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Abstract 
 

Differentiating Biomarkers of Exposure and Disease  

Associated with Colorectal Cancer 

By 
 

Kelsi Perttula 
 

Doctor of Philosophy in Environmental Health Sciences 
 

University of California, Berkeley 
 

Professor Stephen M. Rappaport, Chair 
 
Chronic diseases such as cardiovascular disease, diabetes, and cancer are the leading causes of 
death among developed and developing countries, and account for approximately 75 percent of 
deaths worldwide. With the sequencing of the human genome and subsequent genomic studies, 
we now know genetic factors alone are responsible for a relatively small portion of these 
diseases. Specifically, cancer risk attributed to genetic factors is typically about eight percent. 
Thus, the vast majority of cancer risk likely lies within the realm of exposures (non-genetic 
factors) or a combination of genetic factors and exposures.  The collection of exposures over an 
individual’s lifetime comprise the concept of the exposome, an epidemiological complement to 
the genome. The exposome is defined by measurement of both endogenous (inflammation, lipid 
peroxidation, microbiota) and exogenous (air pollutants, pesticides, drugs, diet, etc.) exposures 
within an individual. 
 
Much exposure data is from non-individualized sources, such as air quality monitors or other 
spatial-temporal data, which have limited use in epidemiology.  Individual exposure assessment 
consists largely of self-reported dietary and lifestyle data from interviews or questionnaires. In 
recent years, advances in analytical chemistry have permitted the simultaneous detection of 
thousands of molecules in biological fluids including urine, whole blood, plasma, and serum. 
 
High resolution liquid chromatography mass spectrometry (LCMS) is a powerful technique to 
measure the accurate masses of molecules in biological fluids for high-throughput 
epidemiological studies. Chapter 1 of this dissertation details a method for the analysis of 
lipophilic molecules in plasma using specimens from 158 healthy volunteer subjects. The 
resulting data revealed levels of lipids and other molecules that differed between smoking and 
nonsmoking, white and black, and male and female subjects. A modified version of this LCMS 
method was used in the analysis of serum from subjects in a nested case-control study, described 
in Chapters 2 and 3. 
 
Colorectal cancer (CRC) accounts for one fourth of all cancer deaths worldwide and less than 
about 15 percent of CRC risk is attributable to genetic factors alone. To investigate possible 
influences of exposures on CRC risk, serum from 190 subjects in the European Prospective 
Investigation of Cancer and Nutrition (EPIC) were extracted for lipophilic molecules and 
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analyzed with high resolution LCMS. These prospective samples – collected up to 22 years prior 
to diagnosis - offered a unique opportunity to differentiate between CRC biomarkers related to 
disease causes and those that result from disease progression. Chapter 2 describes the testing of 
one class of lipids, ultra-long chain fatty acids (ULCFAs), that had been reported as a probable 
protective factor of CRC. Paired case-control differences were assessed with respect to the time 
period from when the serum was collected (study enrollment) to when the case was diagnosed. 
Since, case-control differences decreased with increasing time prior to case diagnosis, ULCFAs 
were likely depleted by cancer progression rather than by protective exposures.  
 
Many of the features in LCMS profiling are unannotated (identity unknown) chemicals. Rather 
than relying on hypothesis-driven analyses of only known compounds, data-driven analyses of 
reliably detectable features can result in the generation of new hypotheses of possible disease-
causing exposures. This untargeted methodology, used in Chapters 1 and 3, makes lipidomic and 
other exposure-related profiling a powerful tool in exposure assessment. In Chapter 3, the 
untargeted analysis of features in EPIC CRC serum samples revealed potentially relevant 
molecules associated with CRC causes and disease progression. As opposed to traditional p-
value-centric analysis used in Chapters 1 and 2, a combination of regularized regression, random 
forest, and t-tests were employed in the feature selection for this untargeted analysis. 
 

In Chapter 4, the lipophilic data from the healthy volunteer samples of Chapter 1 are studied 
once again. Using a method similar to the regularized regression technique described in Chapter 
3, we determined which lipids were associated with levels of adductomic biomarkers (another 
methodology developed in our laboratory), which had also been measured in plasma from the 
same healthy volunteers. Analysis of the combined data from these two OMIC datasets found 
interesting correlations between particular lipids and adducts in these samples.  
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Chapter 1: Untargeted lipidomic profiling of human plasma reveals differences due to race, 
gender and smoking status 
 

Xiaoming Cai, Kelsi Perttula, Sara Kherad Pajouh, Alan Hubbard, Daniel K. Nomura, and 
Stephen M. Rappaport 

 

University of California, Berkeley; School of Public Health; Program in Environmental Health 
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A, Nomura DK, et al. (2014) Untargeted Lipidomic Profiling of Human Plasma Reveals 
Differences due to Race, Gender and Smoking Status. Metabolomics 4:131. doi:10.4172/2153-
0769.1000131 This is an open-access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use. distribution, and reproduction in 
any medium, provided the original author and source are credited. 
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1.1 Abstract 

Lipidomic profiling can link genetic factors and exposures to risks of chronic diseases. Using 
untargeted liquid chromatography-Fourier Transform mass spectrometry (LC-FTMS), we 
explored differences in 3,579 lipidomic features in human plasma from 158 subjects, pooled 
separately by race, gender and smoking status. Significant associations with race (23 features), 
smoking status (9 features) and gender (2 features) were detected with analysis of variance 
(ANOVA)-based permutation tests.  Identities of several features were confirmed as 
plasmalogens (vinyl-ether phospholipids) that were present at 2-fold greater concentrations in 
black subjects.  Putative assignments of other features, based on accurate masses, were more 
abundant in white subjects, namely, dihomo-γ-linolenoyl ethanolamide (DGLEA), an 
endogenous endocannabinoid receptor agonist and phosphatidyl choline [PC(16:0/18:1)].  After 
adjustment for race, multivariable linear regression models showed that gender was significantly 
associated with levels of plasmalogens and DGLEA and that consumption of animal fat was 
marginally associated with concentrations of plasmalogens.  Interestingly, BMI did not explain 
additional variability in any race-adjusted model.  Since plasmalogens are antioxidants that are 
generally regarded as health-promoting and DGLEA is an agonist of the cannabinoid receptor, 
our findings that these molecules differ substantially between black and white Americans and 
between men and women, could have health implications.  The concentration of cotinine was 
greatly elevated in smoking subjects and 6 features with m/z values suggestive of phospholipids 
or sphingomyelins were present at significantly lower concentrations in smokers.   

1.2 Introduction 

Since lipids are essential to functional membranes, energy storage and signaling [1,2], lipidomics 
provides an avenue for linking important biological processes with disease states.  Indeed, 
differences in lipid profiles have been reported in investigations of cancer [3–6], diabetes [7], 
Alzheimer’s disease, [8,9] and cardiovascular disease [10,11].  Such studies increasingly rely on 
high-resolution mass spectrometry (MS) platforms that can detect thousands of lipidomic 
features in plasma while simultaneously providing accurate masses for annotation [12].   

Given strong associations between blood lipid levels and chronic diseases, it is surprising that 
baseline lipidomic profiles have not been reported across fundamental population characteristics 
such as race and gender as well as lifestyle factors such as smoking.  Here, we used untargeted 
Fourier Transform (FT) MS to obtain lipidomic profiles containing over 3,000 features detected 
in plasma from healthy American subjects stratified by race (black and white), gender and 
smoking status.  Race was the strongest classifying factor (23 significant features) followed by 
smoking status (9 features) and gender (2 features).  Identities assigned to race-discriminating 
features included several plasmalogens (ether phospholipids containing fatty alcohols with vinyl-
ether linkages in the sn-1 position and fatty acids with ester linkages in the sn-2 position) that 
were more abundant in black subjects.  Tentative assignments, based on accurate masses, pointed 
to greater concentrations in white subjects of an endogenous endocannabinoid receptor agonist 
and a phosphatidyl choline.  Several unidentified features, with masses suggestive of 
phospholipids or sphingomyelins, were present at lower concentrations in smoking subjects.  
Since all of these lipids are physiologically important and some have been associated with 
chronic diseases, our results suggest that young American adults may be predisposed to diseases 
because of differing lipid concentrations associated with race, gender and smoking.   
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1.3 Materials and Methods 

Reagents  
Isopropanol, methanol, chloroform, formic acid, ammonium hydroxide and ammonium formate 
(10 M, pH7.4) were from Fisher Scientific. Phosphate buffer saline (pH 7.4) was from 
Invitrogen. Lipid standards of 1-octadecenyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-
phosphoethanolamine PE(P-18:0/20:4) and 1-octadecenyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-
docosahexaenoyl)-sn-glycero-3-phosphocholine PC(18:0/22:6) were purchased from Avanti 
Polar Lipids (Alabaster, AL). Water was purified by a Milli-Q Gradient ultrapure water 
purification system (Millipore, Billerica, MA). All other chemicals were of analytical grade and 
used without purification.   

Lipid nomenclature 
Lipids were named according to Lipid Maps (http://www.lipidmaps.org); e.g. 1-hexadecanoyl-2-
octadecenoyl-sn-glycero-3-phosphocholine is designated PC(16:0/18:1) and 1-hexadecenyl-2-
eicosatetraenoyl-glycero-3-phosphoethanolamine is PE(P-16:0/20:4).  When the fatty acid chain 
could not be determined, the total number of carbons and double bonds of all fatty acyl chains 
are given, e.g. PE(38:4). 

Plasma samples 
Blood samples were obtained in heparin from 158 healthy subjects (78 males and 80 females), 
representing a subset from a previous study conducted by the corresponding author under an 
approved human-subjects protocol [13].  Within a few hours of collection, plasma was separated 
from red blood cells by centrifugation.  Red cells were washed with an equal volume of PBS, 
which was added to the plasma and thus reduced plasma concentrations.  Plasma samples were 
frozen and stored at -80 °C for approximately 13 y prior to being aliquoted and pooled by 
combining aliquots from 4 to 6 subjects stratified by race, gender and smoking status.  (Pooling 
was required by our institutional review board to ensure anonymity of subjects).  A quality 
control sample was prepared by pooling 100 �l of each of these 35 pooled samples.  

Demographics, smoking and dietary assessment   
 Demographic characteristics, including race, age, height and weight were obtained with a 
standardized questionnaire at the time of phlebotomy.  Smoking status was based upon current 
smoking (yes/no).  A semi-quantitative food-frequency questionnaire containing 131 items was 
used to evaluate average daily consumption of fat (animal, vegetable and cholesterol) over the 
past six months for each individual [14,15].  All dietary-intake values were compiled at the 
Channing Laboratory, Harvard Medical School [16,17].   

Extraction of lipids 
Lipids were extracted according as described previously [18]. Briefly, 100 µl of plasma was 
thawed on ice and then mixed with 3 ml of chloroform:methanol (2:1,v/v) and 900 µl of 
phosphate buffered saline (PBS). After vortexing, the mixture was centrifuged at 2000×g for 5 
min.  The bottom layer was collected, dried under N2, and dissolved in 100 µl chloroform.  
Extracts were stored at -80 °C before LC-MS analysis. 

LC-MS analysis 
Liquid chromatography-MS analysis was performed with a Surveyor LC system coupled to an 
LTQ-FTMS, containing a heated electrospray ionization source (ESI) (Thermo Fisher Scientific, 
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Waltham, MA). The MS was operated in both ESI+ and ESI- ionization modes with data 
collected from m/z 100 to 1200. For LC separation, a Luna C5 column (4.6×50 mm, 100 Å, 5 
µm, Phenomenex, Los Angeles, CA) was selected with column and autosampler temperatures 
maintained at 25 °C and 4 °C, respectively.  The C5 column was selected to elute all potential 
lipids in the samples, including hydrophobic triacylglycerides and cholesterol esters. Injection 
volumes were 20 µl and 25 µl for ESI+ ionization and ESI- ionization, respectively.  Mobile 
phases contained 0.1% formic acid for ESI+ ionization and 0.1% ammonium hydroxide for ESI- 
ionization. The column was eluted with a gradient of mobile phase A (methanol:50 mM 
ammonium formate 5:95) and mobile phase B (isopropanol:methanol:50 mM ammonium 
formate 60:35:5) as follows: 100%A for 5 min at 0.1 ml/min; 0-100%B over 15 min at 0.4 
ml/min; 100%B for 5 min at 0.5 ml/min; 0-100%A for 5 min at 0.4 ml/min.  Blank and QC 
samples were analyzed after 7 or 8 experimental samples to wash the column and monitor 
stability. 

The MS was tuned with the following high-abundance lipids in several structural classes: tuning 
in positive mode employed LPC(16:0), LPE(18:1),PC(36:4),PE(34:1) and TG(58:5) and tuning 
in negative mode employed FA(16:0), FA(20:4), PI(24:1) and PG(34:1). Several FTMS 
parameters, namely, mass resolution, maximum injection time, and maximum number of ions 
collected for each scan, were optimized for sensitivity while maintaining a mass resolution of 
100,000.  The following settings were used: vaporizer temperature, 280 °C; sheath and auxiliary 
gases, 35 and 15 (arbitrary units); spray voltage, 3.5 kV; capillary temperature, 350 °C; capillary 
voltage, 10 V; tube-lens voltage, 120 V; maximum injection time, 1000 ms; maximum number 
of ions collected for each scan, 5×105. Mass calibration was carried out with a standard LTQ 
calibration mixture (Thermo Scientific, Waltham, MA).   For untargeted analyses, a full scan was 
used for the FTMS with a mass resolution of 100,000, and data were recorded in centroid mode.  
To study structures of discriminating features, tandem MS/MS analyses were performed with the 
linear ion trap in low-resolution mode with a CID voltage of 30 V.  Accurate masses were 
calculated using the lipid calculator (http://pharmacology.ucdenver.edu/lipidcalc/) and then 
extracted with a mass tolerance of 10 ppm in the total ion chromatogram (TIC). 

Quantitation of analytes 
Because PBS had been added to plasma (as erythrocyte washes) at the time of phlebotomy, 
volumes of diluted plasma varied across the pooled samples in our investigation.  Thus, rather 
than quantifying peaks of unknown lipidomic features relative to internal standards, quantitation 
was based on dividing each peak intensity by the sum of all peak intensities detected in each 
pooled sample [19,20]. 

Data collection and processing 
Data were collected continuously over the 30-min LC separation using Xcalibur software 
(Thermo Fisher Scientific). The raw data were converted to mzXML data format using 
proteoWizard software (Spielberg Family Center for Applied Proteomics, Los Angeles, CA). 
Peak detection, retention time collection and alignment were processed on the XCMS platform 
(http://xcmsserver.nutr.berkeley.edu/). All data-collection parameters were set to the “HPLC 
Orbitrap” default values (centwave feature detection,  loess non-linear retention time alignment, 
0.5 minimum fraction of samples in one group to be a valid group, P-value thresholds = 0.05, 
isotopic ppm error = 5, m/z absolute error = 0.015) except the following: maximal tolerated m/z 
deviation in consecutive scans = 3.5 ppm; width of overlapping m/z slices (mzwid) = 0.005; 
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retention time window (bw) = 15 s, minimum peak width = 20, maximum peak width = 80.  Lists 
of retention times (RT), m/z values and peak intensities were exported to an Excel spreadsheet 
for processing.  As noted previously, the intensity of each peak was normalized to the sum of 
total intensities in each sample and was then multiplied by 10,000 for statistical analysis. 

Characteristics of lipid classes under our instrumental parameters were determined from LC-
FTMS of a training set consisting of 193 common lipid species representing monoacylglycerols 
(MG), diacylglycerols (DG), triacylglycerols (TG), glycerophosphocholines (PC), 
glycerophosphoethanolamines (PE), monoglycerophosphocholines (LPC), 
monoglycerophosphoethanolamines (LPE), sphingomyelin (SM), and cholesterol esters (CE).  
Mass accuracy, precision, and stability of the method were estimated from repeated analysis of 8 
ion peaks representing lipids detected in the quality control sample that covered large ranges of 
masses, intensities and retention times. Mass accuracies were less than 6 ppm and coefficients of 
variation of retention times and peak intensities were 0.10%-0.56% and 4.08%-24.47%, 
respectively. 

Statistical analysis 
Because plasma samples were pooled for the current investigation (4 - 6 subjects per pooled 
sample) mean values were used for statistical analyses.  A combination of univariate and 
multivariate statistical models was used to investigate discriminating features.  First, two-tailed 
Student’s t-tests and analysis of variance (ANOVA) were performed to screen for discriminating 
features by race, gender and smoking status.  Then significance was determined using a non-
parametric permutation test with 10,000 observations [21].  False discovery rates (FDR) were 
corrected using the Benjamini-Hochberg (BH) method to adjust P-values for false discovery 
involving multiple comparisons [22]. After application of the BH method, 34 significant features 
were detected. 

After putative identification of discriminating features (described below), sources of variation of 
dihomo-γ-linolenoyl ethanolamide (DGLEA), PC(16:0/18:1), and the sum of 6 plasmalogens 
[PE(P-16:0/20:4), PE(P-18:1/20:4), PE(P-18:0/20:4), PE(P-18:0/22:6), PE(P-18:0/22:5) and 
PC(P-18:0/22:6)] were evaluated with multivariable linear models that employed combinations 
of race, gender, smoking status, BMI and dietary fat (g) as predictor variables.  (The sum of 
plasmalogen levels was used because concentrations of the 6 plasmalogens were highly 
correlated).  Models were constructed using SAS software for Windows (v. 9.3, SAS Institute, 
Cary, NC).   

Structural identification of discriminating features 
Preliminary identification relied upon matching accurate masses from FTMS (with a mass 
tolerance of 10 ppm) with entries in the Human Metabolome Database (HMDB) 
(http://www.hmdb.ca/), the Structure Database of Lipid Maps (LMSD) 
(http://www.lipidmaps.org) and the Metabolite and Tandem MS Database (METLIN) 
(http://metlin.scripps.edu/).  Since human plasma rarely contains lipids with odd-numbered fatty 
acyl chains, matches representing odd-numbered acyl chains were removed.  Other filtering rules 
were constructed based on relative abundances of signals representing molecular ions and their 
common adducts, as determined from analyses of our training set of 193 lipid species. Additional 
structural information was derived from MS/MS analysis and comparisons with reference 
standards. 
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1.4 Results 

Univariate analyses of demographic characteristics and dietary fat 
Table 1.1 lists summary statistics for the subjects represented by the 35 pooled plasma samples 
in the current investigation.  Subjects were young, with mean ages of 26 y and 25 y for black and 
white participants, respectively.  The mean BMI for black subjects (28.9 kg/m2) was significantly 
greater than that of white subjects (24.1 kg/m2) and black subjects had significantly higher 
consumption of all forms of fat.  Also, smokers consumed significantly more dietary fats than 
nonsmokers. 

Profiling of plasma lipids  

Untargeted lipidomic profiles of the 35 pooled plasma samples and QC samples were obtained 
by LC-FTMS in both ESI+ and ESI- modes. Many more features were detected in ESI+ mode 
(n=2,862) than in ESI- mode (n=717).  Figure 1.1A represents a typical base-peak chromatogram 
of a lipid extract in ESI+ mode.  Plasma lipids were mainly located in three time domains: 16-20 
min, 20.5-23 min, 24-26 min. The averaged mass spectra of these three time domains, shown in 
Figure 1.1C, display prominent m/z ranges of 300-550, 700-820 and 800-910, respectively.  The 
distribution of m/z is partially annotated in a density map (Figure 1.1B) which shows time 
domains of major lipid classes eluting between 19 and 26 min.  Characteristics of these lipid 
classes were inferred from 193 lipid molecules in the training set. Masses of PCs, PEs, SMs, 
LPCs, and LPEs were mainly detected as [M+H]+, while MGs, DGs, TGs and CEs were 
detected as [M+NH4]+. 

Discriminating lipidomic features  

To screen for differences associated with race, gender and smoking status, ANOVA models were 
obtained for each m/z feature (2,862 in ESI+ mode and 717 in ESI- mode) and random 
permutation tests were performed to establish P-values.  The significance of each feature for a 
given comparison was determined by its P-value after BH correction for false discovery (P-
values were truncated at 10-8).  As summarized in Table 1.2 and Figure 1.2, a total of 34 
discriminating features was detected, namely, 23 for race, 9 for smoking status and 2 for gender.  
These features were concentrated in the m/z region between 650 Da and 850 Da, which is the 
domain of phospholipids and sphingomyelins (Figure 1.1).  

Sixteen of these features were putatively identified by combinations of accurate mass, retention 
time, MS/MS fragment ions and reference standards (details are given in Supplemental 
Information, Section 2).  The sole non-lipid feature was identified as cotinine (m/z 177.10246), a 
metabolite of nicotine that was 262 times more abundant in smokers than in nonsmokers.  The 
other tentatively identified features were all lipids that significantly discriminated for race.  
These race-discriminating lipids included 6 plasmalogens [PE(P-16:0/20:4) [m/z 724.53126 
[M+H]+]; PE(P-18:1/20:4) [m/z 750.54676 [M+H]+, 751.55602 [M+H]+ (isotope)]; PE(P-
18:0/20:4) [m/z 752.56303 [M+H]+, 750.54772 [M-H]-, 753.56640 [M+H]+ (isotope), 
754.58059 [M+H]+ (isotope)]; PE(P-18:0/22:6) [m/z 776.56270 [M+H]+]; PE(P-18:0/22:5) [m/z 
778.57958 [M+H]+, 776.56369 [M-H]-]; and PC(P-18:0/22:6) [m/z 818.61083 [M+H]+] that 
were  present at approximately 2-fold greater concentrations in black subjects. Two other race-
related features were tentatively identified from accurate masses, namely, DGLEA, an agonist of 
the endocannabinoid receptors (CB1 and CB2) [23–25] that was present at 4-fold greater 
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concentrations in white subjects and PC(16:0/18:1) [m/z 744.55806 [M-CH3]-, 745.56145 [M-
CH3]- (isotope), m/z 746.56465 [M-CH3]- (isotope)] that was present at moderately higher 
concentrations in white subjects (1.23-fold difference).  

Multivariable linear regression models were used to investigate whether levels of the race-related 
lipids were affected by gender, BMI or consumption of fat as recorded by 6-month dietary recall.  
According to the R2 values of the regression models (Table 1.3), race accounted for 68.0% of the 
summed plasmalogen levels, gender for 6.1% and consumption of animal fat for 2.2% (vegetable 
fat was not associated with plasmalogen levels). The model for putative DGLEA showed that 
race accounted for 50% of the variation and that race, gender and their interaction jointly 
explained 62%, with white males having 7 times higher concentrations than black females.  Race 
was the only significant predictor for putative PC(16:0/18:1) and explained 45% of the variance.  
With race in each model, BMI did not significantly contribute to explained variability.   

1.5 Discussion 

Using untargeted lipidomics with LC-FTMS, plasma lipid changes related to race, gender, and 
smoking status were detected in healthy young American adults.  The fact that baseline 
concentrations of these lipids differ between racial groups could be relevant to interpretation of 
findings that chronic diseases are more prevalent in black Americans than white Americans [26–
28].   

Most of the race-discriminating lipids were plasmalogens that were present at 2-fold higher 
levels in black subjects. Plasmalogens are required for membrane integrity and messaging 
[29,30] and serve as free radical scavengers [6,31,32].  Thus, these lipids are generally regarded 
as health promoting and several plasmalogens were recently detected at significantly lower 
concentrations in subjects with pancreatic cancer than in control subjects [33].  On the other 
hand, some oxidation products of plasmalogens can be toxic [34–37].  Since animal fat is the 
major source of plasmalogens in Western diets [38], the observed differences could reflect higher 
dietary intake of animal fat in black and male subjects (Table 1.1).  Indeed, dietary consumption 
of plasmalogens increased plasma levels of these lipids in rats [38].  Self-reported consumption 
of animal fat (but not vegetable fat) explained a small amount of the variability of plasmalogen 
concentrations in our subjects (Table 1.3) after adjusting for race and gender.  The fact that race 
was a much stronger predictor of plasmalogen levels than animal fat in our study could point to 
imprecision in dietary assessment of fat consumption and from aggregation of subjects by 
race/gender pooling.  Higher plasmalogen levels in black and male subjects could also point to 
differential plasmalogen biosynthesis, possibly related to peroxisome activity [29,30].  Although 
BMI was significantly greater in black subjects, it is noteworthy that BMI did not explain 
additional variability of identified features after adjustment for race and gender in multivariable 
models. 

Putative DGLEA, which was found at 4-fold higher concentrations in white subjects, is an 
endocannabinoid that binds to receptors (CB1 or CB2) that are also the targets of 
tetrahydrocannabinol, the principal active component of marijuana [23].   Upon activation of at 
least one of these receptors, specific physiological short-range events can be triggered, including 
neurotransmitter release.  Effects of these reactions include analgesia, increased appetite and 
neural tissue development [39].  Although the endocannabinoid system and its effects are not 
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well understood, disruption of this system has been implicated in metabolic syndrome and 
accumulation of excess visceral fat [40].  Since the corresponding acid (DGLA) has been shown 
to have minimal differences across racial groups [41], a differentiating event may occur in the 
pathway between DGLA and the transformation to an ethanolamide. 

Our untargeted lipid profiling discovered 6 features in the mass range between 740 and 790 Da 
that were present at lower concentrations in smoking subjects.  Since this mass range is 
characteristic of phospholipids or sphingomyelins, our results lend support to the hypothesis that 
smoking interferes with metabolism of these lipid classes as suggested by targeted profiling of 
serum samples from smokers and non-smokers by Wang-Sattler et al. [42]. Interestingly, we also 
found that the level of the PC plasmalogen, PC(P-18:0/22:6), which was associated with race in 
our study, was approximately 33% lower in smokers, compared with non-smokers, consistent 
with the targeted study [42].  The two features with m/z 567.38180 and 568.38515 (Table 1.2) 
were highly correlated with cotinine (Spearman r=0.928, 0.948), suggesting that they are 
metabolites or reaction products of tobacco.   

Because we used archived plasma from a previous investigation [13], our study has several 
limitations.  First, it was necessary to pool the specimens - and thereby anonymize subjects’ 
identities - while retaining testable factors (race, gender and smoking status).  Although pooling 
is generally undesirable for small studies and could have reduced our ability to detect significant 
differences in population characteristics, those features that differed between races and genders 
(DGLEA and plasmalogens) are unlikely to be false positives [43].  Second, the blood sampling 
protocol employed heparinized plasma, and differences in concentrations of numerous lipids 
have been observed across blood samples collected with different anticoagulants, including 
heparin [44].  Thus, the 6 plasmalogens and putative DGLEA and PC(16:0/18:1) should be 
interpreted as lipidomic features that differed significantly between races and genders in samples 
of serum obtained from heparinized whole blood after prolonged storage at -80oC.  Finally, as 
noted previously, archived plasma samples from the 158 individual subjects in the original 
investigation had been diluted with varying volumes of erythrocyte washes.  This effectively 
precluded quantitation based on internal standards and motivated us to normalize individual 
features by the sum of all detected peaks.  While this method of quantitation could also have 
reduced precision – and the ability to detect discriminating features - it should not have 
generated false positives.  
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1.6 Tables and Figures 

 

 

Figure 1.1:  Base peak chromatogram of 20 μl of human plasma  

(A) positizve ionization mode; (B) density map (m/z vs. retention time); (C) averaged mass spectra of three different 
time regions.  LPC: monoglycerophosphocholines; LPE: monoglycerophosphoethanolamines; PE: 
glycerophosphoethanolamine; PC: glycerophosphocholine; SM: Sphingomyelin; DG: Diacylglycerol TG: 
Triacylglycerol; CE: Cholesteryl ester.  
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Figure 1.2: Scatter plots of P-values from ANOVA with BH correction 

Based on data from (a) positive ionization mode and (b) negative ionization mode. Points above the bold line 
indicate a BH-adjusted P-value less than 0.05. (Points were truncated at a P-value of 10-8). 
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Table 1.3: Multivariable linear models of covariate effects on analytes representing significant lipidomic features.  

Analyte levels were modeled as ratios of individual peak intensities divided by the sum of all peak intensities 

Analyte Parameter Estimate P-value R2 !R 2 a 

Summed 

Plasmalogens Intercept 3.786    

 Race (ref. = white) 3.336 <0.0001 0.6801 - 

 Gender (ref. = female) 0.912 0.036 0.7414 0.0613 

 Animal fat (g) 0.022 0.093 0.7642 0.0228 

DGLEAb Intercept 0.015    

 Race (ref. = white) -0.063 0.016 0.504 - 

 Gender (ref. = female) 0.074 0.0058 0.5343 0.0303 

 Race×Gender -0.091 0.014 0.6179 0.0836 

PC(P-16:0/18:1) Intercept 70.297    

 Race (ref. = white) -13.07 <0.0001 0.4503  

a Change of R2 value after adding the covariate to the model. 

b Dihomo-γ-linolenoyl ethanolamide 
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2.1 Abstract 

Background: Cross-sectional studies reported a novel set of hydroxylated ultra-long-chain fatty 
acids (ULCFAs) that were present at significantly lower levels in colorectal cancer (CRC) cases 
than controls. Follow-up studies suggested that these molecules were potential biomarkers of 
protective exposure for CRC.  To test the hypothesis that ULCFAs reflect causal pathways, we 
measured their levels in prediagnostic serum from incident CRC cases and controls. 

Methods:  Serum from 95 CRC patients and 95 matched controls was obtained from the Italian 
arm of the European Prospective Investigation into Cancer and Nutrition cohort and analyzed by 
liquid chromatography-high-resolution mass spectrometry.   Levels of 8 ULCFAs were 
compared between cases and controls with paired t-tests and a linear model that used time to 
diagnosis (ttd) to determine whether case-control differences were influenced by disease 
progression. 

Results: Although paired t-tests detected significantly lower levels of four ULCFAs in CRC 
cases, confirming earlier reports, the case-control differences diminished significantly with 
increasing ttd (7 d to 14 y).  

Conclusion: Levels of several ULCFAs were lower in incident CRC cases than controls.  
However, because case-control differences decreased with increasing ttd, we conclude that these 
molecules were likely consumed by processes related to cancer progression rather than causal 
pathways.   

Impact: ULCFA levels are unlikely to represent exposures that protect individuals from CRC.  
Future research should focus on the diagnostic potential and origins of these molecules.  Our use 
of ttd as a covariate in a linear model provides an efficient method for distinguishing causal and 
reactive biomarkers in biospecimens from prospective cohorts.   

2.2 Introduction 

Colorectal cancer (CRC) accounts for one fourth of all cancer deaths worldwide and is the 
second leading cause of cancer mortality in the United States and Europe [45,46]. Since less than 
15 percent of the variation in risk of CRC has been attributed to heritable genetic factors [47], 
exposures such as nutrients, microbial metabolites, toxins, and pathogens are likely to play a 
significant role in CRC development.   Exposures that have been associated with increased risks 
of CRC include obesity, cigarette smoking, alcohol use, and consumption of n-6 polyunsaturated 
fatty acids, all of which contribute to oxidative stress and inflammation (reviewed in Stone, et al. 
[48]).  On the other hand, regular consumption of aspirin – an antioxidant and anti-inflammatory 
drug - reduces CRC risk [48,49].  Aspirin inhibits both COX-1 and COX-2 enzymes, preventing 
the production of inflammatory prostaglandins and thromboxanes [50] and also acetylates COX-
2 and thereby allows conversion of n-3 and n-6 fatty acids to inflammation-resolving compounds 
(lipoxins are derived from n-6 fatty acids and resolvins and protectins from n-3 and n-6 fatty 
acids) [51]. This combination of factors suggests that CRC may result from an imbalance in 
production and removal of reactive electrophiles and inflammatory products that can initiate and 
promote tumors [48,52,53].   
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Recently, Ritchie et al., used untargeted high-resolution mass spectrometry (HRMS) to detect a 
novel class of polyunsaturated, hydroxylated, ultra-long-chain fatty acids (ULCFAs, containing 
between 28 and 36 carbons) that was associated with reduced risks of CRC in three case-control 
studies [4].  Using accurate-mass signatures of a dozen representative ULFCAs, Ritchie et al. 
reported that concentrations of these molecules were not correlated with either the tumor stage or 
type of treatment in cases.  Furthermore, ULCFA levels declined with increasing age (whereas 
risk of CRC increases with age) in cases and controls, indicating a possible protective effect of 
ULCFAs [54].  Moreover, a large follow-up study of colonoscopy patients by the same authors 
indicated that subjects under the age of 50 that were in the lowest decile of ULCFA-serum 
concentrations had a relative CRC risk of 10.1 (C.I.: 6.4 – 16.4) [5].   

In attempting to elucidate a protective mechanism for these molecules, Ritchie et al. dosed 
human CRC (SW620) cells with 28-carbon ULFCAs that had been isolated from human serum, 
and reported reduced production of pro-inflammatory markers (NFκB, IκBα, and NOS2) [55].  
Since, as noted above, inflammation has been a hallmark of CRC [48,52,56], the inverse 
correlation of ULCFA levels and CRC risk would be consistent with a cancer mechanism that 
favors a pro-inflammatory environment that increases with age.  Furthermore, the purported anti-
inflammatory or protective properties of ULCFAs could be similar to those of hydroxylated 
very-long chain fatty acids that are metabolized into inflammation-resolving compounds (i.e. 
lipoxins, resolvins, and protectins). These compounds are active in the pM – nM range [53] and 
have epimeric forms that are triggered by aspirin, which reduces risks of CRC and cancer 
generally [49,57]. 

Remarkably, the provocative findings of Ritchie et al. [4,5,33,54,55] implicating low serum 
levels of ULCFAs as potential causes of CRC have not been explored by other investigators.  
Since all of the reported associations between circulating levels of ULFCAs and CRC were 
derived from cross-sectional studies [4] it is particularly important to replicate Ritchie’s findings 
with archived cohort samples that were collected prior to CRC diagnosis.  This would reduce the 
likelihood that lower levels of ULFCAs in CRC cases resulted from tumor-induced dysregulation 
of homeostatic pathways (reverse causality).   The purpose of this study is to test the hypothesis 
that ULFCAs are potentially protective against CRC with pre-diagnostic serum from 95 incident 
CRC cases and matched controls from the European Prospective Investigation of Cancer and 
Nutrition (EPIC).    

2.3 Materials and Methods 

Experimental Design 

We adopted a simple regression model to determine whether ULCFAs represent biomarkers on 
the causal pathway to CRC or are reactive biomarkers related to progression of the disease.  
Since the EPIC serum had been obtained between 7 d and 14 y prior to CRC diagnosis, we used 
the (log-scale) difference in ULFCA concentrations (CRC case minus matched control) as the 
outcome variable in a linear model to simultaneously investigate effects of case status and time 
to diagnosis (ttd) on the risk of CRC.  (Note that these log-scale case-control differences 
represent case:control ratios in natural scale).  The model is shown as follows: 

   !" = $% + $'())*)" + ,",    (1) 
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where !" represents the case-control difference of (log-transformed) ULCFA levels for the -./ 
case-control pair, $% is the intercept representing the case-control difference at recruitment, and 
$' is the coefficient for ))* (d).  Evidence favoring a non-zero intercept ($%) would indicate that 
a given ULCFA level differed on average between cases and controls.  A negative intercept, 
illustrated with the hypothetical example in Figure 2.1A, would indicate higher ULCFA levels in 
controls (i.e. a protective effect) as suggested by Ritchie et al. [4].  Likewise, a significant 
coefficient for ttd ($'), illustrated in Figure 2.1B, would indicate that the timing of blood 
collection relative to diagnosis affected the outcome and, therefore, that any case-control 
difference in the ULFCA level probably reflects progression of CRC.  Thus, the combination of 
a negative $% and non-significant $' would point to a potentially causal biomarker of CRC while 
a significant $' would point to a reactive biomarker. 

Study Population 

EPIC is a large prospective cohort study with approximately 520,000 participants, aged 25–70 
years at enrollment from 1992 through 2000, from 23 centers in 10 European countries [58]. All 
study participants provided written informed consent.  Serum was collected at enrollment and 
dietary information was obtained with a food-frequency questionnaire [59,60].  The serum for 
this investigation consisted of 190 specimens (95 case-control pairs), collected between 1993 and 
1997 from subjects in Turin, Italy.  Controls were matched to incident cases by age, study 
enrollment year and season, and gender.  Summary statistics for these subjects are listed in Table 
2.1 including ttd, gender, body mass index (bmi), waist circumference, and self-reported 
consumption of fish and shellfish.  These covariates were selected based on previous evidence 
that bmi and waist circumference are associated with CRC risk [61,62] and that diets rich in fish 
oil have reduced risks of inflammation-related diseases [63,64].   

Chemicals 

LC-MS grade (Fluka) isopropanol, methanol, water and 13C- cholic acid (internal standard) were 
from Sigma-Aldrich (Milwaukee, WI, USA). LC-MS grade (Optima) acetic acid and chloroform 
were from Fisher Scientific (Santa Clara, CA, USA). All chemicals were of analytical grade and 
were used without purification. 

Sample Processing 

Shortly after collection, a 0.5-ml aliquot of each serum sample was placed in a cryostraw, sealed, 
and stored in liquid nitrogen (-196 oC) at the International Agency for Research on Cancer in 
Lyon, France. Approximately one year prior to analysis, cryostraws were transported (with dry 
ice) to our laboratory in Berkeley, CA (USA), where they were maintained at -80 oC.  After 
opening each cryostraw, 20 0l of serum was mixed with 100 0l of a solvent mixture 
(isopropanol/methanol/water = 60:35:5) containing 13C-cholic acid as an internal standard (3.0 
0g/ml). After mixing samples for one minute with a vortex mixer, samples were allowed to stand 
at room temperature for 10 min. to precipitate proteins and were then centrifuged for 10 min at 
10,000 g.  The supernatant was removed and stored at 4 oC prior to liquid chromatography (LC)-
HRMS. Case control pairs were analyzed sequentially but in random order.  A local quality-
control sample, prepared by pooling aliquots from each serum sample, was analyzed as each 
tenth injection to provide technical replicates for estimating precision.   
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Liquid chromatography-HRMS was performed on two platforms. The first 132 samples were 
analyzed with an Agilent LC (1100 series) coupled to an Agilent HRMS (Model 6550 QTOF, 
Santa Clara, CA, USA).  Due to a malfunction, this QTOF required repairs before analyses could 
be completed.  In order to permit timely analysis, the remaining 58 samples were analyzed with 
an Agilent 1200 series LC (Santa Clara, CA, USA) coupled to an LTQ Orbitrap XL HRMS 
equipped with an Ion Max ESI source (Thermo Fisher Scientific, Waltham, MA, USA).  On both 
platforms, 10 0l of each sample was injected from a full loop into a Luna C5 column (2.1 × 50 
mm, 100 Å, 5 0m, Phenomenex, Los Angeles, CA) operated with gradient elution of mobile 
phase A (methanol/0.5 % acetic acid = 5:95) and mobile phase B (isopropanol/methanol/0.5 % 
acetic acid = 60:35:5) as follows: 100% A for 2 minutes at 0.05 ml/min; 0-83% B from 2-7 
minutes at 0.3 ml/min; 83-100% B from 7-14 minutes at 0.3 ml/min; 100% B from 14-17 
minutes; and 100% A from 17-22 minutes.  The autosampler and column oven were maintained 
at 4 oC and 40 oC, respectively.  The electrospray was operated in negative ionization mode.  To 
monitor system stability, pooled quality control samples were injected every tenth sample. 
Tandem MS/MS spectra were obtained with the Orbitrap platform.  

During processing, approximately one third of the serum samples was observed to have a gelled 
consistency that apparently resulted from a preservative(s) contained in the cryostraws [65,66]; 
gelled serum from EPIC cryostraws has been observed previously [67].   Pairs with at least one 
gelled sample were analyzed in a single batch (batch 1, n = 96) on the QTOF platform, and the 
remaining (non-gelled) pairs were analyzed in two batches on either the QTOF platform (batch 
2, n = 36) or the Orbitrap platform (batch 3, n = 58).   

Since previous reports had implicated consumption of seafood as being potentially protective of 
CRC [63,64], several fresh seafood samples were purchased from a local market in Berkeley, 
California and tested for the presence of ULCFAs.  Four types of seafood were tested: raw white 
shrimp (Thailand), wild American sea scallops, and farmed American Littleneck clams and live 
mussels.  Samples from these four species (50 0l) were extracted for lipids using the Bligh and 
Dyer chloroform extraction method [68,69].  These extracts were analyzed on the Orbitrap 
platform, with the same method as described above.    

Data Processing 

Raw data were converted to mzXML format for peak picking using ProteoWizard software 
(Spielberg Family Center for Applied Proteomics, Los Angeles, CA).  Peak detection and 
retention time alignment were performed with the xcms package within the R statistical 
programming environment [70,71]. For the data collected on the QTOF, parameters include 
centwave feature detection, orbiwarp retention time correction, minimum fraction of samples in 
one group to be a valid group = 0.25, P-value thresholds for blank versus QC samples = 0.01, 
isotopic ppm error = 10, width of overlapping m/z slices (mzwid) = 0.015, bandwidth grouping 
(bw) = 2, minimum peak width = 2 s, maximum peak width=20 s. Parameters for the Orbitrap 
platform were the same except for:  isotopic ppm error = 2.5, minimum peak width = 2 s, 
maximum peak width=70 s, bw = 5, prefilter peaks = 3, prefilter intensity = 5000, based on xcms 
parameters optimized for Orbitrap instruments [72]. The resulting peak tables of retention times, 
m/z values, and peak intensities were exported for further processing. Subsequent analyses were 
also performed with the R platform (version 3.2.1) [73]. 
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Because reference standards for the ULCFAs are not available, mass spectra were interrogated 
for 13 accurate masses representing ULFCAs with between 28 and 36 carbons that had been 
reported by Ritchie et al [4,33].   These ULFCAs are listed in Table 2.2 along with their masses 
and elemental formulae.  We targeted these 13 ions in our analyses and Table 2.2 shows the 
retention times and observed masses, along with the mass accuracy expressed as the mass 
deviation (ppm) between the theoretical and observed masses.  Tandem MS analyses revealed 
fragment ions representing losses of CO2 and one or two H2O molecules for all 13 precursor ions. 
These losses are consistent with hydroxylated carboxylic acids and with fragment ions reported 
by Ritchie, et al. [4].  After extracting accurate masses for the 13 putative ULCFAs from total-
ion chromatograms for all EPIC specimens, extracted-ion chromatograms were visually 
examined and five of the features were excluded because some peaks were not reproducibly 
detected above noise levels (ULFCAs 518, 574, 576, 578, and 592) (Table 2.2). 

For quantitation of ULCFA levels, we followed the same approach as Ritchie et al. [54] and 
normalized analyte peak areas by the corresponding peak areas of an internal standard (13C-
cholic acid, final concentration = 3.0 0g/ml).  These normalized ULCFA abundances are 
designated as ‘peak-area ratios’ (PARs).  Preliminary statistical analyses indicated that use of 
PARs, rather than simply ULCFA peak areas, reduced nuisance variation from instrumental 
variability and matrix effects. 

Statistical Analysis 

Batch adjustment was performed with a linear model of the log-transformed PAR of each 
analyte, which included dummy variables for batch and gel status as independent variables.  
Residuals from these linear models were used as dependent variables in subsequent statistical 
analyses. These residuals represent log-transformed PAR values normalized to a mean of zero.  
Coefficients of variation (CVs) for the eight ULCFAs with acceptable peak morphology were 
estimated from the error variances (123) of log-transformed PARs after batch and gel adjustment 
as 456

7

− 1 [74] (Table 2.2).  

Analyte levels were compared between cases and controls using one-sided paired t-tests as well 
as the linear model (1) for evaluating both case-control differences and effects of ttd (Table 2.3).  
Additional linear models were constructed by adding waist circumference and self-reported 
consumption of fish and shellfish to model (1) as covariates (Table 4).  Waist circumference had 
previously been associated with CRC [61,62] and consumption of fish and shellfish introduces n-
3 fatty acids into the diet that purportedly reduce cancer risks [63,64] and are metabolized to 
anti-inflammatory lipoxins, resolvins, and protectins [55]. As noted above, some serum samples 
had a gelled consistency. When gel status was added to linear models, no significant main effect 
or interaction between case-control status and gel status was detected (results not shown). 

2.4 Results  

Approximately normal distributions of logged ULCFA PARs were verified for all three batches, 
and Kruskal–Wallis tests detected no significant differences across batches (P-value > 0.33).  As 
indicated in Table 2.2, CVs ranged from 9.1 to 27.6% (mean 22%) for the 8 ULCFAs with 
acceptable peak morphology.  
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As shown in Table 2.3, paired-t tests detected significantly lower PARs in cases compared to 
controls for four 28-carbon ULCFAs (446, 466, 468, and 494). Significant case-control 
differences of PARs were confirmed with a negative intercept from model (1) for the same 28-
carbon ULCFAs and a fifth 30-carbon ULCFA (492).  Interestingly, these five ULCFAs also 
showed statistically significant coefficients for time to diagnosis (ttd).  Indeed, as shown in 
Figure 2.3, PAR differences between cases and controls increased with ttd for all 8 ULCFAs.  
Since case-control differences in levels of these ULCFAs appear to decline with increasing ttd, 
we conclude that these molecules are reactive biomarkers of CRC progression rather than 
biomarkers of protective exposure, as hypothesized by Ritchie, et al. [54].   

Table 2.4 shows results from extensions of model (1) to include waist circumference, and self-
reported consumption of fish and shellfish.  No association was observed between the covariates 
and case-control differences in PAR values. No ULCFA peaks were distinguishable from 
background noise in the seafood samples.   

Although our study confirms that levels of ULCFAs with 28–30 carbons are significantly lower 
in incident CRC cases than matched controls [4], the influence of ttd on case-control differences 
(Figure 2.2) suggests that these fatty acids are more likely to be markers of CRC progression 
rather than biomarkers of protective exposure.   

Evidence that lower levels of ULFCAs may be linked to the progression of CRC points to tumor-
induced metabolism as a likely contributor, but leaves open the question as to the origins of the 
molecules.  Although Ritchie et al. readily observed ULCFAs in human serum, they failed to 
detect the same molecules in sera from rats, mice and cattle, in various plant tissues and grains, 
and in human cell lines from tumors and normal colonic tissue [4].   Aside from carbon-chain 
length, the proposed structures of ULCFAs [75] resemble those of the lipoxins, resolvins, and 
protectins (20-22 carbons); these are mono-, di-, and tri- hydroxylated products of long chain 
fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), that have 
been decarboxylated through metabolism [76–79].  Since EPA and DHA are present in oily 
tissues from marine species, we suspected that the ULCFAs might also be present in seafood. 
However, we did not detect ULCFAs in commercial samples of shrimp, scallops, clams or 
mussels.  

While the origin of hydroxylated ULCFAs remains unknown, very long chain (VLC) PUFAs, 
ranging from 22-34 carbons, have been described [80,81] and detected in spermatozoa, retinas, 
and brain tissue [82,83]. PUFAs longer than 22 carbons are generated by elongase ELOVL-4, 
which is one of seven endoplasmic-reticulum-bound enzymes responsible for lengthening 
particular fatty acids [84].  While these VLC-PUFAs are not typically hydroxylated, it is 
plausible that they share common synthetic pathways with the hydroxylated ULCFAs described 
by Ritchie, et al.  Alternatively, elongases ELOVL2 and ELOV5 extend typical-length PUFAs 
(18-22 carbon) but have not been investigated as possible progenitors of ULCFAs [85].   

Our approach for simultaneously comparing paired case-control differences as a function of ttd, 
embodied in model (1), offers an efficient mechanism for differentiating biomarkers of exposure 
from those of disease progression and is sufficiently general for use with either targeted or 
untargeted analyses of biospecimens from prospective cohorts.  Previous analyses that employed 
ttd in studies of disease etiology have been restricted to biomarker levels in cases only [60,86,87] 
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and have also been used to exclude cases diagnosed relatively soon after specimen collection 
(e.g. 2-5 years) [88–90]. 

For the CRC case-control samples evaluated in the current study, the 28-carbon ULCFAs were 
the class most highly associated with case status and ttd (Table 2.3).   Ritchie, et al. reported that 
several 36-carbon compounds were also highly discriminating between cases and controls for 
both CRC [4,5] and pancreatic cancer [33,91].  However, the only 36-carbon ULCFA that we 
were able to quantify was 594, which was not significantly associated with either CRC case 
status or ttd (Table 2.3), although the plot in Figure 2.2 suggests a weak, but consistent, trend 
with ttd.  

2.5 Discussion 

Although our results tend to downplay the potential roles of ULCFAs as biomarkers of protective 
exposure, they may be worth evaluating as diagnostic biomarkers of CRC.  Indeed, relationships 
shown in Table 2.3 point to significant reductions in three of the 28-carbon ULCFAs (446, 466, 
& 468) starting between about 1,500 - 3,000 d (3 – 7 y) prior to diagnosis. 

Finally, we emphasize that our methods relied on accurate masses to pinpoint ULCFAs and 
employed quantitation relative to 13C-cholic acid (internal standard).  With availability of 
reference standards, it would be possible to detect and quantitate these molecules with greater 
precision and thus to reduce measurement errors and resulting attenuation biases that probably 
weakened associations observed with CRC status and ttd.  However, improved standardization 
would be unlikely to remove the consistent effects of ttd that were observed in our samples of 
CRC cases and controls from the EPIC cohort (Figure 2.2). 

We recognize that our study is small and has limited power to detect associations between 
ULCFAs and CRC.  Nonetheless, these results offer important clues that the ULCFAs might be 
useful diagnostic markers.  Validation with larger sample sets is now necessary.  

In conclusion, these targeted analyses of 8 accurate masses, which are characteristic of ULCFAs 
reported by Ritchie et al. in case-control studies [4], confirmed that some ULCFAs were present 
at significantly lower levels in incident CRC cases than matched controls from the EPIC cohort.  
However, clear trends with ttd indicate that the observed case-control differences are unlikely to 
be due to the ULCFAs acting as protective exposures but rather reflect progression of the 
disease.  Although ULCFAs are probably not involved with causal pathways leading to CRC, 
their correlations with ttd suggest that they may be useful diagnostic biomarkers.  Future 
research regarding applications of these molecules in cancer research would benefit from 
synthesis of reference standards and knowledge of the dietary or metabolic origins of these novel 
molecules.    

Our use of a linear model that employed ttd as a covariate [model (1)] provides an efficient 
method for distinguishing causal and reactive biomarkers in specimens of blood from 
prospective cohorts.  The model is simple to apply and is sufficiently general for use with either 
targeted or untargeted analyses of biospecimens.   
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2.6 Tables and Figures  

 

Figure 2.1: Use of a linear model (Model 1) to differentiate a causal biomarker from a disease-related biomarker   

Hypothetical data representing levels of a biomarker were generated for case control pairs, transformed to natural 
logarithms, and the case-control differences plotted versus time to diagnosis (ttd).  (A) Shows that case-control 
differences are consistently less than zero indicating that biomarker levels are greater in controls than in cases and 
are not affected by ttd.  This would indicate a biomarker of protective effect.  (B) Shows case-control differences 
that diminish with increasing ttd, consistent with a biomarker of disease progression.   
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Figure 2.2: Linear-model plots. 

Case-control differences for ULCFA levels versus time to diagnosis (ttd).  Error bands represent 95% confidence 
intervals.  ULCFA levels are reported as peak-area ratios (PARs) relative to 13C-cholic acid (internal standard).  
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Table 2.1. Descriptive statistics of human subjects. 

 
Total 
:=190 

CRC cases 
:=95 Controls :=95 P-value 

Gender Male 68 68  
 Female 27 27  
Age at enrollment median 57 57  
(y) min 36 35  
 max 65 64  
Years to diagnosis median 7.1 -  
(from enrollment) min 0.1 -  
 max 14.4 -  
BMI median 26.4 25.1 0.0090 
 min 19.6 18.7  
 max 40.6 33.6  
Waist 
circumference 

median 95 90 0.0005 

(cm) min 68 64  
 max 115 119  
Dietary fish median 21 24 0.1660 
(g/d) min 1 0  
 max 77 83  
Dietary shellfish median 4 3 0.4526 
(g/d) min 0 0  
 max 45 76  

Summary statistics of covariates from EPIC human study investigation, matched by age, study enrollment 
year and season, and gender. 
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Table 2.2. Ultra-long-chain fatty acids (ULCFAs) reported by Ritchie, et al.(8)  and detected in the current 
investigation 

ULCFA molecular formulae, the mass accuracy of the detected molecules, recorded retention time, 
whether the feature peak shape was sufficiently reproducible and above the noise level, and the 
coefficient of variation for each accepted peak. 

m/z  - mass-to-charge ratio; CV - coefficient of variance; ND - not determined. 

a Theoretical and observed m/z values correspond to singly-charged negative ions. 

b Based upon visual inspection of peak morphology for all selected-ion chromatograms. 

 

 

 

 

 

 
ULCFA Formula 

Theoretical  
m/z a 

Observed 
m/z a 

Mass dev. 
(ppm) 

Ret. time 
(sec) 

Peak 
shape b CV 

446 C3<H>?O> 445.3327 445.3324 0.70 610.94 pass 0.276 

448 C3<H><O> 447.3483 447.3470 3.01 615.20 pass 0.262 

466 C3<HA%OA 465.3590 465.3586 0.88 583.05 pass 0.276 

468 C3<HA3OA 467.3742 467.3744 -0.38 605.56 pass 0.181 

492 CB%HA3OA 491.3741 491.3735 1.22 612.33 pass 0.185 

494 CB%HA>OA 493.3896 493.3906 -1.96 612.28 pass 0.236 

518 CB3HA>OA 517.3902 517.3883 3.59 616.13 fail ND 

538 CB3HA<O? 537.4164 537.4155 1.58 604.36 pass 0.091 

574 CB?H?3OA 573.4527 573.4508 3.33 611.53 fail ND 

576 CB?H?>OA 575.4683 575.4666 2.97 616.40 fail ND 

578 CB?H??OA 577.4837 577.4842 -0.79 629.90 fail ND 

592 CB?H?>O? 591.4630 591.4637 -1.21 613.37 fail ND 

594 CB?H??O? 593.4786 593.4783 0.42 616.41 pass 0.252 
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Table 2.3: Statistical estimates for one-sided paired t-tests and time-to-diagnosis linear model 

ULCFA Paired t-test  Linear model (1)  
 Est. P-value  CD P-value CE ×ED

G

H
  P-value R2 

446 -0.237 0.0116  -0.626 0.0037 0.150 0.0373 0.046 
448 -0.139 0.0581  -0.390 0.0342 0.097 0.1186 0.026 
466 -0.203 0.0139  -0.633 0.0008 0.166 0.0086 0.072 
468 -0.215 0.0064  -0.567 0.0014 0.136 0.0219 0.055 
492 -0.126 0.0873  -0.490 0.0104 0.140 0.0291 0.050 
494 -0.183 0.0300  -0.536 0.0076 0.136 0.0430 0.043 
538 -0.108 0.1193  -0.367 0.0527 0.100 0.1169 0.026 
594 -0.008 0.4700  -0.238 0.2741 0.089 0.2281 0.016 

Difference in means and P-values from one-sided t-tests of cases and controls; fitted coefficients and P-
values from linear model (1) comparing case-control differences with time to diagnosis (ttd). 

$%- Intercept coefficient 

$'- ttd coefficient  
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Table 2.4: Results of multivariable models of covariates from the EPIC cohort 

ULCFA 
WC 

P -value      I R2 
Dietary fish 

P-value I R2 

Dietary 
shellfish 
P-value I R2 

446 0.1402 0.012 0.5714 -0.013 0.3225 -0.005 
448 0.5706 -0.001 0.2390 0.017 0.7647 0.001 
466 0.3259 -0.016 0.6431 0.012 0.1849 0.030 
468 0.7061 -0.007 0.9843 0.016 0.3709 0.026 
492 0.3488 0.016 0.6982 0.031 0.7683 0.030 
494 0.5955 -0.012 0.5069 0.018 0.5631 0.017 
538 0.2055 0.016 0.2654 0.030 0.9275 0.015 
594 0.1947 0.019 0.1316 0.050 0.9861 0.023 

Effect of adding the waist circumference, dietary fish consumption, or dietary shellfish consumption to 
linear model (1).   The difference in these covariates between matched pairs were not significantly 
correlated with the difference between the feature levels for the eight ULCFAs. 

WC- waist circumference  

  



 29 

Chapter 3: Lipidomic features associated with colorectal cancer in a prospective cohort 
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3.1 Abstract 

Epidemiologists are beginning to employ metabolomics and lipidomics with archived blood from 
incident cases and controls to discover causes of disease.  Although several such studies have 
focused on colorectal cancer (CRC), they all followed targeted or semi-targeted designs that 
limited their ability to find discriminating molecules and pathways related to the causes of CRC. 
Using an untargeted design, we measured lipophilic metabolites in prediagnostic serum from 66 
CRC patients and 66 matched controls from the European Prospective Investigation into Cancer 
and Nutrition (Turin, Italy).  Samples were analyzed by liquid chromatography-high-resolution 
mass spectrometry, resulting in 8,690 features for statistical analysis. Rather than the usual 
multiple-hypothesis-testing approach, we based variable selection on an ensemble of regression 
methods, which found nine features to be associated with case-control status. Of these nine 
features, four appear to be involved in CRC etiology and merit further investigation in 
prospective studies of CRC.  Four other features appear to be related to progression of the 
disease (reverse causality), and may represent biomarkers of value for early detection of CRC. 

3.2 Introduction 

Colorectal cancer (CRC) accounts for over 25 percent of all cancer-related deaths with  global 
incidence rates steadily rising [92–94].  Since less than 15 percent of CRC risk has been 
attributed to heritable genetics [47,95], non-shared exposures and their contributions to gut 
inflammation are believed to be important etiologic factors [96].  Increased CRC risks have been 
associated with cigarette smoking, alcohol use, lack of physical activity, obesity, abnormal 
glucose metabolism, and consumption of red meat and n-6 polyunsaturated fatty acids (PUFAs) 
[48,97–99].  Conversely, consumption of n-3 PUFAs, fruits, fish, vitamins D and E, and regular 
use of aspirin appear to reduce CRC risks [48,49,100]. There are also persistent suggestions that 
the interplay between dietary factors - particularly red meat, lipids, and fiber - and the gut 
microbiota are effect modifiers for CRC [52,96,101–103].  

Many of the associations between exposures and CRC have been gleaned from epidemiological 
studies that employed self-reported dietary and lifestyle factors [97,98,103,104]. Given the 
inherent limitations of such data for discovering causal exposures, investigators have recently 
employed metabolomics to compare small-molecule features between CRC cases and controls. 
This strategy is based on the idea that small molecules in human blood reflect chemical 
exposures from both internal and external sources, including the diet, microbiota, psychosocial 
stress, and pollutants [105].  However, since molecules that discriminate cases from controls in 
cross-sectional studies can reflect both potential causes of CRC and dysregulation of metabolic 
processes that result from progression of the disease (reverse causality) [95,106], it is important 
that biospecimens be collected well before diagnosis to gain insights into causes and effects. 
Indeed, a class of ultra-long-chain fatty acids (ULCFAs) that discriminated for CRC in several 
cross-sectional studies [5,54] was essentially ruled out as a causal factor in a prospective cohort 
[107]. 

Metabolomic analyses of blood from prospective cohorts have found some associations between 
CRC incidence and small molecules, as summarized in Table 3.1, with periods of follow-up 
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ranging from 3.7 to 14.7 years [4,106–111]. Interestingly, all of these nested case-control studies 
followed targeted or semi-targeted designs where relatively few molecular features were tested 
between cases and controls. Two of the studies focused on metabolism of dietary choline and 
found that the mammalian metabolite, betaine, was moderately protective against CRC whereas 
trimethylamine-N-oxide (TMAO), a metabolite mediated via intestinal microbiota, was 
associated with increased risk [110,111].  A genetic link between TMAO and CRC risk has also 
been reported [112]. Intriguingly, red meat and other phosphatidylcholine-rich foods appear to 
contribute to dysbiotic microbiota that generate trimethylamine (the precursor of TMAO) 
[102,113], whereas fiber-rich foods appear to encourage symbiotic bacteria that are associated 
with decreased CRC risk [102,114].  

Since untargeted metabolomics via liquid chromatography-mass spectrometry (LC-MS) can 
detect thousands of small-molecule features, traditional hypothesis-testing approaches, that 
adjust for multiple comparisons by controlling false positive error rates such as the false 
discovery rate (FDR) [22], can make it difficult to find features whose levels differ significantly 
between cases and controls.  This may have motivated the semi-targeting strategy of Cross et al. 
(Table 3.1) [109], who limited hypothesis tests of the thousands of detected features to only 278 
molecules that had been fully annotated.  Such a strategy is likely to be biased towards well 
curated metabolites that participate in recognized human pathways [105], and thus can miss 
novel exposures of potential importance to initiation of cancer, including those experienced 
predominately by either cases or controls.  Indeed, of the 278 small-molecules tested by Cross et 
al. [109], only glycochenodeoxycholate (a secondary bile salt) was associated with increased 
CRC risk in women (but not men) after using the conservative Bonferonni correction of the p-
value. 

Here, we report results of an untargeted metabolomics analysis of serum from 66 incident CRC 
cases and matched controls from the European Prospective Investigation of Cancer and Nutrition 
(EPIC).  Given the involvement of lipids in inflammatory processes and CRC [96,115,116], the 
serum-extraction procedure favored lipophilic molecules.  As an alternative to the traditional 
multiple-hypothesis-testing paradigm for selecting features of potential importance to CRC, we 
developed a variable-selection strategy that employs an ensemble of diverse prediction methods, 
including regularized linear regression and regression trees [117–119].  Such methods have 
recently been applied independently for analyzing metabolomic and other -omic 
data [117,118,120]. Our analyses point to a small set of features that were predictive of CRC-
case status.  However, as with all discovery studies, these potentially important features and the 
molecules they represent must be further validated with independent data sets. 
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3.3 Materials and Methods 

Study&Population&

EPIC is a prospective cohort study with approximately 520,000 adult participants from across 
Europe that were enrolled from 1992 through 2000 [58].  The serum for this investigation 
consisted of 132 specimens (66 case-control pairs), collected between 1993 and 1997 from 
subjects in Turin, Italy.  Controls were matched to incident cases by age, year and season of 
enrollment, and gender.  Dietary data were collected with food frequency questionnaires [59,60].  
Summary statistics for these subjects are listed in Table 3.2, including time to diagnosis (ttd), 
gender, body mass index (bmi), waist circumference, smoking status, diabetes status, physical 
activity, and alcohol and meat consumption.  These covariates were selected based on previous 
evidence of associations with CRC risk [48,61,62]. Across our subjects, the only significant 
differences between CRC cases and controls were observed for bmi and waist circumference, 
both of which were higher in cases (p-values < 0.05, Table 3.2). 

Chemicals 

Isopropanol (LC-MS grade, Fluka), methanol, water and 13C- cholic acid (internal standard) were 
from Sigma-Aldrich (Milwaukee, WI, USA). Acetic acid (LC-MS grade, Optima) and 
chloroform were from Fisher Scientific (Santa Clara, CA, USA). All chemicals were of 
analytical grade and were used without purification. 

Sample Processing 

Serum was stored after collection in 0.5-ml aliquots that were placed in cryostraws, sealed, and 
stored in liquid nitrogen (-196oC) at the International Agency for Research on Cancer in Lyon, 
France. Approximately one year prior to analysis, cryostraws were transported (with dry ice) to 
our laboratory in Berkeley, CA (USA), where they were maintained at -80oC.  As previously 
reported [107], 20 0l of serum was mixed with 100 0l of a solvent mixture 
(isopropanol/methanol/water = 60:35:5) containing 13C-cholic acid as an internal standard (final 
concentration of 3.0 0g/ml).  After mixing samples for one minute with a vortex mixer, samples 
were left at room temperature for 10 min. to precipitate proteins, and were then centrifuged for 
10 min at 10,000 g. The supernatant was retained and stored at 4oC prior to LC-MS. Case-control 
pairs were analyzed sequentially but in random order.  A local quality-control sample, prepared 
by pooling aliquots from all serum specimens of each batch, was analyzed after every ten 
samples to monitor system stability and estimate the precision of the analyses. 

Mass Spectrometry 

Analysis was performed with an Agilent LC (1100 series) coupled to an Agilent MS (Model 
6550 QTOF, Santa Clara, CA, USA) as previously reported [107].  Briefly, 10 0l of extracts 
were slowly loaded on to a Luna C5 column (Phenomenex, Los Angeles, CA) with a 22-minute 
gradient elution of mobile phase A (methanol/0.5 % acetic acid = 5:95) and mobile phase B 
(isopropanol/methanol/0.5 % acetic acid = 60:35:5). The electrospray was operated in negative 
electrospray-ionization (ESI) mode. Tandem MS/MS spectra were obtained on the same platform 
in data-dependent mode (immediately after data collection) or targeted mode (analysis of the 
selected features). Full LC-MS acquisition parameters were previously published [107].  
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Approximately one third of the serum samples had a gelled consistency that resulted from an 
additive to the cryostraws [65,66,107].  Pairs with at least one gelled sample were analyzed in 
one (batch 1, n = 96), and the remaining (non-gelled) pairs were analyzed in a second batch 
(batch 2, n = 36). 

Data Processing 

Raw data were converted to mzXML format for peak picking using ProteoWizard software 
(Spielberg Family Center for Applied Proteomics, Los Angeles, CA). Peak detection and 
retention-time alignment were performed as described previously [107], using the XCMS 
package within the R statistical programming environment [70,71,73]. The CAMERA package 
was used to identify isotopes, ESI adducts, and in-source fragments with the custom rule set used 
from Stanstrup et al. [121,122]. Annotation of features was conducted using the compMS2Miner 
package [123], by comparing accurate masses and MS2 fragmentation patterns with the Human 
Metabolome Database (HMDB) and Metlin [124,125]. 

Over 24,300 features were initially detected in the negative ESI mode.  Features were filtered by 
removing those with a mean fold-change in abundance less than 1.5 compared to the same peaks 
in reagent blanks (background noise) and those with coefficients of variation (CV) from QC 
samples greater than 30% [126,127]. This resulted in a final dataset of 8,690 features for 
statistical analysis. Feature intensities were (natural) log-transformed and adjusted for batch and 
gel-status effects using the following linear regression model, previously described in [107]:  

JKL!" = $% + $'M",O2P + $3M",QRSTU + V", [1] 

where !" denotes the intensity of a given feature for the ith subject and M",O2P and M",QRSTU are the 
corresponding categorical covariates for gel-status and batch. After fitting the linear model, 
normalized (logged) intensities were obtained by subtracting the estimated batch and gel effects 
from the original (logged) intensities. 

Upper-quantile scaling was used to render the distributions of feature abundances more 
comparable across all subjects [128,129]. A correlation-network program (Cytoscape, [130]) and 
an R package clustering algorithm (RAMclust, [131]) were used to identify clustered ions and 
assist with annotations.  

Statistical Methods: Variable Selection 

In order to identify discriminating features between CRC cases and control, we shifted the 
paradigm from multiple hypothesis testing to variable selection based on a combination of three 
regression methods. First, we considered the following standard linear regression model for the 
raw intensity of a given feature Y in the ith subject:  

JKL!" = $% + $'M",TRTW + $3M",O2P + $BM",QRSTU + $>M",RO2 + $AM",O2XY2Z + V", [2] 

where caco, gel, and gender denote binary variables for case-control status, presence or absence 
of gelled serum, and the matched variables of gender and age (in years). Features were then 
ranked based on the nominal unadjusted p-value for the case-control coefficient (�1). Second, a 
regularized logistic regression (LASSO) was performed [117,132] with case-control status as the 
binary outcome variable regressed on the following covariates: normalized log intensities from 
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Equation [1] for all 8,690 metabolites, age and gender. Although age and gender were in the 
LASSO model, neither variable was selected by the regularized regression.  

In order to stabilize feature selection with LASSO, 500 bootstrap samples were taken for each of 
a variety of penalty parameters [133]. Features chosen by LASSO in at least 10% of the 
bootstrap samples, across a wide range of penalty parameters, were retained. A data-driven 
cutoff of 10% was chosen based on plots of the percentage of time that each metabolite was 
selected during the bootstrap iterations across various penalty parameters, sorted in decreasing 
order. There was an obvious gap between metabolites selected more than and less than 10% of 
the time, which lead to choosing this as a natural cutoff. Third, the random forest algorithm 
[118,134] was used to build a predictor of case-control status, using the same covariates as for 
the LASSO regression. No obvious jump in variable importance could be seen for the sorted 
random forest variable importance or the sorted linear regression p-values. Therefore, a cutoff of 
1% was selected for both of these criteria because this cutoff is relatively stringent, yet still 
included a reasonable number of variables for consideration. In summary, to select a final set of 
variables, we included only features that were selected by the bootstrap LASSO and were also 
among the top 1% of features ranked by linear regression p-values and random forest variable 
importance.   

When a set of features was selected that satisfied all criteria, the (EICs) were visually inspected 
and those with poor peak morphology (ill-defined Gaussian shape) or integration were removed.  
Then, the three variable selection methods were repeated as needed to arrive at a final set of 
selected features of good quality peak morphology and integration.  

Initially, only covariates on which the samples were matched (i.e. age and gender) were included 
in the models used for variable selection. We did not include other dietary or health related 
covariates because we did not want to obscure possible associations between the metabolites and 
case-control status. However, we did subsequently test for associations between the nine selected 
metabolites and the following covariates weight, bmi, smoking status, and consumption of beef, 
pork, and alcohol by adding each into the LASSO and random forest models (SI 2).  None of 
these covariates was associated with the CRC outcome.  

3.4 Results and Discussion 

Using untargeted metabolomics in serum samples from 66 pairs of CRC cases and controls from 
the EPIC cohort, we sought evidence linking lipophilic molecules with the etiology of CRC.  The 
LC-MS data collected from these samples included over 24,000 features. After filtering for noise 
(mean fold-change above blank samples), reproducibility (CVs and EIC peak morphology), and 
likely artifacts (CAMERA), 8,690 features were available for evaluating potential associations 
with CRC case status.  

It has been standard practice in metabolomics to identify features that discriminate for case-
control status using a multiple-testing approach, e.g., based on a cutoff for p-values that have 
been adjusted to control for a false positive error rate such as the FDR [135]. Since untargeted 
metabolomics can detect thousands of features, FDR correction is severe [135] and can 
drastically reduce the number of selected metabolites, thereby resulting in false negatives.  Thus, 
we shifted our paradigm to a variable-selection approach, based on an ensemble of diverse 
regression methods, in order to uncover a reliable set of features for further investigation.  After 
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applying the three variable-selection methods described above, two of which prioritize predictive 
ability (LASSO and random forest), nine features were selected.  The volcano plot in Figure 3.1 
relates case-control fold changes and –log10 p-values (for the model in Equation [2]) for all 
features and highlights the nine selected metabolites (shown in Table 3.3).  Case-control fold-
changes ranged from approximately 0.2 to 3.0 overall and between 0.40 and 1.40 for the nine 
selected features.  Due to the nature of our variable selection method, the p-values of the selected 
features were not necessarily the smallest, nor were their fold-changes necessarily the largest.  
Nevertheless, the nine selected metabolites resulted in a 79% correct classification rate when 
they were used to fit a logistic regression model on the learning set to predict case-control status.  
Although this correct classification is likely optimistic because the same data were used to 
perform the variable selection and to build and test the predictor, the selected features are worthy 
of validation in independent samples of CRC cases and controls from prospective cohorts.  

Potentially Causal and Reactive Biomarkers 

The nine selected features were evaluated to determine their associations with time to diagnosis 
(ttd) as a means of discerning whether they represent potentially causal exposures or reactive 
effects of disease progression [107]. If the log fold-change for a given feature was constant 
across the whole range of ttd in a linear model (p-value > 0.05; see supplemental information 
(SI) 1), the feature was classified as potentially causal (C) and if the case-control difference 
decreased with increasing ttd, the feature was classified as potentially reactive (R). These (C) and 
(R) classifications are listed in Table 3.3 for the nine selected features and the plots for the ttd 
linear models are shown in Figure 3.2. This process resulted in four potentially causal features 
(no apparent effect of ttd for IDs: 5080, 3207, 6054 & 839), four potentially reactive features 
(case-control differences diminish with ttd for IDs: 235, 4250, 4294 & 14963), and one that 
could not be classified as either (C) or (R) (case control differences increased with ttd, ID 5749).  
While the four potentially causal features may be linked to exposures that contribute to CRC, the 
four reactive features may be useful pre-diagnostic biomarkers.  

Possible Annotations 

Potential annotations of the nine selected features were based on comparisons of MS2 spectra 
with human metabolome database (HMDB) entries as summarized in Table 3.4.  Focusing first 
on the four potentially causal features shown in Table 3.3, MS2 were only obtained for IDs 3207 
& 6054, which were positively correlated (Pearson correlation coefficient of 0.64) and were both 
present at lower levels in cases than in controls, indicating possibly protective effects.  The two 
MS2 fragment ions detected for ID 3207 could not be identified.  However, ID 6054 had 
fragments characteristic of [C16H29O2]- and losses of two H2O molecules, consistent with the loss 
of two hydroxyl groups and a hexadecenoic acetate fragment. These fragments are suggestive of 
ceramide lipids [136]. Although IDs 3207 & 6054 and the two other potentially causal features 
(IDs 5080 & 839) could not be fully annotated, the identified characteristics of accurate mass, 
retention time and MS2 fragments can be used for validation in future studies.   

Turning now to the likely reactive features, ID 4294 was putatively identified as ULCFA 468, 
which had been evaluated separately in our targeted study of 8 ULFCAs [107] and had been first 
reported by Ritchie et al. [4]. This feature had neutral losses of H2O and CO2, characteristic of a 
hydroxylated fatty acid and a likely molecular formula for [M-H]- of C28H52O5, within 1.56 ppm 
of the exact mass. Another reactive feature (ID 4250) also displayed these characteristic neutral 
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losses of H2O and CO2 and was highly correlated with ID 4294 with a correlation coefficient of 
0.85.  This suggests that ID 4250 is a previously uncharacterized ULCFA with molecular 
formula for [M-H]- of C27H50O5, within -2.76 ppm.  While odd-numbered fatty acids are less 
common in humans, microbial single carbon metabolism in very long chain fatty acids has been 
reported [137]. As a class, ULCFAs tend to be present at higher levels among controls compared 
to paired cases, but this difference diminishes with ttd, suggesting that they result from disease 
progression [107]. Nonetheless, the fact that these two ULCFAs were selected from 
approximately 9000 features that survived filtering of the untargeted metabolomics data offers 
partial validation to our variable-selection strategy. Based on correlation maps (data not shown) 
both of these features clustered with five other ULCFAs that have been described by Ritchie, et 
al. [4] (ULCFAs 465, 466, 492, 518, and 538; exact masses within 10 ppm of calculated m/z), 
and were also analyzed in our targeted study [107].  Another selected feature (ID 235) exhibited 
similar reactive (R) behavior to the ULCFAs (Figure 3.2), and the presence of a neutral loss of 
CO2, indicating that ID 235 may be a fatty or bile acid.  Deoxycholic acid (3α, 12α-dihydroxy-
5β-cholanic acid) [M-H]-, chenodeoxycholic acid (3α, 7α-dihydroxy-5β-cholanic acid) [M-H]-, 
and adrenic acid [M+HAc-H]- were eliminated as possible annotations of feature 235 by 
comparison of retention times between the experimental data and analytical standards. However, 
these two tested molecules are just two isomers of a large class of bile acids, some of which are 
positively correlated with CRC [109,138]; in our study, feature 235 was negatively correlated 
with CRC.  

Limitations of this study include the small sample size, which reduced the power to detect 
differences between case-control pairs, and lack of information regarding aspirin consumption 
and a family history of CRC, two covariates that have been associated with CRC incidence 
[92,139]. The gelling of some samples from the cryostraw-storage process was a source of 
variation that could not be completely removed by adjustment in the linear model (Equation 1) 
and probably reduced our ability to detect differences between cases and controls. The storage of 
biological specimens for decades is challenging because preservation of cells, proteins, DNA, 
small molecules, and other biological molecules of interest must be considered. At the time our 
specimens were collected, in the early 1990's, state-of-the-art methods and materials for such 
storage were selected without knowing the types of analyses that would be performed in the 
future.  However, decades later, shortcomings of then-contemporary technology (such as gelling 
of serum) may be revealed and their reporting may improve the design of future investigations. 

3.5 Conclusion 

In summary, of the nearly 9,000 filtered features subjected to statistical analysis, four appear to 
be potentially causal features that are worthy of following up in an independent set of 
prospective CRC cases and controls.  When these four features alone were used to build a 
logistic regression predictor of case/control status on the learning set, they resulted in a correct 
classification rate of 72%. Again, this is likely an optimistic correct classification rate, but given 
that only four features were used for prediction, it is quite promising.  Four other selected 
features, notably some ULCFAs and related fatty acids, appear to be products of disease 
progression and, therefore, could be useful diagnostic biomarkers for early detection of CRC.  
Since ULCFAs had previously been shown to discriminate CRC cases from controls in several 
cross-sectional investigations, it is reassuring that two putative ULCFAs (IDs 4294 and 4250) 
were selected as predictive features in this untargeted analysis. While the relatively modest 
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number of samples limited the power to detect stronger associations, the nine features selected in 
our study correctly predicted case-control status in 79% of the samples. The stability of these 
features across three disparate feature-selection methods is promising. Furthermore, based on m/z 
and annotation information, these nine features appear to be different than those reported in the 
prospective CRC study by Cross et al [109], warranting further identification and validation.   
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3.6 Tables and Figures  

!
Figure 3.1: Volcano plot of analyzed features  

The nine selected features are highlighted in red with the ID labels from Table 3.3.  An arbitrary p-value = 0.05 
threshold line is present for reference. p-values and fold-changes are calculated based on the regression model in 
Equation [2]. 

!

! !
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!
Figure 3.2: Scatterplots of case-control log fold-change vs. time to diagnosis (ttd) of the selected features   

The blue line is the linear regression fit and the gray band represents a 95% confidence intervals, calculated with the 
‘lm’ method of the R function ‘geom_smooth’ in the package ‘ggplot2’.  

 



 Table 3.1: Studies that investigated associations of colorectal cancer w
ith sm

all m
olecules in plasm

a or serum
 from

 prospective cohorts 

C
ohort 

C
ases/ 

C
ontrols 

Follow
-

up
a (y) 

A
nalytical 

m
ethod 

D
esign 

E
xposure variable 

L
ikely associations 

R
ef. 

W
H

I-O
S 

835/835 
5.2 

LC
-M

S 
Targeted 

C
holine and its m

etabolites 
TM

A
O

 (+); betaine/choline ratio 
(-) 

[110] 

EPIC
 [1] 

1367/2323 
3.7 

LC
-M

S 
Targeted 

M
ethionine and choline 

m
etabolites 

M
ethionine, choline, and betaine 

(-)  
[111] 

EPIC
 [2] 

95/95 
14.7 

LC
-M

S 
Targeted 

8 U
ltra-long-chain 

hydroxylated fatty acids 

A
ll associations (-) dim

inished 
w

ith tim
e to diagnosis (reverse 

causality)  
[107] 

EPIC
 [3] 

1238/1238 
3.8 

C
olorim

etry &
 

turbidim
etry 

Targeted 
Triglycerides, cholesterol, 
and lipoproteins 

H
D

L (-) 
[106] 

PLC
O

 
254/254 

7.8 
LC

-M
S &

 G
C

-
M

S 
Sem

i-
targeted 

278 A
nnotated m

etabolites 
detected in >80%

 of 
specim

ens 

G
lycochenodeoxycholate (+) in 

w
om

en but not m
en 

[109] 

 Legend: W
H

I-O
S, W

om
en’s H

ealth Initiative O
bservational Study; EPIC

, European Prospective Investigation into C
ancer; G

C
-M

S, gas chrom
atography-m

ass 
spectrom

etry; H
D

L, high-density lipoprotein cholesterol; LC
-M

S, liquid chrom
atography-m

ass spectrom
etry; PLC

O
, Prostate, Lung, C

olorectal, and O
varian 

C
ancer Screening Trial; TM

A
O

, trim
ethylam

ine-N
-oxide; W

H
I-O

S, W
om

en's H
ealth Initiative-O

bservational Study, (+), positively associated w
ith C

R
C

; (-), 
negatively associated w

ith C
R

C
.  

a M
ean period of follow

-up 

40 



 41 

Table 3.2: Descriptive statistics of human  

 Total !=132 CRC cases !=66 Controls !=66 p-value* 
Gender Male 51 51  
 Female 15 15  
Age  median 56 56  
at enrollment min 35 35  
(y) max 65 65  
Years to  median 7.52 -  
diagnosis min 0.10 -  
 max 14.40 -  
BMI median 26.9 25.3 0.0322 
 min 19.7 18.7  
 max 36.7 33.6  
Waist  median 97 90 0.0005 
circumference min 68 66  
(cm) max 115 119  
Diabetes yes 2 2  
 no 64 64  
Smoking Status current 15 16  
 former 27 23  
 never 

NA 
21 
3 

22 
5 

 
 

Alcohol  median 23.0 22.6 0.4617 
consumption  min 0.0 0.1  

(ml/day) max 79.8 113  
Physical Activity high 13 13  
(min/day) medium 15 20  

 low 25 18  

 none 10 10  

 NA 3 5  
Total meat  
consumption 
(g/day) 

median 
min 
max 

75.6 
5.9 

248.3 

67.6 
8.8 

201.3 

0.4488 
 

NA – not available  

* Nominal p-values calculated from a two-sided t-test. 

Subjects matched by age, study enrollment year and season, and gender, and selected covariates 

  



 42 

 

Table 3.3: Untargeted features selected as predictors of case-control status   

Feature 
ID 

Observed 
m/z a, b 

Ret. time 
(sec) Fold change p-value Feature type 

c 

235 391.2832 596.4 0.702 0.000261 R 

4250 453.3592 605.5 0.753 0.001082 R 

4294 467.3744 605.6 0.741 0.000569 R 

5080 519.1965 595.9 1.308 0.000432 C 

3207 531.1558 563.9 0.661 0.000468 C 

6054 551.1781 563.9 0.404 0.001750 C 

839 577.2698 620.6 1.370 0.000359 C 

5749 882.6393 718.2 0.880 0.000168 I 

14963 907.4806 617.6 1.373 0.000133 R 

Legend: m/z – mass-to-charge ratio; p-value from the regression model (Equation [2]); C- potentially causal feature; 
R -potentially reactive feature; I, indeterminate. 

a Observed m/z values correspond to singly-charged negative ions. 

b Feature selected by bootstrap LASSO and by being in the top 1% of features ranked by both the p-values from the 
case-control regression (Equation [2]) and the random forest variable importance measure. 

c Based on regression of case-control difference on time to diagnosis (ttd, Figure 3.2).  
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Chapter 4: Lipid and Cys 34 Adduct Multi-Omic Correlation of Smoking and Non-
Smoking Subjects 
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4.1 Introduction 

The use of data from combinations of -omics technologies (genomics, transcriptomics, 
proteomics, metabolomics, etc.) provides opportunities to relate population differences to 
biological pathways [140].  For example, the interleafing of data from genome-wide association 
studies (GWAS) and metabolomic analyses has provided mechanistic insights into genetic 
influences on disease processes [141–143]. However, because heritable genetics contribute only 
modestly to the incidence of chronic diseases [95], multi-omics analyses may be more fruitfully 
applied to factors related to health-impairing exposures received by populations from both 
endogenous and exogenous sources.  Information about such exposures can be captured by 
untargeted analyses of circulating small molecules and reactive intermediates that are generated 
from inflammatory and metabolic processes. Whereas metabolomic and lipidomic platforms can 
readily be applied to characterize small stable molecules, parallel untargeted analyses of reactive 
intermediates can focus on modifications to nucleophilic loci of proteins and DNA using 
approaches called ‘adductomics’ [144–146].  Our laboratory has been exploiting an adductomic 
pipeline that characterizes all modifications to Cys34 of human serum albumin (HSA), which is 
an important scavenger of small reactive molecules in the body [144].  

Here, we combined adductomic and lipidomic data from plasma samples representing 158 
healthy volunteer subjects that had been pooled by smoking status, race and gender [144,147]. 
From a set of 33 pooled samples common to both studies, nearly 3,000 lipidomic features had 
been measured along with 43 Cys34 (and related) adducts. In the original studies, several 
significant associations had been detected between particular lipids or adducts and covariates, 
namely, smoking status, race, gender, body mass index (bmi) and consumption of animal and 
vegetable fats [144,147].  In this combined analysis, we mapped correlations of lipids and 
adducts to gain mechanistic insights into potential pathways involving both types of molecules 
and their connections to smoking and other covariates. Using regularized regression (LASSO), 
we also analyzed the data for robust lipid-adduct associations. Since some Cys34 adducts – 
notably sulfoxidation products and mixed disulfides - reflect the redox biology of the Cys 
proteome [148–150], particular attention was paid to connections between these adducts and 
lipid products of oxidative damage and inflammation. 

4.2 Methods 

Plasma specimens 

Both lipidomic and adductomic data were collected for a set of pooled plasma samples prepared 
from 158 young healthy subjects [144,147]. The samples had been collected approximately 13 
years earlier, with informed consent, from non-fasting subjects in a previous study [13], and 
stored at −80 °C until the two sets of analyses were performed.  

Demographic characteristics, including race, age, height and weight were obtained with a 
standardized questionnaire at the time of phlebotomy.  Smoking status was based upon current 
smoking (yes/no) or the number of cigarettes smoked per day (for correlation analysis).  A semi-
quantitative food-frequency questionnaire containing 131 items was used to evaluate average 
daily consumption of fat (animal, vegetable and cholesterol) over the past six months for each 
individual [14,15].  All dietary-intake values were compiled at the Channing Laboratory, 
Harvard Medical School [16,17].  
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Instrumental analysis of lipids and adducts.  

Samples of plasma were pooled by combining aliquots from four to six randomly selected 
subjects stratified by smoking status (smoker/non-smoker), race (black/white), and gender. 
Pooling of these specimens was required to ensure anonymity of subjects. 

Lipids 

For the lipid analysis, serum was extracted as described previously [151].  Briefly, lipophilic 
molecules were extracted from 10 μL of each of the 34 pooled plasma sample with 2:1:1 
chloroform:methanol:phosphate buffer. The organic layer was removed, dried under N2, and re-
suspended in chloroform for LC-MS analysis. Liquid chromatography mass spectrometry (LC-
MS) analysis was performed on the lipid extracts with a Surveyor LC and an LTQ-FTMS with a 
heated electrospray ionization source (ESI) (Thermo Fisher Scientific, Waltham, MA). The MS 
was operated in both positive and negative modes with untargeted data collected from 100 to 
1200 m/z. For LC separation, a Luna C5 column (4.6×50 mm, 100 Å, 5 µm, Phenomenex, Los 
Angeles, CA) eluted all potential lipids. Injection volumes were 20 µl and 25 µl for ESI+ 
ionization and ESI- ionization, respectively. Mobile phases contained 0.1% formic acid for ESI+ 
ionization and 0.1% ammonium hydroxide for ESI- ionization. The column was eluted with a 
gradient of mobile phase A (methanol:50 mM ammonium formate 5:95) and mobile phase B 
(isopropanol:methanol:50 mM ammonium formate 60:35:5), with gradient and mass 
spectrometer details published elsewhere [147].  

HSA Adducts 

To isolate human serum albumin (HSA) for adduct analysis, 5 μL of each pooled plasma 
specimen was added to 60 μL of 50% methanol.  Precipitates were removed and the samples 
were diluted with four volumes of digestion buffer [50 mM TEAB buffer containing 1 mM 
EDTA (pH 8.0)]. Purified HSA in digestion buffer containing 10% methanol was transferred to a 
digestion vessel (MT-96, Pressure Bio- sciences Inc., South Easton, MA) and 1 μL of 10 mg/mL 
trypsin was added. Proteolytic digestion was performed at 37 °C using a pressurized system 
(NEP2320, Pressure Biosciences Inc., South Easton, MA) that cycled between ambient pressure 
(15 s) and 138 mPa (45 s) for 30 min. After digestion, 3 μL of 10% formic acid was added and 
samples were immediately centrifuged to precipitate trypsin and protein aggregates. A 40-μL 
aliquot of each digest was diluted to a final volume of 120 μL with an aqueous solution 
containing 2% acetonitrile and 0.2% formic acid.   

Technical replicates (2) of the samples were analyzed with an isotopically labeled internal 
standard. LC−HRMS Analysis. Freshly digested samples were analyzed with a Dionex Ultimate 
3000 nanoflow LC system via a Flex Ion nanoelectrospray-ionization source (Thermo Fisher 
Scientific) and an LTQ Orbitrap XL HRMS. The peptides were separated on a Dionex PepSwift 
monolithic nanoflow column (100-μm i.d. × 25 cm) (Thermo Scientific, Sunnyvale, CA), 
operated at room temperature with a flow rate of 750 nL/min. Mobile phase A was water/0.1% 
formic acid and mobile phase B was acetonitrile/0.1% formic acid.  Complete method details are 
available elsewhere [144].  
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Previous results 

The lipidomic experiments resulted in over 3000 features (2862 positive, 717 negative mode 
features) [147].  These features were sum-intensity normalized, evaluated with the covariates 
(linear model), and adjusted for the false discover rate (Benjamini-Hochberg) [22,147]. These 
analyses resulted in 34 features of interest, that were significantly associated with gender, race, 
and/or smoking status [147]. 

As previously noted, the adduct data was collected in duplicate injections and adjusted for batch 
effects with a mixed-effects model [144]. Using this model, adjusted values for 43 adducts were 
calculated. The adducts that passed initial quality control checks, along with dietary and 
demographic covariates, were subjected to Wilcoxon rank sum exact tests and multivariate 
analyses.  Several of these adducts were associated with smoking status, while a smaller number 
were associated with race, genders, bmi, or dietary vegetable and animal fats [144].  

The normalized and filtered –OMIC variables were combined for the 33 samples common to 
both the adduct and lipid data collections. Other continuous variables, including food frequency 
questionnaire data of specific lipids and lipid classes, along with bmi, age, and cigarettes per day, 
were also included for analysis. Statistical analyses reveal new associations between the lipids 
and adducts, which may better explain possible functions or pathways of these variables. 

4.3 Results 

Correlation map.  

A network visualization program (Cytoscape, [130]) was used to depict relationships between 
analyzed variables. Specifically, the analyzed variables are nodes that were linked to other nodes 
with an edge for all pairs with an absolute value of the Pearson correlation coefficient greater 
than or equal to 0.65. The nodes were defined by the four classes of variables: adducts, lipidomic 
features, dietary lipids (animal fats, vegetable fats, cholesterol), and demographic features 
(including age, bmi, and cigarettes per day).  Generally, nodes were included in the map if they 
met the correlation threshold with at least one other variable.  However, due to the large number 
of variables within the dietary and LCMS lipids, these nodes had an additional criterion to only 
highlight features relevant to this integrative analysis.  The dietary lipids were only included if 
they met the correlation threshold with at least one variable from a different class (demographic, 
adduct, or LCMS lipid).  Likewise, LCMS lipids were only included if they met the correlation 
threshold for a variable from one of the other classes. These relationships are illustrated in Figure 
4.1.  
Regularized Regression 

For consistent normalization, the data distribution levels of the adducts were re-examined. Of the 
43 adducts, 34 were determined to have satisfactory distributions for analysis of correlation with 
levels of the lipidomic features.  To select lipids that are potentially related to each adduct, a 
regularized regression (LASSO) was performed [117,132], with the adduct level as the outcome 
variable and all of the normalized log intensities of the lipids as the independent variables 
(~9000 variables).  



 48 

It has been shown that in data sets with large numbers of highly correlated independent variables, 
LASSO can potentially be unstable as a variable selection method [132,152]. Therefore, to 
stabilize the variable selection, LASSO regression was performed on 500 bootstrap samples of 
the data, for each of a variety of penalty parameters. The percentage of times each lipid is 
selected in the 500 bootstrapped samples is a measure of its variable importance. Lipids were 
selected as important if they were selected by the LASSO regression for at least 60% of the 
bootstrap samples across a variety of penalty parameters. This cutoff is somewhat flexible, and 
the final results are robust to cutoffs between 40%-60% since there was always a clear jump in 
the percentage of times the top features were selected as opposed to the other lipids in the model.  

For 13 of the adducts, between one and three lipids were selected by the bootstrap LASSO 
method, while the other adducts had no lipids selected. Next, for each of these 13 adducts, a 
linear regression was fit, with the adduct abundance as the dependent variable regressed on its 
corresponding lipids selected from the LASSO regression. The p-values from the coefficients of 
the lipids in each model provide some measure of significance for the association (Table 4.1). 
However, these p-values are likely to be overly optimistic because the same data were used to 
perform the variable selection and to calculate the significance of the coefficients of the lipid 
variables. Finally, the Pearson correlations are shown in Table 4.1 for lipids that had relatively 
high correlation with their corresponding adducts. 

The LCMS lipidomic data from the original study [147] were reanalyzed for the current 
application.  For this analysis, putative identification relied upon matching accurate masses from 
FTMS (with a mass tolerance of 10 ppm) with entries in the Human Metabolome Database 
(HMDB) (http://www.hmdb.ca/), the Structure Database of Lipid Maps (LMSD) 
(http://www.lipidmaps. org) and the Metabolite and Tandem MS Database (METLIN) (http:// 
metlin.scripps.edu/).  Most of the putative annotations are based on the accurate masses which 
matched with species from different lipid classes: monoacylglycerols (MAG), diacylglycerols 
(DG), triacylglycerols (TG), glycerophosphocholines (PC), glycerophosphoethanolamines, (PE), 
monoglycerophosphocholines (LysoPC), and sphingomyelins (SM).  The putative species, 
formulae, and ppm differences are listed in Table 4.2. However, further experiments and 
comparison with reference standards would be required for conclusive identifications.   

4.4 Discussion 

Lipids and adduct associations are summarized in Figure 4.1 and Tables 4.1 and 4.2. The results 
from the correlation map (Figure 1) and bootstrap LASSO complement and supplement each 
other. With a correlation threshold of 0.65 for the correlation map, some of the lipids selected by 
LASSO were excluded. Conversely, some features with higher correlations are included in the 
correlation map but were not selected by LASSO. This indicates that a high Pearson correlation 
coefficient is not necessarily indicative of a significant association as measured by the 
regularized regression and vice versa. Nonetheless, relationships found in both the correlation 
map and regularized regression can reinforce one another and are worthy of investigation.   

The correlation map also compared other continuous variables, such as dietary lipids, cigarettes 
per day, age, and bmi.  Adduct-lipid relationships that met the 0.65 threshold and were also 
selected by LASSO are represented with a dashed edge in Figure 4.1.  However only cigarettes 
per day and some dietary fats were associated with lipids with this threshold. Here, we examine 
potential biological explanations for several of the observed associations.  
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Dietary lipids 

Some dietary lipids were correlated particular lipids, as shown in the correlation map. Summed 
omega-3, eicosapentaenoic, and docosohexanoic acids were positively correlated with a 
triglyceride (TG (56:11)).  Triglycerides have been observed in subjects who consumed fish oil, 
a well-known source of omega-3 fatty acids [153,154].  Various dietary lipids, including animal 
fat, cholesterol, and palmitic, oleic, and arachidonic acids were all correlated to a putative 
phophatidylethanolamine (PE (36:4)) based on accurate mass. Although dietary lipids were not 
highly correlated with any of the analyzed Cys34 adducts,  dietary animal and vegetable fats 
were associated with several adducts in the previous multivariable analyses [144]. Unlike the 
earlier analyses of these two data sets, the current investigation focused on correlation and 
regression analyses with continuous variables and did not adjust for binary covariates of gender, 
race, and smoking status as in the previous analyses. 

Smoking, oxidation products, and sphingomyelins 

The Cys34 sulfoxidation products (A9, A12, and A15) were highly correlated with each other 
and were previously reported to be present at lower levels in smokers [144,155]. The lipidomic 
feature n_783.64208_22.037, which was also previously reported to be lower in smokers [147], 
has an accurate mass that matches sphingomyelin (SM) (40:2).  This putative sphingomyelin is 
associated with the sulfinic acid Cys34 sulfoxidation product (A12), with a Pearson correlation 
coefficient of 0.659.  This lipid-adduct relationship was confirmed via the robust selection 
process of regularized regression. In fact, the LASSO procedure selected this same presumptive 
sphingomyelin as the second variable for the three sulfoxidation product adducts (A9, A12, and 
A15).   

Another Cys34 sulfoxidation product, the cysteine-glycine crosslink (A1), was correlated with 
A9, A12, and another possible disulfide adduct (A34).  This adduct was positively correlated 
with the lipid feature n_785.65799_22.189, which has an accurate mass matching another 
sphingomyelin (SM (40:1)). Like the above SM-adduct relationship, SM (40:1) was selected as 
variable for adduct A1 by LASSO, and the two lipids were highly correlated (0.694).  

It is understood that cigarette smoking introduces an abundance of reactive oxygen species 
(ROS), and is associated with diseases that involve oxidative mechanisms (colorectal cancer, 
atherosclerosis, chronic obstructive pulmonary disease (COPD)) [156–159]. The ROS from 
cigarette smoke can also lead to the peroxidation of unsaturated lipids, like unsaturated 
sphingomyelins, and this could potentially diminish their abundance among smokers.  In 
addition, sphingomyelinases (SMases) hydrolyze sphingomyelins (SMs) into ceramides via an 
oxidative method [160] and ceramides are linked to stress-induced apoptosis [160,161].  
Oxidative stress, particularly from cigarette smoke, activates SMases causing increased 
hydrolysis of SMs into apoptotic ceramides [156,158,160].  Apoptosis from this mechanism may 
explain the epithelial lung cell death observed in smoking-related diseases such as COPD and 
lung cancer [158].  In fact, SM depletion has been observed in apoptotic cells [162]. This SMase 
pathway, the observed decrease of presumptive SM (40:2) with the increase of number of 
cigarettes smoked, and positive relationships of these SMs with sulfoxidation adducts (A1, A9, 
A12, and A15) that were also lower in smokers, present an intriguing pattern.  
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Since A12, the sulfinic acid oxidation product, is positively correlated with the selected SM 
(40:2) and inversely correlated to cigarettes per day; and A9, the sulfonamide oxidation product, 
is positively correlated to other Cys34 oxidation products (A1, A12, and A15), the Cys34 
sulfoxidation products are again associated with lower levels of smoking. This relationship is 
counterintuitive because ROS are introduced with cigarette smoke and it would be reasonable to 
expect that Cys34 oxidation products would also increase.  Yet, the opposite was observed in 
multiple regression models from the previous adductomic study of these samples [144].  
Theories as to why the products were lower in smokers include smoking-associated hypoxia or 
perturbations to the redox proteome [144,163,164]. Another possibility is that sulfoxidation 
precursors are being diverted and, like the sphingomyelins, are converted into other products as a 
result of cigarette smoke exposure.  

While no single specific adduct was strongly and negatively correlated to the Cys34 
sulfoxidation products, there could be several reactions consuming the transient sulfenic acid 
intermediate in the presence of cigarette smoke.  These may result in disulfides or, less likely, 
other ROS-produced adducts that were higher in smokers [144]. Although these sulfoxidation 
products were lower in smokers, they were recently observed to be higher in non-smoking 
workers exposed to benzene [Grigoryan, et. al, 2017, submitted].  A smoking-specific diversion 
of sulfoxidation precursors could be a partial explanation of the inverse relationship between the 
sulfoxidation products and smoking, compared to the proportional association seen among 
benzene exposed workers.  
Diacylglycerols and smoking-related adducts 

Also interesting is the high correlation between a putative diacylglycerol (DG) (DG (41:2)) and 
the sulfoxidation product A9, which was corroborated by LASSO feature selection. Another 
putative DG, (DG (36:2)), was inversely correlated (Pearson’s coefficient = -0.658) to an 
unknown adduct (A31) that was higher in smokers [144]. Dietary DGs, found in vegetable oils 
such as rapeseed and soy oils, are highly correlated with DGs in serum [165].  Furthermore, DGs 
are protective against obesity and diabetes as they are correlated with lower levels of serum 
triglycerides after meals [166].  Since obesity and diabetes are chronic diseases that involve 
oxidative stress, it is interesting that these particular DGs would both be protective for diabetes 
and be positively correlated with oxidation product adducts related to smoking.  From the 
secondary relationships of the DGs to smoking via the oxidation products, it would seem that 
DGs are lower in smokers, and higher in non-smokers.  Perhaps the oxidative stress from 
smoking decreases baseline levels of these compounds, possibly through the oxidative processes 
connected to Cys34 adducts.  In any case, further work is needed to elucidate these relationships. 

Other associations of Adduct A31 with PCs and PEs 

As previously noted, A31 is an unknown Cys34 adduct, likely a disulfide, that was more 
abundant in smokers compared to non-smokers [144]. Besides putative DG (36:2), two other 
features were negatively correlated with A31. These had accurate masses within 8 ppm of 
putative phosphatidylcholines or phophatidylethanolamines. Since the mass accuracy was 
technically within 10 ppm, further analysis would be required before positing possible identities 
of these features.  One of the features was highly correlated and selected by LASSO, so this 
could be an interesting relationship to elucidate.  
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LycoPCs inversely correlated with unmodified T3 

Unmodified T3 is the peptide representing the unmodified form of Cys34 (mercaptoalbumin), 
and is the precursor of Cys34 adducts. Theoretically, higher levels of unmodified T3 could be an 
inverse marker for oxidative stress, as it may indicate lower levels of ROS.  Unmodified T3 (A7) 
was inversely correlated with three lipid features that had accurate masses of a 
lysophosphatidylcholine (LysoPC), the LysoPC precursor phosphatidylcholine (PCs), and/or a 
formic acid adduct of these lipids.  Dysregulation of LysoPCs have been used as biomarkers of  
chronic diseases linked to oxidative stress [167–169]. Several LysoPCs, including LysoPC 
(18:2), the formic acid adduct detected as n_564.33124_18.570, were lower in lung cancer cases 
compared to healthy controls [168], whereas other LysoPCs were elevated in ovarian cancer 
patients, relative to controls [169].  Given the complicated association of LysoPCs with diseases 
linked to oxidative stress and the ambiguous meaning of unmodified T3 (A7), the negative 
correlation of these to unmodified T3 is interesting.  Furthermore, the correlation with A7 and a 
methylated non-Cys34 adduct (A10) in light these lower amounts of LysoPCs may have 
implications for the role of this methylated adduct which was also elevated in smokers.   

Limitations 

Older samples which have been frozen and thawed several times, as these samples were, may 
have led to increases in LysoPCs from the oxidation of other lipids [170]. As LysoPCs are of 
biological interest, this may have had an effect on the detected amounts of some of the LysoPCs.  
However, since all of these samples were treated uniformly, the bias from this oxidation should 
be minimal.  Our power was also limited due to the pooling of these samples. 

This analysis focused on the relationship between levels of Cys34 adducts and lipids as well as to 
a few continuous covariates, such as cigarettes/day. Some of the analyses from the previous two 
studies referred to analysis of dichotomous covariates that were used to adjust for race and 
gender [144,147], and these variables were not included in the current analyses.   

 



 4.5 T
ables and Figures 

 

Figure 4.1: A
 correlation netw

ork m
ade w

ith C
ytoscape.   

C
orrelations (Pearson’s) of adducts (orange), dietary lipids (green), lipidom

ic features (yellow
), and cigarette per day (purple) +/- 0.65 or higher.  N

egative (red) 
and positive (blue) correlations are edges.  Strength of correlation proportional w

ith edge w
idth. C

orrelations also selected by LA
SSO

 are dashed lines. 

52 



 53 

Table 4.1: List of each selected LASSO-MS Lipid relationship, grouped by adduct. 

Adduct Adduct annotation MS Lipida R p-valueb 

Possible lipid 
annotation and MS 
speciesc 

A1 -CH2S; Cys34->Gly n785.65799_22.2 0.694 0.000042 [SM(40:1)-H]- 
A1 -CH2S; Cys34->Gly p379.28305_20.1 -0.563 0.003250 [MAG(20:4)+H]+ 
A5 not Cys34 adduct p664.60662_24.5 0.632 0.000081 [CE(18:3)+NH4]+ 
A7 unmodified T3 p426.35934_19.1 -0.648 0.001680 a carnitine 
A7 unmodified T3 p429.24182_14.3 0.593 0.004150 Formula only: 

[C22H37O6P+H]+ 
A7 unmodified T3 p898.74192_24.3 -0.573 0.008140 unknown 
A9 -H2, +O; Cys-34-Gln 

Xlink 
n783.64208_22.0 0.642 0.005652 SM(40:2)-H]- 

A9 -H2, +O; Cys-34-Gln 
Xlink 

n856.59458_21.9 -0.519 0.000947 [PC(42:8)-H]-  

A9 -H2, +O; Cys-34-Gln 
Xlink 

p691.62623_26.9 0.650 0.004159 [DG(41:2)+H]+ 

A10 +CH3; methylation; not 
Cys34 

n556.31840_19.0 -0.650 0.012300 unknown 

A10 +CH3; methylation; not 
Cys34 

n618.48099_18.0 -0.640 0.019500 unknown 

A12 + HO2; Cys34 
sulfinicAcid 

n783.64208_22.0 0.659 0.003880 SM(40:2)-H]- 

A12 + HO2; Cys34 
sulfinicAcid 

p691.62623_26.9 0.610 0.022410 [DG(41:2)+H]+ 

A15 + HO3; Cys34 
sulfonicAcid 

n783.64208_22.0 0.638 0.011000 SM(40:2)-H]- 

A15 + HO3; Cys34 
sulfonicAcid 

p798.64391_22.1 0.582 0.070000 [PC 38:2-H]- 8.6 
ppm 

A23 + C2H3O2S; S-
mercaptoacetic acid 

p729.56635_22.0 0.640 0.003910 unknown 

A28 + C4H6NOS; S-hCys (-
H2O) 

n858.79774_7.6 -0.630 0.000094 unknown 

A29 + C3H6NOS; S-hCys  n783.64208_22.0 0.573 0.000500 SM(40:2)-H]- 
A30 +C3H5O3S; S-Cys (NH2 

->OH) 
n978.89761_26.7 0.686 0.000011 unknown 

A31 unknown p784.59163_27.089 -0.790 0.000033 unknown 
A34 + C4H9O3S; unknown p379.28305_20.1 -0.600 0.000248 [MAG(20:4)+H]+ 
A35 A29 + Na; Na adduct of 

A29 
p572.39763_17.3 -0.600 0.000276 unknown 

a The MS lipid feature begins with  n or p, for a feature detected in negative mode or positive mode, respectively.  The next 8 
digits are the observed m/z to the fifth decimal position, followed by “_” and 3-5 digits, the retention time in minutes.  

b Values from the final linear model after LASSO selection which ignores the variability added with the model selection  

c See Table 4.2 for more complete descriptions of the possible lipid annotation 
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Chapter 5: Conclusions 
 
Smoking and air quality severely impact public health [97,171] by contributing to chronic 
illnesses, including cancer and cardiovascular disease [45,46]. Biomarker discovery using 
lipidomics and other high-dimensional, biological methods (e.g., genomics, proteomics, 
adductomics, etc.) offer a unique opportunity to detect changes in small molecules, genes, and 
proteins that may be related to environmental exposures and disease endpoints. Applying these 
methods to prospective samples affords the opportunity to reveal biological differences that exist 
in subjects prior to the onset of disease symptoms.  
 
While these methods offer great potential, there are still several limitations. False positives may 
plague high dimensional –OMIC analyses due to multiple hypothesis testing with relatively 
small sample sizes.  Adjusting for false discovery rates may reduce the number of false positive 
findings but also potentially exclude meaningful associations that may not otherwise be detected 
due to limited statistical power.  Here, we attempted to identify meaningful serum biomarkers 
related to colorectal cancer and smoking by using newer approaches to reduce dimensionality 
and reveal stable variables with a combination of techniques. These initial findings are 
suggestive of associations between colorectal cancer and lipophilic features representing 
potential environmental exposures, including cigarette smoking. Replication of these 
associations in follow-up studies involving comparable sample populations would strengthen 
arguments regarding potentially causal exposures. 
 
In Chapter 1 the lipidomic method was first applied to pooled samples in our laboratory.  A key 
purpose of this work was to refine the LCMS method for detecting a broad range of lipids, 
including the ULCFAS targeted in Chapter 2, these experiments revealed lipids associated with 
various covariates.  While the pooling of samples likely limited the power to detect population 
characteristics, the lipids related to race and smoking status are intriguing.  Many of the 
identified features, particularly the plasmalogens and DGLEA, seem unlikely to be false 
positives. Large effect changes and p-values that survived FDR correction combined with 
plausible biological mechanisms distinguished several of these features [43].  Finally, these data 
were integrated with adductomic data for the same samples, allowing a rare opportunity to 
combine –OMIC data which revealed additional information about previously observed 
associations. 

This integrative –OMIC analysis in Chapter 4 focused on the relationship between HSA adducts 
and lipid features and several continuous covariates. As these analyses differed from binary 
covariate analysis from the original analyses of the same samples [144,147], some of the 
associations differed. Yet, several of the same adduct and lipid features that were associated with 
smokers and non-smokers were also directly or indirectly correlated with the number of 
cigarettes per day. Plausible biological pathways consistent with published epidemiologic or 
mechanistic data were observed. These results resulted in a more nuanced view of the previously 
detected associations, as well as a procedure to analyze data from these two types of -OMIC 
datasets. #
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As noted above, colorectal cancer is a leading cause of cancer death worldwide and a small 
portion of CRC risk is attributable to genetics alone.  While some non-genetic CRC risk factors 
are well known, the bulk of CRC risk is unknown [105]. In Chapters 2 and 3 we sought out 
exposures, in the form of lipophilic molecules, detectable in serum of 190 nested case-control 
subjects from the EPIC prospective cohort.  The resulting molecules were assessed as potentially 
contributing to CRC risk. Most intriguing, the prospective samples and the varying time periods 
from serum collection to case diagnosis offered an opportunity to differentiate between CRC 
biomarkers causally-related to the disease versus those that are result from disease progression.  
 
The testing of ULCFAs, which were previously reported as likely protective of CRC, revealed 
that the depletion of these fatty acids in CRC cases was probably related to disease-related 
metabolic dysregulation. The ULCFAs, as well as nearly 9,000 quality-control-filtered features, 
were subjected to untargeted variable selection methods, followed by a regression model that 
revealed associations with case control status and time-to-diagnosis. Case-control variable 
selection methods were chosen based on a priority to select stable features most worthy of 
further analyses.  These methods, including regularize regression (LASSO) and random forest, 
were less focused on traditional “p-value hunting” approaches that have proven troublesome, 
especially in –OMIC analyses. Evaluation of the nine selected features for associations with time 
to diagnosis (ttd) yielded interesting patterns. Four features appeared to be potentially causal 
features.  Four other selected features, notably some of the previously mentioned ULCFAs and 
related fatty acids, appeared to be products of disease progression and, therefore, could be useful 
diagnostic biomarkers for early detection of CRC.  These eight features are worthy of targeted 
analyses in an independent set of prospective CRC cases and controls. 
  
The identities of these untargeted features proved more elusive and only partial annotation was 
achieved based on accurate masses and on-line databases.  With the exception of the ULCFAs, 
these features differed from molecules that had previously been reported in prospective 
metabolomic studies of CRC cases and controls [109–111].  
 
Instead of hypothesis-driven analyses of only known compounds, data-driven analyses of 
reliably detected OMIC features from untargeted analyses can generate hypotheses of possible 
disease-causing exposures. A requirement of these types of studies is the need to demonstrate 
reproducibility among validation sets from independent populations, regardless of p-value or 
effect size. Therefore, it is advisable that resource-intensive efforts toward annotation be 
preceded by replication of putative associations with independent samples.  Upon replication, 
interesting features can be identified and targeted for follow-up to confirm causality and seek 
mechanistic understanding.   
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