual vehicle.  It is also assumed that

the uncongested traffic model can be described in terms of a “downstream” operator D12 which
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predicts N2 from N1; i.e., N2 = D12 N1.  This assumption is somewhat restrictive because it implies

that the conditions found at x1 are sufficient to describe what happens downstream, but the

restriction is minor.  The proposed model includes as special cases  all the continuum models

introduced to date, as well as most microscopic theories and simulations. A parenthetical subscript

(i) and no boldface will be used for the operator that returns the curve for the ith vehicle class; this

subscript will be omitted for the aggregate curve.

Postulate 4: Queue behavior.  It will be assumed that a queue always forces individual

vehicles and labels entrapped in it to travel more slowly than predicted by the light traffic

theory, and that queued vehicles cannot pass.  It will also be also assumed that the queue

has no effect upstream of its domain of existence and that any transition from light traffic

into queued traffic is rapid and stable.#

The first premise of this postulate excludes situations where some vehicle classes with very

low desired speeds may be embedded in a faster moving queue.  It also implies that a vehicle, or

a label, cannot cross a highway location such as  x2 any earlier than the time allowed by light traffic

theory and the time allowed by the  queue.  In other words, the vehicle number seen by an

observer at x2  at time t cannot not exceed the minimum of the number arising from light traffic

theory (from conditions at x1 ) and the number arising from the heavy traffic theory (from

conditions at x3 ).  That is:

N2 # min{U32N3 ;  D12N1}. (10)

Equation (10) should be a pure equality for the two extremes of our section,  x2 . x3  or  x2 . x1 .

This implies that reasonable curves  {N1 ; N3} should satisfy:

N3 #  D13N1 (11a)

and

U31N3 $ N1. (11b)
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Equation (11a) specifies that a vehicle cannot pass by x3 any sooner than predicted by the light

traffic theory and the upstream data at x1.  Conversely, (11b) specifies that a vehicle cannot pass

by the upstream location any later than if it had been embedded in a queue the whole way--since

only a queue can slow down a vehicle.

Stability - For  x2 . x3   we expect (10) to be a pure equality.  Thus, if the interval is

divided into short segments of length dx 6 0, postulate 4 would imply that the intermediate N-

curves should satisfy the following relation,

Nx = min{UdxNx+dx ;  D1xN1} = min{AdxSNx+dx ;  D1xN1}. (12)

which allows us to calculate N2 recursively for any intermediate location, x2.

Note that the operator S in (12) smooths all the corners of Nx+dx , including those that

involve a transition between a queued and unqueued state.  This is logical; it essentially prevents

the queue from growing so fast that perturbations introduced at its back end grow into it. [If the

back of the queue propagates too fast then (12) automatically introduces queued transition states

with (fast) waves that can keep up with this growth.]

Note as well that procedure (12) can be used without any changes even if the end of the

queue is not always contained between x1 and x3 ; i.e., even if it ebbs and flows past these two

locations.  This is true because the particular location of the back end of the queue when it is

outside our study section is irrelevant insofar as the interior of the interval is concerned.  Thus, the

behavior of traffic the study section (x1, x3) should be the same as if the end of the queue never

strayed far from our interval.  That is, we can assume in our calculation of  N2 that the freeway

is permanently queued at a location “3+” immediately downstream of “3”, so that curve N3 (in a

queued state) is observed there, and permanently unqueued at a location “1-” immediately

upstream of “1”, so that the curves N1 (in an unqueued state) are observed there.  Recipe (12) is

simply the result of using the data at “1-” and “3+” as an input. 

3.2 The P-detector problem.

Let us now assume that there are more than three detectors, located at positions  xp  (p =

1, 2, 3, ... , P) , with xp < xp+1 , that data are available for the first and last detectors and that we
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8    The numbers in this example could be plausible (although very rough) for a two lane freeway if the detectors
were spaced about 1 Km apart, time was measured in minutes and vehicles in groups of 24 (a couple of dozens).

want to predict Np for 1 < p < P.  If the detectors are closely spaced (12) would suggest:

Np . min{ Ap+1,pSNp+1 ;  D1pN1 } for 1 < p < P . (13)

This is a reasonable approximation because with closely spaced detectors the new transition states

are always introduced close to their true birthplaces.  We estimate that temporary errors in count

due to this discrepancy should be on the order of just a few vehicles per lane of freeway for

detector spacings comparable with 1 Km.  Because errors in count depend on the square of the

spacing, they can be virtually eliminated by reducing the detector spacing to a few hundred meters.

Some of these ideas are illustrated in the following subsection with two examples. The subsection

may be skipped without loss of generality.

3.3.- Examples.

The first example examines an uphill section of a two-lane freeway with a substantial

portion of slow-moving trucks when an incident blocks the road.  It is assumed that the m(q)

relation is as shown on part (a) of Fig. 6.  The (unspecified) units of time and vehicle count have

been chosen on this diagram so as to ensure that the numerical values for flow, trip time and

vehicle number that arise in the solution are small “round” numbers.8

The proposed behavior of the traffic stream in the absence of downstream queues is similar

to that seen on California State Highway 17 just out of “Los Gatos” and toward “Santa Cruz”,

which, as we shall see, is inconsistent with the KW model.

Part (b) of the diagram displays the N-curves observed at a location x1  (solid lines) for i

= 1 (cars) and i = 2 (trucks).  This is the data set  N1 .  Note that the automobile flow reaches a

maximum q(1) = 4 for 0 < t < 1.  This flow is assumed to be close to capacity, so that both lanes

of the freeway are almost fully used.  At t = 1 a steady stream of trucks with q(2) = 1 enters the

road directly upstream of our location.  Because trucks travel more slowly, cars are assumed to

avoid the right lane so as not to lose their position in the faster moving left lane and the system

capacity drops, as in California State Highway 17.  It has been assumed in the example, somewhat
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9    Interestingly, note that this queue could be eliminated by forcing all cars to travel at the speed of the trucks; e.g.,
by reducing the speed limit ! 

drastically for illustration purposes, that the entrance of the trucks reduces the car flow by a factor

of two.  This reduction should generate a growing car queue upstream of x1 , but this is of no

concern to us.9  Of interest is the effect on the traffic stream downstream of x1 , which would

consist of two non-interacting parallel vehicle lines moving with different speeds for t >1.

Thus, the unqueued traffic model for our problem can be very simple: we propose that cars

and trucks should travel at class-specific speeds that are fixed but significantly different.  The

dotted lines are the class-specific N-curves at location x2 that are obtained with this simple

unqueued model by shifting each curve by its specific trip time.  This is assumed to be 1 unit for

cars and 2 for trucks -- a large speed difference is used so as to enhance the clarity of the

diagrams.   The summation of the counts across both classes yields aggregate curves  N1  and

D12N1; see part (c) of the figure.

This part of the figure also contains the predicted curve D13N1 for a location x3 that is twice

as far downstream, assuming that the highway is homogeneous.  The resulting (t, n) plot is divided

into four regions of constant flow “q” and constant average trip time “J”, as indicated.  The values

of the accumulation “m” between detectors that would arise in these regions if conditions did not

change with time (i.e., the vertical separation between the sets of parallel lines) is also shown.

These four stationary states are also displayed on part (a) of the figure and are labeled “a, b, c, d”,

in chronological order of occurrence.  Note that a “fundamental diagram” cannot be defined for

this problem in unqueued traffic because more than one value of   m  arises for q = 3.  Therefore

the KW theory does not apply.

Let us now assume that an incident that completely blocks the road occurs at point  (t, x)

= (2, x3 )  and examine with the help of Eq. (13) (with p = 2 and P = 3) the effect of the queue on

N2.  Since D12N1 has already been obtained, the only missing data item is curve N3 , which will

readily yield the first term of (13): A32SN3.  In order not to clutter the diagram these steps are

taken on part (d) of the figure which contains copies of curves N1 , D12 N1  and  D13 N1 .  

We hypothesize that curve N3 matches the predicted curve D13N1 up to   t = 2  and, since

the incident does not let any vehicles through, we also assume that N3 adopts a slope of zero (state

“f”) for t > 2, as shown.  (The behavior of the bottleneck, albeit reasonable, is not part of the
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proposed theory.)  The operations A32S  consist of a “smoothing”, which introduces state “e” into

N3  at  t = 2 (see dotted line), followed by the shifts and truncations arising from algorithm A.  In

our example the result is the curve labeled A32SN3 , as the reader can verify from the data in part

(a) of the figure.  As per Eq. (13),  N2  is the lower envelope of the two curves calculated for

location 2.  This solution is interesting because it involves a transition from state “d” to state “f”

at the end of the queue (where D12N1 = A32SN3) which turns out to be unstable.

 That is, if curve N2 were to be used to make predictions farther upstream (e.g., at some

location x, such that x1 < x < x2) then break-point state “e” would have to be introduced as part

of the smoothing step for N2 , as shown in the figure.  Consideration shows that the new state

would indeed be propagated upstream.  

Part (e) of the figure contains the exact stable solution of our problem on a (t, x)-plot. It

displays the (t, x)-domain for each state arising in our problem.  The figure is the result of applying

(13) with infinitely close detectors.  Curve N2 can be obtained from it by integration of the flows

observed along the line x = x2.  One can see at a glance that the only difference between the exact

curve and that on part (c) of the figure is that the latter should have been slightly beveled due to

the appearance of state “e” somewhere between t . 7 and t . 9.  The largest discrepancy in count

is only about ½ vehicle unit, which converts to about 12 vehicles for the two lanes (given the 1

Km separation between detectors).  The approximate curve, which is otherwise exact, does

introduce state “e” at t = 8.  Thus, the discrepancy in count would not grow in magnitude into the

solution for x < x2.  Instead, it could eventually disappear as occurs with the earlier episode of

state “e”, which has no lasting effect.

Another example, presented in Fig. 7, is the well-known lead-vehicle problem of KW

theory for a homogeneous highway in which the flow-density relation is consistent with the m(q)

curve of part (a).  This curve corresponds to a section of length “L”, so that the density m/L.  The

example demonstrates that the results in the two theories are consistent with each other.  

Part (b) of the figure shows the unique solution with stable shocks that arises in KW theory

when a slow vehicle (pace = 16) enters a steady traffic stream that is in state “a”.  The reference

locations xp shown on the figure are assumed to be spaced L distance units apart. The entrance

of the vehicle at point (t0, x3)  induces  a two-state queue upstream of it that encompasses states

“d” and “e”; state “c” does not appear into the solution, nor do any other queued states.  This is
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10    Note that state “a” of N3 was treated as if it was queued, “ a’ ”.

the stable solution in KW theory.  

Part (c) of the figure shows the N3 curve for the downstream location, which can be

justified outside the proposed theory.  The figure also displays curve D12N1 , and curve RSTPQE,

which is the result of applying the operator pair A32S  to N3 .
10   The minimum rule finally yields

N2  = curve OPQE.  Note how the flows of this curve and the times at which the transitions occur

precisely match those in part (b) of the figure.

3.4. The inhomogeneous highway with over saturated flows: time-dependent bottlenecks.

It is assumed here that the freeway can be modeled as a series of homogeneous sections

with boundaries at a series of points {xp }.  Each section is characterized by an mp,p+1(q) relation

with a maximum stationary flow and an operator family: Up,p+1 (or Ap,p+1).  Each boundary is

characterized by a time-dependent capacity Cp(t) which is assumed never to exceed the maximum

stationary flows of the two sections it separates.   This means that mp,p+1(Cp) and mp-1,p(Cp) are

always defined. 

Only “transitive” light traffic theories, i.e., such that Dp,p+2 = Dp+1,p+2Dp,p+1 , are considered.

In other words, models for which knowledge of the N-curve by vehicle class at a location is

sufficient to describe the behavior downstream without any further information from upstream.

Thus, each Dp,p+1 is a property of a section (p, p+1), which acts on vehicles independent of what

other sections have done.

In order to make predictions when flows larger than capacity arise at some locations it is

necessary to introduce one last assumption with regard to the boundaries between sections:

Postulate 5: Bottleneck behavior.  The flow through a bottleneck  xp  is always as large

as possible but cannot exceed any of the following: 1) the bottleneck capacity, 2) the

predicted aggregate flow across classes from upstream data and 3) the prediction from

downstream data.#

This bottleneck behavior will prevent flows larger than the maximum possible to be put through
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any section. According to postulate 5 the aggregate flow upto time t should be given by:

Np (t) = min{ (Up+1,pNp+1)(t) ; (Dp-1,pNp-1)(t) ; Np(t-dt) + Cp(t)dt }, (14)

which is a simple extension of  (13) that recognizes the capacity condition.  Note that the transitive

property of the light traffic model has also been used in (14).  

The capacity  Cp(t) can be either: 1) exogenously defined or 2) exclusively dependent on

system conditions prior to t.  (It can depend for example on how long people currently passing

through the bottleneck have been delayed, how long the bottleneck has been active, etc...)  Under

these conditions, Np(t) can be evaluated for all  t by stepping through time with Eq. (14).  This is

true because the first two terms on the right side of (14) only depend on the neighboring N-curves

for times prior to t-dt.  This calculation strategy is very efficient for computer implementation

because in the final analysis it turns out that one only needs to carry forward a very small amount

of information from one step to the next.  A description of these details is beyond the scope of this

paper, however, and is not given here.

Equation (14) is sufficient for prediction purposes if the practical situation only involves

one vehicle class.  Otherwise, the algorithm needs to be completed by providing a recipe that gives

the disaggregate solution  Np(t)  based on (14).

If the unqueued theory involves no vehicle passing, e.g., as in Newell (1993), this can be

done by ensuring that vehicles from all classes should share the same trip time if they arrive

simultaneously at the upstream detector.  This rule can be expressed in terms of the N-curves as

follows:

Np(t) = Np-1(t’) ,      for some t’ < t. (15a)

In other words, we should find the only  t’  for which  Np-1(t’) = Np(t) , which is possible since we

are stepping through time and  t’ < t  , and then set Np(i)(t) = Np-1(i)(t’) .  Note that  t’  is the time

when label  Np(t)  arrived at the detector directly upstream fom p.  Equation (15a) expresses the

FIFO rule because vehicles do not pass labels under FIFO and as a result all the vehicles that

crossed the upstream detector prior to  t’ must have crossed the downstream detector prior to
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t.

For non-FIFO models the following expression is exact when there is no queueing:

Np (t) = (Dp-1,pNp-1)(t) ;    if  Np (t) = (Dp-1,pNp-1)(t).  (15b)

Of course, (15a) continues to hold when the section (xp-1, xp) is entirely queued.  Thus, we propose

to approximate Np (t) by (15b) if its no-queueing condition holds and by (15a) otherwise.  Thus,

the complete algorithm is given by (14) and (15).    To be sure, the use of (15a) when a section

is only partially queued introduces a small error into the solution, but for typical applications

where vehicular speed differences are on the order of 10 or 20 Km/hr and detectors are 1 or 2

Kms apart, the discrepancy between (15a) and (15b) is small relative to other sources of noise.

These errors can be reduced by shortening the detector spacing.  The errors can also be reduced

with a more elaborate calculation of the time and location where each vehicle joins/leaves the

queue.  This calculation can be streamlined in some cases, e.g., with the procedure suggested in

Lawson et.al. (1997), but a discussion of this somewhat minor issue is beyond the scope of this

paper.

4.  CONCLUSION

The ideas presented in this paper can be extended to situations including classes of

vehicles,  i , that space themselves differently in a queue if it is reasonable to assume that a generic

m(q)  relation in terms of “passenger car equivalents”,  "i , exists; i.e., if after assigning "i tags

to each vehicle of class i (for all classes) we find that a reproducible  m(q)  relation for tags exists

that is independent of the queue composition.  If this is true, we can simply view each class as

being composed of convoys of consecutive vehicles that carry exactly one label; i.e., such that 1/"i

vehicles of type i = 1 convoy.   Since these convoys would behave in agreement with postulates

1-4, the results obtained up to Sec. 3.3 apply to the convoys. [If one prefers to work with vehicles

rather than convoys then it should be remembered that the overall count of labels is related to the

vehicle counts by: N1 = 3i "iN1(i).]   For the results of Sec. 3.4 to apply, a reproducible relation

Cp(t) in terms of tags would have to exist.

The ideas in this paper can also be extended to multi-commodity networks where
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physically meaningful boundary conditions have been defined at the nodes.  To do this properly

one needs to allocate vehicles going to different destinations to different classes since the

composition of the traffic stream by destination is a determinant of turning percentages. Newell

(1993) and Daganzo (1995) discuss possible boundary conditions at simple junctions.
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