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ABSTRACT OF THE DISSERTATION

Bayesian Covariance Modeling for Longitudinal

Zero-Inflated Count Data

by

Benjamin Rogers

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2022

Professor Robert E. Weiss, Chair

We develop models for longitudinal count data with a large number of zeros, a feature known

as zero-inflation. Familiar distributions for modeling count data (Poisson, binomial, negative

binomial) often do not account for the observed frequency of zeros. Further, in longitudinal

data, the same subjects are repeatedly measured over time inducing correlation between

sets of measurements on the same individual. Modeling of longitudinal data that does not

account for this correlation can give rise to misleading inferences. This dissertation develops

three classes of models for longitudinal count data: (i) a Bayesian longitudinal hurdle model

for data with prespecified measurement times, (ii) a Bayesian longitudinal hurdle model

for data with varying measurement times, and (iii) a multivariate longitudinal zero-inflated

Poisson model. Approach (i) is an analysis of the number of days of heaving drinking in a

study of screening, brief intervention, and referral to treatment (SBIRT), and approaches

(ii) and (iii) are motivated by analyses of the Linking Inmates to Care (LINK LA) study.

Building on two-part models that predict non-zero versus zero outcomes while incorporating

assumptions about the distribution of non-zero outcomes, the newly developed methods use

ii



mixed-effect modeling strategies to account for irregular measurement times and correlated

patterns in count data beyond those reflected in random intercept models. The superiority

of the proposed methods over random intercept models is established using goodness-of-fit

metrics that consider the number of model parameters, and the appeal of modeling multiple

count outcomes simultaneously is reflected in Bayesian credible intervals that point to non-

zero correlations among the respective count outcomes.

We build upon previous longitudinal zero-inflated and hurdle models by introducing

time varying random effects in the count models with random effects distributed a priori as

multivariate normal with a parameterized covariance matrix. We propose several covariance

models, which improve fit over random intercept models in both the SBIRT and LINK LA

data. We introduce latent time varying main and random effects to allow count rates and

zero probabilities to change with time since intervention and include exposure offsets to

account for varying times over which counts are recorded. Finally, for use with multivariate

data, we propose a multivariate longitudinal zero-inflated Poisson model for observations

with varying exposure, which we use to simultaneously model three different kinds of doctor

visits recorded in the LINK LA study.
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CHAPTER 1

Introduction

1.1 Overview

In count data, it is common to observe a disproportionately large number of zeros relative to

standard count distributions. This quality of excess zeros is called zero-inflation, and often

arises in health and behavioral data. Zero-inflation typically occurs as a result of the data

being generated by two separate processes, one which determines if an event may happen

at all, and another that determines the size of the observed counts. For example, in a

study of linkage to HIV care, we model the number of medical visits among a population of

previously incarcerated men and transgender women, however not all subjects in the study

have reasonable access to care. This leads to a large number of zero observations, and can be

considered a separate process from that which determines the number of care visits among

those who do have access.

Zero-inflation presents a modeling challenge as standard count distributions cannot ac-

count for the excess zeros. A common approach to zero-inflation is to use a two part model

consisting of a zero model and a count model. One such class of models, zero-inflated mod-

els, allow zeros to come from either the zero model or the count model. Using the linkage

to HIV care example, the zero model models the proportion of subjects who have access

to care, and the count model models the expected number of medical visits among those

who do have access to care (Lambert, 1992; Heilbron, 1994). Subjects who have access to

care may or may not take advantage of this access, and thus, could still have a zero obser-
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vation. An alternative class of models, hurdle models, only allow zeros to come from the

zero model, and use a truncated count distribution restricted to positive values to model the

counts (Mullahy, 1986; Ridout, Demétrio, & Hinde, 1998). As such, a hurdle model does

not attempt to make inference as to who does or does not have access to care, but rather

the proportion of subjects who use care. The count model in a hurdle model would then

measure the number of medical visits among patients that had at least one visit.

We develop zero-inflated and hurdle models for longitudinal studies, where the same

subjects are followed over time and repeatedly measured. We expect there to be corre-

lation between the repeated measurements on the same individual. To accurately model

variability in the data and draw inferences, this correlation must be accounted for. Tra-

ditional longitudinal models for zero-inflated data have used random intercepts either only

in the count model (Hall, 2000), or in both the zero and count models (Dagne, 2004), to

model within-individual correlation. These approaches assign a single random effect to each

individual which is applied to all measurements on that individual. A further benefit of

Hall’s model is that the random intercepts in the zero and count models can be assumed to

be jointly distributed to introduce dependency between both model parts (Min & Agresti,

2005; Neelon, O’Malley, & Normand, 2010). The random intercepts, however, can be restric-

tive in modeling within-individual correlation and variability. Generally, observations made

closer together in time are likely more highly correlated than observations made farther apart

in time. This property cannot be accounted for in a random intercept model. We propose

zero-inflated and hurdle models which allow for an individual’s count model random effect to

vary over time, through which we model and compare several possible temporal covariance

structures. We find these covariance models greatly improve model fit over random intercept

models.

We model data from two separate studies. The first of these comes from a randomized

controlled trial designed to test an intervention to reduce rates of heavy drinking in a popu-

lation of substance users seeking mental health treatment. Number of heavy days of drinking
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out of the past 90 was recorded at baseline and at 3 follow-up visits. We model the number

of days of heavy drinking to assess the effect of an intervention consisting of screening, brief

intervention and referral to treatment (SBIRT), which we compare to a health education

control condition. Many of the recruited subjects do not regularly engage in heavy drinking,

as it wasn’t required for inclusion in the study, resulting in many observations where par-

ticipants reported zero days. Normally we may model number of days of drinking using a

binomial distribution as it is a count with an upper limit, however due to the large number

of zeros, the binomial distribution does not fit the data well. In chapter 2 we develop a

class of longitudinal binomial hurdle models with multivariate random effects in the count

model. We fit several correlation models for the random effects to model within-individual

correlation and compare them to traditional random intercept models.

The second study, the Linking Inmates to Care (LINK LA) study, was a longitudinal

randomized controlled trial of an intervention to improve linkage to and engagement in care

for HIV positive men and transgender women recently released from LA county jail. We

model number of primary care visits, including regular visits relating to HIV infection, to

assess the effectiveness of the intervention. People living with HIV (PLHIV) with a history

of incarceration often experience difficulty accessing necessary care, and as a result, the data

is zero-inflated. Observations for each subject were intended to be collected for the one year

prior to incarceration, and then at 3 months, 6 months and 12 months following release

from jail, however in practice follow-ups occurred at highly irregular intervals. Responses

report on all primary care visits since last follow-up, thus different counts are measured over

varying amounts of time, making it difficult to compare number of doctor visits both within

and between individuals. In chapter 3, we present a longitudinal hurdle model for the LINK

LA data, which uses multivariate random effects and accounts for length of time over which

visits are counted, called exposure.

The LINK LA study recorded data on multiple types of medical visits at each observa-

tion. Ultimately, researchers are interested in how well subjects are linked to care and what

3



the cost of that care is. Therefore, in addition to primary care visits, we are interested in

the association between intervention group and counts of each type of doctor visit, such as

emergency room visits and specialty care. We present a zero-inflated Poisson model, which

is an extension of the models for primary care in chapter 3. Multivariate random effects are

used to model within-individual correlation within outcomes and also between outcomes.

Modeling these correlations allows us to more accurately model the data and provides be-

havioral insights through understanding the relationships between usage of different types

of healthcare visits.

1.2 Bayesian Longitudinal Hurdle Models for Days of Heavy Drink-

ing

Substance use disorder is estimated to occur in one in five people with mental illness in

the United States (Clark, Power, Fauve, & Lopez, 2008). Rates of heavy drinking are

disproportionately high in this vulnerable population (Grant et al., 2004; Flynn & Brown,

2008). Screening, brief intervention and referral to treatment (SBIRT) interventions have

been developed to help treat substance abuse, but have had mixed results for reducing rates

of heavy drinking in a primary care setting (Saitz, 2010). In chapter 2, we consider data from

a recent study of the effectiveness of SBIRT interventions for subjects with mental health

and substance use disorders, which we refer to as the SBIRT study (Karno et al., 2021).

In chapter 2 we develop models for the number of days during which a subject engaged in

heavy drinking out of the past 90 days and compare the effect of the SBIRT intervention to

a health education standard of care control.

To be eligible for the study, subjects had to have a diagnosis of a mental health disorder

and report use of alcohol, cannabis or stimulants within the past 90 days. We model days of

heavy alcohol use, where heavy alcohol use is defined as at least 5 drinks for men or 4 drinks

for women. Subjects were randomized to SBIRT or standard of care and followed at 3, 6
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and 12 months after baseline and self reported substance use was recorded. Many subjects

reported no heavy drinking, resulting in a large number of zero observations. We model this

data with a two part hurdle model. The zero model uses a Bernoulli distribution to model

yes/no whether or not a subject successfully abstained from heavy drinking during the 90

day period. The count model uses a truncated binomial distribution restricted to positive

integers to model how many days a subject drank heavily given that they had at least one

day of heavy drinking. We can think of the two parts of the model as 1) Did the subject

abstain from drinking? And 2) If the subject did engage in heavy drinking, to what extent?

Thus we jointly model the number of subjects that engage in heavy alcohol use, and the rate

of heavy alcohol use among those that do engage.

The SBIRT study was longitudinal, collecting repeated measures on the same subjects

over one year. We expect measurements on the same subject to be correlated with each

other. Further, we expect that correlation to vary with the spacing of the observation

times. Observations closer in time should be more highly correlated, and observations further

in time should have lower correlation. Thus, in the SBIRT study where follow-up visits

are not equally spaced in time, we expect correlation to differ between different pairs of

measurements. To model the SBIRT data, we propose a class of Bayesian longitudinal

hurdle regression models that allow researchers to specify a within-individual correlation

model.

Previous hurdle models for longitudinal data have used random intercepts to capture

within individual correlation over time. Each subject gets one single random effect that

applies to all time points. We find this to be too rigid of an assumption for the SBIRT

data and that by allowing one separate random effect per observation, with correlation

between random effects for an individual, we can fit the data much better. This change to

a multivariate random effect distribution allows researchers to specify any of several within-

individual correlation models. For example one may use an autoregressive correlation model,

which assumes constant correlation between random effects at adjacent time points, and
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smaller correlation between random effects at non-adjacent time points. Researchers are

then left to strike the right balance between capturing the complexity of the data and over-

fitting depending on which correlation model is chosen and how many parameters must be

estimated.

Another advantage of the proposed models is that the multivariate random effects allow

the models greater ability to model overdispersion, which is a common complication in count

data. Overdispersion is when the variation in a data set is greater than what is allowed for

by standard distributions. For example, in the SBIRT data, positive counts are assumed to

have a zero-truncated binomial distribution, as they are counts with an upper limit. These

zero-truncated binomial distributions have one parameter which controls both the mean and

the variance, thus the mean and variance do not vary independently. If the data has more

variation than what is expected for a given mean, standard distributions will yield misleading

inferences. The multivariate random effects provide a mechanism with which to add more

variation into the count data model, and help account for possible overdispersion.

1.3 Longitudinal Poisson Hurdle Models for Zero-Inflated Count

Data with Variable Follow-up Times

Accessing healthcare can often be difficult for people living with HIV (PLHIV), and is vital

for achieving viral suppression. One group that has particular trouble accessing care are HIV

positive persons with a history of incarceration. HIV rates among persons in US correctional

facilities is estimated to be 3 to 5 times that of the general population (Sabin, Frey, Horsley,

& Greby, 2001; Maruschak, 2006). Studies have shown that while in prison, people with

HIV have access to care, however upon release, many have difficulty or fail to link to care

(Springer et al., 2004).

The Linking Inmates to Care in Los Angeles study (LINK LA) was a randomized con-

trolled trial designed to improve linkage to and retention in care among recently incarcerated
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HIV positive men and transgender women (Cunningham et al., 2018). In chapter 3, we model

data from the LINK LA study to quantify the effect of a peer navigator intervention to help

people recently released from jail access and engage in care. Subjects were recruited upon

release from jail and researchers recorded the number of different types of medical visits sub-

jects had attended over the 12 months prior to incarceration. Researchers planned to follow

up with subjects at 3 months, 6 months and 12 months after release, and at each follow-up

to record the medical visits attended since last follow-up. In many instances, subjects failed

to access any care, resulting in a large number of zero observations. In chapter 3 we develop

longitudinal Bayesian hurdle models for the LINK LA data to model number of primary care

visits from the LINK LA data set.

Similar to chapter 2, we account for the correlation over time inherent to longitudinal

studies. This data, however, presents a number of complications due to irregular follow up

times. The study was designed to follow subjects over the first year after release from jail,

but some follow-ups occurred as late as 3 years after release. Follow-ups were supposed to

occur at 3 months, 6 months and 12 months, with each measuring the number of primary

care visits since last follow-up. Some subjects’ first follow-up, which were supposed to be 3

months after release from jail, did not occur until one year after release. Thus, observations

at a given follow-up visit are not directly comparable between subjects. The probability of

attending a primary care visit, and the expected number of primary care visits, would both

vary with observation time. One subject’s first follow-up includes 12 months of primary

care visits, while another’s includes just 3 months of visits. We call the time frame over

which an observation is measured exposure (Baetschmann & Winkelmann, 2013) and de-

velop longitudinal hurdle regression models which control for varying exposure for different

observations.

In addition we want to know what effect the intervention had on primary care visits, and

how this effect changes over time. Thus we allow zero and count rates to vary over time.

Doing so, however, is complicated by the fact that we can not directly compare follow-up
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reports of doctor visits between subjects, and that we do not know when within an observed

time frame primary care visits occurred. To account for this, we introduce partially observed

latent parameters coinciding with the time intervals over which primary care visits were

intended to be observed – baseline, 0-3 months, 3-6 months, 6-12 months and 12+ months.

We include the 12+ month interval as many subjects returned for follow-ups beyond the

planned study period, which we wanted to estimate separate zero and count rates for.

We model the zero-inflated counts using weighted averages of the latent parameters cor-

responding to the time frame over which primary care visits were counted. For example, if a

subject first returned at 10 months, that observation is estimated using a weighted average

the 0-3 month, 3-6 month and 6-12 month parameters, with weights 3, 3, and 4, correspond-

ing to the number of observed months in each interval. For each time interval, we estimate

count model and zero model main effects for both treatment groups and a count random

effect. Similar to chapter 2, each subject has a random intercept for the zero model and

multivariate random effects for the count model. We fit and compare several covariance

models for the count model random effects, showing them to again be an improvement over

individual random intercepts.

1.4 Bayesian Zero-Inflated Model for Longitudinal Multivariate

Outcomes with Exposure

The LINK LA study also recorded numbers of several specialty care visits and numbers of

emergency room visits. To get a better understanding of the effect of intervention, we are

interested in how often subjects are attending each kind of visit. This gives us insight into

care use patterns and cost of care. For example, specialty medical care visits are estimated

to cost nearly twice as much as primary care visits on average, and emergency room visits

are estimated to cost over 6 times the price of primary care visits. We are interested not

just in the degree to which PLHIV are accessing care, but also which types of medical visits
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they are using to access care.

A näıve analysis would be to apply the hurdle models from chapter 3 to each type of

medical visit, modeling each separately. However, it is likely that there is correlation between

different kinds of visits within an individual. For example, a subject that is likely to go to a

a lot of primary care visits may be more or less likely to have a lot of emergency room visits.

We account for this correlation by jointly model primary care visits, emergency room visits

and specialty care visits. Modeling different types of medical visits jointly as a multivariate

outcome allows us to model the correlation between different types of medical visits, sharing

information between models and better attributing variation within the data set.

While some multivariate zero-inflated models for cross sectional data have been devel-

oped (Li et al., 1999; Liu & Tian, 2015), these models are not designed for longitudinal data

or overdispersion. We model within-individual correlation between outcomes using multi-

variate normal random effects in the count model, allowing each individual to have multiple

random effects which differ across both time and outcome. The random effects model within-

individual correlation both across time and across different outcomes, while also allowing for

modeling of overdispersion. This allows us to make more detailed inference than in the

univariate models of chapter 3 about subject linkage to care and the effectiveness of the

LINK LA intervention. In chapter 4, we develop an autoregressive multivariate zero-inflated

Poisson model for data with varying exposure.

1.5 Outline of Dissertation

We develop three classes of models for longitudinal zero-inflated data and present analyses

of data coming from two longitudinal studies, which is organized into three chapters. The

models presented in each chapter build upon those in the previous chapters. Each of the

chapters is written to stand alone, thus there is some material repeated between chapters.

Chapter 2 develops Bayesian hurdle models for longitudinal data to model the number
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of days of heavy drinking out of the previous 90 from the SBIRT study. Chapter 3 develops

Bayesian hurdle models for number of primary care visits from the LINK LA data, incorpo-

rating the developments of chapter 2, while also extending the models to allow for irregular

follow-up times and varying exposure. Chapter 4 develops an autoregressive multivariate

extension of the models in chapter 3, which we use to simultaneously model multiple types

of medical visits. Finally, chapter 5 includes a discussion of the findings from chapters 2 - 4.
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CHAPTER 2

Bayesian Longitudinal Hurdle Models for Days of

Heavy Drinking

2.1 Introduction

It is common in count data to encounter an abundance of zeros relative to standard dis-

tributions, which is known as zero-inflation. This often happens when zeros have a special

significance within a study or can be created by a separate process from that which produces

the counts. Researchers often have interest in both of these processes and the interaction

between them. A standard class of models for such data are two part mixture models known

as hurdle models. In this chapter, we introduce a class of longitudinal hurdle regression mod-

els for use with zero-inflated repeated measures count data. To demonstrate these models,

we apply them to data coming from a randomized controlled trial by Karno et al. (2021)

assessing the effect of a screening, brief intervention and referral to treatment (SBIRT) pro-

gram to reduce substance use in a population of drug or alcohol users seeking mental health

treatment. In particular, our interest is in modeling days of heavy drinking over the past 90

days, which is heavily zero-inflated.

A standard class of models for such data are two part mixture models known as hurdle

models. One part of the model is a binary model of whether an observation was zero or

positive, sometimes referred to as the hurdle part of the model. If an observation crosses

this hurdle, and is therefore positive, it is modeled using a truncated count distribution such

as a zero truncated Poisson, negative binomial or binomial distribution. For example, in the
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SBIRT study, a subject may or may not be a person that engages in heavy alcohol use, this

is the hurdle. If a subject does engage in heavy drinking, then we can model the degree of

this engagement using a truncated count distribution.

The first hurdle models were introduced by Cragg (1971) using Tobit models (Tobin,

1958) and were further developed for count data by Mullahy (1986). In a hurdle model, the

number of zeros are modeled using a binary model predicting the probability of a non-zero

observation, which is commonly referred to as the zero model. If that observation is non-zero,

that is, it passes the hurdle, the magnitude of the non-zero observation is modeled using a

truncated count distribution. This contrasts with the closely related zero-inflated models,

which model the counts with an untruncated distribution, allowing zeros to be generated

by both the zero and count processes (Lambert, 1992). Thus, zero inflated models have a

latent class interpretation in which subjects either belong to an at-risk population or a not

at-risk population. In Lambert’s model, which she demonstrates on machine manufacturing,

machines can either be functioning or imperfect. The imperfect machines produce defects

at some rate modeled by a Poisson distribution, which may include zero. The hurdle model

version of this analysis would not attempt to classify machines producing zero defects as

functioning (not at-risk) or imperfect (at-risk), instead classifying all machines producing

zero defects as functioning and all machines producing any positive number of defects as

defective, thereby avoiding any attempt at latent classification.

Earlier hurdle models estimated the zero and count models separately from each other,

however this independence between model parts seems unlikely in practice, as observations

that are more likely to be zero are also likely to have lower counts than other observations.

Ridout et al. (1998) present a hurdle model which allows dependence between the two parts

of the model by using one regression equation to predict both the probability of a zero and

the mean of the count distribution, which is an adaptation of one of Lambert’s zero-inflated

models. Zero-inflated and hurdle models can also be used in applications other than count

data, such as the model by Foundtas and Anastasopoulos (2018), which connects a probit
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Figure 2.1: Number of days of heavy drinking over the last 90 days recorded at baseline, and
each of the 3 follow-up visits. Data is shown to be heavily zero-inflated at all time points.

zero model to an ordered probit model for severity of injuries in car accidents.

Often researchers are interested in estimating the effects of covariates on the entire pop-

ulation, rather than on the subpopulations used for the zero and count models. This can

be challenging in two part zero-inflated and hurdle models as it is not straightforward to

interpret the coefficients from the zero and count models as effects on the entire popula-

tion. Lee, Joo, Song, and Harper (2011) develop a marginalized hurdle model with random

effects in both the zero and count model which are correlated with each other, and allows

for estimation of marginal means using the likelihood. Long, Preisser, Herring, and Golin

(2014) take another approach with a marginal zero-inflated Poisson (ZIP) model in which

they regress the full population mean on covariates, rather than the mean of only the at-risk

population, in addition to the degree of zero-inflation. This allows them to model parameters

which describe the effect of covariates on the full population of interest.

Although both zero-inflated and hurdle models are often interchangeable, and should

produce comparable inference, we prefer hurdle models for a couple of reasons. First, hurdle

models are more flexible, allowing for zero deflation in addition to inflation. Second, in a

zero-inflated model, zeros can be generated both by the zero model and by the count model,
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whereas in a hurdle model, zeros can only be generated from the zero model. This can

make fitting zero-inflated models a bit trickier, requiring use of methods such as the data

augmentation approach proposed by Ghosh, Mukhopadhyay, and Lu (2006). In contrast,

hurdle models cleanly separate the model into two parts, avoiding some complications of

using a mixture model. Still, due to the similarities between hurdle and zero-inflated models,

it is straightforward to adapt methodology between the two approaches.

We develop Poisson hurdle models to model longitudinal data where individuals are

followed over time. Some researchers have proposed zero-inflated generalized estimating

equations to model within unit correlation over time (Dobbie & Welsh, 2002; Hall & Zhang,

2004; Kong, Xu, Levy, & Datta, 2015). Hall (2000) presents zero-inflated Poisson and

binomial models with random effects in the count part of the model to capture within unit

correlation over repeated measures. Dagne (2004) develop a repeated measures zero-inflated

Poisson model which has independent random intercepts for the count and zero models.

Min and Agresti (2005) propose using jointly distributed random effects in both the zero

and count parts of the models to capture correlation between the two model parts as well as

within units over time. These were adapted to a Bayesian framework by Neelon et al. (2010).

Both Neelon et al. and Min and Agresti model balanced data with equal follow-up times using

random intercepts and neither explore the use of more complicated random effects models.

Baetschmann and Winkelmann (2017) propose a dynamic hurdle model, which accounts

for zero-inflation by modeling an underlying stochastic process allowing a different Poisson

rate for the periods of time before and after the first event. More recently, Burger, Schall,

Ferreira, and Chen (2019) developed a zero-inflated model using multivariate normal random

effect vectors and a discrete Weibull distribution for robustness in the presence of outliers.

Ghosal, Lau, Gaskins, and Kong (2020) present a spatiotemporal negative binomial hurdle

model with multivariate normal random effects with an unstructured covariance matrix.

We propose a class of hurdle models which allow researchers the ability to flexibly model

within individual correlation over time by allowing random effects to vary over the course of
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the study, while also allowing for dependence between the zero and non-zero portions of the

model. We present 5 possible covariance models that provide more complexity and flexibility

than previous random intercept hurdle models. We then demonstrate these models on the

SBIRT study by Karno et al. (2021) and make inference on the effectiveness of the SBIRT

intervention on heavy drinking. SBIRT has been recently studied as an approach to help

reduce rates of alcohol and substance use (Glass et al., 2015; Barata et al., 2017; Saitz, 2014).

The SBIRT data consists of 718 patients aged 18 and older who were randomized into either

SBIRT or standard of care treatment groups. Subjects were interviewed at baseline, as well

as at 3, 6 and 12 months. The primary outcome of interest collected at each follow up was

number of days out of the last 90 that a subject engaged in heavy alcohol use (≥ 5 drinks

for men, ≥ 4 drinks for women). Since the number of drinking days has an upper limit of

90, we model this outcome using a binomial distribution. In the SBIRT study some subjects

were lost to follow-up or missed intermediary visits resulting in approximately 14% missing

observations. We assume these observations to be missing at random and thus we do not

expect them to bias inference (Little & Rubin, 2002).

2.2 Methods

Let Yij be a zero-inflated count random variable for subject i = 1, . . . , N at visit j = 1, . . . , J

where N is the number of subjects, J is the number of visits per subject in the study and

yij is the observed count. Then we can consider a two part model

P (Yij = 0|πij) = 1− πij, (2.1)

P (Yij = yij|πij, θij) = πij
f(yij|θij)

1− f(0|θij)
, yij = 1, . . . ,∞ (2.2)

where πij is the probability of a non-zero response for subject i at time j, and f(yij|θij) is

the probability density function of a discrete count distribution with parameter θij, such as
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the binomial, negative binomial or Poisson. This is the form of a standard hurdle model

(Mullahy, 1986). Equation (2.2) is the probability P(Yij > 0|πij) = πij multiplied by the

probability mass function of a zero truncated distribution with density f(yij|θij). When

πij = f(0|θij), then this reduces to the distribution f(yij|θij) on the non-negative integers,

and can be thought of as the situation in which there is neither zero inflation nor deflation.

Often there is interest in both the zero and count parts of the model, as they represent

different processes. For example, the process by which one abstains from heavy drinking

over a 90 day period may be different than the process which determines the number of days

of heavy alcohol use among users.

We can also consider both parts of the model together and calculate the mean of the

hurdle distribution as

E(Yij|πij, θij) = πij

∑∞
k=1 kf(k|θij)
1− f(0|θij)

(2.3)

= πij
E(Yij|θij)
1− f(0|θij)

. (2.4)

For settings in which the counts have a maximum possible value, such as the SBIRT study

where the reported number of days of heavy drinking in the past 90 days, a zero-truncated

binomial distribution, Binomial(M, θij), is a natural choice for the count model, where M is

the number of trials and θij is the probability of “success”. For the SBIRT data, M = 90

as that is the number of days on which a subject can engage in heavy drinking, and θij is

the probability of heavy alcohol use in a day for subject i at visit j. For an outcome with

Binomial(M, θij) distribution, equation (2.2) becomes

P (Yij = yij|πij, θij) = πij

(
M

yij

)
θ
yij
ij (1− θij)

M−yij

1− (1− θij)M
(2.5)
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with mean

E(Yij|πij, θij) = πij
Mθij

1− (1− θij)M
. (2.6)

The two parameters πij and θij can be modeled using mixed effects regression generalized

linear models. For some appropriate link functions g1(·) and g2(·)

g1(πij) =X1ijβ1 + γ1i (2.7)

g2(θij) =X2ijβ2 + ψγ1i + γ2ij (2.8)

whereX1ij andX2ij are fixed effect covariate vectors for subject i at time j with correspond-

ing unknown coefficient vectors β1 and β2, and each subject i has random effect γ1i for the

zero model and a vector of random effects γ2i = (γ2i1, γ2i2, . . . , γ2iJ)
′ for the count model and

ψγ1i models the association between the zero model and count model with ψ being a regres-

sion parameter. Let g1(πij) = logit(πij) = log(πij)/(1− log(πij)), the logit link function, as

is standard in logistic regression, while g2(θij) is some appropriate link function for the count

model. For the binomial hurdle model g2(θij) = logit(θij) as well. For other distributions,

one may wish to use a different link function, such as log for the Poisson distribution.

In the SBIRT study, we are modeling zero and count rates over time. We treat time

discretely and allow the population level zero and count rates to vary over the course of

the study and between treatment groups. We use X1ij and X2ij to model time effects and

treatment group by time interactions at each of the follow-up visits. We do not allow for a

treatment effect at baseline as baseline measures apply to the time before the intervention

was administered. Thus both X1ij and X2ij are 7-vectors where the first element is always

1, elements 2, 3 and 4 are indicator variables corresponding to the 3 month, 6 month, or 12

month follow-up, respectively, and 0 otherwise. Elements 5, 6 and 7 are interaction terms

for the 3 month, 6 month and 12 month visit by treatment group.

Correlation across time can be accounted for in the prior distributions on γ1i and γ2i.
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We restrict γ1i to be an individual random intercept constant across time as, compared to

the count model, there is significantly less information in the binary data used for the zero

model, although it would be straightforward to extend to more complex parameterizations.

We define γ2i as a vector of length J , where each individual’s random effect may vary at each

follow-up, allowing us to control for correlation between an individual’s count measurements

over time.

In previous studies it has been assumed that a random intercept model for both parts of

the model is sufficient to account for within subject correlation (Min & Agresti, 2005; Neelon

et al., 2010), however we test this assumption by specifying autoregressive, antedependent

and unstructured correlation models for the count model random effects and fitting these

models to the SBIRT data set.

Random Intercept The random intercept is the simplest random effect parameterization,

and uses a single fixed individual effect to model the within-individual correlation over time

letting γ2ij ≡ γ2i. Each subject i has two random intercepts, γ1i for the zero model, and γ2i

for the count model, which are normally distributed

γ1i|σ2
1 ∼ N(0, σ2

1) (2.9)

γ2i|σ2
2 ∼ N(0, σ2

2). (2.10)

In contrast to the parameterization of Min and Agresti (2005) and Neelon et al. (2010), who

use bivariate normal distributions, we use a different parameterization of the same model

where γ1i is a covariate with coefficient ψ in the count model regression to capture the

dependency between hurdle model parts.
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2.2.1 Covariance Models

To adapt the count model random effect distribution to more general covariance models, we

offer a more flexible formulation of the mixed effects hurdle model. Rather than the model

specification (2.9) and (2.10), we allow for the multivariate random effects that we set in

(2.8).

γ1i|σ2
1 ∼ N

(
0, σ2

1

)
(2.11)

γ2i|Σ2 ∼ NJ(0,Σ2). (2.12)

We decompose the count model random effects covariance matrix as

Σ2 = diag(σ2) Ω diag(σ2), (2.13)

where diag(σ2) is a diagonal matrix with diagonal elements given by σ2, a J-vector of stan-

dard deviations. Within individual across time correlation is modeled with J×J correlation

matrix Ω, for which we may use a parameterized correlation model such as autoregressive

(AR) or antedependent (AD), or take to be unstructured. Matrix Ω describes the cor-

relations between an individual’s count model random effects at each of the J follow-up

visits. Let σ2 = (σ21, . . . , σ2J), allowing for a different variance for each visit random effect

for a heteroskedastic variance model. Alternatively, replace σ2 with the scalar σ2cv, which

assumes constant or homoskedastic variance for the random effects across all visits. We con-

sider the autoregressive and antedependent covariance models, each of which we pair with

the homoskedastic and heteroskedastic variance parameterizations, and we consider random

intercept and unstructured models.

The decomposition of Σ2 into variance and correlation components is convenient as vari-

ances and correlations are more readily interpretable by researchers than covariance matrices.

The decomposition allows one to more readily make modeling decisions regarding variance
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and correlation models as well as making prior distribution decisions more straightforward.

The following sections present three possible models for Ω, which we consider for modeling

the SBIRT data.

2.2.1.1 Autoregressive Model

The autoregressive (AR) model is a one parameter correlation model assuming a constant

correlation, ρ, between any two adjacent time periods. For the SBIRT data, with J = 4, the

correlation matrix of γ2i is

Corr(γ2i) = ΩAR(ρ) =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

 . (2.14)

As time periods get more distant, the correlation between the corresponding random effects

decays, which one would expect in most longitudinal data. An appeal of using the AR

correlation model is that no matter how large J is, only one parameter, ρ, needs to be

estimated. Further, likelihood and posterior calculation under the given models requires one

to calculateΣ−1
2 = diag(σ2)

−1Ω−1diag(σ2)
−1, which is straightforward to compute regardless

of size, given ρ and σ2. For the AR model, the precision matrix Ω−1 is

ΩAR(ρ)
−1 =


1 −ϕ 0 0

−ϕ 1 + ϕ2 −ϕ 0

0 −ϕ 1 + ϕ2 −ϕ

0 0 −ϕ 1

 . (2.15)

where ρ = ϕ
1−ϕ2 . For the SBIRT data, we consider an AR correlation structure with both

homoskedastic variance (ARcv) and heterskedastic variance (AR).
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The AR model may be inappropriate, if one believes that the correlation between random

effects in adjacent time periods may not be equal across the entire study. For example in the

SBIRT data, the AR model assumes that the correlation between random effects at baseline

and the 3 month visit is the same as the correlation between the 6 month and 12 month visit.

This may be considered unlikely given the difference in elapsed time between the visits.

2.2.1.2 Antedependent Model

Another correlation model, which is more flexible than the AR model, is the antedependent

(AD) model, which, for a study with J time points, has J − 1 distinct correlations between

pairs of adjacent time intervals. AD may be a better candidate correlation model as compared

to the AR model for the SBIRT study where the spacing between consecutive time points

differs over the course of the study. For the SBIRT setting with J = 4 visits, the AD

correlation matrix for γ2i is

Corr(γ2i) = ΩAD(rho) =


1 ρ1 ρ1ρ2 ρ1ρ2ρ3

ρ1 1 ρ2 ρ2ρ3

ρ1ρ2 ρ2 1 ρ3

ρ1ρ2ρ3 ρ2ρ3 ρ3 1

 (2.16)

where the lag 1 correlations are given by the elements of ρ = (ρ1, . . . , ρJ−1) and higher lag

correlations are given by the product of the intermediate lag 1 correlations. Thus the correla-

tion between the random effects for intervals l andm, with l < m is
∏m−1

k=l ρk. The AD model

offers more flexibility than the AR model while still restricting the number of parameters to

be relatively small. In the AD model, a J × J correlation matrix is determined from J − 1

parameters. Another benefit is that there exist closed form solutions for the elements of Ω−1
AD

given the vector ρ = (ρ1, . . . , ρJ−1), which can provide significant computational savings as
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J grows large. We can solve for the elements of Ω−1
AD as

Ω−1
lm(ρ) =



1

1− ρ21
l = m = 1

1

1− ρ2L−1

l = m = J

1− ρ2l−1ρ
2
l

(1− ρ2l−1)(1− ρ2l )
l = m ̸= 1, J

−ρl
1− ρ2l

l = m+ 1

Ω−1
lm l = m− 1

0 |l −m| > 1.

(2.17)

The last line is due to the conditional independence structure of the AD model, meaning

the random effect at a given time interval is assumed to depend only on the random effects

at adjacent time intervals, and is independent of the random effects at more distant time

intervals conditional on the random effects at adjacent time intervals. As with the AR

model, we consider the AD model with both homoskedastic (ADcv) and heteroskedastic

(AD) variance.

2.2.1.3 Unstructured Model

We also consider the unstructured covariance model (UN), which makes no assumptions

about the correlations between random effects. The cost of using UN is that the number

of parameters grows as J2. However, it offers an advantage in a Bayesian framework. By

setting a scaled Inverse-Wishart prior (O’Malley & Zaslavsky, 2008) on the covariance matrix

Σ2, we can then sample correlations from a conjugate Inverse-Wishart posterior. The scaled

Inverse-Wishart distribution is defined by decomposing

Σ2 = diag(ω) Σω diag(ω) (2.18)
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where ω = (ω1, ω2, . . . , ωL) and Σω is a positive definite matrix with an Inverse-Wishart

prior with degrees of freedom ν and J × J scale matrix S. This is slightly different from

the variance-correlation decomposition from the previous models, as Σω is not necessarily

a correlation matrix. However, the correlation matrix, ΩUN, is determined directly from

Σω, since ΩUN = diag(Σω)
−1/2Σωdiag(Σω)

−1/2 where diag(Σω) is a diagonal matrix with

diagonal entries equal to the diagonal elements of Σω. The parameter ω scales the variances

of Σ2, allowing us to estimate the random effect variances separately from the correlations

through a Metropolis step. The full conditional posterior distribution of Σω is an Inverse-

Wishart distribution, which we describe in more detail in the Appendix.

2.2.2 Prior Specification

Priors were selected to be generally non-informative and to let the data guide the inference.

Elements of zero model fixed effects β1 and count model fixed effects β2 were given indepen-

dent N(0, 102) priors. Zero model random effects standard deviation σ1 and count model

standard deviations, σ2cv in the homoskedastic models, RI, ARcv and ADcv, and elements

of σ2 in the heteroskedastic models, AR, AD and UN, were given half-normal N+(0, 1) pri-

ors where N+(a, b) is the Normal(a,b) distribution restricted to the positive domain. The

regression coefficient ψ modeling the association between the zero and count models was

also given a N+(0, 1), as we expect a positive correlation between probability of at least one

day of heavy drinking and the expected number of days of heavy drinking per 90 within an

individual. Correlation parameters ρ for the AR model and ρj j = 1, . . . , J − 1 for the AD

model were assigned N+(.5, .252) priors truncated above at 1, as we expect within-individual

counts to have positive correlation.
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2.2.3 Posterior Sampling

Posterior sampling was performed using Markov Chain Monte Carlo (MCMC) methods

methods (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings, 1970; Gelfand

& Smith, 1990; Casella & George, 1992). Parameters were split into blocks and each block

of parameters was sampled from its conditional posterior distribution.

Zero model main effects β1, count model main effects β2 and count model random effects

γ2i were sampled separately using Metropolis-Hastings algorithms. In each of these three

cases, we used a normal approximation to the conditional posterior distribution using the

first two terms of the Taylor series approximation to the log posterior distribution centered

at the previous state of the Markov Chain. This method is described in detail by Rue and

Held (2005) and requires calculation of the first and second derivatives of the conditional log

posterior distributions.

The count model random effects variance for the unstructured model was sampled in

two steps. The parameter modeling the random effect correlations Σω was sampled directly

from its conditional posterior distribution. The scaling parameter ω was sampled using a

Gaussian random walk Metropolis algorithm scaled to achieve an optimal acceptance rate.

All other parameters aside from those described in this section were sampled using Gaussian

walk Metropolis algorithms. To perform our posterior sampling we ran 4 chains, each for

40,000 iterations with a thinning of 1, and discarded the first 20,000 iterations.

2.2.4 WAIC

To choose between models, we use the Watanabe-Akaike information criterion (WAIC)

(Watanabe, 2010). This is one of several measures of predictive accuracy, known as in-

formation criteria, which measure how well the fitted model predicts the data that was used

to fit it, the in-sample predictive accuracy. There are two main challenges with measuring

model fit. The first is that we do not know the true distribution of our outcome, and using
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the distribution of our sample data as a proxy for the true distribution will bias us towards

believing the model fit is better than it actually is. The second issue is that adding more

parameters to a model guarantees us at least as good of a fit as a smaller model. Different

information criteria, such as the Akaike information criterion (AIC), Bayesian information

criterion (BIC), Deviance information criterion (DIC) and the WAIC all vary in how they

address these issues.

AIC and BIC are both frequentist based methods that estimate the fit of the model

based on the maximum likelihood point estimate and then correct for overfitting based on

the number of parameters in the model. This is easily done for fixed effects models, however

in mixed effect models counting the number of parameters is not as straight forward. Random

effects contribute less to overfitting than independent fixed effect parameters, and informative

priors further reduce this overfitting. Therefore the Bayesian based DIC and WAIC estimate

the number of effective parameters of the models. We prefer WAIC to DIC as its estimate

for the effective number of parameters tends to be more stable (Gelman, Hwang, & Vehtari,

2014). WAIC also takes a more fully Bayesian approach to estimation by averaging over the

entire posterior distribution, rather than calculating fit using only the posterior mean.

WAIC is defined as

WAIC = −2(lppd− pWAIC), (2.19)

where lppd is the log of the pointwise predictive density and pWAIC is the effective number
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of parameters. Defining parameter vector ζij = (π′
ij, θ

′
ij), we have

lppd = log
N∏
i=1

J∏
j=1

ppost(yij) (2.20)

=
N∑
i=1

J∑
j=1

log

∫
p(yij|ζij)ppost(ζij)dζij, (2.21)

pWAIC =
N∑
i=1

J∑
j=1

varpost(log(p(yij|ζij))), (2.22)

where ppost(yij) is the predictive probability of observation yij averaged over the posterior

distribution ppost(ζij) as defined in (2.21) and varpost is the posterior variance. The integral

in (2.20) and the variance in (2.22) are estimated by averaging across the S posterior samples

ζsij, s = 1, . . . , S,

̂lppd =
N∑
i=1

J∑
j=1

log

(
1

S

S∑
i=1

p(yij|ζsij)

)
(2.23)

p̂WAIC =
N∑
i=1

J∑
j=1

V S
s=1(log p(yij|ζsij)), (2.24)

where V S
s=1 represents the sample variance, where the sample variance of a1, . . . , aS with

sample mean ā is V S
s=1(as) =

1
S−1

∑S
s=1(as − ā)2 and S is assumed large enough to capture

the posterior distribution. In the hurdle model p(yij|ζij) is given by equations (2.1) and

(2.2).

2.2.5 Posterior Inferences

A benefit of fitting these models using Bayesian methods is that it is straightforward to

produce inference on a number of different quantities of interest. Let θjc be the binomial

count model parameter at visit j for treatment group c = 0, 1 where c = 0 for the control

group and c = 1 for the SBIRT group. Further, θ10 = θ11 = θ1 since we assume no difference
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between treatment groups at baseline. The count model mean, which is the mean number

of days of heavy drinking in the last M = 90 among subjects that engage in at least one day

of heavy drinking at visit j for treatment group c is

µ2jc =
Mθjc

1− (1− θjc)M
. (2.25)

Let πjc be the proportion of subjects that engage in heavy drinking at visit j = 1, 2, 3, 4 in

treatment group c = 0, 1, with π10 = π11 = π1. Then the expected number of days of heavy

drinking out of the past 90 for all subjects in treatment group c at visit j is

µjc = πjcµ2jc, (2.26)

which we call the full hurdle mean.

While πjc, µ2jc and µjc are all of interest to us, our primary goal in this analysis is to

assess how effective the SBIRT intervention is compared to the standard of care at getting

subjects to reduce heavy drinking. We quantify this with the difference of differences DoDj,

the difference in change from baseline at visit j in expected number of days of heavy drinking

between treatment and control groups, where

DoDj = (µj1 − µ1)− (µj0 − µ1) (2.27)

= µj1 − µj0. (2.28)

We have secondary interest in the difference of differences in proportion of subjects at visit j

who use any alcohol, DoD1j = πj1−πj0, and the expected number of days of heavy drinking

among those who drank, DoD2j = µ2j1 − µ2j0, where µ2j1 and µ2j0 are given by equation

(2.25).

In certain contexts, it is useful to have a single number to summarize the effectiveness

of the intervention over the follow-up period. For this we use the difference of differences of
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the mean use over the three follow-up visits

MDoD =
1

3

4∑
j=2

µj1 −
1

3

4∑
j=2

µj0. (2.29)

We can similarly construct MDoD1 for the zero model as a single overall measure of how

well SBIRT reduced the proportion of people who drank heavily and MDoD2 for the count

model to measure how well it reduced rates of heavy drinking among drinkers.

All of the inferences described in this section first require estimation of πjc and θjc. To do

this, we have to integrate out the random effects, which we do using Monte Carlo integration.

Let γ
(r1)
1 and γ

(r2)
2 be random samples from the random effects distributions (2.11) and (2.12),

with r1 = 1, . . . , R1 and r2 = 1, . . . , R2 where R1 and R2 are large enough to capture the

distributions of γ1 and γ2. We calculate

πjc =

∫ ∞

−∞
logit−1(β1jc + γ1)p(γ1)dγ1 (2.30)

≈ 1

R1

R1∑
r=1

logit−1(β1jc + γ
(r1)
1 ) (2.31)

and

θjc =

∫ ∞

−∞

∫ ∞

−∞
logit−1(β2jc + ψγ1)p(γ1)dγ1dγ2 (2.32)

≈ 1

R2

R2∑
r=1

1

R1

R1∑
r=1

logit−1(β1jc + ψγ
(r1)
1 + γ

(r2)
2j ). (2.33)

As (2.31) and (2.33) require knowledge of β1jc, β2jc and ψ, we calculate (2.31) and (2.33) for

each sample s = 1, . . . , S from from the posterior. We use the collection of posterior draws

to produce mean estimates and 95% Bayesian credible intervals (CrI) for each inferential

target of interest. For this analysis we consider a statistically significant result to be found

if the 95% Bayesian credible interval does not include zero.
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2.3 SBIRT Data Analysis

We apply the models of the previous section to the SBIRT data set, in which the main

outcome of interest is number of days of heavy drinking over the previousM = 90 days. The

sample consists ofN = 718 patients aged 18 and older whom reported use of alcohol, cannabis

or stimulants within the past 90 days. These patients were randomized into either standard

of care or a screening, brief intervention and referral to treatment (SBIRT) intervention

group. Subjects were interviewed at 3 months, 6 months and 12 months and days of heavy

drinking over the past 90 days was recorded. Not all subjects were recruited into the study

for alcohol use, thus there was a considerable amount of zero-inflation (Figure 2.1). Our

primary interest is to compare the reduction of heavy drinking in the SBIRT group to the

control group.

We fit six different binomial hurdle models to the SBIRT data: a random intercept (RI)

model, and five multivariate random effects models with autoregressive (AR), autoregressive

constant variance (ARcv), antedependent (AD), antedependent constant variance (ADcv),

and unstructured (UN) covariance models. We then compare inferences and model fits for

these six models. Table 2.1 gives the WAIC from each model in order of model preference.

Models using a multivariate normal random effects model (AR, ARcv, AD, ADcv and UN)

all show a sizable improvement in model fit over the random intercept model. The random

intercept model performs quite poorly as measured by WAIC, suggesting that the random

intercept model is not flexible enough to capture the variation in the data. Differences in fit

between the multivariate random effect models were modest, though UN had the smallest

WAIC and is the preferred model.

2.3.1 SBIRT Treatment Effect

Table 2.2 provides posterior means and credible intervals of SBIRT difference of differences

(DoD) treatment effects measured in average number of days of heavy drinking at each of the
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WAIC
UN 7180.7
AD 7181.2
AR 7181.4

ARcv 7183.2
ADcv 7186.2

RI 18975.9

Table 2.1: WAIC for the 6 covariance models: unstructured (UN), autoregressive (AR), an-
tedependent (AD), autoregressive constant variance (ARcv), antedependent constant vari-
ance (ADcv) and random intercept (RI) models. A lower WAIC indicates a better fit. UN
is the best fitting model.

three follow up points, and the average estimated treatment effect across the three follow-up

time points. Only results for the hetereskedastic models are given, as the heteroskedastic

models all had lower WAICs than their homoskedastic counterparts. Random intercept

model results are also given for comparison. On average, over the one year follow-up period,

assuming the UN model, subjects assigned to the SBIRT groups reduced their heavy drinking

by .55 days per 90 as compared to those receiving standard of care. The UN, AD and AR

models all had no significant treatment effects throughout the study period. Further, the

treatment loses effectiveness compared to standard of care over the course of the 12 month

follow-up period, with the most negative treatment effect posterior mean occurring at 3

month visit.

The random intercept model did find a significant treatment effect at the 3 month follow-

up. This result is not shared by the better fitting multivariate random effect models, UN, AR

and AD. In general, the RI model has more narrow credible intervals that the multivariate

random effect models, suggesting that the RI model is overconfident in its findings. One

important feature of these models is that in both a Bernoulli distribution and a binomial

distribution, as we used in the zero and count models, there is only one parameter to control

both the mean and the variance, so the mean and variance cannot shift independently of each

other. The introduction of random intercepts allows some extra variation, but not as much

as the multivariate random effects models. In this case, the RI model is understating the
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UN AD AR RI

3 Month
-1.33 -1.54 -1.54 -1.46

(-2.89, .15) (-3.65, .54) (-3.63, .54) (-2.37, -.59)

6 Month
-.58 -.12 -.11 -.50

(-2.17, .97) (-2.30, 2.04) (-2.27, 2.05) (-1.44, .41)

12 Month
.26 .10 .12 .58

(-1.01, 1.57) (-1.86, 2.05) (-1.83, 2.09) (-.28, 1.47)

All F-U
-.55 -.52 -.51 -.46

(-1.58, .47) (-1.93, .88) (-1.91, .89) (-1.09, .16)

Table 2.2: Posterior mean difference of differences and 95% Bayesian credible intervals (CrI)
for number of expected days of heavy drinking for the three best fitting models (AR, AD
and Unstructured) and the random intercept model for comparison. Inference is given for
the 3 month, 6 month and 12 month follow-up visits and the average of the three follow-up
points.

variability of the data, leading to more narrow credible intervals and over-confident results.

Figure 2.2 plots the posterior means and 95% Bayesian credible intervals for the RI and

UN models for both SBIRT and control treatment groups. The observed means at each

time point from the data are also plotted for comparison. The UN model does a better

job estimating the means, particularly at baseline. As the random intercept model shares

individual effects across all time points, the dependency between time points may make it

more difficult for the RI model to estimate the much higher baseline use rates. The RI

model also has more narrow credible intervals suggesting that the model is overconfident in

its estimates.

Table 2.3 gives posterior means and 95% Bayesian credible intervals from each of the

two parts of the hurdle model using the preferred UN covariance model. There is very little

difference between the two groups in the zero model, so the intervention is not more effective

than standard of care at getting people to abstain from heavy alcohol use. Posterior means of

the number of days of heavy drinking among drinkers from the count model at each follow-up

are slightly higher in the SBIRT group than the control group, although the differences are

not significant. Among drinkers, we estimate subjects assigned to the SBIRT group reduced

their heavy drinking by 2.13 days more than those in the standard of care group at three
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Zero Model Count Model
Ctrl SBIRT Ctrl SBIRT

Mean Baseline .61 (.57, .64) 20 (17.8, 22.1)
3 Month .38 (.32, .43) .33 (.28, .38) 14 (11.1, 17.3) 11.9 (9.2, 14.9)
6 Month .32 (.28, .37) .32 (.27, .37) 13.8 (1.5, 17.5) 12.2 (9.2, 15.7)
12 Month .23 (.19, .28) .22 (.18, .27) 1.4 (7.2, 14.4) 12 (8.4, 16.5)

DoD 3 Month -.04 (-.11, .02) -2.13 (-5.56, 1.23)
6 Month -.005 (-.07, .06) -1.60 (-5.63, 2.36)
12 Month -.01 (-.07, .05) 1.60 (-3.02, 6.36)
All F-U -.02 (-.07, .03) -.71 (-3.49, 2.10)

ψ .04 (.003, .09)

Table 2.3: UN model mean estimates and 95% Bayesian CrI from zero and count models
for each treatment group at each time point for SBIRT data for both the control and the
SBIRT group. Zero model estimates are proportion of subjects that engage in heavy alcohol
use, count model estimates are the expected number of days of heavy alcohol use per 90
days among users. The DoD portion of the table gives mean difference of differences (DoD)
estimates for each part of the hurdle model at each time point as well as the average across
all follow-up time points (All F-U). The parameter ψ models the dependency between zero
and count models.

months and 1.6 days at 6 months. The posterior mean at 12 months estimates the control

group to drink 1.6 less days per 9.

Estimates and credible intervals for the count model random effect correlation matrices

are given in table 2.4. The unstructured model produced substantially different estimates

from the 4 structured correlation models with the UN estimating correlations to be much

higher than the other models. While the autoregressive and antedependent models assume

correlation to decay with spacing between visits, the UN model does not make any such

assumptions, however, even the adjacent time point correlations are much higher in the

UN model compared to the other multivariate random effect models. The differences in

correlation estimates do not result in large differences in ability of the models to fit the data.

The disagreement between the models may be due to the relative sparsity of observed positive

counts compared to the number of random effects being estimated, which is one per person

per visit regardless of whether or not there was a positive observation. Thus, the model
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fit may not be very sensitive to changes in the multivariate random effects distributions.

In addition, that the WAICs were similar between all 5 multivariate normal random effects

models, despite the difference in the UN model correlation estimates suggests that the more

complex models mainly improve fit through modeling over dispersion rather than within

individual correlation.

Table 2.5 gives the posterior means and credible intervals of the zero and count model

random effects standard deviations. There is general agreement between all models. The

posterior means from the heterskedastic models, AR, AD and UN, are supportive of the het-

eroskedastic assumption. The AR and AD models both find a significant difference between

3 month and 12 month random effects variance, and credible intervals in the UN model only

narrowly overlap.
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Model 3 Month 3-6 months 6-12 months

UN Baseline
.5 .45 .51

(.38, .61) (.33, .57) (.36, .63)

3 Months
.62 .45

(.5, .72) (.29, .59)

6 Months
.63

(.48, .74)

AD Baseline
.09 .01 .00

(.03, .16) (.00, .03) (.00, .00)

3 Months
.10 .01

(.03, .17) (.00, .02)

6 Months
.07

(.01, .14)

ADcv Baseline
.09 .01 .00

(.02, .15) (.00, .02) (.00, .00)

3 Months
.09 .01

(.03, .16) (.00, .02)

6 Months
.08

(.02, .14)

AR Baseline
.09 .01 .00

(.05, .13) (.00, .02) (.00, .00)

3 Months
.09 .01

(.05, .13) (.00, .02)

6 Months
.09

(.05, .13)

ARcv Baseline
.08 .01 .00

(.04, .12) (.00, .02) (.00, .00)

3 Months
.08 .01

(.04, .12) (.00, .02)

6 Months
.08

(.04, .12)

Table 2.4: Count model random effects correlation matrix posterior means and Bayesian
95% credible intervals.
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Zero Model Count Model

Baseline 3 Months 6 Months 12 Months

AR
2.04 2.01 1.81 2.08 2.32

(1.78, 2.32) (1.87, 2.17) (1.63, 2.00) (1.87, 2.31 ) (2.02, 2.74)

AD
2.03 2.02 1.82 2.08 2.36

(1.78, 2.31) (1.88, 2.17) (1.64, 2.03) (1.88, 2.33) (2.03, 2.67)

UN
2.04 2.02 1.85 2.09 2.31

(1.78, 2.31) (1.88, 2.17) (1.66, 2.06) (1.87, 2.32) (2.02, 2.63)

ADcv
2.04 2.02 - - -

(1.78, 2.32) (1.93, 2.13) - - -

ARcv
2.04 2.02 - - -

(1.80, 2.32) (1.93, 2.13) - - -

RI
2.04 2.01 - - -

(1.79, 2.31) (1.88, 2.14) - - -

Table 2.5: Standard deviation Posterior means and 95% Bayesian Credible intervals for the
standard deviations from zero model random effects and count model random effects for each
model for the SBIRT data. Constant variance count models (ADcv, ARcv and RI) have one
standard deviation estimate shared across the entire study, while the UN, AD, and AR have
a separate count model random effects standard deviation for each time interval.
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Figure 2.2: Mean number of days of heavy alcohol use at baseline and each follow-up given
by the unstructured (UN) and random intercept (RI) models with the observed values from
the data plotted for comparison.
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2.4 Discussion

In this chapter we developed Bayesian random effect hurdle models for use in zero-inflated

data with repeated measures. We demonstrated 5 different covariance models, which we

applied to the SBIRT data to model days of heavy drinking in the past 90 days. All models

except the random intercept model performed similarly as measured by WAIC, with the

unstructured model having the best fit. We introduced multivariate random effects, allowing

researchers additional flexibility to model both within individual correlation over time and

overdispersion in the data.

We attempted to fit random intercept hurdle models using maximum likelihood methods,

using the glmmTMB R package (Brooks et al., 2017) and failed. By comparison, the Bayesian

methods presented in this chapter allowed us to fit the random intercept models and 5 other

more complex models. In comparing our 5 multivariate random effects models to the random

intercept model, we find not only is fit improved, but inference is different. While the random

intercept model found a treatment effect in 3 month difference of differences, this result was

not shared by the multivariate models.

In hurdle models, the count models generally need to be fit with large amounts of missing

data. In the zero model, all observed data contributes to the likelihood. In the count model,

only positive observations are used, but unobserved data and zero values are treated as

missing data. Count model random effects for missing or zero observations are informed

by data for the same subject at other observations through the covariance models, or, if a

subject has no positive observations, the posterior of the random effects for that subject are

the same as the prior distribution.

None of the multivariate random effects models found a significant difference between

treatment groups, however the random intercept model found the SBIRT group to perform

better at 3 months. The results presented here cast doubt on that result as none of the

better fitting models agreed with this result and generally found the random intercept to be
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a poor fit as well as over-confident in its results. This shows the importance of multivariate

random effect hurdle models for longitudinal zero-inflated data. In this chapter we proposed

5 possible covariance models, however it is straightforward to use any covariance model that

the researchers deem reasonable and to compare model fit to select the best one for the data.
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Appendix A

Scaled Inverse-Wishart Posterior

One problem with a standard Inverse-Wishart prior distribution for a covariance matrix

is that varainces and correlations cannot vary independently of each other. The scaled

Inverse-Wishart distribution proposed by O’Malley and Zaslavsky (2008), decomposes the

covariance matrix into two parts, Σ2 = diag(ω)Σωdiag(ω). In this decomposition, Σω mod-

els correlations and some portion of the variances, and ω scales the covariance matrix up or

down such that the total variance may vary independently of the correlations. When used

as a prior on the covariance matrix for a multivariate normal distribution, Σω has a conju-

gate Inverse-Wishart conditional posterior distribution. Letting Σω have prior distribution

I-W(ν, S), meaning Inverse-Wishart with degrees of freedom ν and scale parameter S. Then

the posterior distribution of Σω|γ2, a, B ∼ I-W(a,B) where

a = ν +N (2.34)

B = S + diag(ω)−1

(
N∑
i=1

γ2iγ
′
2i

)
diag(ω)−1, (2.35)

allowing us to sample Σω directly from its conditional posterior distribution.

The posterior for ω does not have a conjugate form. We assign elements of ω to be

a priori independent half-normal N+(0, 2) and sample from the posterior using a Gaussian

random walk Metropolis algorithm.
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Trace Plots

To demonstrate model convergence for the preferred UN model we provide trace plots of

6 different parameters, the baseline main effects β11 for the zero model, the baseline main

effects β21 for the count model, the zero model random effects standard deviation σ1, and

the count model random effects standard deviation at each of the 4 time points, σ21, σ22,

σ23 and σ24. The MCMC sampler was run with 4 chains of 40,000 samples, discarding the

first 20,000 with a thinning of 1. Posterior samples for all parameters were found to have

satisfactory mixing and convergence. Trace plots also support a heteroskedastic type model,

agreeing with WAIC results.
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(a) β11 (b) σ1 (c) β21

(d) σ21 (e) σ22 (f) σ23

(g) σ24

Figure 2.3: Trace plots for UN model baseline main effects from the zero model β11 and
count model β21, as well as zero model random effects variance σ1 and count model random
effects variances, σ21, σ22, σ23 and σ24.
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CHAPTER 3

Bayesian Longitudinal Hurdle Models with Varying

Exposure

3.1 Introduction

Successfully addressing the HIV pandemic requires linking people living with HIV (PLWH)

to medical care, and then retaining them in that care. Failure to attend regular medical visits

has been shown to be associated with higher levels of HIV viremia (Mugavero et al., 2009).

We analyze data on primary care visits for PLWH with a history of incarceration, who have

been shown to access care much less frequently than the general population of PLWH (Sabin

et al., 2001; Maruschak, 2006). We model number of primary care visits in a population

of men and transgender women with HIV recently released from LA county jail. The data

is heavily zero-inflated as the study cohort faces many barriers to access and utilization of

care. Further, the time over which visits are counted varies between observations. To model

the data we develop a Bayesian longitudinal hurdle model accounting for exposure.

Hurdle models were first proposed by Cragg (1971), and then refined for count outcomes

by Mullahy (1986). Hurdle models are two-part models in which one part models the pro-

portion of zeros and the other part models the positive counts. The motivation for separate

modeling of zeros is that standard count distributions cannot account for the excess zeros,

which can often be driven by a separate process from that which determines the counts. For

example, in the LINK LA data, one may consider the number of doctor visits observed as a

realization of two separate processes, the first being whether or not subjects have access to
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a doctor, and the second being how often they go to the doctor if they do have access.

While early versions of hurdle models estimated the two parts of the model separately,

it is unlikely in practice for the zero probabilities and count rates to be independent of each

other. Ridout et al. (1998) address this issue for Poisson hurdle models by developing a

model which uses the same regression equation in both the zero and count models. Min

and Agresti (2005) use correlated random intercepts in both the zero and count models to

model the association between the zero and count models. The random intercepts also model

within-individual correlation over time in longitudinal studies where the same subjects are

followed and measured repeatedly. Neelon et al. (2010) adapt this model to the Bayesian

setting for longitudinal data. Generalized estimating equations have also been used to model

longitudinal zero-inflated data to account for within-unit correlation over time (Dobbie &

Welsh, 2002; Hall & Zhang, 2004; Kong et al., 2015).

We analyze data from the Linking Inmates to Care study (LINK LA) (Cunningham et

al., 2018). LINK LA was a randomized controlled trial of 356 HIV positive men and trans-

gender women recently released from LA County Jail in which subjects were randomized

into either receiving intervention or standard of care. The intervention provided peer nav-

igated assistance with linkage, retention and adherence to HIV care, which we compare to

a standard transitional case management control. Subjects were followed over time and at

each follow-up number of primary care visits since last follow-up was recorded. Data were

intended to be collected upon release from jail (baseline) and then at 3, 6 and 12 months

following release. Histograms of number of primary care visits since last follow-up are given

in figure 3.1 for baseline and each of the 3 follow-ups. We compare the number of doctor

visits in the first year following release from jail between the intervention and control groups.

In LINK LA, observed counts of doctor visits accrued over differing amounts of time,

which is important to account for as it affects the expected counts and zero probabilities.

The greater the elapsed time over which doctor visits accrue, the more opportunity one has

to attend doctor visits. The elapsed time over which counts accumulate is called exposure. In
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Figure 3.1: Number of primary visits recorded at baseline, and each of the 3 follow-up visits.

the zero model we can account for exposure through the use of a complementary log log link

function with a log exposure offset (Baetschmann & Winkelmann, 2013), which is also a form

of a Weibull survival model. The survival approach to the zero model follows by considering

the zeros as right-censored time to event data, where the event is attending the first primary

care visit and the probability of zero visits is the probability that the time is censored. In

the Poisson count model, exposure can be accounted for with the combination of a log link

function and a log exposure offset in the regression equation, which appropriately scales the

expected counts to any given length of time (Cameron & Trivedi, 1998).

An added benefit of using the complementary log log link function for the zero model in

Poisson hurdle models is that it makes the models compatible (Heilbron, 1994). This means

that if the zero model and count model are given the same regression equation with the same

covariates and coefficients, the expected number of zeros given by the zero model matches

the expected number of zeros given by the Poisson distribution which models the positive

counts.

The models developed by Baetschmann and Winkelmann (2013) are for cross sectional

data. To model number of primary care visits in the longitudinal LINK LA data, we propose
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a mixed effects hurdle model which accounts for exposure. We allow the count rates and

zero probabilities for the two treatment groups to vary over the course of the study, as one

might expect the effect of the intervention to wear off over time. To do this, we partition the

follow-up period into discrete intervals, each interval having its own zero and count rates.

For the LINK LA data, we define our intervals based on the planned follow-up time periods:

the 12 month period pre-incarceration (baseline) and 0-3 months, 3-6 months, 6-12 months

and beyond 12 months post incarceration.

One complication of the LINK LA data set is that follow-up times vary greatly both

within and between individuals, and did not resemble the original study design. For example,

the first follow-up, which was supposed to occur at 3 months after release from jail, was

observed at anywhere from 3 to 12 months after release. Histograms of the observed times

since last follow-up at each of three follow-ups are plotted in figure 3.2. Therefore to model

this data, exposure must be accounted for. Further, we wish to allow the zero and count

rates to vary over the follow up period, as we believe it is unreasonable to assume constant

zero and count rates over these time periods. Observations commonly span more than one

follow-up time interval. We model observed counts using weighted averages of the parameters

corresponding to the time intervals over which the count was observed.

We model within individual correlation over time using random effects in both the zero

and count models. We use subject level random intercepts in the zero model and subject

level random effect vectors in the count model with entries corresponding to the partitioned

intervals of the baseline and follow-up period. The random effects vector in the count model

allows us to consider several models for the correlation matrix within an individual. For

example, we would expect correlation between observations taken over 0-3 months to be

more closely correlated with 3-6 month observations than with the observations taken in

the 12 months prior to incarceration, as in many cases incarceration lasted multiple years.

We explore different covariance models for the subject specific random effects, in particu-

lar autoregressive, antedependence (Zimmerman & Núñez-Antón, 2005) and unstructured
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Figure 3.2: Length of time between follow-ups observed in LINK LA data at each visit. The
follow-ups were intended to occur at 3 months, 6 months and 12 months after release from
jail.

covariance models.

Our model adapts the exposure hurdle models of Baetschmann and Winkelmann (2013)

to the repeated measures setting in which follow-up times vary. We decouple the observation

times, which we treat on a continuous scale, from the time dependent fixed and random ef-

fects, which model time discretely. In addition, our models are Bayesian, allowing researchers

to make use of prior information, and allow straightforward inference for a variety of targets.

The variability in follow-up times leads us to treat the data as unbalanced and we assume

missing observations are missing at random and do not bias inference (Little & Rubin, 2002).

In section 3.2, we present the formulation of longitudinal exposure hurdle models (LEHMs)

and how they can be applied to the LINK LA data. We present 6 different covariance models

for the LEHM count model random effects, ranging in complexity from random intercept to

fully unstructured. We give prior distributions and detail our approach to posterior sam-

pling. In section 3.3 we present the results of fitting the models of section 3.2 to the LINK

LA data, and compare model fit and inference across the 6 different models.
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3.2 Methods

Let Yij be a count response for subject i = 1, . . . , N at visit j = 1, . . . , Ji, where N is the

number of subjects and Ji is the number of visits for subject i. We observe that Yij has excess

zeros compared to a Poisson random variable. A Poisson hurdle model is parameterized by

two parameters, λij and πij for subject i at visit j, where πij is the probability of observing

a positive count, and λij is the mean of an untruncated Poisson which we use to model the

non-zero counts, such that

P (Yij = 0|πij) = 1− πij, (3.1)

P (Yij = yij|πij, λij) = πij
λ
yij
ij exp(−λij)

yij!

1

1− exp(−λij)
, yij ≥ 1. (3.2)

Probability of a zero is modeled only through the zero model, equation (3.1). This allows

for either zero inflation or deflation depending on whether 1− πij is greater than (inflation)

or less than (deflation) the probability of a zero coming from the Poisson(λij) distribution.

Probabilities of positive counts in (3.2) are the probability πij that an observation is greater

than 0 from the zero model times the probability of the count for an untruncated Poisson(λij)

divided by the untruncated Poisson probability 1−exp(−λij) of an observation being greater

than .

Define tij as the months since baseline of visit j for subject i, and ∆tij is the total

time over which Yij was observed, which we call exposure. Then exposure, ∆tij, is given by

∆tij = tij−tij−1 for j ≥ 2, and ∆ti1 = 12. Let λ0ij be the untruncated Poisson rate of doctor

visits for one month, and let π0ij be the probability of a subject having at least one doctor

visit in a single month over the time interval (tij−1, tij). To model the exposure hurdle

model parameters λij and πij, we model per month parameters π0ij and λ0ij with mixed

effects generalized linear models (GLM) and add a log(∆tij) offset in the linear predictors

to appropriately scale to a given exposure, ∆tij. Regression parameters for λ0ij can then be
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understood as log per month rate ratios and regression parameters for π0ij can be understood

as the log hazard rate ratios where the hazard is the probability of not attending any doctor

visit in an individual month.

Link Functions We model λij and πij using mixed effect regression models. For λij, we

use a log link function. In a hurdle model, the log link is sometimes referred to as a “pseudo

link function” as it is used to model the mean of the untruncated Poisson distribution.

For the zero observations, we model πij using the complementary log log link function,

cloglog(πij) = log(− log(1−πij)), as opposed to the more commonly used logit link function,

logit(πij) = log(πij/(1− πij)). The choice of cloglog and log functions is important as they

both allow us to account for exposure.

Poisson Exposure When we observe a Poisson count with mean λ0ij per month over a

period of ∆tij months. The total count over the interval is Poisson distributed with mean

λij = ∆tijλ0ij. We model the per month Poisson rate λ0ij as log(λ0ij) = η02ij, where η02ij is

a linear combination of covariates and coefficients. Then the regression equation for λij is

log(λij) = log(∆tijλ0ij) = log(∆tij) + log(λ0ij) = log(∆tij) + η02ij. (3.3)

Zero Model Exposure Time Let the probability of attending at least one doctor visit

in a given month be π0ij. We model π0ij with a complementary log log regression model

cloglog(π0ij) = log(− log(1− π0ij)) = η01ij (3.4)

where, as with η02ij, the parameter η01ij is a linear combination of covariates and coefficients.

These covariates may or may not be the same as those used in η02ij. For the moment, assume

the monthly probability of a positive count, π0ij, to be constant over an interval of length

∆tij. The probability of not attending any doctor visits over the entire interval is (1−π0ij)∆tij ,
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and its compliment, the probability of attending at least one doctor visit over the interval is

πij = 1− (1− π0ij)
∆tij . (3.5)

Combining equations (3.4) and (3.5), the regression model for πij, the probability of attending

at least one doctor visit over a period of ∆tij months, is a function of η01ij and ∆tij,

cloglog(πij) = log(− log(1− πij)) (3.6)

= log(− log((1− π0ij)
∆tij)) (3.7)

= log(− log(1− π0ij)∆tij) (3.8)

= log(− log(1− π0ij)) + log(∆tij) (3.9)

= η01ij + log(∆tij). (3.10)

Equation (3.7) is given by the equality (3.5). Equations (3.6) through (3.10) show that,

similar to the Poisson regression model, the cloglog regression model can account for exposure

through the addition of a log(∆tij) offset. The cloglog regression model with exposure is

also known as a Weibull survival model with constant hazard. Indeed, the zero model can

be considered a survival model of right censored time to event data over ∆tij months, where

the event is a subject attending their first doctors visit.

3.2.1 Regression Model Parameterization

Define zero model fixed time effect coefficient vectors, α0
1 for the control group and α1

1 for

the treatment group, and count model fixed time effects α0
2 for the control group and α1

2 for

the treatment group. These vectors can be of different lengths, however for simplicity we

assume both to be of length L, corresponding to the number of time intervals of the study

period having different zero and count means. In the LINK LA analysis, we take L = 5

where the first element l = 1 corresponds to the 12 month period prior to incarceration
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and elements l = 2, . . . , 5 correspond to 0-3 months, 3-6 months, 6-12 months and beyond

12 months partitions after release from jail. Define Ji × L longitudinal design matrix Zi

with rows Zij = (Zij1, . . . , ZijL)
′ whose lth element Zijl is the number of months from lth

interval of the partition of the study time included in the observed time period (tij−1, tij). For

example, Zi1 = (12, 0, 0, 0, 0) for i = 1, . . . , N since the baseline observation always included

12 months prior to incarceration, and the exposure is given by ∆ti1 =
∑L

l=1 Zi1l = 12.

Alternatively, if the first follow-up visit for subject i includes the first 4 months post baseline,

Zi2 = (0, 3, 1, 0, 0) and ∆ti2 =
∑L

l=1 Zijl = 4. We take weighted averages of the fixed effects

corresponding to an individual observation as ∆t−1
ij Z

′
ijα

ci
0 for the zero model and ∆t−1

ij Z
′
ijα

ci
1

for the count model, where ci = 0, 1 (control, intervention) is the treatment group for subject

i.

We also define random effects scalar γ1i and L-vector γ2i for the zero and count models,

respectively, for subject i. We allow each individual to have a different count model random

effect associated with each of the L time intervals. This allows flexibility to model the corre-

lation within an individual over the course of the study as well as allowing us to account for

possible overdispersion. For the zero model, we restrict γ1i to be a scalar as there is signifi-

cantly less information contained in the binary data, although it would be straightforward to

extend these models to mirror the correlation modeling in the count model. We can account

for an individual’s correlation over time as well as correlation between the zero and count

models through specification of the random effects distributions.

Define the following regression equations for exposure varying longitudinal hurdle model

parameters πij and λij

cloglog(πij) = log(− log(1− πij)) = ∆t−1
ij Z

′
ijα

(ci)
1 + γ1i + log(∆tij) (3.11)

log(λij) = ∆t−1
ij Z

′
ijα

(ci)
2 +∆t−1

ij Z
′
ijγ2i + ψγ1i + log(∆tij). (3.12)

where ψ is used to model within subject correlation between the two parts of the hurdle
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model. We use a weighted average of count model random effects, ∆t−1
ij Z

′
ijγ2i, where the

contribution of the random effect for interval l is weighted by the number of months from

interval l the count yij was observed over.

The inclusion of random effects allows three main benefits. The first is that they help

in modeling the longitudinal aspect of the study, by allowing us to model correlation within

an individual over time, as we discuss in more detail in section 3.2.2. The second benefit is

that they provide a convenient means through which to correlate the two parts of the hurdle

model, as we would expect some correlation between an individual’s zero probabilities and

count rates. Lastly, the random effects allow us more flexibility to model overdispersion.

This is a common complication in Poisson modeling, as observed variation in count data is

often larger than a Poisson model allows for. Failure to account for overdispersion in Poisson

models can bias interval estimates and hypothesis tests (Breslow, 1990).

3.2.2 Correlation Models for Random Effects

We develop multivariate random effects for the count model such that each individual has

L separate count model random effects, one for each time interval. We model γ2i as normal

γ2i|Σ2 ∼ NL(0,Σ2), (3.13)

with covariance matrix Σ2. Covariance matrix Σ2 models the within-individual correlation

and variance across time in the count model. We consider several models forΣ2, which reflect

different assumptions about the data and differ in the number of unknown parameters. We

present these models in order from simplest, requiring the least number of parameters, to

most complex, which is the unstructured model requiring estimation of each entry of the

covariance matrix.

It is more straightforward to apply covariance models if one decomposes the count model
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random effects covariance matrix Σ2 as

Σ2 = diag(σ2) Ω diag(σ2), (3.14)

where diag(σ2) is a diagonal matrix with diagonal elements given by σ2, an L-vector of stan-

dard deviations. Within individual across time correlation is modeled with L×L correlation

matrix Ω. Thus, modeling choices for σ2 reflect assumptions about the variation in the data

set, and affect the model’s ability to handle excess variation, and modeling choices for Ω

reflect assumptions about within-individual correlation.

We consider two possible models for the count model random effects variance σ2, ho-

moskedastic and heteroskedastic. The homoskedastic or equal variance model assumes con-

stant variance in count model random effects throughout the study, replacing L-vector σ2

with scalar σ2cv. The heteroskedastic or unequal variance model allows the variation to be

different at each time interval, requiring estimation of each of the L variance parameters of

σ2. We consider three different correlation models for the LINK LA data, autoregressive

(AR), antedependent (AD), and unstructured.

3.2.2.1 Autoregressive Model

The autoregressive (AR) model is a one parameter correlation model assuming a constant

correlation, ρ, between any two adjacent time periods. For the LINK LA data, with L = 5

, the correlation matrix of γ2i is

Corr(γ2i) = ΩAR(ρ) =



1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1


. (3.15)
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The autoregressive model requires estimation of only the scalar ρ to estimate the entire

correlation matrix, regardless of the number of time intervals. The AR correlation model is

best used for longitudinal data where observations are taken equally spaced over time, but

can be too strong of an assumption to make in some situations.

For example, in the LINK LA model, the time intervals to which the count model random

effects apply are not spaced equally in time, so it may be unreasonable to assume constant

correlation between each adjacent pair of random effects. The LINK LA baseline random

effects are associated with the year before incarcerations, and in many cases were in jail for

years before release and subsequent follow-up measures. One would expect baseline random

effects to have a relatively low correlation with follow-up random effects because of this

large amount of time between measurements. Meanwhile one might expect relatively high

correlation between the 0-3 month random effects and the 3-6 month random effects due to

their proximity in time. Thus, we also present another alternative correlation model, which

may be better suited for the LINK LA data, the antedependent model.

3.2.2.2 Antedependent Model

The antedependent (AD) model has L − 1 distinct correlations ρ1, . . . , ρL−1 between the l

and l + 1 time intervals. AD may be a better candidate correlation model compared to the

AR model for the count model random effects in the LINK LA hurdle models due to the

different spacing between time intervals. For the LINK LA setting with L = 5 visits, the

AD correlation matrix for γ2i is

Corr(γ2i) = ΩAD(ρ) =



1 ρ1 ρ1ρ2 ρ1ρ2ρ3 ρ1ρ2ρ3ρ4

ρ1 1 ρ2 ρ2ρ3 ρ2ρ3ρ4

ρ1ρ2 ρ2 1 ρ3 ρ3ρ4

ρ1ρ2ρ3 ρ2ρ3 ρ3 1 ρ4

ρ1ρ2ρ3ρ4 ρ2ρ3ρ4 ρ3ρ4 ρ4 1


(3.16)

53



where the lag 1 correlations are given by the elements of ρ = (ρ1, . . . , ρL−1). Thus the AD

model requires estimation of L− 1 parameters for an L×L correlation matrix. We consider

AR and AD correlation models for the LINK LA data, each with both homoskedastic and

heteroskedastic variance.

3.2.2.3 Unstructured Model

If one does not wish to make assumptions about the correlation model or variance of the

count model random effects, then one can take the covariance matrix to be unstructured

(UN). This is the most general covariance model, requiring estimation of each element of the

covariance matrix, which requires estimating L(L+1)
2

parameters. However, the unstructured

model offers a benefit in Bayesian modeling as one can use an Inverse-Wishart conjugate

prior to the multivariate normal distribution, allowing modelers to sample conditional pos-

terior draws directly from an Inverse-Wishart distribution. One concern with this approach,

however, is that correlation estimates and variance estimates have an interdependency and

thus one cannot use priors to restrict the correlations independent of the variances. To

address this problem, we use a scaled Inverse-Wishart prior (O’Malley & Zaslavsky, 2008)

on the covariance matrix Σ2, which introduces a set of scale parameters which are modeled

separately and scale the covariance up or down. The scaled Inverse-Wishart distribution is

defined by decomposing Σ2 = diag(ω)Σωdiag(ω) where Σω is a positive definite matrix with

an Inverse-Wishart prior with degrees of freedom ν and L×L scale matrix S and diag(ω) is

a diagonal matrix with diagonal entries ω = (ω1, ω2, . . . , ωL). The full conditional posterior

distribution of Σω is an Inverse-Wishart distribution, which we describe in more detail in

the appendix.
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3.2.3 Hierarchical Mean Centering

Posterior sampling as parameterized in sections 3.2.1 and 3.2.2 mixed poorly. Two alternative

parameterizations improved mixing. The first reparameterization was to center the count

model random effects around the main effects γ2i|αci
2 ,Σ2 ∼ NL(α

ci
2 ,Σ2). The regression

equation for λij simplifies to

log(λij) = ∆t−1
ij Z

′
ijγ2i + ψγ1i + log(∆tij). (3.17)

With this parameterization, with αc
2, c = 0, 1, having multivariate normal priors, the full

conditional posterior distribution of αc
2 is multivariate normal as well, and we can draw α0

2

and α1
2 directly from the full conditional posterior distributions. More details are given in

the appendix.

3.2.3.1 Variance as Coefficient

For the AR and AD models, we employed one further reparameterization. We include the

lower triangular Cholesky decomposition of the count model random effects covariance matrix

as coefficients in the regression equation and therefore can restrict the prior covariance of

the random effects vector to be the L × L identity matrix IL. The random effects in these

models have long tailed posterior distributions, and parameterizing the variance in this way

helped with mixing. Under the new parameterization,

cloglog(πij) = log(− log(1− πij)) = ∆t−1
ij Z

′
ijα

(ci)
1 + σ1γ1i + log(∆tij) (3.18)

log(λij) = ∆t−1
ij Z

′
ijΣ

1/2
2 γ2i + ψγ1i + log(∆tij). (3.19)
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whereΣ
1/2
2 is the lower triangular Cholesky decomposition ofΣ2 such thatΣ

1/2
2 (Σ

1/2
2 )T = Σ2.

For i = 1, . . . , N

γ1i ∼ N(0, 1) (3.20)

γ2i ∼ NL(α
(ci)
2 , IL). (3.21)

The fixed effects α
(c)
2 change in interpretation from the previous parameterizations. The log

untruncated per month Poisson rate for each time interval, which was given by the elements

of α
(c)
2 under the previous parameterization are now given by the elements of Σ

1/2
2 α

(c)
2 .

3.2.4 Prior Specification

Priors were chosen to be semi-informative to minimize the influence of prior specification on

inference, but to have them help keep posterior estimates within reasonable values. For the

zero model, each element of α0
1 and α1

1 were given independent N(0,12) prior distributions.

We assume the first elements of α0
1 and α1

1 to be the same, and separately assume the

first elements of α0
2 and α1

2 to be the same as these elements describe the period prior to

incarceration, before the intervention was administered. The zero model random effects

standard deviation, σ1, was given a N+(0,.52) distribution, where N+(µ, σ2) is the normal

distribution with mean µ and standard deviation σ, restricted to the positive domain. When

µ = 0, the N+(0,σ2) distribution is called the half normal distribution.

In the count model, elements of α0
2 and α

1
2 were given independent N(-2,.52) prior distri-

butions. This prior distribution is centered at approximately one doctor visit per year and

gives a 95% confidence interval between one visit every 5 years and 3.7 visits per year. The

across time correlation parameters in the AD and AR models were given uniform (-1,1) pri-

ors, and similarly the matrix, Σω, modeling the correlations in the UN model, was given an

Inverse-Wishart(6, I5) prior, corresponding to a non-informative uniform distribution over

all correlations. Random effect standard deviation parameters, σ1, σ2 and ω for the different
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models, were also given independent N+(0,.52) distributions.

3.2.5 Posterior Computation

We approach parameter estimation under the Bayesian paradigm, sampling posterior dis-

tributions using Markov Chain Monte Carlo (MCMC) methods (Metropolis et al., 1953;

Hastings, 1970; Gelfand & Smith, 1990; Casella & George, 1992). We split the parameters

into separate blocks and sequentially sampled each block of parameters conditional on all

other model parameters. For sampling of α1, γ1 and γ2, a Hamiltonian Monte Carlo step

(Betancourt & Girolami, 2015) was used. For the random intercept model, we also sampled

α0
2 and α1

2 using an HMC step, however for the multivariate random effects models, we

sample α0
2 and α

1
2 directly from the multivariate normal conditional posterior distributions.

Let α21 denote the first element shared by both α0
2 and α1

2, which we first sample from its

posterior distribution. We then jointly sample the remaining L− 1 elements of each vector

conditional on the first element. More details are given in the appendix.

Variance parameters σ1 and σ2, as well as ρ in the AR model and ρ in the AD model,

were sampled using random walk Metropolis-Hastings steps. In the UN model, ω was also

sampled using a Metropolis-Hastings step, and Σω was drawn directly from its Inverse-

Wishart conditional posterior distribution,

Ση|ν,S, N,η,D ∼ IW(ν +N,S + diag(η−1)

(
N∑
i=1

DiD
′

i

)
diag(η−1)) (3.22)

with Di = γ2i −αci
2 .

In this chapter, we consider the AR, the AR with constant variance (ARcv), AD, and

AD with constant variance (ADcv) models, as well as UN and RI models for the LINK

LA data. We compare model fit with the Watanabe-Akaike information criterion (WAIC)

(Gelman, Hwang, & Vehtari, 2014). WAIC is a fully Bayesian model fit statistic that uses

the log posterior predictive density (lppd) to measure how closely a model fits the data, and
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penalizes models for overfitting with an estimate pWAIC of the total number of independent

parameters estimated. WAIC is defined as

WAIC = −2(lppd− pWAIC) (3.23)

where a lower WAIC indicates a better model fit.

3.3 Results

In this section, we present results from the longitudinal exposure hurdle models (LEHMs) of

section 3.2 applied to the LINK LA data. We consider 6 models: RI, AR, ARcv, AD, ADcv,

and UN and compare fit and inference. Table 3.1 gives WAIC, log posterior predictive density

(lppd), and estimated number of parameters (pWAIC) for each of the models. Lower WAIC

indicates a better model fit, suggesting ARcv as the preferred model. Random intercept and

UN fit significantly worse than the parameterized correlation models. The lppd suggests that

the random intercept model is not flexible enough to capture the complexity of the LINK

LA data and does not fit the data. Conversely the UN model has the highest lppd, but the

pWAIC suggests that the UN model is overparameterized and thus, over-fitting the data.

The structured covariance models, AD, ADcv, AR, and ARcv all have very similar fits

as measured by lppd, and most of the WAIC difference between these models comes from

the pWAIC, hence why the simplest model, ARcv, has the lowest WAIC. Thus, there is not

enough improvement in fit from the more complex models to justify additional parameters.

Table 3.2 gives posterior mean estimates for the random effect correlations from each

of the covariance models. These can be understood as a measure of the within individual

correlation over the course of the study. The unstructured and both autoregressive models

estimate the correlations between adjacent time intervals to be quite low, which are given

in lag-1 diagonal elements for each model. The 95% credible intervals suggest that the
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WAIC lppd pWAIC

ARcv 4546.9 -1634.8 638.7
ADcv 4764.3 -1638.0 744.1
AR 5079.9 -1629.0 911.0
AD 5181.6 -1631.6 959.2
RI 6189.9 -1949.0 1146.0
UN 6997.4 -1427.1 2071.6

Table 3.1: Model fit statistics comparing RI, AR, ARcv, AD, ADcv and UN for LINK LA
data. A lower WAIC indicates a better fit. ARcv is shown to be the best fitting model.

correlations are low. The AD and ADcv models also do not find significant correlations but

have much wider credible intervals. There is agreement between the ADcv and AD models

and between the ARcv and AR models.

Standard deviation posterior estimates for both the count and zero model random effects

for each model are given in Table 3.3. In the three heteroskedastic models, AR, AD, and

UN, count model standard deviation posterior distributions did not vary much across time

intervals, which supports the homoskedastic constant variance models. In addition, the AR,

ARcv, AD, and ADcv are mostly in agreement on standard deviations, although in the non-

constant variance versions some of the credible intervals associated with later time intervals

are a bit wider. Both the UN and RI models, however, estimate much higher random effect

standard deviations.

The top row of figure 3.3 gives the posterior mean and credible intervals for the expected

number of primary care visits per month at baseline and each follow-up time interval. The

second row plots the expected number of primary care visits given that at least one was

attended from the count model, and the third row gives the percentage of subjects that

attended at list one primary care visit from the zero model. All models agree that subjects

in both groups did significantly better at accessing care compared to baseline over the next

year, driven mainly by the zero model. Thus, subjects that previously were not linked to

care became so after release from jail. None of the models show much difference between the

treatment groups, the largest difference between treatment groups is given by the RI model
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Model 0-3 months 3-6 months 6-12 months 12+ months

UN Baseline
.05 .06 .05 .01

(-.18, .28) (-.18, .29) (-.18, .27) (-.20, .22)

0-3 months
.10 .07 .06

(-.10, .29) (-.14, .27) (-.21, .31)

3-6 months
.10 .08

(-.14, .33) (-.17, .33)

6-12 months
.00

(-.21, .21)

AD Baseline
.35 .09 .01 .00

(-.18, .91) (-.14, .50) (-.06, .11) (-.02, .02)

0-3 months
.24 .03 .00

(-.33, .9) (-.15, .27) (-.06, .04)

3-6 months
.16 -.01

(-.29, .82) (-.16, .13)

6-12 months
-.12

(-.49, .35)

ADcv Baseline
.36 .05 .00 .00

(-.17, .91) (-.15, .35) (-.06, .07) (-.01, .02)

0-3 months
.15 .01 .00

(-.32, .77) (-.13, .16) (-.03, .04)

3-6 months
.09 -.01

(-.29, .71) (-.15, .12)

6-12 months
-.14

(-.53, .30)

AR Baseline
.05 .02 .00 .00

(-.20, .37) (.00, .14) (-.01, .05) (.00, .02)

0-3 months
.05 .02 .00

(-.20, .37) (.00, .14) (-.01, .05)

3-6 months
.05 .02

(-.20, .37) (.00, .14)

6-12 months
.05

(-.20, .37)

ARcv Baseline
.05 .02 .00 .00

(-.21, .33) (.00, .11) (-.01, .04) (.00, .01)

0-3 months
.05 .02 .00

(-.21, .33) (.00, .11) (-.01, .04)

3-6 months
.05 .02

(-.21, .33) (.00, .11)

6-12 months
.05

(-.21, .33)

Table 3.2: Count model random effects correlation matrices from RI, ARcv, AR, ADcv, AD
and UN models. Posterior mean and Bayesian 95% credible intervals.
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Zero Model Count Model

Baseline 0-3 Months 3-6 Months 6-12 Months 12+ Months

AR
.42 .32 .39 .31 .30 .38

(.22, .62) (.21, .47) (.21, .63) (.13, .61) (.17, .47) (.16, .64)

AD
.41 .33 .37 .29 .30 .40

(.22, .64) (.21, .49) (.19, .60) (.11, .64) (.16, .49) (.17, .67)

UN
.78 1.58 1.39 1.50 1.25 1.73

(.45, 1.07) (1.28, 1.94) (1.16, 1.66) (1.23, 1.81) (1.06, 1.48) (1.41, 2.1)

ADcv
.4 .31 - - - -

(.21, .60) (.21, .44) - - - -

ARcv
.41 .32 - - - -

(.22, .60) (.21, .45) - - - -

RI
1.04 .92 - - - -

(.89, 1.20) (.80, 1.07) - - - -

Table 3.3: Standard deviation posterior means and 95% Bayesian Credible intervals for the
zero model random effects and count model random effects for each model for the LINK LA
data. Constant variance count models (ADcv, ARcv and RI) have one standard deviation
estimate shared across the entire study, while the UN, AD, and AR have a separate count
model random effects standard deviation for each time interval.

over the 0-3 month time interval, however as the RI did not fit the data well compared to

the other models. The RI significant result can be attributed to model misspecification and

not due to an underlying true effect being identified. The multivariate random effect models,

particularly the AD, ADcv, AR and ARcv give very similar inferences.

Posterior summaries for proportion of subjects linked to care, expected number of visits

for subjects that had at least one visit, and expected number of visits per person at 12

months post-baseline are given in Table 3.4 for all 6 covariance models. We provide posterior

means and 95% credible intervals for both the treatment and control groups, the difference

of differences (DoD), measured as the difference between the change from baseline in the

intervention group and the change from baseline in the control group in the Posson rate,

zero probability and hurdle model means. The zero portion of the table gives the probability

of at least one visit in the first year after release from jail.
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The RI model had much wider posterior distributions than the other models, with larger

posterior means and variances, and it overestimates care usage in both groups. The ARcv

model posterior distribution for the expected number of primary care visits has a 95% credible

interval of 4.67 to 6.59 visits for the control group and slightly higher at 5.23 to 7.16 visits

for the intervention treatment group. For all models, the DoD posterior mean finds the

treatment group to improve slightly more in access to care compared to the control group,

but none of the credible intervals find statistical significance. The zero model posterior

means and intervals are similar across all models, although the ARcv, AR, ADcv and AD

models estimate slightly better linkage to care than the RI and UN models, although again

the difference between models is neither large nor important. The zero model DoD estimates

show very little difference between treatment groups over one year.
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RI ARcv AR ADcv AD UN

Ctrl
8.94 5.57 5.62 6.43 6.55 5.32

(4.63, 12.74) (4.67, 6.59) (4.74, 6.62) (5.02, 8.16) (5.03, 8.60) (4.19, 6.71)

Hurdle Trt
9.60 6.15 6.18 7.15 7.22 5.73

(5.91, 13.36) (5.23, 7.16) (5.29, 7.14) (5.62, 9.02) (5.55, 9.46) (4.54, 7.16)

DoD
.65 .58 .56 .71 .67 .40

(-3.57, 5.87) (-.36, 1.53) (-.39, 1.49) (-.39, 1.88) (-.44, 1.86) (-1.25, 2.05)

Ctrl
.85 .91 .91 .91 .91 .88

(.80, .89) (.86, .94) (.86, .94) (.87, .94) (.86, .94) (.82, .92)

Zero Trt
.85 .92 .92 .92 .92 .89

(.80, .90) (.88, .95) (.88, .95) (.88, .95) (.88, .95) (.83, .94)

DoD
.002 .01 .01 .01 .01 .01

(-.05, .06) (-.03, .06) (-.03, .06) (-.03, .06) (-.03, .06) (-.04, .07)

Ctrl
10.50 6.15 6.20 7.10 7.23 6.07

(5.44, 14.99) (5.24, 7.18) (5.31, 7.23) (5.60, 8.94) (5.59, 9.43) (4.84, 7.57)

Count Trt
11.24 6.70 6.73 7.78 7.87 6.45

(6.91, 15.65) (5.79, 7.70) (5.85, 7.69) (6.19, 9.76) (6.10, 10.24) (5.18, 7.97)

DoD
.74 .55 .53 .68 .64 .38

(-4.14, 6.82) (-.39, 1.50) (-.42, 1.45) (-.44, 1.87) (-.49, 1.85) (-1.41, 2.17)

Table 3.4: One year posterior means (95% credible intervals) number of primary care visits
for treatment (Trt) and control (Ctrl) groups as well as difference of differences (DoD) at
one year. Also given are treatment mean, control mean and DoDs for one year proportion of
subjects that attended at least one visit (Zero) and expected number of visits for subjects
that had at least one (Count). Posterior summaries are given for random intercept (RI),
autoregressive (AR), autoregressive constant variance (ARcv), antedependent (AD), antede-
pendent constant variance (ADcv) and unstructured (UN) models.
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3.4 Discussion

The purpose of this chapter is to explore novel Bayesian models for use in zero inflated lon-

gitudinal data with varying exposure. These models are designed for zero-inflated outcomes

in studies where individuals are followed up over time and follow-up time varies between

and within individuals. We demonstrate the use of these models on the LINK LA study

to gauge the effect of an intervention on the expected number of doctors visits in one year

after release from jail. We also demonstrate the use of covariance models, and find that

they significantly improve fit compared to the random intercept and unstructured covari-

ance models. Our analysis shows that choice of random effect model can affect inference, as

group mean posterior distributions did not agree between the random intercept model and

the more complex structured covariance models.

In zero inflated longitudinal data, the random intercept model is a common choice due to

its simplicity and software availability, however we find here that the flexibility of allowing

an individual’s random effects to vary over the follow-up can improve model fit. In doing so,

researchers gain more flexibility in controlling for overdispersion, as well as within subject

correlation over time.

If one uses multivariate random effects, the unstructured covariance model is a natural

choice, allowing for use of a conjugate Inverse-Wishart variance prior. However, we find in

the LINK LA setting that simpler, structured covariance models perform better. The ARcv,

for example, which was selected to be the best model among the ones that we tried, allows

specification of any size covariance matrix with just two parameters, and was able to fit the

data quite well. A benefit of the covariance model framework for these longitudinal hurdle

models is that it is straightforward to move between different covariance models and compare

WAICs to choose the best option.

The Bayesian approach to these models allows more flexibility than frequentist alterna-

tives. For example, in the LINK LA data set, the Bayesian models in this paper were able
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to fit the data and produce inference when frequentist methods struggled to fit even the ran-

dom intercept model. In addition, Bayesian methods allow researchers to incorporate prior

information which can help improve inference, particularly in settings with small sample size

(Ghosh et al., 2006). These small sample size properties are particularly important in hurdle

models where only a fraction of the observations are used to estimate the count model, as

these models are estimated only from non-zero observations.

Overall, we find incorporating Bayesian methods and covariance models into longitudinal

hurdle models with exposure help improve fit and inference over alternatives. These models

provide a framework for analysis of data from a variety of study designs. In longitudinal

count data, zero inflation is common and follow-up times are often unbalanced, requiring

use of either zero-inflated models or hurdle models which account for exposure. Further,

in longitudinal data, the use of random effects provides a convenient way to account for

overdispersion, within-individual correlation both over time and between zero probabilities

and positive count probabilities, and, as shown with the LINK LA data, researchers can

benefit from allowing these random effects to vary over time with the aid of parameterized

covariance models. The models demonstrated in this chapter offer an improvement over

previous methods for analysis of the LINK LA data and should be considered by researchers

for longitudinal zero-inflated data settings in which exposure varies.
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Appendix B

Computing

Posterior sampling for all models was performed using Markov Chain Monte Carlo (MCMC)

methods. Here we describe the algorithms in detail. We found random walk Metropolis-

Hastings algorithms to mix and converge slowly, and similarly, we could not produce reliable

inference using Hamiltonian Monte Carlo (HMC) in Stan (Carpenter et al., 2017). Instead we

opted for a hybrid approach, blocking the parameters into groups and running a combination

of HMC, random walk Metropolis Hastings and Gibbs sampling steps to sample from the full

conditional posterior distribution of each parameter block given the parameters in the other

blocks. The zero model was parameterized in the same way across all models presented in

this chapter, and consequently posterior sampling for the zero models was also done in the

same way regardless of the parameterization of the count model. We took slightly different

approaches to sampling the count model parameters for the RI model, for the AR and AD

models, and for the UN model, as methods for the RI model had difficulty with the more

complex models with more parameters.

Zero Model Sampling

Posterior sampling for the zero model takes the same form across all models as the zero

model is always parameterized in the same way across all models in this chapter. The

parameter ψ which connects the zero and count models is also always sampled in the same

way so we include it in this section. We sample zero model main effects α0
1 and α

1
1, and zero

model random effects γ1 using separate HMC steps and sample zero model random effects

variance σ1 using random walk Metropolis Hastings. We found sampling each of these

parameters separately made the algorithm much easier to tune without costing much in

computation time. As HMC is a gradient-based algorithm, one can simply use the numerical

approximation to the derivative of the log posterior distributions, but computation time can
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be greatly improved by using the analytical form of the derivatives which we provide in this

section. For a straightforward review of the HMC algorithm with sample code, we refer the

reader to Gelman, Carlin, et al. (2014). Here we present, in detail, the steps of our sampling

algorithm. For ease of notation, let Vij be the indicator that observation yij is a non-zero

count with Vij = 1 when yij > 0 and 0 otherwise and let V denote the vector of all vij,

i = 1, . . . , N and j = 1, . . . , Ji. We use f(α0
1|·) to refer to the distribution of α0

1 conditional

on all other parameters and the vector Y of all observed counts, and use a similar notation

for other parameters.

1. We sample αc
1, where c = 0, 1 from the full conditional posterior distribution

log f(αc
1|·) ∝

N∑
i=1

Ji∑
j=1

{
Vij log(1− exp(− exp(η1ij)))

− (1− Vij) exp(η1ij)
}
− 1

2
(αc

1 − µαc
1
)′Σ−1

αc
1
(αc

1 − µαc
1
),

(3.24)

where η1ij = ∆t−1
ij Z

′
ijα

ci
1 + σ1γ1i + log(∆tij). The prior mean and variance of αc

1

is given by µαc
1
and Σαc

1
, where in our analysis, µα0

2
= µα1

2
= (0, 0, 0, 0, 0)′ and

Σα0
1
= Σα1

1
= I5, the 5×5 identity matrix. To sample from this posterior distribution,

we use an HMC algorithm, which requires calculation of the gradient of the log posterior

distribution. The gradient of the log posterior distribution with respect to αc
1l, the lth

element of αc
1, is given by

∂

∂αc
1l

log f(αc
1|·) =

N∑
i=1

1(ci=c)

Ji∑
j=1

∆t−1
ij Zijl

[
Vij

exp(ηij)

exp(exp(ηij))− 1

− (1− Vij) exp(ηij)

]
− (Σ−1

α0
1
(α0

1 − µα0
1
))l

(3.25)

68



2. Sampling for γ1, the N × 1 vector of random intercepts for each of the N subjects

follows a method similar to that of αc
1. The log full conditional posterior distribution

is given by

log f(γ1|·) ∝
N∑
i=1

Ji∑
j=1

{
Vij log(1− exp(− exp(η1ij)))

− (1− Vij) exp(η1ij) + yijψγ1i − log (exp(λij)− 1)
}
− 1

2
γ′
1γ1,

(3.26)

and the derivative of the log-posterior distribution with respect to γ1i is given by

∂

∂γ1i
log f(γ1|·) =

Ji∑
j=1

[
σ1

(
Vij

exp(ηij)

exp(exp(ηij))− 1
− (1− Vij) exp(ηij)

)
+ ψ(yij − λij(1− exp(−λij)−1))

]
−γ1i.

(3.27)

We use 3.26 and 3.27 to construct an HMC algorithm to sample γ1 from its full con-

ditional posterior distribution. While it is more computationally efficient to sample

α0
1, α

1
1 and γ1 jointly in an HMC step, we found it much easier to tune the algorithm

when we sampled γ1 separately, while not costing much in computation time.

3. Sample σ1 from its full conditional posterior distribution using a Metropolis algorithm

with a Gaussian proposal distribution centered around the previous state of the Markov

chain with variance chosen to give a desirable acceptance rate.

4. Sample ψ, the parameter modeling the dependency between the zero and count model

random effects, using a Gaussian random walk Metropolis step.
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Random Intercept Model

In this section, we present the detailed steps of our algorithm for sampling from the posterior

distribution of the RI model. For the RI count model, we take a similar approach as in the

zero model, sampling α0
2 and α1

2 as a separate block with an HMC step, γ2 as a block with

a separate HMC step, and then σ2 individually using a random walk Metropolis-Hastings

step.

1. Sample zero model parameters and ψ following the steps described in section 3.4.

2. Jointly sample α0
2 and α1

2 from their full conditional posterior distribution. The full

conditional posterior distributions take the same form for both α0
2 and α

1
2 so we present

the distribution of α0
2,

log f(α0
2|·) ∝

N∑
i=1

Ji∑
j=1

{
yij

1

∆tij
Zijα

ci
2 − log (exp(λij)− 1)

}
− 1

2
Σ−1

α0
2
(α0

2 − µα0
2
),

(3.28)

where λij = exp(∆t−1
ij Z

′
ijα

ci
2 + γ2i + ψγ1i + log(∆tij)), and µα0

2
and Σα0

2
are the prior

mean and variance of α0
2. In our analysis, µα0

2
= µα1

2
= c(−2,−2,−2,−2,−2)′, and

and Σα0
2
= Σα1

2
= I5, the 5× 5 identity matrix. This corresponds to an a priori 95%

confidence interval of (1.11, 12.00) visits per year with a median of 2 visits per year,

which we consider to be reasonable prior bounds for the average over subjects who

attend at least one doctor visit in a year. The gradient of the log posterior distribution

of α0
2 with respect to the lth element α0

2l of α
0
2 is

∂

∂α0
2l

log f(α0
2|·) =

N∑
i=1

Ji∑
j=1

Zijl∆t
−1
ij (yij − λij(1− exp(−λij)−1))− (Σ−1

α0
2
(α0

2 − µα0
2
))l.

(3.29)
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3. As in the zero model, we sample the N×1 random intercept vector γ2 using a separate

HMC step. The log posterior distribution is

log f(γ2|·) ∝
N∑
i=1

Ji∑
j=1

{yijσ2γ2i − log (exp(λij)− 1)} − 1

2
γ′
2γ2,

(3.30)

with derivative,

∂

∂γ2i
log f(γ2|·) =

Ji∑
j=1

σ2(yij − λij(1− exp(−λij)−1))− γ2i.

(3.31)

4. Sample σ2 from full conditional posterior distribution using a random walk Metropolis

algorithm with Gaussian proposal, similar to step 3.

Steps 1 through 4 are repeated until satisfactory convergence.

AR/AD Models

Sampling for AR and AD count models takes a different form than for the RI count model,

as γ2 is now an N ×L matrix of random effects. In the count model parameters, we now use

hierarchical mean centering as discussed in section 3.2.3.1, allowing us to sample αc
2 directly

from the full conditional posterior distribution.

1. Sample zero model parameters and ψ following the steps described in section 3.4.

2. Letting γ2i ∼ NL(α
(ci)
2 , IL) as described in section 3.2.3.1, we derive the full conditional

posterior distributions of α0
2 and α1

2, which we generalize for αc
2, c = 0, 1. Given a

normal prior with mean µc
α2

and variance Σc
α2

the posterior distribution of αc
2 is normal
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with mean Bc
α2

and variance Λc
α2

given by

(Λc
α2
)−1 = (Σc

α2
)−1 +NcIL (3.32)

Bc
α2

= Λc
α2

(
(Σc

α2
)−1
1· µαc

2
+Ncγ2i

)
, (3.33)

where (Σc
α2
)−1
1· is the first row of (Σc

α2
)−1. Since the first elements of α0

2 and α1
2

apply to baseline before the intervention was applied, we set these elements to be

the same such that α0
21 = α1

21 = α21. This implies (µα0
2
)1 = (µα1

2
)1 = µα21 and

(Σα0
2
)11 = (Σα1

2
)11 = (Σα2)11. We can then draw α21 directly from the posterior

distribution N((Bα2)1, (Λα2)11) where (Bα2)1 is the shared first element of B0
α2

and

B1
α2

and (Λα2)11 is the element in row 1 column 1 shared by Λ0
α2

and Λ1
α2
,

(Λα2)
−1
11 = (Σα2)

−1
11 +N (3.34)

(Bα2)1 = (Λα2)11

(
(Σα2)

−1
11 µα21 +

N∑
i=1

γ2i1

)
, (3.35)

where γ2i1 is the first element of γ2i. We then sample the remaining elements of γ2i,

denoted γ2i2:L, conditional on the first element, γ2i1, using the multivariate normal

distributions with precision and mean given in 3.32 and 3.33.

3. In the AR and AD models, similar to the RI model, we update the entire N × L

parameter matrix γ2 in a single HMC step. We sample γ2 from the log posterior

distribution

log f(γ2|·) ∝
N∑
i=1

{ Ji∑
j=1

[
yijZijΣ

1/2
2 γ2i − log (exp(λij)− 1)

]
− 1

2
(γ2i −αci

2 )
′(γ2i −αci

2 )

}
,

(3.36)
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with derivative

∂

∂γ2i
log f(γ2|·) =

(
Ji∑
j=1

(yij − λij(1− exp(−λij)−1))ZijΣ
1/2
2

)′

− (γ2i −αci
2 ).

(3.37)

4. Sample correlation parameters using a random walk Metropolis algorithm with Gaus-

sian proposal distribution. In the case of the AR model, the correlation parameter is

the scalar ρAR, and in the AD models correlation is modeled by the L − 1 parameter

vector ρAD. Once a posterior draw of the correlation parameter has been accepted, we

construct the correlation matrix Ω using the appropriate model (AR or AD).

5. Variance parameters, which consist of either the scalar σ2 in the constant variance

models, or the L-vector σ2 in the non-constant variance models, are sampled using

Gaussian random walk Metropolis algorithms.

UN Model

For the UN model, we model the count model random effects covariance through the prior

distributions of γ2i, i = 1, . . . , N such that γ2i ∼ NL(α
ci
2 ,Σ2). We then set a scaled Inverse-

Wishart prior on Σ2 = diag(ω)Σωdiag(ω) (O’Malley & Zaslavsky, 2008), which allows us

to sample Σω directly from its conjugate full conditional posterior distribution.

1. Sample zero model parameters and ψ following the steps described in section 3.4.

2. Sample count model main effectsα0
2 andα

1
2 directly from their full conditional posterior

distributions, which take the same form for α0
2 and α

1
2. Here we give the full conditional

posterior distribution for αc
2. Given a normal prior with mean µc

α2
and variance Σc

α2
,

such that αc
2 ∼ N(µc

α2
,Σc

α2
), the posterior distribution of αc

2 is normal with mean Bc
α2
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and variance Λc
α2
, N(B0

α2
,Λc

α2
), with

(Λc
α2
)−1 = (Σc

α2
)−1 +NcΣ

−1
2 (3.38)

Bα2 = Λc
α2

(
(Σc

α2
)−1µα21 +Σ−1

2

∑
i:{ci=c}

γ2i

)
. (3.39)

where Nc is the number of subjects in treatment group c = 0, 1. The distribution of

α0
21 = α1

21 = α21 is also normally distributed, N((Bα2)1, (Λα2)11), where

(Λα2)
−1
11 = (Σα2)

−1
11 +N(Σ2)11 (3.40)

Bα21 = (Λα2)11

(
(Σα2)

−1
11 µα21 + (Σ211)

−1

N∑
i=1

γ2i1

)
. (3.41)

3. Sample γ2 using an HMC step with log-posterior given by

log f(γ2|·) ∝
N∑
i=1

{ Ji∑
j=1

[yijZijγ2i − log (exp(λij)− 1)]

− 1

2
(γ2i −αci

2 )
′Σ−1

2 (γ2i −αci
2 )

}
,

(3.42)

with derivative

∂

∂γ2i
log f(γ2|·) =

(
Ji∑
j=1

(yij − λij(1− exp(−λij)−1))Zij

)′

−Σ−1
2 (γ2i −αci

2 ).

(3.43)

4. The scaled Inverse-Wishart distribution separates the covariance matrix into two parts,

Σ2 = diag(ω)Σωdiag(ω). Therefore, rather than cleanly separating the variance and

correlation as in the AR and AD models, we sample the matrix Σω, which models the

74



correlations and some amount of the variance, and then separately sample the vector

ω which allows the total variance to scale up or down independent of the correlations.

We assume prior distribution Σω ∼ I-W(ν, S) with degrees of freedom ν = 6 and scale

parameter S = I6. Then the posterior distribution of Σω|γ2, α0
2, α

1
2, ν, S ∼ I-W(ν̂, Ŝ)

where

ν̂ = ν +N (3.44)

Ŝ = diag(ω)−1

(
N∑
i=1

(γ2i −αci
2 )(γ2i −α

ci
2 )

′

)
diag(ω)−1. (3.45)

We use this result to sampleΣω directly from it’s full conditional posterior distribution.

5. Sample ω using a Gaussian random walk Metropolis algorithm.

For each of the models, we ran the MCMC algorithms with 4 separate chains for 50,000

iterations each, discarding the first 10,000 iterations.

Model Convergence

We provide trace plots of the baseline main effects for both the zero and count models as well

as random effects variances in both zero and count models for RI, AR, ARcv, AD, ADcv and

UN models. For the heterskedastic models, AR, AD and UN, the variance for the baseline

random effect was used. Models were run for 4 chains with 50,000 iterations, discarding the

first 10,000 iterations and keeping every 5th iteration after that. All models were deemed to

have satisfactory convergence and mixing.
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CHAPTER 4

A Multivariate Longitudinal Zero-Inflated Poisson

Model with Varying Exposure

4.1 Introduction

Care use patterns among people living with HIV (PLHIV) are important determinants of

both quality and cost of care. Beyond simply linking PLHIV to care, we want to ensure

that they are receiving the right kind of care. Primary care visits have been shown to have

better long term care outcomes and cost less than specialty care visits and to result in fewer

emergency room visits (Hecht, Wilson, Wu, Cook, & Turner, 1999; Kitahata et al., 1999).

We model data from the Linking Inmates to Care Los Angeles (LINK LA) study, a

randomized controlled trial designed to test the effectiveness of an intervention to improve

linkage to care in a population of men and transgender women with HIV who have recently

been released from Los Angeles county jail (Cunningham et al., 2018). Subjects were re-

cruited to the study upon release from jail, randomized into either intervention or control

group, and followed up with repeatedly to record care use since last follow-up. The interven-

tion provided peer navigated assistance with linkage, retention and adherence to HIV care,

which we compare to a standard transitional case management control. At each follow-up the

number and type of medical care visits subjects had attended since the previous follow-up

were recorded. For comparison, researchers also recorded the number and type of medical

visits attended in the 12 months prior to incarceration. We model counts of different types

of medical care visits to assess the effect of the LINK LA intervention on care use in this
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vulnerable population.

The counts of care visits had a large number of zero observations, a quality known as

zero-inflation. Generally, zero-inflation is seen when the data is generated by two separate

processes, one determines if there is the possibility of a positive count, and if a positive count

is possible, a separate process determines the magnitude of the count. For example, in the

LINK LA data, subjects may or may not have had access to care during the study. Subjects

that did not have access to care would thus have zero medical visits, called structural zeros.

Subjects that did have access to care would attend some number of visits, which could also

be zero. We call zeros from this counting process random zeros. To model the LINK LA

data, we use a zero-inflated Poisson model, which models the excess zeros with a Bernoulli

distribution, and the number of medical visits among those with access to care with a Poisson

distribution.

Zero-inflated distributions have been well-researched (Cohen, 1966; Johnson & Kotz,

1966), and have been developed for use in regression with covariates by Mullahy (1986),

Lambert (1992) and Heilbron (1994). Lambert’s models use generalized linear models with

a logistic regression to model the probability of an extra zero and a Poisson regression with

log link to model the counts of manufacturing defects. To connect the zero and count model,

Lambert proposes using a function of the Poisson rate in the logistic regression equation.

Hall (2000) adapts Lambert’s model to the repeated measures situation by modeling the

number of bugs on plants with a zero-inflated Poisson distribution with a random intercept

in the count model.

Zero-inflated models have further been developed for use in longitudinal data where the

same units are followed over time (Yau & Lee, 2001; Min & Agresti, 2005). Neelon et al.

(2010) develop a Bayesian mixed effect zero-inflated Poisson model for psychiatric outpatient

service use which uses random intercepts in both the zero and count models to account for

within-subject correlation over time. Neelon’s model assumes the two random intercepts to

have a bivariate normal distribution to model within-individual correlation between the zero
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and count parts of the model.

Often count data, particularly in longitudinal studies, is observed over some amount of

time. The time over which a count is observed is called exposure. For example, in the

LINK LA data, subject follow-ups happened irregularly, and at each follow-up, the number

of medical visits since last follow-up was measured. Some counts measured the number of

medical visits attended over years and some measured the number of medical visits attended

in three months. Baetschmann and Winkelmann (2013) develop a zero-inflated Poisson

exposure model for cross sectional data, which uses a log exposure term in the Poisson

regression and a complementary log log link function with a log exposure term in the zero

model regression.

For the non-longitudinal multivariate data setting, Li et al. (1999) present a multivariate

zero-inflated Poisson model, which uses a multivariate Poisson distribution for the count

model which share a zero model. Liu and Tian (2015) present another possible model which

reduces the number of parameters by using independent Poisson random variables which

share a zero distribution. Both Li’s and Liu’s models lack dependency between zero models

and count models and neither are developed for longitudinal data. Others such as Chib and

Winkelmann (2001) and Tunaru (2002) have modeled multivariate non-zero inflated count

data using random intercepts for each outcome and then giving each subject’s set of random

intercepts a joint multivariate normal distribution to model between outcome correlation.

We develop a Bayesian multivariate longitudinal zero-inflated Poisson exposure model

(MLZIPE), which uses multivariate random effects to model within-subject correlation both

between outcomes and across time. At each time point a subject has a multivariate set of

random effects with one corresponding to each outcome. Correlation over time is modeled

through a vector autoregressive (VAR) process (Lütkepohl, 2013). MLZIPE models allow

the probability of being in the zero group to be different for different outcomes, reflecting

how some subjects may only have access to some types of care. This model advances previous

approaches to multivariate longitudinal zero-inflated data by allowing flexible modeling of
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the three types of correlation that must be accounted for: between zero and count models,

between outcomes, and across time. Section 4.2 defines the MLZIPE model and methods

for analyzing the LINK LA data. Section 3 gives the results of the LINK LA data analysis.

4.2 Methods

Let Yijk be a count response for subject i = 1, . . . , N at visit j = 1, . . . , Ji, on outcome

k = 1, . . . , K, where N is the number of subjects and Ji is the number of visits for subject

i, and K is the number of different outcomes observed. For the LINK LA data, K = 3

as we are modeling three kinds of medical visits from the LINK LA data. Define πijk as

the probability that subject i belongs to the zero group for outcome k for the time period

observed at visit j. Further, define λijk as the Poisson rate describing the count for subject

i for outcome k over the time period observed at visit j given that subject i has access to

medical visit k during the observed time period. Then Yijk is said to have a zero-inflated

Poisson distribution if

Yijk ∼


0 with probability 1− πijk

Poisson(λijk) with probability πijk.

(4.1)

The zero-inflated Poisson distribution can be understood as a mixture model with two com-

ponents. One of these components is a point mass at zero, which an observation belongs

to with probability πijk. The second component is a Poisson(λijk) distribution, which an

observation belongs to with probability 1− πijk. Thus, the zero-inflated Poisson probability

density function is given by

P (Yijk = 0|πijk) = (1− πijk) + πijk exp(−λijk), (4.2)

P (Yijk = yijk|πijk, λijk) = πijk
λ
yijk
ijk exp(−λijk)

yijk!
for yij ≥ 1. (4.3)
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In a zero-inflated Poisson model, zeros can come about through two different processes. One

way is through the zero process, which is the Bernoulli distribution modeling the excess zeros

with probability πijk. Zeros generated in this way can be thought of as forced or structural

zeros. In the LINK LA data, these would be subjects who do not have access to a particular

type of care during the observed time period. The second way zeros can be generated is by

chance through the counting process, or random zeros, which we model with a Poisson(λijk)

distribution. In the LINK LA study, these would be subjects who did have access to care

over the observed time period, but did not use it. Equation (4.2) shows the probability of

observing these two types of zeros, the structural zeros with probability 1 − πijk and the

random zeros with probability πijk exp(−λijk). These models stand in contrast to the hurdle

models of the previous two chapters, in which zeros can come about only through the zero

process, and the count distribution is truncated at zero.

That zeros can come from either the zero model or the count model presents a difficulty

in zero-inflation model estimation, as we do not know which zeros come from which process.

Thus zero-inflated models have a latent class interpretation, where we define latent class

Bernoulli variable bijk ∼ Bernoulli(πijk) where bijk = 1 if a subject i has access to care type

k over the time frame observed at visit j and bijk = 0 if they do not. Then

Yijk|bijk, λijk ∼


0 if bijk = 0

Poisson(λijk) if bijk = 1.

(4.4)

Thus given the latent class variable bijk the model becomes much more straightforward to

fit. We use a data augmentation approach similar to Ghosh et al. (2006) and Tanner and

Wong (1987) to fit the zero-inflated model. At each iteration of the MCMC algorithm, we
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impute bijk such that

bijk = 1 if yijk > 0 (4.5)

bijk ∼ Bernoulli

(
πijk exp(−λijk)

1− πijk + πijk exp(−λijk)

)
if yijk = 0, (4.6)

where the probability of success in (4.6) is the probability a zero comes from the Poisson

component given a zero was observed. We then sample πijk and λijk conditional on bijk.

We model π and λ using mixed effects regression equations accounting for exposure. Each

subject i and each visit j has multivariate outcome vector yij = (yij1, . . . , yijK)
′, augmente

with zero model outcome vector bij = (bij1, . . . , bijK)
′.

4.2.1 Exposure

In LINK LA, subject’s visits occurred at varying follow-up times and have varying exposure.

Let tij be the time in months since release from jail for subject i at visit j. Define exposure

∆tij to be total number of months over which the count Yij was observed. Baseline counts

are for the 12 months prior to incarceration, thus ∆ti1 = 12 for all subjects and for visits

j > 1, ∆tij = tij − tij−1 for j = 2, . . . , Ji. We use a log link function for the Poisson model

and a complementary log log (cloglog) link function for the zero model, which allows us to

account for exposure by including a log(∆tij) term in the regression equations.

Complementary log log link function with exposure Suppose that for each month

over the observed interval for subject i at visit j, (tij−1, tij), the probability of being linked

to care type k in one month is π0ijk which we model with the complementary log log link

function

cloglog(π0ijk) = log(− log(1− π0ijk)) = η01ijk (4.7)
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where parameter η01ijk is a linear function of covariates and coefficients. The probability of

being linked to care at some point over the interval (tij−1, tij) is 1− (1− π0ijk)
∆tij . Then

η01ijk + log(∆tij) = log(− log(1− π0ijk)) + log(∆tij) (4.8)

= log(− log((1− π0ijk)
∆tijk)) (4.9)

= log(− log(1− πijk)) = cloglog(πijk). (4.10)

Thus the complementary log log regression model for πijk can be thought of as modeling the

per month probability π0ijk and adding a log exposure offset.

Poisson regression with link function We model the per month Poisson rate λ0ij as

log(λ0ijk) = η02ijk, where η02ijk is a linear function of covariates and coefficients. Then the

regression equation for the expected Poisson count λijk = ∆tijλ0ijk over the entire interval

(tij−1, tij), is

log(λijk) = log(∆tijkλ0ijk) = log(∆tij) + log(λ0ijk) = log(∆tij) + η02ijk. (4.11)

Similar to the complementary log log regression for the zero model, we can think of the count

model for the Poisson rate over the interval (tij−1, tij) as a model for the per month Poisson

rate λ0ijk with an added log exposure offset to account for the length of time observed.

4.2.2 Regression Models

We allow the effect of intervention to change over time, but not necessarily linearly. To model

this, we partition the study time period into L distinct intervals, each of which we allow to

have different count and zero rates. For the LINK LA data, we partition the study into

L = 5 separate intervals. These intervals are the 12 month period prior to incarceration,

and 0-3 months, 3-6 months, 6-12 months and beyond 12 months after release from jail
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corresponding to the planned study follow-ups at 3 months, 6 months and 12 months, as

well as the baseline measuring the 12 months prior to incarceration.

Define time effects coefficient L-vector Zij = (Zij1, . . . , ZijL)
′, where Zijl is the number of

months from interval l that are included in observation yij. Thus, Zi1 = (12, 0, 0, 0, 0)′ for all

baseline observations, as they always were observed over the 12 months prior to incarceration,

and did not include any doctor visits from the 0-3 month, 3-6 month, 6-12 month or beyond

12 month time intervals. Suppose then subject i returns for follow-ups at ti2 = 4 months and

then again at ti3 = 11 months. Then Zi2 = (0, 3, 1, 0, 0)′ as it includes 3 months from the 0-3

month interval and one month from the 3-6 month interval. In addition, Zi3 = (0, 0, 2, 5, 0)′

as observation yi3 includes only the months since last follow up, so 2 months from the 3-6

month interval and 5 months from the 6-12 month interval.

Also define L-vectors α0
1k and α

1
1k as the zero model time main effects for the control and

intervention groups, respectively, for outcome k. Similarly, define L-vectors α0
2k and α1

2k as

the count model time main effects for the control and intervention groups, respectively, for

outcome k.

We account for within individual correlation between outcomes and across time through

prior distributions on random effects K-vector γ1i = (γ1i1, . . . , γ1iK)
′ and K × L matrix

γ2i = (γ2i1, , . . . ,γ2iK)
′ where γ2ik is an L-vector of count model random effects for subject

i and outcome k.

Letting ci be the treatment group for subject i, where ci = 1 if subject i was in the

intervention group and ci = 0 if subject i was in the control group, define regression models

cloglog(πijk) = log(− log(1− πijk)) = ∆t−1
ij Z

′
ijα

(ci)
1k + γ1ik + log(∆tij) (4.12)

log(λijk) = ∆t−1
ij Z

′
ijα

(ci)
2k +∆t−1

ij Z
′
ijγ2ik + ψkγ1ik + log(∆tij) (4.13)

where ∆t−1
ij Z

′
ijα

(ci)
1k and ∆t−1

ij Z
′
ijα

(ci)
1k are weighted averages of the time main effects con-

tributing to the zero and count rates for observation yijk. The parameter ψk models the
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within-individual correlation between the zero and count model means for outcome k.

4.2.3 Random Effects Distribution

In a multivariate longitudinal zero-inflated model, there are three types of within-individual

correlation that one must consider: across time, between different outcomes, and between

the count and zero models. We model each of these correlations using the random effects

in models (4.12) and (4.13). The random effects also help account for overdispersion in the

data. In the zero model, we assign each subject i a random intercept γ1ik for each outcome

k. We define a joint multivariate normal distribution for subject i

γ1i|Σ1 ∼ NK(0,Σ1) (4.14)

where Σ1 is a K ×K covariance matrix modeling the within-individual correlation between

each of the K different outcomes. In the count model, we allow each individual i to have

a different random effect for each time interval l for each outcome k. We model the vector

of random effects γ2il with a stationary vector autoregressive (VAR) process. This assumes

the correlation between an individual’s random effects at adjacent time intervals is constant

over time. We also model the variance as constant across time. At time interval l = 1, the

random effects K-vector γ2i1 for subject i is normal

γ2i1|Σ∗
2 ∼ NK(0,Σ

∗
2) (4.15)

whereK×K covariance matrix Σ∗
2 models the covariance of an individual’sK random effects

for the K different count outcomes at visit 1. Random effects for time intervals l = 2, . . . , L

are normal conditional on the random effects at the previous time interval l − 1

γ2i1|γ2il−1,Σ2 ∼ NK(Aγ2il−1,Σ2), (4.16)
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where A is a diagonal matrix modeling the correlation between random effects and adja-

cent time intervals and Σ2 is the innovations covariance matrix. Diagonal elements of A

are restricted to be between 0 and 1, which assumes positive within-individual correlation.

Assuming the random effect variance to be constant across time implies

Σ∗
2 = AΣ∗

2A+Σ2. (4.17)

Therefore given Σ2 and A, the elements of Σ∗
2 can be solved for since

Σ∗
2st =

Σ2st

1− AssAtt

(4.18)

where Σ2st, Σ
∗
2st, and Ast are the elements in the sth row and tth column of Σ2, Σ

∗
2 and A.

4.2.4 Prior Specification

Prior distributions were chosen to reflect reasonable bounds on parameters, but to minimally

affect inference. Zero model time main effects α0
1k and α1

1k for k = 1, 2, 3 were given vague

independent N(0, 22) distributions on each element. Count model time main effects α0
1k

and α1
1k for k = 1, 2, 3 were given independent N(−2, 22) distributions on each element

corresponding to a 95% confidence interval from .03 to approximately 87 doctor visits per

year.

Covariance matricesΣ1 andΣ2 were given prior distributions proportional to the product

of Inverse-Wishart distributions and half normal distributions on the diagonal elements.

The normal distributions are necessary for Σ2 as Inverse-Wishart priors alone results in

posterior predictive counts not having finite means due to the exponentiation from the inverse

link function (Zhu & Weiss, 2013). The Inverse-Wishart distributions, I-W(ν1,D1) and I-

W(ν2,D2), for Σ1 and Σ2 respectively, had degrees of freedom ν1 = ν2 = 10 and scale

matrix D1 = D2 = I3. The half normal distributions for the diagonal elements were mean
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0, variance 1 restricted to the positive real line.

Diagonal elements of A, which model the within individual random effects correlation

over time, were uniform(0,1) priors as we expect within-individual correlation over time to

be positive, but if they exceed 1 then Σ∗
2 will not be positive definite. Similarly, elements

of the parameter ψ = (ψ1, ψ2, ψ3), which models the within-individual correlation between

the zero and count model, were given independent N+(0, .252). These last two priors were

chosen as we expect there to be some degree of positive correlation within an individual both

across time and between model parts.

4.2.5 Posterior Computation

We draw samples from the posterior using Markov Chain Monte Carlo (MCMC) methods.

Sampling was performed until satisfactory convergence was reached based on trace plots,

autocorrelations, and R̂ statistics (Gelman & Rubin, 1992). We ran 8 chains for 40,000

iterations each, keeping every draw after discarding the first 10,000 samples.

Zero model time main effects α0
1k and α1

1k, zero model random effects γ1i, count model

time main effects α0
2k and α1

2k and count model random effects γ2ij were all sampled using

Metropolis-Hastings steps with a Gaussian approximation to the posterior distribution as a

proposal distribution. To construct these Gaussian approximations, at each posterior sample,

we used a Newton-Raphson algorithm starting at the previous state of the Markov chain to

locate the approximate mode of the posterior distribution, and used the second derivative of

the posterior distribution at this mode estimate to estimate the covariance. This approach

is described in detail by Rue and Held (2005).

Random effect covariance matrices Σ1 and Σ2 were also sampled using Metropolis al-

gorithms using Inverse-Wishart proposal distributions centered at the previous state of the

Markov Chain, with degrees of freedom selected to achieve a desirable acceptance rate.

The autoregressive coefficient matrix A modeling the across time correlation of an indi-
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vidual’s count model random effects, and the parameter ψ = (ψ1, ψ2, ψ3) were sampled using

random walk Metropolis-Hastings algorithms with Gaussian proposal distributions centered

at the previous state of the Markov chain.

4.3 LINK LA Data Analysis

We fit the MLZIPE model to the LINK LA data to model care use patterns over time between

primary care, specialty care and emergency care visits. The model finds no discernible

difference between treatment groups, although both groups accessed primary and specialty

care much more after release from jail than before. Random effect covariance estimates find

positive correlation between all three types of medical visits in the count model, and no

significant correlation between visit types in the zero model. For this analysis we define

significance based on posterior 95% credible intervals. We would consider a treatment effect

significant if the credible interval for the difference of differences excludes zero.

4.3.1 Number and Cost of Medical Visits

Table 4.1 gives posterior mean and credible intervals for the expected number of each type of

medical care visits in one year. Baseline summaries are for the 12 months prior to incarcer-

ation, and control and treatment group summaries are for the first 12 months after release

from jail. Difference of differences are also given to quantify treatment effect. The fourth

column of the table gives expected cost of care in thousands of dollars.

Cost estimates for each type of medical visit were elicited from the 2009-2012 Medical

Expenditure Panel Survey data (Medical Expenditure Panel Survey , 2012). Primary care

visits were estimated to cost $139, specialty care were estimated to cost $271 and emergency

care visits were estimated to cost $852. We assumed these costs as fixed and known and

used the MLZIPE model estimates for the expected number of each type of medical visit

to estimate expected cost of medical care. This was done by multiplying the cost of each
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Primary Care Specialty Care Emergency Care Cost (thousands)
Baseline 0.50 ( 0.34, 0.70 ) 0.45 ( 0.29, 0.66 ) 1.79 ( 1.38, 2.30 ) 1.71 ( 1.35, 2.12 )
Ctrl 10.71 ( 8.17, 14.03 ) 3.66 ( 2.44, 5.45 ) 1.88 ( 1.37, 2.53 ) 4.08 ( 3.29, 5.04 )
Trt 12.43 ( 9.41, 16.44 ) 3.21 ( 2.12, 4.86 ) 2.01 ( 1.48, 2.70 ) 4.32 ( 3.48, 5.34 )
DoD 1.72 (−1.62, 5.32 ) −0.44 (−1.98, 1.01 ) 0.14 (−0.57, 0.85 ) 0.24 (−0.77, 1.25 )

Table 4.1: Posterior mean and credible intervals for expected number of primary care, spe-
cialty care, emergency care visits as well as expected healthcare cost over 12 months. Baseline
is for the 12 months prior to incarceration. Ctrl and Trt are for 12 months after release from
jail for the control and treatment groups. Difference of differences are also given. The fourth
column details estimated cost of treatment in thousands of dollars based on the estimated
cost of each visit type.

Figure 4.1: Plots of posterior means and 95% credible intervals for monthly expected number
of primary care, specialty care and emergency care visits for each of the planned follow-up
periods for the full hurdle model and the count and zero parts of the hurdle model. Baseline
is plotted at time 0, and follow-up points are placed at the midpoint of each follow-up period.

type of visit by the expected number of visits over one year for each posterior sample to

acquire posterior distributions for expected cost of care. The expected one year healthcare

costs approximately doubled from baseline to follow-up. In contrast the increases in care

use was approximately 20 times higher for primary care visits and 7 to 8 times higher for

specialty care over follow-up compared to baseline. The increase large increase in care use

compared to the increase in cost of care can be partially explained by the disproportionate

cost of emergency care visits which were used with approximately the same frequency at

baseline and follow-up. Thus, there is a high floor for the healthcare costs, and changes in

number of primary care visits have a small effect by comparison.
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Both groups dramatically increased care usage, increasing both in primary care visits

and specialty care visits. The posterior mean and credible intervals for expected number

of primary care visits jumped from .50 (.34, .70) visits over 12 months at baseline to 10.71

(8.17, 14.03) visits over the fist year of follow-up in the control group and 12.43 (9.41, 16.44)

visits in the intervention group. Specialty care visits rose from .45 (.29, .66) expected visits

at baseline to 3.66 (2.44, 5.45) visits over the first year after release from jail for the control

group and 3.21 (2.12, 4.86) visits for the intervention group. The level of improvement for

both groups in both visit types was the same, as the difference of difference credible intervals

include zero.

The expected number of visits per month for each type of medical visit are given in

figure 4.1. The monthly expected number of visits over the follow-up agree with the one

year estimates from table 4.1, as both treatment groups attend visits at roughly the same

rate as each other throughout the study. Emergency care use stayed relatively consistent with

baseline levels throughout the follow-up, so subjects neither used more nor less emergency

care in either treatment group.

4.3.2 Covariance Parameters

Posterior summaries for MLZIPE covariance parameter estimates are given in table 4.2. The

zero model random effects do not have significant positive or negative correlation between

any of the three types of medical visits, as all off-diagonal elements include zero in their

credible intervals.

The count model, however, finds significant positive correlation between each of primary

care, specialty care and emergency visits among those with access to care. A question one

may be interested in is whether or not increases in primary care and/or specialty care are

associated with less emergency room use. We did not find that to be the case. Rather,

subjects that used more of one type of medical visit, were more likely to use more of other

types of medical visits as well.
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The posterior summaries for the across time correlation parameter A suggest a low

to moderate within-subject correlation over time for primary care and specialty care visits.

There was not strong evidence for a correlation over time for emergency care visits. Posterior

summaries for the parameter ψ modeling the association between zero and count models

show a moderate positive correlation between the two parts of the MLZIPE model.

4.4 Discussion

The Bayesian MLZIPE models offer an alternative to previous models for use in multivariate

longitudinal zero-inflated data where exposure varies. MLZIPE models have several features

that are not included in previous models. In multivariate longitudinal zero-inflated data,

there are three main types of correlation that should be accounted for: across time, between

outcomes, and between zero and count processes. MLZIPE models use random effects in

both the zero and count models to model all three of these correlations, while also allowing

for exposure time. In the analysis of the LINK LA data, we found significant positive

correlations for all three types of correlation, highlighting the importance of including them

in the model.

Further, the ability of MLZIPE models to account for varying exposure and observation

times is an important feature for longitudinal count data. Counts are often observed over

some amount of time, and it is common in health studies for subjects to return for follow-

ups at irregular times, particularly in vulnerable populations, as convenience for the study

participants determines when researchers are able to collect follow-up observations. In ad-

dition, many studies, such as LINK LA, are designed such that spacing between follow-ups

varies, with follow-up visits often occurring more frequently closer to the start of studies and

becoming less frequent later on. In such study designs, exposure must be accounted for in

both parts of the zero-inflated model as exposure affects both probability of acquiring access

to care and the expected number of care visits for a given observation.
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Another important feature of the MLZIPE model is the ability to estimate count rates

over set intervals. For example, comparing LINK LA treatment and control over the first

12 months after release from jail to the 12 months before incarceration would not have been

possible using standard models, as it would have required observing exactly 12 months of

medical visits. The MLZIPE estimates unobserved time effects which can be used to make

inference on any desired time interval.

We also attempted to fit the hurdle versions of these models, in which the zero model

models whether or not an observation was greater than zero, and the count model uses a

zero-truncated Poisson to model only the positive counts. The hurdle model had difficulty

fitting the LINK LA data, possibly due to the relatively large amount of missing data induced

by excluding all zeros from the count model. The random effects specification used in the

MLZIPE models estimates a large amount of unobserved random effects, which becomes more

difficult as the number of observations used for estimation decreases. While a hurdle version

of the MLZIPE models may be useful in other data settings, when the hurdle framework

better describes the data generating process, or in cases of zero deflation, we found a zero-

inflated framework to perform better for the multivariate LINK LA data.

The MLZIPE models also offer more flexibility than previous models to handle overdis-

persion, which is a common complication in count data modeling. The multivariate random

effects for each individual allows for more within-individual variation than standard random

intercept zero-inflated models.

Overall, we propose MLZIPE models as an important development in zero-inflated data

modeling. The flexible covariance modeling framework allows modelers to better account for

the complexities of multivariate longitudinal zero-inflated data.
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Primary Care Specialty Care Emergency Care
Zero Model

Primary Care
.10 .003 -.03

(.05, .22) (-.07, .10) (-.27, .22)

Specialty Care
– .15 .20
– (.05, .37) (-.11, .62)

Emergency Care
– – 1.22
– – (.53, 2.27)

Count Model
Σ∗

2

Primary Care
2.68 1.96 .57

(2.27, 3.16) (1.55, 2.42) (.28, .87)

Specialty Care
1.96 3.93 1.10

(1.55, 2.42) (3.18, 4.79) (.65, 1.57)

Emergency Care
.57 1.10 1.39

(.28, .87) (.65, 1.57) (.99, 1.93)
Σ2

Primary Care
2.54 1.82 .53

(2.14, 3.01) (1.44, 2.25) (.26, .82)

Specialty Care
– 3.51 1.01
– (2.81, 4.35) (.61, 1.42)

Emergency Care
– – 1.27
– – (.94, 1.68)

Across time correlation

A
.22 .32 .25

(.10, .33) (.18, .44) (.02, .52)

Zero and count model association

ψ
.73 .71 .89

(.18, 1.24) (.17, 1.23) (.63, 1.19)

Table 4.2: Posterior summaries for variance and covariance parameters for the zero model
random effects and count model random effects. For the count model, posterior summaries
for both the unconditional covariance matrix Σ∗

2 and the innovations covariance matrix Σ2

are given. Also included are posterior sumamries for the autoregressive parameter A and
the between model association parameter ψ. Values reported are the posterior mean and
95% Bayesian credible intervals.
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Appendix C

Main Effect Posterior Summaries

Posterior means and 95% credible intervals for main effect parameter estimates are given

in table 4.3. We parameterized zero model main effects α1k and count model main effects

α2k for k = 1, 2, 3 as 9-vectors including 5 time effects for each of the 5 time intervals,

and treatment by time interaction effects for each of the 4 follow-up time intervals for the

treatment groups. Treatment by time parameters in the count model can be understood as

log rate ratios of Poisson means. In both models a treatment × time effect credible interval

excluding zero is evidence of a treatment difference over that time interval. No significant

treatment effects were found for any of the medical visit types.

Primary Care Specialty Care Emergency Care
Zero Model

Baseline −1.98 (−2.61,−0.18 ) −0.24 (−1.87, 1.83 ) 0.29 (−1.02, 2.06 )
0–3 Months 1.03 ( 0.00, 2.48 ) 0.21 (−1.19, 2.02 ) 0.36 (−1.12, 2.04 )
3–6 Months 0.53 (−0.71, 2.03 ) 0.42 (−0.97, 2.07 ) 0.56 (−0.90, 2.23 )
6–12 Months 0.40 (−0.57, 1.89 ) −0.30 (−1.31, 1.19 ) −0.00 (−1.35, 1.81 )
12+ Months −0.15 (−1.14, 1.41 ) −0.09 (−1.36, 1.68 ) 0.18 (−1.26, 1.93 )
Trt × 0–3 Months 0.39 (−1.10, 2.06 ) 0.39 (−1.26, 2.08 ) 0.35 (−1.30, 2.08 )
Trt × 3–6 Months 0.17 (−1.40, 1.96 ) 0.06 (−1.61, 1.88 ) 0.24 (−1.51, 2.04 )
Trt × 6–12 Months 0.06 (−1.45, 1.88 ) −0.25 (−1.63, 1.21 ) 0.28 (−1.37, 2.04 )
Trt × 12+ Months −0.39 (−1.88, 1.49 ) −0.53 (−2.11, 1.49 ) −0.07 (−1.80, 1.86 )

Count Model
Baseline.1 −4.31 (−4.64,−4.01 ) −5.29 (−5.73,−4.88 ) −3.03 (−3.25,−2.81 )
0–3 Months −1.45 (−1.84,−1.07 ) −3.92 (−4.55,−3.32 ) −3.36 (−3.88,−2.85 )
3–6 Months −1.75 (−2.20,−1.29 ) −2.86 (−3.53,−2.21 ) −2.97 (−3.57,−2.38 )
6–12 Months −1.40 (−1.75,−1.06 ) −3.05 (−3.57,−2.56 ) −2.80 (−3.24,−2.39 )
12+ Months −1.28 (−1.78,−0.78 ) −3.16 (−3.86,−2.47 ) −2.82 (−3.41,−2.26 )
Trt × 0–3 Months −0.10 (−0.62, 0.42 ) −0.00 (−0.81, 0.80 ) 0.22 (−0.45, 0.89 )
Trt × 3–6 Months 0.54 (−0.07, 1.14 ) −0.09 (−0.95, 0.78 ) −0.09 (−0.88, 0.69 )
Trt × 6–12 Months 0.08 (−0.41, 0.56 ) −0.22 (−0.89, 0.46 ) 0.06 (−0.50, 0.62 )
Trt × 12+ Months −0.09 (−0.77, 0.59 ) 0.69 (−0.21, 1.60 ) −0.05 (−0.85, 0.75 )

Table 4.3: Zero and count model main effect parameter posterior means and 95% credible
intervals for the LINK LA data analysis using the MLZIPE model. In the count model, all
treatment by time interaction effects include zero in their credible intervals and thus to not
find any significant treatment effects.
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CHAPTER 5

Conclusions

We developed several advances for modeling longitudinal zero-inflated data. In chapter 2

we presented Bayesian longitudinal hurdle models for the number of days of heavy drinking

out of the past 90 days from the SBIRT study. This model uses a multivariate random

effects distribution in the count model, allowing researchers flexibility in modeling within-

subject correlation over time and in modeling over-dispersion. We showed this model to be

an improvement over standard random intercept longitudinal hurdle models. In chapter 3

we developed Bayesian longitudinal exposure hurdle models (LEHM) for longitudinal zero-

inflated data in which exposure and observation times vary. We demonstrated the LEHM

models on the LINK LA data to model number of primary care visits since last follow-up

in a setting where follow-ups occurred highly irregularly. We again used the multivariate

count random effects models from chapter 2, again showing them to perform better than

random intercept models. In chapter 4 we developed a multivariate outcome zero-inflated

model extension of the LEHMs, which we call multivariate longitudinal zero-inflated Poisson

exposure models (MLZIPE). We demonstrate an MLZIPE model on number of primary

care, specialty care and emergency care visits from the LINK LA study, and used it to make

inference on cost of care over a given time period.

In both chapter 2 and chapter 3, we demonstrated several covariance models for the

multivariate count random effects, which we compared against random intercept models. In

both cases we found the multivariate random effect models to fit substantially better than

random intercept models, which had over-confident and sometimes misleading inferences.
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That this result was observed in both the SBIRT and LINK LA data highlights the usefulness

of the multivariate random effect hurdle models for longitudinal zero-inflated data.

In both chapter 2 and chapter 3, choice of count model random effect covariance models

had little impact on fit and inference. The only exception was the UN model in chapter 3,

which substantially over-fit the data. Also, correlation estimates were generally very low or

not significantly different from 0. Thus, the large improvements of fit seen in both chapter

2 and chapter 3 may be due to the ability of these models to model over-dispersion in the

data. While the original motivation for these models was to model correlation over time,

it may actually be over-dispersion that drives these models to do so well compared to the

random intercept model.

Finally, the MLZIPE model in chapter 4 is an extension of the ARcv model from chapter

3 for multivariate outcomes. An important note is that we switched to a zero-inflated model

for this analysis compared to the hurdle models of chapter 3. When originally setting out on

the SBIRT analysis, we found hurdle models to perform better, as the data being fit by the

zero and count models is fully observed and constant. This contrasts with a zero-inflated

model, where we use an unobserved latent variable denoting which zeros are structural and

which are random. This latent variable is re-imputed at each posterior MCMC step, and

with each imputation changes which zero observations are counted as structural zeros in the

zero model, and which are considered random zeros and thus, modeled by the count model.

The benefit of this, particularly in settings when observed counts are small, is that a zero-

inflated model might use many more observations to fit the count model. Where a hurdle

count model only uses positive observations, a zero-inflated count model uses all positive

observations as well as some proportion of the zeros. The number of zeros used to fit the

count model, and thus the difference in number of observations used between the hurdle and

zero-inflated models, is larger when observed counts are small. For example, in the chapter 4

analysis, 64% of the emergency department use observations were zeros and positive counts

averaged 2.9 emergency visits per observation. The model had difficulty estimating the count
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model random effects in a hurdle framework as a very small portion of the data was used.

One limitation of the proposed models is that their posterior distributions can be difficult

to sample from. Posterior distributions had long tails, causing MCMC chains to get stuck

often and log posterior calculations were prone to underflow issues. We attempted many

sampling approaches and model parameterizations before arriving at those presented in this

work. Chains required long run times to explore the posterior distribution well, we ran

models for multiple days to yield the inferences we present here. Still, we find the benefits of

the developed models to outweigh these drawbacks and recommend them for use in modeling

longitudinal zero-inflated data.
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