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Abstract

This paper presents a simple approximate procedure for traffic analysis that can be
described geometrically without calculus. The procedure, which isgraphically intuitive, operates
directly on piecewiselinear approximationsof the N-curvesof cumulative vehicle count. Because
the N-curves are both readily observable and of direct interest for evaluation purposes (e.g., they
yied the total vehicle-hours and vehicle-miles of travel in a time interval, and the vehicular
accumulation asafunction of time) the predictions made with this method should be practical and
easy to test.

Queued traffic istreated first. Predictions of cumulative counts for thistraffic regime are
based on three mild assumptions stating the relationship between the linearized input and output
curves of vehicle count. These assumptions are a simple twist on those of the kinematic wave
(KW) modé of Lighthill and Whitham (1955) and Richards (1956); thus, the part of the proposed
procedure that deals with queued traffic is just an efficient way of solving the KW model based
onreadily observabledata. Themethod issomewhat more complicated but also moregeneral than
that in Newell (1993). The paper shows that the particular way in which the data are linearized
prior to the procedure is not important provided one works within certain tolerances, and that
errors in the model parameters also have a limited effect. These results can help discriminate
between model errors and calculation errors in avalidation effort.

The second part of the paper examines traffic streams that include queued and unqueued
traffic, aswell as bottlenecks. Here, unqueued traffic is allowed to obey any reasonable model,
e.g., ascould bethe result of asimulation with multiple vehicle classes, driversthat wish to travel
at different speeds and certain rules for passing. The unqueued model, however, cannot include
vehicle classes with speeds lower than the maximum possible in queued traffic. The bottlenecks
are assumed to have a well-defined capacity and always to alow the maximum possible flow
consistent with: (i) theavailability of upstreamtraffic, (ii) the presence of adownstream queueand
(iii) the capacity. The capacity can be time-dependent and endogenous. The paper presents the
theory, some examples and a computational framework.



1. BACKGROUND AND MOTIVATION

The kinematic wave (KW) model of Lighthill and Whitham (1955) and Richards (1956),
is the simplest theory of traffic dynamics that recognizes that vehicles take space. However, the
KW theory has two (relatively minor) deficiencies: (i) it does not model unqueued (light) traffic
properly because it does not account for passing, and (ii) it models traffic inside queues as being
smooth-flowing when the redlity is sometimes different. The KW theory is aso difficult to test
because it is based on variables such as density that are difficult to measure and even define. In
view of this, it seems that a dight modification of the theory that would alleviate some of these
deficiencieswhile being based on readily observable data could be morereliable and easier to test.

Newell’ssimplification of the KW model (Newell, 1993), which assumed a concave flow-
density relation and used waves to operate on curves of cumulative count was afirst step in this
direction.® The queue analysis methodology in Lawson et a (1997) for time-independent
bottlenecks, which does away with waves, density functions and local flow-density relations
altogether, represents yet another step; its predictions are consistent both with KW theory and
(approximately) with certain forms of traffic instability. A combination of the ideasin these two
references has been applied to the time-dependent case with concave flow-density relations (Erera
et al, 1997).

The present paper relaxes the requirement of aconcave flow-density relation and extends
the ideas in these references further, so as to address some of the above-mentioned concerns. It
presents an approximate macroscopic model of traffic behavior for an inhomogeneous highway
with bottlenecks that overcomes deficiency (i) but not (ii). Of course, a model’s inability to
capture the details of traffic behavior inside queues (ii) does not mean that it cannot predict
accurately important measures of performance such as total delay, time-dependent vehicle trip
times and accumulations. Thus, the paper suggests possible tests for this hypothesis. It isaso
shown that the model predictions of these relevant measures are insensitive to input data errors.

The paper isdivided into two main parts; Sec. 2 which focuses on queued traffic, and Sec.
3 which extends the results to mixed traffic. Section 2 shows how to predict the cumulative N-

curve of vehicle count at a particular location from downstream data at another location when

1 validation work is now proceeding to see whether waves behave as predicted in this theory--see Cassidy and

Windover (1995,1996).



traffic isqueued. The method isjust afast and intuitive way of solving a kinematic wave (KW)
problem. The effect of this approximation, e.g., on calculation errors and the interpretation of
field tests, is examined and discussed. Section 3 then extends the model to mixed
(queued/unqueued) traffic for highways with time-dependent bottlenecks. A generic, non-KW,
model of unqueued traffic including multiple vehicle classesisused. This section shows how the
“N-curves’ of vehicle count, both by class and aggregated, can be predicted when input counts

are given at the upstream location. Examples are provided.

2. TRAFFIC BEHAVIOR INSIDE QUEUES: THE 2-DETECTOR PROBLEM

Our system isafreeway section between two detectors (U-upstream and D-downstream)
in which traffic flow is queued as a result of some unspecified downstream restriction(s). The
system is assumed to be sufficiently far from any exits or entrances, as would occur for example
in the middle of along tunnel or bridge, so that the vehicular trip times, t, on al itslaneswould
be smilar. Our godl is predicting approximately the time-dependent traffic accumulation and
vehicular trip times between “U” and “D” when the “schedule’ of departuresisgivenat “D”; i.e.,
to predict the N-curve at “U” from that at “D”.

2.1 Preliminaries.

N-cur ves- Thevehiclenumber function N(t, x), originally proposed in M oskowitz (1965),
later refined in Makigami et al (1971) and more recently introduced to KW theory in Newell
(1993), shall be used throughout this paper to summarize the traffic stream features of interest.

Moskowitz' s function ismost easily described in terms of imaginary numbered label s that
are carried by vehicles. It is assumed that each vehicle carries one and only one label at all times,
and that the labels have been numbered consecutively at timet = O, increasing in unit increments
in the upstream direction along the line of cars. It is aso assumed that labels are exchanged
among passing vehicles so as to ensure that labels do not pass one another even if vehicles do.
Thus, the number on each label indicates at al timesthe position of itscurrent vehiclein thetraffic
stream. Of course, if thereisno passing labelsalso identify vehicles. Inany case, sincethereisone
and only one label with every vehicle at al times, a count of labels, or label-miles, or label-hours

in aregion of the (t, x)-plane, which can be easily derived from the N(t, x) function, always



matches the corresponding count for vehicles. If traffic flowsin the direction of increasing X, as
isassumed in this paper, then N(t, x) increases with t and decreases with x. This meansthat N(t,
x) isafunction of t for agiven x and also afunction of x for agivent.

Note that aparticular Moskowitz function describes ageometric surfacein (t, x, n) space.
Theintersection of thissurface and the planex = x', corresponding to aspecificlocation X', yields
a(t, n) curve that will be denoted by a capital letter (usually “N”) subscripted by an identifier of
the location; e.g.,, N, . The capita letter represents the particular geometric surface (traffic
instance) from which the curve comes. When alocation isidentified by means of a subscript, e.g.,
X, , the subscript may be used to identify the corresponding (t, n) curve, e.g., N,. A collection of
“N-curves’ at different locationsalong ahighway { x, } isuseful for evaluation purposes because,
asiswell known, the horizontal separation between two N-curves for a given ordinate, n, (or
their vertical separation for agiven abscissa, t) represents the trip time of the n™ label between the
two locations (or the vehicle accumulation at timet). The N-curves readily yield information

about vehicle-miles and vehicle-hours of travel aswell. They will be the object of our anaysis.

Tolerances- Because the procedures presented in this paper are based on approximations
to the data and to the parameters of the model, we introduce now the notion of tolerances. The
paper will show that the numerical error in N due to the approximations is uniformly bounded.
In particular, it will show that if Ny and N’ are two input data curves within a tolerance e
(vehicles) of each other, then the output curves at any upstream location N, and N’ will also be

within the sametolerance. That is,

wherethe vertical bars signify the maximum absol ute differencein count between the curves. The

use of these and related ideas in validation experiments will be discussed.

2.2 The KW Theory Revisited.
This subsection presents a simple method for predicting N, from N,. The procedure is

based on three postulates equivalent to those of KW theory. It will be described in steps, one



postulate at atime, while at the same time introducing the (limited) scenariosthat can be studied
without the postul ates not yet presented. Thisincremental approachisuseful becauseif thetheory
is found not to match reality then we can see which of the assumptions (if any) can be salvaged

inan effort to construct a better theory and which scenarios can still be studied despite the flaws.

Postulate 1: Reproducibility of stationary conditions inside a queue. If curve Np
becomes straight with slope g, and remains so as time advances, then curve N, should
become paralle to it and remain to theleft of N, by anamount t(q). Alternatively, we
canrequirecurve N, tostabilizereproducibly m(q) =qrt(q) vehicle positionsabove curve
Np.#

This postulate means that the real curve N, should fluctuate within a specified tolerance of N, if
thereal N, iswithin aspecified tolerance of N, . This should be reproduced on every observation
instance independent of the location and/or cause of the obstruction that is generating the queue.
Note that we have not required an absence of stop-and-go oscillations and have not said anything
about the geometry of the highway between the detectors, which can include lane drops, changes
in grade, etc. The only condition imposed isthat the observed flow should be strictly less than
the maximum possible stationary flow through the section, g, , ahd that the section is queued.
We assume that postulate 1 holds for any pair of locations x;, X; (x; < ;) inside the queue and
therefore that the transglations at consecutive locations are additive; i.e., that m;(q) + m,(q) =
m,(q). From now on the location-specific subscripts may be omitted when there is no room for
confusion.

The postulate can be violated in at least two ways: (i) if one finds that a reproducible
relation between t (or m) and q cannot be found even though the N-curves become parallel, and

(ii) if the N-curves do not even become parallel.? Although the postulate can be useful by itself,

2 |f certain vehicles had to be on certain lanes (e.0., for the purposes of turning) then, depending on which lanes

are obstructed downstream on a particular day, one may observe significantly different trip times and vehicular
accumulations across lanes and days, even if the overall flow is roughly the same every day. If the overall
accumulation varies across days with the same q , thiswould giveriseto afailure of type (i). A failure of type (i)
could also ariseif traffic was found to be unstable on some days and stable on others (with the same g), and if the
trip timeswereto be significantly different on stable and unstable days. A failure of type (ii) could ariseif people's
behavior inside the queue were to depend on how long they have waited or on other events occurring outside our



e.g., asin the model of Lawson et a (1997), more hypotheses are needed in order to treat time-
dependent downstream data.

It will now be assumed that the highway section is homogeneous, in the sense that the
stationary accumulation between “D” or “U” and any intermediate location “M” whichis 100¢%
of the way toward “U” (i.e., such that the following relation holds for the distance coordinates
of the three locations: (Xp-Xy) = a(Xp - Xy) for O0<a <1) satisfiesmp,(q) = amyy(q) and
my,,(q) = (1-a) mp,(q) foral q. Thismeansthat accumulationsand trip times should be evenly
distributed over the segment for all flows. Clearly, homogeneity allows usto writeall them, ,.(q)
of ahighway interms of the normalized relation between m and g that holds for a segment of unit
length, K(q); i.e, m,,.(q) = (x-x")K(g). Our objective in this section isto find a reasonable set
of rulesthat will allow usto predict N, from N, for any queued homogeneous segment on which
thereis areproducible m,,(q) relation.

In what follows it will be convenient to describe the performance of the algorithm on a
particular highway by a set of “upstream” operators U = {UJ}, with one operator for each

possible segment length, s. That is, UN denotes the result of the algorithm, when applied to a
generic curve “N” at the downstream end of a length-s segment. When referring to a specific
highway segment, U will be subscripted by two variables that identify the end points of the
segment (instead of the single variable®length”) with the downstream identifier placed first. With
this convention the output of the algorithm for a given downstream curve and particular highway
segment can be compactly expressed as N, = Uy Np. Note that when the two identifiers are
coordinatesthen U, ,, = U, ...

Thefirst new postulateisjust an extension of postulate 1 to the time-dependent case. We
ghdl assumethat N, is piecewise linear, changing from state “i” to state “i+1” at timet. The
reproducibility postulate indicatesthat if thereisatransition between two | asting stationary states
at detector D, indicated by a change in the slope of N, from g, to g, , then the same stationary
states should also arise at the upstream detector. It is now further assumed that the transitions
between neighboring states occur rapidly and propagate upstream as awave. (We anticipate at
this point that not all pairs of states will be alowed to be neighboring in the final version of the

system.



model for stability reasons.) We assume the following:

Postulate 1 (Time-dependent reproducibility). Lasting stationary states are still
reproduced upstream. Furthermore, transitions between neighboring states propagate

sharply as awave#

The procedure implied by this postulate is illustrated in Fig. 1 for the smple case when there is
only one transition. Part aof the figure shows that the construction of N, is easy, insofar as the
two segments of curve N, must be at specific separations from the corresponding segments of
Np.  The procedure can be made more intuitive with the diagram on part b of the figure. It
contains both, an m(q) relation and a companion curve of t(q) vs m(qg) with g (the slope of the
ray passing through the origin) as the parameter. The relationship between m (or 1) and g in
queued trafficisgenerally expected to be declining, as showninthefigure.® Curvem(qg) will play
the role of the so-called “fundamental diagram” of KW theory. The companion curve of mvs,
T can be useful because the axes of this diagram have the same physical dimensions as those of
the (t, n)-plane, and this can help visualy in the construction of the N, curves. In particular, if the
diagrams have been drawn with the proper scale then the horizontal and vertical separation
between any two parallel portions of the N-curves that correspond to the same state should be
egual to the coordinates of the state on the companion portion of the “fundamental diagram”.
Furthermore, the slope of an N-curve should aways be equal to the slope of the line on the
companion diagram that connects the given state with the origin. Let us now return to part a of
the figure.

Note from the geometry of the picture that the transition point “C” from the first segment
to the second must occur with a precise delay, w,, , that should only be a function of the two
states “1" and “2" among which the transition occurs. More specifically, note from the slopes of

the sides of triangle (ABC) that this delay can be written as:

Wy, = - [m-m,]/[g,-,] (2

®  Thisisnot considered a postulate, since it can be taken as our definition of a queued state.



and that as a result w,, will be positive for any pair of states if m(q) decreases. A positive w
means that information (causation) travels in the upstream direction, as one would expect inside
gueues. A graphical interpretation of (2) is possible from the fundamenta diagram; namely, that
the negative dope of aline joining two states on the m(q) plot is the delay in the propagation of
information.*

If N changes stationary state more than once and the timest; = t; + w;;,;, which would

indicate upstream state changes satisfy:

t) <t.,, forali, wheret,=t+w,,, 3

then curve N, can be obtained by applying the graphical procedure of Fig. 1bto al the states and
the result will contain all the original states with breaks at the t’;. The time (t',, - t') isthe
duration of state i+1 upstream.

If Eq. (3) isnot satisfied, additional assumptions are needed. The following composition

rule for the upstream operator is proposed:

Postulate 2 (Transitivity). If s=s +8' ,thenU,=U,U, > #

Thismeansthat if N, isthe curvethat is obtained from N using relationship my,(q), then
N, should aso bethe curvethat is obtained in two steps: (i) by applying the procedure to curve
N, with relationship mg,,(q), and (ii) repeating the process with the resulting curve (N,,) and
relationship my,,(q). The postulate also implies that a highway section can be divided into many
parts and studied sequentially.

Thereader isencouraged to verify that the procedure asit currently standsisdivisible and
satisfies this postulate; e.g., that the breaks in the N-curve at any intermediate position that is

1000.% of the way toward the upstream detector occur with adelay aw;, .

4 Inthe parlance of KW theory, this delay is the shockwave trip time.

®  Insofar asthe composition operation is obviously closed and associative, postulate 2 implies that the set of
operators and the composition operation is a semigroup that isisomorphic with the semigroup of segment lengths
(the non-negative real numbers) with addition.



Postulate 2 can be used to extend the procedure to cases where (3) does not hold. If
postulate (3) is not satisfied then we look for an intermediate location “M," with the largest

possible value of the interpolation parameter «, «, , for which (4a), below holds:

t) < t,,, fordli, wheret,=t+aw,,,. (49)

Note that all the statesi for which t'; ; = t'; are observed for zero timeat location “M;". Thus, they
have vanished. In order to find the solution for locations upstream of M, we use the transitivity
postul ate and treat these locations asif M, wasthe location of the downstream data. To express
thisasarecursion it is convenient to rewrite (4a) as.

t, < t,, fordl(i,j)suchthati<j, wheret,=t+aw,,,, (4b)
and introduce S, for the set of surviving states at location M, after the k™ iteration (k = 1, for
now). Sincethe straight lines obtained by shifting the segments of the N-curve at location M, are
the same as those obtained by shifting the original (surviving) segments from the N-curve at
location “D”, we can smply choose ¢, ,; as the maximum value of o (<1) that satisfies:

t, < t,, foradli,je§ suchthati<j,wheret, =t +aw,,,,. (5)
The recursive process terminates when (5) is satisfied for « = 1. Thisagorithm will be named
“A” and itsresults expressed by N = ApyNp.

Although the maximum number of iterations could be as large as the number of states (if
al but one state were eliminated) in actual applicationsjust afew iterations should be needed. The
procedureis particularly quick when done by hand, and this can help in the interpretation of data.
Consider asanillustration Fig. 2, which showsthe result when the downstream state changesfrom
“1” to “3" with abrief sojourn in state “2”, for the m(q) relation shown on the top left corner.
Thefigure aso displays the N-curve for adetector “M” which is half way between “U” and “D”
(x =0.5).

The figure shows that the shifted lines corresponding to the three linear segments of N
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(linesOAB, AC and ED) do not intersect in the order required by (3) because line ED is beyond
the apex of angle OAC. However, if the same constructionisrepeated for location“M” by cutting
the three shifts in half then the three lines intersect in the proper way, as shown. We see at a
glancethat the duration of state”2" isreduced in going from*“D” to“M”, and that state“2” would
be completely eliminated farther upstream, somewhere between “M” and “U”; i.e., that 0.5 < o,
<1. Notethat wedo not needtofind «, toobtain N, since our knowledgethat only states“1”
and “3” survive the trip to location “U” aready allows us to use Eq. (5). That is, the fina
solution--line OAED-- is smply obtained by connecting the origina trandations of the two
surviving segments. In caseswith more statetransitionsand longer separati ons between detectors
more steps may be needed to determine which states are eliminated but procedure “ A” remains
smple.

Thethird and final postulate of the proposed theory for the description of queuesinvolves
the idea of “stability”. The proposed algorithm does not rule out the possibility that an
infinitesma change in N, could trigger a finite change in N, and we wish to exclude such
“unstable” solutions from the set of possibilities. In particular, we specify that if a continuum of
transition states of infinitesimal duration areintroduced at every corner of N, , i.e., we smooth the
cornersof Ny, thenthefinal solution should not be affected by the smoothing. Weaso requirethis
to betrue of any intermediate solution. That is, if Sdenotesthe smoothing operator, we assume
that U,=US for dl s;i.e:

Postulate 3 (Stability). The operators U, and S commute.#

Figure 3 is used to illustrate these ideas. Part (a) shows by means of thick solid lines a
construction for N, similar to that of Fig. 2, with algorithm*“A” , when atransition from state “ 1"
to state “2" has occurred at “D”. If we imagine that the transition at point V has occurred by
way of aninfinitesimally quick sojournthroughintermediate state“k”, we seethat thisstate cannot
appear into the solution because if we shift theimaginary line passing through “V” corresponding
to this state, the resulting line (labeled L, in the figure) does not intersect our test N, curve.
Thus, thetest curveisnot destabilized by “k”. Further consideration shows that the state will not

enter into the solution as long as its corresponding point “k” on the (g, m)-plane is below or on
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the chord joining states“1" and “2" on such plane; seefigure. Clearly, the higher thispoint is, the
larger the shift imparted to L, . It turnsout that if the point is on the chord, then line L, passes
through the vertex of N,. However, statesthat lie above the chord, such as“k’”, would enter the
solution as shown by line L,. and they would destabilize the solution.

If instead of an increase in flow, we had experienced a decrease, then we see from the

geometry that algorithm “A” introduces intermediate states into the solution if they experience a
small shift. They will appear in the solution if they lie below the chord. Any solution that can be
modified by means of an infinitesmal perturbation could not be expected to arisein redl life and
should be ruled out. Thus, algorithm “A” needs to be modified and thisisdonebelow.  The

desired effect is achieved by treating each change, i, in the slope of N, as being gradual and then
determining which sequence of intermediate states appears immediately upstream,; this will be
called the “ stable transition sequence’.

Thelogic used earlier on part (a) of the figure revealsthat a proposed transition involving
a particular sequence of intermediate states and an increase in flow is stable if and only if the
portion of the m(q) curve joining two consecutive states in a stable transition sequence does not
protrude above the chord joining the two states on the (g, m)-plane. For piecewise linear m(q)
relationsasin Fig. 3b the relevant solution should be a sequence of m(q) break-points that can be
consecutively joined by chords lying entirely on the dotted region of the (g, m)-plane.® It should
perhaps be intuitive without the need for discussion that: (i) this procedure will also connect the
two origina segments of the N ,-curve by the highest possible arc that can be constructed by a
succession of intermediate states, and (i) that if the m(q) curveisconvex no states propagate into
the solution. (The original jJump is then said to be “stable”; stable jJumps correspond to “shocks’
in the KW theory.)

If thetransitioninvolvesareductioninflow, thentheresultsarereversed. Onewould ook
for the sequence of break-points that can be joined with chords lying entirely within the shaded
area, and would find that the corner of N, is spanned by the lowest possible arc of intermediate
states. The origina jump would be stable if the m(q) curve is concave.

Note that in both cases, whether there is an increase or adecrease in flow, the corner of

& Mathematicians would say that they are the vertices of the convex hull of the shaded region.



-12-

the N,-curve is spanned by an arc of new states that is as far away from the original corner as
possible; i.e. inall cases, cornersare smoothed asmuch aspossible. Furthermore, inthe piecewise
linear case only break-points of the m(q) curve can appear as new intermediate states. Obvioudly,
we can imagine that these are the only states actualy introduced by S, and this smplification
allows usto devise a stable procedure “U” that requiresjust afew stepsin the piecewise linear
case.

Algorithm “U”

Let X, and x,, denote the positions of the downstream and upstream detectors, and x,, the
position of an intermediate trial location such that x;, < X, < X, . The intermediate location
represents the most upstream location at which an N-curve, N, , is known. The algorithm starts
with x,, = Xp and then reduces x,, iteratively until x,, = x,. Each iteration has two steps:

“smoothing” and “shifting”:

Step 1: Smoothing. Smooth N,, by introducing the necessary intermediate states at its
corners as described above. Theresult is denoted SN,, .

Step 2: Shifting. Find the most upstream location x*, X,, > x* > X, for which the shift
imparted to the segments of SN,, with algorithm A does not eliminate any states.
(This ensures that all the intermediate states are stable.) The resulting curve is
caled N*. If x* =x, then N, = N* and the procedure terminates. Otherwise, we
set x, =Xx*, N,, = N* and repeat the iterations.

Only one iteration may be needed to obtain the result if the study section is short and/or
thedatavary dowly. Alternatively, and asan approximation that isuseful when solving aproblem

by hand, we may apply algorithm A to curve SN,. This may introduce a small error in the
solution on the order of just afew vehicles per lane per kilometer, because the approximation
ignores the smoothings that might have to take place at intermediate locations; thus, AS = U.

The error arising from this simplification is zero when the m(g) curve is concave or convex

because then, asthe reader can verify from the“ chord” rules of Figure 4, the elimination of astate

always introduces a jump that is already stable (AS =U in these cases). To obtain a set of
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predictionsfor alarge system including many detectors one would then obtain the N-curvesin the
upstream direction, stepwise from detector to detector, i.e., “predicting” with A or U and then

“smoothing” the data at each detector.

2.3 Properties of the procedure.

This section examines the effect that errors in the input data N, and the “fundamental
diagram” my,,(q) have on the solution. It will be shown that the maximum error in the solution
cannot exceed the maximum error in the data.

Let us first consider the effect of the differential operator dU = Uy, on two similar
(piecewise linear) data curves N and N'. We are interested in determining the change in the
maximum vertical separation between the curves that is induced by the operation.

In the neighborhood of the location where this maximum change takes place, one or both
of the curves will bend; e.g., as shown on Fig. 4. The dashed lines on this figure represent the
upstream curves. It should be clear from the geometry of the figure that at the time t* where the
separation isat amaximum one or both of the curves must bend, and that the smoothed lines SN
and SN’ must share a common flow g* at that time. (Otherwise their separation would be
changing at t = t*, which is not possible.)

Wethen seefrom therules of Fig. 4 and the present geometry that the separation between
either of the lines, e.g., N, and an intermediate data line N* with slope g* (also shown in the
figure) cannot increase because otherwise there is a contradiction. That is, if the separation
between dUN* and dUN was larger, as shown in the figure, then the shifted line corresponding
to state g* of curve N would intersect dUN (since the shift imparted to the line with slope g* is
the same as that imparted to N*), which isimpossible given the rules of Fig. 3.

Since neither of the solution lines can drift away from the intermediate line, it must betrue

that: |dUN - dUN’| < [N-N’|. Clearly now, since U istrangitive, it follows that:

JUN-UN| < |N-N'| forals NandN'. (6)

Note that the operation |N - N’||, whichisthe L norm, satisfies the triangle inequality.

Equation (6) isreassuring becauseit impliesthat errorsin theinput data do not grow into
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thesolution. That is, if wetake N and N’ to be the closest possible approximations respectively
to adiscrete data curve N that is subject to measurement error and to the true (unknown) data
curve N’ then (6) indicates that the maximum discrepancy in the two input curves cannot
increase.’

Equation (6) can also be used to decide how many linear segments are appropriate for
approximating a few hours of data, depending on the level of approximation that one desiresin
the predictions. Thisisillustrated with the following example.

Example. Figure5 displays by means of solid lines the periodic N-curves predicted by
the theory at evenly spaced locations upstream of a pretimed oversaturated traffic signal with a
“true” downstream curve N’ when the m(q) curve for the segments between neighboring
locations is as in the top of the figure. The dashed lines are the predictions obtained from an
approximation N where the signal cycles have been smoothed out. Note how the separation
between the solid and smooth lines declines as one moves upstream, and that their separation
would not increase if the N curve was shifted but remained parallel to the original.

Note as well that the convex corners of N are smoothed, but the concave ones remain
sharp. Thisistrue in general: for concave relations the convex corners are smoothed and for
convex relations the concave corners are smoothed. Furthermore, corners are never sharpened
for any m(q).#

Insofar as random variations in accumul ation on the order of 6 = 10 vehicles per lane can
be expected for freeway sections comparable with a mile for the same set of downstream
conditions, e.g., due to stop-and-go effects and randomness in vehicular spacings, the above
suggests that raw input data does not need to be linearized beyond this level of precision. The
ability to work with roughly approximated data should facilitate calculation and data
interpretation, since the required effort grows with the number of state changes.

Errorsin the approximation of the m(q) relation are examined next. Note first, using the

same logic as above, that “dU” has the reverse effect of (6) relative to the minimum separation

" Notethat the operator cannot be applied to the raw data curves because they are step functions. The statement

assumesthat both raw data curves can be approximated by valid piecewise linear curves (with slopes between 0 and
Omax) t0 Within atolerance e which can be neglected compared with the error in the data€’; i.e., that the discrete
and continuous curves are undistinguishable for practical purposes. If thisis not the case, the discrepancy between
the two raw curves could be anywhere in [€'+2|€|] by virtue of the triangle inequality and this amount could be
(slightly) smaller than the discrepancy in the solution.
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between two digoint N-curves. That is, the minimum separation operation s(N, N’) satisfies:

S(UN, UN’) > s(N, N"). (7)

Inequality (7) impliesthat U is amonotone mapping; i.e., that:

N>N = UN > UN' forals. 8

Monotonicity isreasonable; it meansthat if every vehicle leaves a (queued) downstream location
on day “1" earlier than on day “2", then every queued vehicle will also get to pass upstream
(queued) locations earlier on day “1" than on day “2".

Consider now two normalized m(q) relations for agiven highway-- true and approximate
--and the associated operatorsU’ and U. We show below that the maximum error in the solution
can never exceed the maximum difference between the true and approximate accumulation curves,

Imy(a) - m’'(q)|; i.e., that:

JUN-UN]| <sA fordlsandN, 9

where A is the maximum discrepancy between the two normalized accumulation curves.

This statement is proven by induction; i.e., by showing that Eq. (9) is true for length ds
(fact “@’); then assuming that Eq. (9) istruefor length s(“b”); and then showing that (a) and (b)
imply EQ.(9) for length stds (fact “c”). A geometrical construction such asthat of Fig. 4 reveals
that (a) istrue. Then, if wewrite N, and N’ for UN and U’ N we just need to show that the
norm of (U, N,- U’ . [NJ = (U N;- U N ) + (U N - U (N’ doesnot exceed (stds)A. To see
that thisis true, note that

”Udst' U1dst” < ”Udst' UdsN1s” + ”UdsN1s' U1dsN1s”’

by virtue of thetriangleinequality, and also that (i) thefirst term on the right side of thisinequality
cannot exceed sA by virtue of (6) and fact (b), and (ii) the second term cannot exceed dsA by
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virtue of fact (a). It then follows that the first term cannot exceed (s+ds)A. Q.E.D.
Taken together, Egs. (6) and (9) imply:

JUN-UN'| < |N-N'|+sA forals NadN’,

again by virtue of the triangle inequality. Thisresult isimportant for model validation purposes
because it bounds the portion of the discrepancy between observation and prediction, IN, - N,
that can be attributed to the combined effect of errorsin the N-curve data and in the estimation
of m(q).

3. LIGHT TRAFFIC AND QUEUED TRAFFICONANINHOMOGENEOUSHIGHWAY
3.1 Thethree-detector problem

Consider now three locations on ahighway X, < X, < X5, and assume that the N-curves at
X, and x; are known. Theidentifiers“1", “2" and “3" are now used for the locations instead of
U, M and D, because the ideas will soon be generalized to more than 3 detectors. We also
assume that traffic is queued at X, , that the queue does not reach all the way back to x, (traffic
isungueued at x,), and that the flow observed at any unqueued location over any period of time
that includes a significant number of cars never exceeds the maximum flow (g, that can be
dissipated by aqueue. These assumptionswill be relaxed later. Our immediate goal isto predict
N, from the available information.

To thisend, ageneral model of (uncongested) traffic with multiple vehicle classes will be
specified in terms of a “downstream operator” that returns the conditions that should prevail at
a downstream location from those observed upstream. The upstream data consists of a set of
cumulative count curves by vehicle class N, , where the parenthetical subscript i =1, 2, 3, ...
refersto the class and the other subscript to thelocation, and acombined curveN; =) Ny, . The
boldface symbol N, will denote the complete set of curves, including the combined curve.

It will be assumed that there is no passing within each vehicle class and that passing is
possible among vehiclesof different classes. Notethat thisassumption does not reduce generality
because one can always define a separate class for each individual vehicle. It isaso assumed that

the uncongested traffic model can be described in terms of a “downstream” operator D,, which
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predictsN, fromN,;i.e, N, = D;, N;. Thisassumption is somewhat restrictive becauseit implies
that the conditions found at x, are sufficient to describe what happens downstream, but the
restriction is minor. The proposed model includes as special cases all the continuum models
introduced to date, aswell asmost microscopic theoriesand simulations. A parenthetical subscript
(i) and no boldface will be used for the operator that returns the curve for thei™ vehicle class; this

subscript will be omitted for the aggregate curve.

Postulate 4: Queue behavior. It will be assumed that a queue always forces individual
vehicles and labels entrapped in it to travel more sowly than predicted by the light traffic
theory, and that queued vehicles cannot pass. It will aso be aso assumed that the queue
has no effect upstream of its domain of existence and that any transition from light traffic
into queued traffic is rapid and stable.#

Thefirst premiseof this postul ate excludes situationswhere somevehicle classeswith very
low desired speeds may be embedded in afaster moving queue. It also impliesthat avehicle, or
alabel, cannot crossahighway location such as x, any earlier than thetimeallowed by light traffic
theory and the time allowed by the queue. In other words, the vehicle number seen by an
observer at x, at timet cannot not exceed the minimum of the number arising from light traffic
theory (from conditions at x, ) and the number arising from the heavy traffic theory (from
conditionsat x;). Thatis:

N, < Min{UgN; 5 DipNs} (10)

Equation (10) should be apure equality for the two extremes of our section, X, = X; Or X, = X .
Thisimplies that reasonable curves {N,; N;} should satisfy:

N; < DyN; (113
and

Uz N3 > N, 1b
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Equation (11a) specifies that a vehicle cannot pass by x, any sooner than predicted by the light
traffic theory and the upstream data at x,. Conversely, (11b) specifies that a vehicle cannot pass
by the upstream location any later than if it had been embedded in a queue the whole way--since
only agueue can low down avehicle.

Stability - For x, = Xx; we expect (10) to be a pure equality. Thus, if the interval is
divided into short segments of length dx -~ O, postulate 4 would imply that the intermediate N-
curves should satisfy the following relation,

N, = Mi{UuNyug 5 DpNat = mMin{Ag SN, ; DiNi} (12)

which allows usto calculate N, recursively for any intermediate location, X,.

Note that the operator S in (12) smooths all the corners of N, ., , including those that
involve atransition between a queued and ungqueued state. Thisislogical; it essentially prevents
the queue from growing so fast that perturbations introduced at its back end grow intoit. [If the
back of the queue propagatestoo fast then (12) automatically introduces queued transition states
with (fast) waves that can keep up with this growth.]

Note as well that procedure (12) can be used without any changes even if the end of the
gueue is not always contained between x, and X, ; i.e., even if it ebbs and flows past these two
locations. This is true because the particular location of the back end of the queue when it is
outside our study sectionisirrelevant insofar astheinterior of theinterval isconcerned. Thus, the
behavior of traffic the study section (X,, X;) should be the same asif the end of the queue never
strayed far from our interval. That is, we can assume in our calculation of N, that the freeway
is permanently queued at alocation “3+” immediately downstream of “3”, so that curve N; (in a
gqueued state) is observed there, and permanently unqueued at a location “1-” immediately
upstream of “1”, so that the curves N, (in an unqueued state) are observed there. Recipe (12) is

simply the result of using the data at “1-” and “3+” as an input.

3.2 The P-detector problem.
L et us now assume that there are more than three detectors, located at positions x,, (p =
1,23, ..,P),withx, <X, , that data are available for the first and last detectors and that we
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want to predict N, for 1 < p < P. If the detectors are closely spaced (12) would suggest:

N, = min{ A,,; SNy 5 DNy } forl<p<P. (13)
Thisisareasonabl e approximation because with closely spaced detectorsthe new transition states
are alwaysintroduced closeto their true birthplaces. We estimate that temporary errorsin count
due to this discrepancy should be on the order of just a few vehicles per lane of freeway for
detector spacings comparable with 1 Km. Because errors in count depend on the square of the
spacing, they can bevirtually eliminated by reducing the detector spacing to afew hundred meters.
Some of theseideas areillustrated in the foll owing subsection with two examples. The subsection

may be skipped without loss of generdlity.

3.3.- Examples.

The first example examines an uphill section of a two-lane freeway with a substantial
portion of slow-moving trucks when an incident blocks the road. It is assumed that the m(Q)
relation is as shown on part (a) of Fig. 6. The (unspecified) units of time and vehicle count have
been chosen on this diagram so as to ensure that the numerical values for flow, trip time and
vehicle number that arise in the solution are small “round” numbers.®

The proposed behavior of thetraffic stream in the absence of downstream queuesissimilar
to that seen on California State Highway 17 just out of “Los Gatos’ and toward “ Santa Cruz”,
which, as we shall see, isinconsistent with the KW model.

Part (b) of the diagram displays the N-curves observed at alocation x, (solid lines) for i
=1 (cars) andi = 2 (trucks). Thisisthedataset N,. Note that the automobile flow reaches a
maximum ¥ = 4 for 0<t < 1. Thisflow isassumed to be close to capacity, so that both lanes
of the freeway are aimost fully used. Att =1 asteady stream of trucks with g = 1 entersthe
road directly upstream of our location. Because trucks travel more slowly, cars are assumed to
avoid the right lane so as not to lose their position in the faster moving left lane and the system

capacity drops, asin California State Highway 17. It has been assumed in the example, somewhat

8 The numbersin this example could be plausible (although very rough) for atwo lane freeway if the detectors

were spaced about 1 Km apart, time was measured in minutes and vehicles in groups of 24 (a couple of dozens).
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drastically for illustration purposes, that the entrance of the trucks reducesthe car flow by afactor
of two. This reduction should generate a growing car queue upstream of x, , but thisis of no
concern to us.® Of interest is the effect on the traffic stream downstream of x, , which would
consist of two non-interacting parallel vehicle lines moving with different speeds for t >1.

Thus, the unqueued traffic model for our problem can bevery smple: we proposethat cars
and trucks should travel at class-specific speeds that are fixed but significantly different. The
dotted lines are the class-specific N-curves at location X, that are obtained with this smple
unqueued modd by shifting each curve by its specific trip time. Thisis assumed to be 1 unit for
cars and 2 for trucks -- a large speed difference is used so as to enhance the clarity of the
diagrams. The summation of the counts across both classes yields aggregate curves N, and
D,,N;; see part (c) of the figure.

Thispart of thefigure also containsthe predicted curve D ;N, for alocation x, that istwice
asfar downstream, assuming that the highway ishomogeneous. Theresulting (t, n) plotisdivided
into four regions of constant flow “g” and constant averagetriptime“t”, asindicated. Thevaues
of the accumulation “m” between detectors that would arise in these regionsif conditions did not
change with time (i.e.,, the vertical separation between the sets of parald lines) is aso shown.
Thesefour stationary states are also displayed on part (a) of thefigureand arelabeled “a, b, ¢, d”,
in chronologica order of occurrence. Note that a*“fundamental diagram” cannot be defined for
this problem in unqueued traffic because more than onevalueof m arisesfor g =3. Therefore
the KW theory does not apply.

Let us now assume that an incident that completely blocks the road occurs at point (t, x)
=(2, x;) and examine with the help of Eq. (13) (with p =2 and P = 3) the effect of the queue on
N,. Since D;,N, has already been obtained, the only missing data item is curve N, , which will
readily yield the first term of (13): A,,SN,. In order not to clutter the diagram these steps are
taken on part (d) of the figure which contains copies of curvesN,, D;, N; and D3 N, .

We hypothesize that curve N, matches the predicted curve D ;N, upto t=2 and, since
theincident doesnot | et any vehiclesthrough, we also assumethat N, adopts aslope of zero (state

“f”) for t > 2, as shown. (The behavior of the bottleneck, albeit reasonable, is not part of the

° Interesti ngly, notethat thisqueue could be eliminated by forcing all carsto travel at the speed of thetrucks; e.g.,
by reducing the speed limit !
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proposed theory.) TheoperationsA,,S consist of a“smoothing”, which introduces state“€” into
N, a t=2 (seedotted line), followed by the shifts and truncations arising from algorithm A. In

our example the result isthe curve labeled A;,SN, , asthe reader can verify from the datain part
(a) of the figure. Asper Eq. (13), N, isthelower envelope of the two curves calculated for
location 2. This solution isinteresting because it involves atransition from state “d” to state “f”
at the end of the queue (where D,,N; = A;,SN,) which turns out to be unstable.

That is, if curve N, were to be used to make predictions farther upstream (e.g., at some
location x, such that X, < X < X,) then break-point state “€” would have to be introduced as part
of the smoothing step for N, , as shown in the figure. Consideration shows that the new state
would indeed be propagated upstream.

Part (e) of the figure contains the exact stable solution of our problem on a (t, x)-plot. It
displaysthe(t, x)-domain for each statearising in our problem. Thefigureistheresult of applying
(13) with infinitely close detectors. Curve N, can be obtained from it by integration of the flows
observed along theline x = x,. One can see at aglance that the only difference between the exact
curve and that on part (c) of the figureisthat the latter should have been dlightly beveled due to
the appearance of state“e” somewhere betweent = 7andt = 9. Thelargest discrepancy in count
isonly about %2 vehicle unit, which converts to about 12 vehicles for the two lanes (given the 1
Km separation between detectors). The approximate curve, which is otherwise exact, does
introduce state“€e” at t = 8. Thus, the discrepancy in count would not grow in magnitude into the
solution for x < x,. Instead, it could eventually disappear as occurs with the earlier episode of
state “€”, which has no lasting effect.

Another example, presented in Fig. 7, is the well-known lead-vehicle problem of KW
theory for ahomogeneous highway in which the flow-density relation is consistent with the m(q)
curveof part (a). Thiscurve correspondsto asection of length“L”, so that the density m/L. The
example demonstrates that the results in the two theories are consistent with each other.

Part (b) of thefigure showsthe unique solution with stable shocksthat arisesin KW theory
when aslow vehicle (pace = 16) enters a steady traffic stream that isin state “a’. The reference
locations x, shown on the figure are assumed to be spaced L distance units apart. The entrance
of the vehicle at point (t,, X;) induces atwo-state queue upstream of it that encompasses states

“d” and “€”; state “c” does not appear into the solution, nor do any other queued states. Thisis
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the stable solution in KW theory.

Part (c) of the figure shows the N, curve for the downstream location, which can be
justified outside the proposed theory. Thefigurea so displayscurveD,,N, , and curve RSTPQE,
which is the result of applying the operator pair A,,S to N,.2° The minimum rule finaly yields
N, = curve OPQE. Note how the flows of this curve and the times at which the transitions occur

precisely match those in part (b) of the figure.

3.4. Theinhomogeneous highway with over saturated flows: time-dependent bottlenecks.
It is assumed here that the freeway can be modeled as a series of homogeneous sections
with boundaries at a series of points{Xx, }. Each section is characterized by anm, ,,,(q) relation

with a maximum stationary flow and an operator family: U, .., (or A,,.,). Each boundary is

characterized by atime-dependent capacity C(t) which isassumed never to exceed the maximum
stationary flows of the two sections it separates. This means that m,,,,(C,) and m,, ,(C,) are
always defined.

Only “transitive” light traffic theories, i.e., suchthat D, .., = Dy p+2Dp pe1 » @r€ cONsidered.
In other words, models for which knowledge of the N-curve by vehicle class at a location is
sufficient to describe the behavior downstream without any further information from upstream.

Thus, each D, ., is aproperty of asection (p, p+1), which acts on vehicles independent of what

p.p+l
other sections have done.
In order to make predictions when flows larger than capacity arise a somelocationsitis

necessary to introduce one last assumption with regard to the boundaries between sections:

Postulate 5: Bottleneck behavior. The flow through a bottleneck x, isawaysaslarge
as possible but cannot exceed any of the following: 1) the bottleneck capacity, 2) the
predicted aggregate flow across classes from upstream data and 3) the prediction from

downstream data.#

This bottleneck behavior will prevent flows larger than the maximum possible to be put through

10 Notethat state “a’ of N, was treated asif it was queued, * a .
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any section. According to postulate 5 the aggregate flow upto time t should be given by:

N, () = min{ (Up pNpa)(0) 5 (D pNp2)(0) 5 N(t-dt) + C(t)dt }, (14)

whichisasimpleextension of (13) that recognizesthe capacity condition. Notethat thetransitive
property of the light traffic model has also been used in (14).

The capacity C(t) can be either: 1) exogenously defined or 2) exclusively dependent on
system conditions prior tot. (It can depend for example on how long people currently passing
through the bottleneck have been delayed, how long the bottleneck has been active, etc...) Under
these conditions, N,(t) can be evaluated for all t by stepping through time with Eq. (14). Thisis
true because thefirst two terms on the right side of (14) only depend on the neighboring N-curves
for times prior to t-dt. This calculation strategy is very efficient for computer implementation
because in thefinal analysisit turns out that one only needsto carry forward avery small amount
of information from one step to the next. A description of these detailsis beyond the scope of this
paper, however, and is not given here.

Equation (14) is sufficient for prediction purposes if the practical situation only involves
onevehicleclass. Otherwise, theagorithm needsto be completed by providing arecipethat gives
the disaggregate solution N, (t) based on (14).

If the unqueued theory involves no vehicle passing, e.g., asin Newell (1993), this can be
done by ensuring that vehicles from all classes should share the same trip time if they arrive
simultaneoudly at the upstream detector. Thisrule can be expressed in terms of the N-curves as

follows:

N,(t) =N,4(t'), forsomet’ <t. (159

In other words, we should find theonly t* for which N ,(t") = N,(t) , whichis possible since we
are stepping through timeand t' <t , and then set N,,;(t) = N,,(t") . Notethat t' isthetime
when label N (t) arrived at the detector directly upstream fom p. Equation (15a) expresses the
FIFO rule because vehicles do not pass labels under FIFO and as a result al the vehicles that

crossed the upstream detector prior to t'" must have crossed the downstream detector prior to
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For non-FIFO models the following expression is exact when there is no queueing:

Ny () = (Dp1,pNp)(1) ; if N, (1) = (Dp1pNp2) (). (10)

Of course, (153) continuesto hold when the section (x, ,, X,,) isentirely queued. Thus, we propose
to approximate N, (t) by (15b) if its no-queueing condition holds and by (15a) otherwise. Thus,
the complete algorithm is given by (14) and (15). To be sure, the use of (15a) when a section
is only partialy queued introduces a small error into the solution, but for typical applications
where vehicular speed differences are on the order of 10 or 20 Km/hr and detectors are 1 or 2
Kms apart, the discrepancy between (15a) and (15b) is small relative to other sources of noise.
These errors can be reduced by shortening the detector spacing. The errors can also be reduced
with a more elaborate calculation of the time and location where each vehicle joing/leaves the
gueue. This calculation can be streamlined in some cases, e.g., with the procedure suggested in

Lawson et.al. (1997), but a discussion of this somewhat minor issue is beyond the scope of this

paper.

4. CONCLUSION

The ideas presented in this paper can be extended to situations including classes of
vehicles, i, that space themselves differently in aqueueif it isreasonable to assumethat ageneric
m(q) relationintermsof “ passenger car equivalents’, «;, exists; i.e, if after assigning «; tags
to each vehicle of classi (for al classes) we find that areproducible m(q) relation for tags exists
that is independent of the queue composition. If thisis true, we can simply view each class as
being composed of convoys of consecutive vehiclesthat carry exactly onelabel;i.e., suchthat 1/e;
vehicles of typei = 1 convoy. Since these convoys would behave in agreement with postul ates
1-4, theresults obtained up to Sec. 3.3 apply to the convoys. [If one prefersto work with vehicles
rather than convoys then it should be remembered that the overall count of labelsisrelated to the
vehicle counts by: N, =} a;Ny;,.] For the results of Sec. 3.4 to apply, areproducible refation
C,(t) in terms of tags would have to exist.

The ideas in this paper can aso be extended to multi-commodity networks where
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physically meaningful boundary conditions have been defined at the nodes. To do this properly
one needs to alocate vehicles going to different destinations to different classes since the
composition of the traffic stream by destination is a determinant of turning percentages. Newell

(1993) and Daganzo (1995) discuss possible boundary conditions at simple junctions.
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