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Anytime Planning for Decentralized Multirobot
Active Information Gathering

Brent Schlotfeldt , Dinesh Thakur , Nikolay Atanasov , Vijay Kumar, and George J. Pappas

Abstract—This letter considers the problem of reducing uncer-
tainty about a physical process of interest by designing sensing
trajectories for a team of robots. This active information gather-
ing problem has applications in environmental monitoring, search
and rescue, and security and surveillance. Our previous work de-
veloped a search-based planning method for information gather-
ing which prunes uninformative trajectories from the search space
while providing suboptimality guarantees and decentralizes the
planning across multiple robots via coordinate descent. The nov-
elty of this letter is to demonstrate the practical feasibility of these
algorithms in a target tracking scenario featuring three collaborat-
ing UAVs and five mobile targets. To achieve this, we relax the pre-
vious requirement of having centralized estimation by performing
distributed information filtering. We then develop an anytime plan-
ning algorithm that progressively reduces the suboptimality of the
information gathering plans while respecting real-time constraints.
These contributions enable robust and scalable information gath-
ering using a team of agile robots that adapt their cooperation to
timing constraints and ad hoc communication without the need for
external or centralized computation.

Index Terms—Reactive and sensor-based planning, motion and
path planning, multi-robot systems.

I. INTRODUCTION

S IGNIFICANT advances in robot sensing and mobility have
enabled the effective use of robot systems in environmental

monitoring [1], [2], search and rescue [3], source seeking [4],
and autonomous mapping [5]–[7], and other problems that re-
quire rapid and accurate information collection. The active in-
formation gathering problem is complex because it involves a
combination of perception, estimation and inference, and the
control of mobile sensors. There is significant work focusing on
the estimation and scheduling aspect of the problem, and there
exist near optimal methods for sensor placement and schedul-
ing of static sensors [8]–[11]. Despite these impressive results,
there is far less work on controlling mobile sensing platforms to

Manuscript received September 10, 2017; accepted December 31, 2017. Date
of publication January 17, 2018; date of current version February 1, 2018. This
letter was recommended for publication by Associate Editor N. Dantam and
Editor T. Asfour upon evaluation of the reviewers’ comments. This work was
supported in part by the ONR Grant N00024-13-D-6400 and in part by the
TerraSwarm, one of six centers of STARnet, a Semiconductor Research Corpo-
ration Program sponsored by MARCO and DARPA. (Corresponding author:
Brent Schlotfeldt.)

B. Schlotfeldt, D. Thakur, V. Kumar, and G. J. Pappas are with the GRASP
Laboratory, University of Pennsylvania, Philadelphia, PA, 19104 USA (e-mail:
brentsc@seas.upenn.edu; tdinesh@seas.upenn.edu; kumar@seas.upenn.edu;
pappasg@seas.upenn.edu).

N. Atanasov is with the Electrical and Computer Engineering Depart-
ment, University of California, San Diego, La Jolla, CA 92093 USA (e-mail:
natanasov@ucsd.edu).

Digital Object Identifier 10.1109/LRA.2018.2794608

actively gather information. Of the works that do consider mo-
bile sensors, many plan greedily or use short planning horizons
[12], [13]. This letter improves upon the multi-sensor active in-
formation acquisition approach proposed in [14], [15], where
the goal is to design nonmyopic control policies minimizing the
uncertainty in the target state, conditioned on future measure-
ments.

Furthermore, one can distinguish between centralized plan-
ning and estimation. On one extreme, centralization requires a
common processing unit that aggregates information from all
sensors and plans globally optimal trajectories. On the other ex-
treme, completely distributed planning and estimation demands
each sensor estimate all target states and plan trajectories based
only on local information. Our goal is to devise a decentral-
ized approach which improves the scalability in the number of
sensors of a centralized solution, but still shares information
among the sensors and plans collaborative trajectories, thereby
improving upon the performance of a completely distributed
solution.

Related Work: Approaches for mobile sensor information
acquisition include [16]–[24]. [16], [17], [20], all use non-
Gaussian representations for the target state, which requires
approximating mutual information (MI). [23] uses a POMDP
formulation, and approximates MI. In [24], a novel data-driven
approach via imitation learning is developed. These works typ-
ically sacrifice the length of the planning horizon in order to
use nonlinear sensor and target models during the planning pro-
cess. In this work, we instead sacrifice some model accuracy via
linearization in order to plan for longer horizons.

To reduce the computational complexity of the multi-robot
planning problem, it is necessary to decentralize the planning
algorithm. [20] achieves this by computing MI only for pairs
of sensors, decreasing the dimension of the required integra-
tion, while [19] assumes MI approximately decouples among
groups of robots. Decentralization via coordinate descent is first
proposed in [21].

The approach of our prior work in [15] assumes each robot
has access to a centralized target state, which can be queried at
any time. In this work, we assume each robot maintains its own
estimate of the target state, and the robots perform a joint estima-
tion step whenever they are in communication. The theory of our
estimator is developed in [25], and is similar to the Kalman con-
sensus filter [26], [27]. The filter is well-suited to the information
gathering problem because it is able to work with Gaussian rep-
resentations of the target, and it is mean-square consistent in
the case of static targets, which is the case in some information
acquisition problems such as environmental monitoring [1], [2].

Another critical issue that is particularly relevant to robotics,
is that time for deliberation is often limited. In the case of mo-
bile robots, it is often necessary to apply control actions in fixed
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time intervals [28]. Although many of the above approaches can
be tuned to run in shorter times, none of the prior works feature
an anytime algorithm, which efficiently and progressively im-
proves the quality of the trajectory until the solution is needed.
The anytime algorithm presented in this letter is closely inspired
by ARA* [29], which is an efficient anytime extension to the A*
path planning algorithm. The key ideas in ARA* are to progres-
sively build the solution, and minimize redundant computations
by saving previously computed results. Contributions. Our pre-
vious work [14] developed the Reduced Value Iteration (RVI)
algorithm as a solution to the single sensor, nonmyopic plan-
ning problem, providing tunable parameters with suboptimality
guarantees on the solution. In [15], the work was extended to
multiple sensors, and a decentralized solution to the multi-robot
planning problem (but not estimation) based on coordinate de-
scent was shown with performance guarantees. In this letter

1) we develop an anytime version of RVI, capable of mono-
tonically reducing the suboptimality gap of the solution
while respecting real-time constraints,

2) we incorporate a distributed information filter to relax
the previous requirement of each robot having access to
centralized information,

3) we carry out hardware experiments featuring three collab-
orating UAVs whose task is to track the positions of five
ground robots while exploring the environment.

II. PROBLEM STATEMENT

Consider a team of n mobile robots, obeying the following
motion models:

xi,t+1 = fi(xi,t , ui,t), i ∈ {1, . . . n} (1)

where xi,t ∈ Xi
∼= Rnx i is the nxi

-dimensional state of robot i
at time t, with metric dX , ui,t ∈ Ui is the control action applied
to robot i at time t, and the set Ui of possible control inputs for
robot i is finite. The goal of the robots is to track the evolution
of a target system with (unknown) state yt and dynamics:

yt+1 = Atyt + wt, wt ∼ N (0,Wt) (2)

The operation of each sensor is described by the following sen-
sor observation model:

zi,t = Hi,t(xi,t)yi,t + vi,t(xi,t), (3)

vi,t(xi,t) ∼ N (0, Vi,t(xi,t)), (4)

where zi,t ∈ Rdz i is the measurement obtained by robot i at
time t, and vi,t(xi,t) is a sensor-state-dependent Gaussian noise,
whose values are independent at any pair of times and across
the sensors. The observation model may be nonlinear in the
robot state xt but must be linear in the target state yt . The latter
requirement can be relaxed by linearizing a nonlinear sensor
model around an estimate of the target state.

To simplify notation, we let xt :=
[
xT

1,t . . . xT
n,t

]T
, zt :=

[
zT

1,t . . . zT
n,t

]T
, vt :=

[
v1,t(x1,t)T . . . vn,t(xn,t)T

]T
, and de-

fine H(·) appropriately such that zt = Ht(xt)yt + vt(xt). Let
X := X1 × · · · × Xn , and U := U1 × · · · × Un . The informa-
tion available to the sensors at time t is denoted:

I0 = z0 It := (z0:t , u0:(t−1)), t > 0 (5)

The active information gathering problem is stated below.

Problem 1 (Active Information Acquisition):1 Given initial
sensor states x0 ∈ X , a prior distribution of the target states
y0 , and a finite planning horizon T , choose a sequence of func-
tions μ(It) ∈ U , for i = 1 ,..., n, and t = 1 ,..., T − 1, which
optimizes the following:

min
μ∈UT

J
(n)
T (μ) :=

T∑

t=1

log det(Σt)

s.t. xt+1 = f(xt, μ), t = 0, . . . , T − 1

Σt+1 = ρe
t+1(ρ

p
t (Σt), xt+1), t = 0, . . . , T − 1 (6)

where ρe
t (Σ, x) is the Kalman filter measurement update, and

ρp
t is the Kalman filter prediction step, as follows:

Predict : ρp
t (Σ):=AtΣAT

t +Wt

Update : ρe
t (Σ, x) :=Σ−Kt(Σ, x)Ht(x)Σ

Kt(Σ, x) :=ΣHt(x)T(Ht(x)ΣHt(x)T+Vt(x))−1

It is known from [14] that the above is a deterministic optimal
control problem, for which open loop control is optimal and the
Kalman Filter is the optimal estimator.

III. ANYTIME PLANNING

A. Preliminaries

To begin, we introduce the Forward Value Iteration algorithm
(FVI) [30]. FVI solves problem 1 by constructing a search tree of
the possible trajectories a robot can take starting from a tuple of
state, covariance, cost (x0 ,Σ0 , J0) with x0 ∈ X , Σ0 is the initial
covariance matrix of the target state, and J0 the initial cost. At
each timestep t, all the states in the search tree are contained
in the set St , starting with S0 = {(x0 ,Σ0 , J0)}. Then, the set
St+1 is computed by evaluating the dynamics xt+1 = f(xt, ut),
Kalman Filter Riccati map Σt+1 = ρe

t+1(ρ
p
t (Σt , xt , ut)), and

cost Jt+1 = Jt + log detΣt+1 on every pair (xt,Σt , Jt) ⊂ St

and for each ut ∈ U , to generate new pairs (xt+1 ,Σt+1 , Jt+1).
Notably this containsO(UT ) nodes in the final level of the tree,
and is not feasible to compute in real-time for long horizons T .

In [14], the Reduced Value Iteration (RVI) algorithm was
developed, and suboptimality bounds were derived, which rely
on the following definitions:

Definition 1 (ε-Algebraic Redundancy [31]): Let ε ≥ 0 and
let {Σi}Ki=1 ⊂ Sn

+ be a finite set. A matrix Σ ∈ Sn
+ is ε-

algebraically redundant with respect to {Σi} if there exist non-
negative constants {αi}Ki=1 such that:

K∑

i=1

αi = 1 and Σ + εIn �
K∑

i=1

αiΣi (7)

Definition 2 (Trajectory δ-Crossing [14]): Trajectories π1 ,
π2 ∈ X T δ-cross at time t ∈ [1, T ] if dX (π1

t , π2
t ) ≤ δ for δ ≥ 0.

RVI uses the notions of ε-Algebraic Redundancy, and Trajec-
tory δ-Crossing in order to decide when nodes in the search tree
described above can be removed while maintaining suboptimal-
ity. This has the effect of pruning the tree to keep a manageable

1We remark that problem 1 has an objective function proportional to
minimizing the conditional differential entropy, h(yt |z1:t ), where h(Y ) :=∫

p(y)logp(y)dy is the differential entropy of a continuous random variable.
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number of trajectories for the robot to consider over long hori-
zons. The pruning of St works as follows: A new set S ′t is
constructed, which always contains at least the optimal node
(x∗t ,Σ

∗
t , J

∗
t ) ⊂ St . Then the algorithm checks all other nodes in

St , and adds them to S ′t only if they do not δ-cross the current
optimal solution, or if they do δ-cross, but the covariance is not
ε-redundant with respect to the nodes already added to S ′t . Then
St is assigned to S ′t . Intuitively this removes all nodes that come
close together in space and have similar covariances.

B. Motivation for Anytime Planning

The RVI algorithm is effective for solving problem (1) over
long planning horizons, and provides sub-optimality guaran-
tees. However, the original RVI algorithm provides no guidance
on how to choose (ε, δ) to ensure reliable runtime when the
target state grows or the environment is complex. In problems
like SLAM or target tracking, the target state grows larger as
more landmarks or targets are discovered and the same ε will
prune less nodes out of the search tree. This results in a varying
runtime dependent on the size of the target state, yt . Further-
more, any collaborative control strategy depends on receiving
plans from other robots in predictable intervals. Any variance in
computation time can compound with more robots, therefore it
is critical for a real-time implementation to provide guarantees
on the runtime of the planning algorithm.

To address these issues, we propose an anytime version of the
RVI algorithm (ARVI), which is able to compute plans given a
specified amount of time and removes the requirement of tuning
the (ε, δ) parameters for the specific mission. This improves the
operability of robots in practice, by ensuring the robots will
always have a trajectory available. In addition, the algorithm
allows for the most optimal plans to be selected in the multi-
robot case, by splitting the time allocated to the set of robots
planning jointly, based on the size of the group.

C. Anytime Reduced Value Iteration

The original RVI algorithm maintains only the set of states
in the tree at each timestep, denoted St . At each timestep, the
motion model is evaluated on each state in St to form the set
St+1 . Then, the set St+1 is pruned according to the parameters
(ε, δ) following criteria from Definitions 1 and 2.

A key insight is the most costly operation in the algorithm be-
sides the algebraic redundancy check is computing the Kalman
Filter update step. Thus, an efficient anytime algorithm should be
able to re-use these computations from prior iterations. We intro-
duce the notation,S := {S0 , S1 , . . . ST }which is the full search
tree containing all levels of the tree that have been computed,
and is built progressively during the algorithm. In order to re-use
computations from prior steps, it will be necessary to distinguish
which states have been pruned from the search tree without dis-
carding them in case they are needed later. ARVI achieves this
through the use of two additional sets indicating which states
are open for exploration, or are closed and do not need to be ex-
plored again. The sets are denoted by O := {O0 , O1 , . . . OT },
and C := {C0 , C1 , . . . CT }, respectively. The opened states are
required to remain in the tree for guaranteeing an (ε, δ) sub-
optimal solution, while the closed states are those which have
already been expanded along each control action.

The ARVI algorithm consists of two parts, namely the Main
procedure, and the ImprovePath call. Main is responsible for

Algorithm 1: Anytime Reduced Value Iteration (x0 , Σ0 ,
TARV I ).

1: J0 ← 0, S0 ← {(x0 ,Σ0 , J0)}. St ← ∅for t = 1, . . . T
2: C0 ← ∅
3: Ot ← St for t = 0, . . . T
4: S ← {S0 , . . . ST }, O ← {O0 , . . . OT }, C ←
{C0 , . . . CT }

5: ε←∞, δ ←∞
6: {S,O, C} ← ImprovePath(S,O, C, ε, δ)
7: Publish best solution from O[T ]
8: while Time Elapsed ≤ TARV I do
9: Decrease (ε, δ)
10: {S,O, C} ← ImprovePath(S,O, C, ε, δ)
11: Publish best solution J from O[T ]

Algorithm 2: ImprovePath (S, O, C, ε, δ).
1: for t = 1 : T do
2: for all (x,Σ, J) ∈ Ot−1 \ Ct−1 do
3: Ct−1 ← Ct−1 ∪ {x,Σ}
4: for all u ∈ U do
5: xt ← f(x, u), Σt ← ρxt

(Σ)
6: Jt ← J + log det(Σt)
7: St ← St ∪ {(xt,Σ, Jt))}
8: Sort St in ascending order according to log det(·)
9: Ot ← Ot ∪ St [1]
10: for all (x,Σ, J) ∈ St \Ot do
11: % Find all nodes in Ot , which δ-cross x:
12: Q← {Σ′|(x′,Σ′, J ′) ∈ Ot, dX (x, x′) ≤ δ
13: if isempty(Q) or not(Σ is ε-alg. redundant wrt

Q) then
14: Ot ← Ot ∪ (x,Σ, J)

return {S,O, C}

sweeping over the parameters and checking the remaining time
on computation, while ImprovePath computes a trajectory from
the parameters (ε, δ). Note that Main immediately runs an RVI
with both (ε, δ) set to ∞. This has the effect of guaranteeing
at least a greedy solution is computed. We denote the allocated
planning time as TARV I , which should not be confused with the
planning horizon T . The algorithm is presented here:

In summary, ARVI works by keeping persistent sets S, O,
C. The set S saves previously computed states, while O marks
states that are ‘open’ and need to be explored. C indicates the
states that have already been expanded and are ‘closed’. The
following guarantees on the correctness and performance of
ARVI hold.

Theorem 1 (ARVI): The following are satisfied by the ARVI
algorithm:

(i) When ImprovePath(ε, δ) returns with finite (ε, δ), the
returned solution is guaranteed to be (ε, δ)-sub-optimal.

(ii) The cost J
(n)
T of the returned solution decreases mono-

tonically over time.
(iii) Given infinite time, C = O ⊆ S, and O[T ] will contain

the optimal solution to the planning problem.
Property (i) in Theorem 1 means that each time the Im-

provePath subroutine is called in the ARVI algorithm, a bounded
suboptimal solution is available. Property (ii) means that when
more planning time is given to the algorithm, the solution im-
proves monotonically. Lastly, (iii) guarantees that if infinite time
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is given, ARVI will return the optimal solution to (1). See the
appendix for the proof of Theorem 1.

IV. DISTRIBUTED ESTIMATION AND CONTROL

A. Coordinate Descent

Although algorithms like RVI and ARVI reduce the com-
plexity in the planning horizon T, the multi-sensor problem still
scales exponentially with the number of robots n. In [15], the
coordinate descent approach was introduced to manage the com-
plexity in the number of robots. Suppose that robot 1 plans its
own trajectory with RVI, without considering the other robots.
In other words, it solves the single robot version of problem (1):

μc
1,0:(T −1 ∈ argmin

μ̂∈UT
1

J
(1)
T (μ̂) (8)

The robot then communicates its chosen plan, which may in-
volve passing the control sequence and any of the models evalu-
ated along the trajectory onwards to robot 2. Then robot 2 solves
a two-sensor active information gathering problem, but assumes
the fixed policy for robot 1:

μc
2,0:(T −1 ∈ argmin

μ̂∈UT
2

J
(2)
T (μc

1,0:(T −1) , μ̂) (9)

The algorithm continues in this fashion, so that robot i needs the
control sequences and the models evaluated along the trajecto-
ries of sensors 1 to i− 1, solving an i-sensor version of (1). This
algorithm reduces the planning complexity from exponential to
linear, i.e. from O(|U1 × · · · × Un |T ) to O(|∑n

i=1 |Ui |T ). It
is proven in [14] that the solution JT obtained from coordi-
nate descent achieves at least 50% of the optimal value, i.e.,
JT ≥ J∗T ≥ 2JT when the objective function is negative mu-
tual information with a similar result for conditional entropy.

B. Distributed Estimation

Although the coordinate descent scheme is decentralized in
control, it assumes the robots have access to a centralized infor-
mation source while planning. In many real-world problems that
face challenges with regard to communication, this is not a real-
istic solution. Therefore, it is crucial to incorporate a distributed
estimation algorithm into the multi-sensor active information
acquisition problem. The estimator should naturally work with
Gaussian target state representations, and have strong perfor-
mance guarantees for static targets. Static targets are common
in information acquisition problems like environmental moni-
toring and SLAM, and often these filters perform well in practice
for dynamic targets.

We adopt a type of distributed Kalman filter first proposed in
[25], and has the following update rule:

pi,t+1(y) = ζi,tpi(zi,t+1 |y)
∏

j∈Ni ∪i

(pj,t(y))Ki , j

ŷi(t) ∈ arg max
y∈Y

pi,t(y) (10)

where ζi,t is a normalization constant to ensure pi,t+1 is a proper
pdf, and κi,j are weights such that

∑
j∈Ni ∪{i} κi,j = 1. The filter

update rule is the same as the standard Bayes rule except that
each sensor i uses a geometric average of its neighbors’ priors.

When specializing the estimator in (10) to the linear Gaus-
sian measurement model we have used thus far, it is necessary

to operate in the information space, which is equivalent to the
covariance space [32], but offers some unique benefits. One ad-
vantage of filtering in the information space is that information
is additive, and it is possible to have information vectors and ma-
trices equal to zero. Most importantly however, the information
space is sparse, while the covariance matrix is always dense.
This results in significant computational savings, particularly
when the dimension of the target state being estimated is large,
as is the case when there are many targets. We introduce the
quantities, ω and Ω, called information vector and information
matrix respectively. Define Ω = Σ−1 , and ω = Ωy. We have the
following update-prediction rules:

Update Step: ωi,t+1 =
∑

j∈Ni ∪{i}
κi,jωj,t + HT

i V −1
i zi(t)

Ωi,t+1 =
∑

j∈Ni ∪{i}
κi,jΩj,t + HT

i V −1
i Hi

ŷi(t) := Ω−1
i,t ωi,t

Predict Step: Ωi,t+1 = (AΩ−1
i,t+1A

T + W )−1

ωi,t+1 = Ωi,t+1Aŷi,t+1
(11)

where Hi := Hi(xi), and Vi := Vi(xi). Then, we define a com-
munication network, indicating the connections of the sensors
G = (V,E). The graph is fully connected if each sensor can
communicate with each other. In the case of static targets, the
following theorem holds:

Theorem 2 ([25]): Suppose that the communication graph G
is connected and the matrix

[
HT

1 . . . HT
n

]T
has rank dy . Then,

the estimates in (16) of all sensors converge in mean square to
y, i.e., limt→∞ E[||ŷi(t)− y||22 ] = 0 for all i.

While the assumptions of Theorem 2 hold when all sensors
are in communication, in practice it is likely that the sensor
network is intermittently disconnected. Despite this, there are
results [33] that suggest that filters of this type converge even
under the weaker condition of an infinitely often connected
network. This fact motivates the simulations in Section V which
investigate the effects of limited communication ranges on the
estimation performance.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Target Tracking Model

We now adapt the general models presented thus far for the
target tracking application. Each sensor uses differential drive
dynamics, discretized with a sampling period τ :

⎛

⎝
x1

t+1
x2

t+1
θt+1

⎞

⎠ =

⎛

⎝
x1

t

x2
t

θt

⎞

⎠+

(
ν sinc(ωτ

2 ) cos(θt + ωτ
2 )

ν sinc(ωτ
2 ) sin(θt + ωτ

2 )
τω

)

(12)

The control commands use motion primitives {(ν, ω)} | ν ∈
{1, 3} m/s, ω ∈ {0,±1,±3} rad/s.

The targets move with discretized double integrator dynam-
ics, and Gaussian noise where y ∈ Rn is the target state. For
m targets, the size of the state is n = 4m, containing the planar
coordinates and velocities denoted (y1 , y2 , ẏ1 , ẏ2), of all targets.
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The model used is the following:

yt+1 = A

[
I2 τI2
0 I2

]
yt +wt, wt ∼ N

(
0, q

[
τ 3/3I2 τ 2/2I2
τ 2/2I2 τI2

])

Note that a limitation of this approach is the requirement of
having a model for the target a priori. A more robust approach
may be to estimate the target model with reinforcement learning
techniques, such as in [34].

The sensor observation model, consists of range and bear-
ing for each target m ∈ {0, . . . M − 1}, where M is the total
number of targets in the environment.

zt,m = h(xt, yt,m ) + vt , vt ∼ N ( 0, V (xt, yt,m ) )

h(x, y) =
[

r(x, y)
α(x, y)

]
:=
[√

(y1 − x1)2 + (y2 − x2)2

tan−1((y2 − x2)(y1 − x1))− θ

]

(13)

It should be noted again here that this model needs to be lin-
earized, which can be achieved by taking the gradient with
respect to a predicted target trajectory y, such that y �= x.

∇y h(x, y) =
1

r(x, y)

[
(y1−x1 ) (y2−x2 ) 01x2

− sin(θ+α(x, y)) cos(θ+α(x, y)) 01x2

]

(14)

The observation model for the joint target state can then be
expressed as a block diagonal matrix,

H(x, y) =

⎡

⎢
⎣

∇y h(x, y0) . . . 0
...

. . .
...

0 . . . ∇yh(x, yM−1)

⎤

⎥
⎦ (15)

The sensor noise covariance grows linearly in range and bearing
up to σ2

r , and σ2
b , where σr , σb are the standard deviation of the

range and bearing noise. The model here also includes a limited
range and field of view [36], denoted by parameters rsense ,
and φ. If at any time, rm (x, y) ≥ rsense , or αm (x, y) ≥ φ

2 , the
filter performs only a prediction step for target m, since no
measurement is attainable when the target is outside the range
or field-of-view limits.

Lastly, because the robots know neither the total number of
targets, or have any prior information about the targets, we fol-
low an approach from [37] and introduce an exploration strategy.
This is achieved through the use of “exploration” landmarks
with locations l := [lT1 , . . . lTNl

]T . The landmarks are given a
Gaussian prior with mean l̄ := l, and block diagonal covariance
Σl . The landmarks are placed at the map frontiers which are
maintained by a visibility occupancy grid.

B. Target Tracking Algorithm

Our multi-robot target-tracking algorithm is summarized:
Algorithm 3 was implemented in C++, and applied in both

simulations and robot experiments. We release an open-source
implementation2 of the simulator and the algorithm.

C. Simulation Results

In the simulation environment, the algorithm is evaluated in
a virtual square region, with height and width of 64 meters
(Fig. 1). Targets are initialized in random positions with zero

2https://bitbucket.org/brentsc/infoplanner

Algorithm 3: Anytime Multi-Robot Target Tracking.

1: Input: Tmax, x0 , ω̂0 , Ω̂0 , f,U ,H, V,A,W, T, TARV I , n
2: while t = 1 : Tmax do
3: Send ωi,t and Ωi,t to neighboring robots.
4: Receive measurements zi,t and perform distributed

update step with any neighbor information received.
5: Remove discovered exploration landmarks l and add

new ones at map frontiers.
6: Plan T -step trajectories by solving (1) with ARVI

(Alg. 1) and coordinate descent.
7: Apply first n controls to move each robot via f .

Fig. 1. Simulation environment showing four robots (green) and three esti-
mated target positions with covariance ellipses (red). Explored and unexplored
regions are shown in white and gray color, respectively.

velocity. The goal of the simulations was to evaluate the ef-
fects of communication radius, planning time, and robustness
of the system to sensor noise. We test with a variable number
of robots, targets, and parameters in each simulation, detailed
in the captions. The performance metrics are the average root
mean square error (RMSE) of target position, average entropy,
and time to discover all targets.

As one may expect, increasing the communication radius
(Fig. 2 (a)–(c)) results in better performance. We note that even
a modest communication range of 5 meters provides substantial
benefit, particularly in the rate of discovering targets. Without
communication, a single robot is unable to find all the targets
even over the course of 1000 timesteps. The benefits of increased
planning time (Fig. 2 (d)–(f)) are noted by the reduction in po-
sition RMSE as well as average entropy. Interestingly, more
planning time does not necessarily lead to discovering the tar-
gets faster. This is due to the planner’s emphasis on keeping
a low uncertainty on the targets currently known rather than
discovering new targets. If fast exploration is desired, more
uncertainty can be added to the exploration landmarks to en-
courage the robots to explore more rapidly at the expense of
tracking the already known targets. Another observation is that
the entropy and tracking error are similar in planning time at
first, but start to differ as the simulation evolves. This is because
the targets are initialized with zero velocity, and eventually start
to move faster and require a better plan to track them. Finally,
the performance in tracking and average entropy degrade with
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Fig. 2. By column, the plots show the average entropy per target, number of targets discovered, and average position (RMSE) per target respectively. The top
row uses 4 robots and 9 targets, with Tm ax = 1000, TA RV I = 0.5 s, σr = .15 m, σb = 5◦, and sweeps over communication range. The middle row uses
10 robots and 25 targets, Tm ax = 600, σr = .3 m, σb = 10◦, communication range of 30 meters, and sweeps over increasing TA RV I . The last row uses 8 robots and
16 targets, with communication range of 30 meters, TA RV I 0.5 s, and sweeps over σr , σb . In all cases, ten Monte-Carlo trials are averaged for each parameter,
with τ = 0.5 s, T = 12, n = 6 controls before re-planning, rsen se = 10 meters, 94◦ field-of-view, and q = .001 fixed for every trial.

Fig. 3. (a) A Scarab ground robot and a Hummingbird quadrotor. (b) The experimental setup with 3 UAVs and 5 Scarabs.

increasing sensor noise as might be expected. In summary, we
see that target discovery is tied to the availability of communica-
tion, while tracking performance depends on sensor reliability
and the ability to plan non-myopic trajectories efficiently.

D. Hardware Experiments

We evaluate the real-time performance of the ARVI algorithm
on three collaborating UAVs, whose task is to explore a lab en-
vironment and find and track the locations of five ground robots
(Fig. 3). The robot trajectories are planned using ARVI offboard

on a laptop with an Intel Core i7 CPU. The Vicon Motion cap-
ture system is used for localization of both the ground robots
and the UAVs. The ground robots are Scarab differential drive
robots with top speed of 1.4 m/s [38]. The quadrotors were al-
lowed motion primitives {(ν, ω) | ν = 1 m/s, ω ∈ {0,±1,±3}
rad/s}. The target motion model in the hardware experiments
was a random walk (e.g., yt+1 = yt + wt ), instead of the double
integrator. This is more suitable because of the sudden changes
in velocity that the Scarab robots experience due to their colli-
sion avoidance algorithm. Sensor measurements are generated
via the Vicon pose estimates, with a 360 degree field of view
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Fig. 4. The plots show the average entropy per target, number of targets discovered, and average root mean square error (RMSE) per target respectively, all
averaged over ten trials of five minutes. In the experiments, a planning horizon T = 12, and sampling period of τ = 0.5 is used, along with TA RV I = 0.5 split
evenly. The communication range between UAVs is fixed at 3 meters. The sensing parameters used here correspond to a downward facing camera model, with
rsen se = 1 meter, 360◦ field-of-view, with range and bearing standard-deviation of 0.3 m, and 5◦ respectively.

which imitates a downward facing camera. The measurements
provide the relative pose of each ground robot within a sensing
radius plus Gaussian noise, to each UAV. The testing area was a
4 by 8 meter region where the ground robots can move indepen-
dently and freely to randomly generated waypoints. The ground
robots utilize [39] to reactively replan safe paths around any
static obstacles and other ground robots, while the quadrotors
fly at different heights to avoid collisions. Ten separate five-
minute trials were conducted, in which the UAVs tracked the
ground robots and explored the environment. The performance
of the algorithm can be seen in Fig. 4.

The primary purpose in running these experiments on real
hardware was to ensure that the algorithm is able to compute
trajectories reliably and run the decentralized algorithms with
multiple robots, while also achieving a low tracking error. The
original RVI algorithm paid no attention to execution time and
without proper tuning it would take too long for the robots to
compute plans to fly in real-time. Even if RVI was tuned to
always execute in a short time, it would not necessarily find the
best trajectory in the allotted planning time, since it might termi-
nate too early. To this end, the experiments were successful and
show that ARVI achieves real-time search based planning for
information gathering. In order to deploy the system in the real-
world, there is still a need for incorporating collision avoidance
in the planning process. More insight could also be gained by
testing with a camera observation model, and planning on-board
the UAVs.

VI. CONCLUSION

The combination of ARVI and the distributed information
filter presented here helps to make active-information-gathering
feasible in real robotics problems. ARVI allows for flexibility
in decision timing for robot applications that need trajectories
quickly, and also for problems which can afford more time
for deliberation while making efficient use computations. The
distributed estimation approach provides minimal loss in perfor-
mance over the centralized approach, so long as communication
is available. Although our formulation is useful in solving many
problems, it requires a discrete set of motion primitives, a known
target model, and it also requires linearization of the target mo-
tion, and sensor observation models. Future work will focus on
continuous control spaces, estimating the target motion model,
and comparing this approach to other active information ac-
quisition techniques that do not linearize the models. We also
plan to use downward facing cameras for sensing and use full
onboard processing in future experiments.

The following definitions and lemmas will be necessary for
proving Theorem 1:

Definition 3 ((ε, δ)-redundancy): A node (x, Σ) is (ε, δ)-
redundant with respect to a set {(xi,Σi)} if Σ is ε-algebraically
redundant with respect to all Σi whose corresponding xi ,
δ-cross x.

Lemma 1: After each timestep t in ImprovePath(ε, δ), the set
Ot will contain all non-(ε, δ)-redundant nodes from St .

Proof: The loop in line 10 of Algorithm 2 evaluates all states
(x, Σ) that are in St , but not in Ot , and checks (ε, δ)-redundancy
with respect to Ot . If a node is non-(ε, δ)-redundant, it is added
to Ot in line 14 of Algorithm 2. �

Lemma 2: After each timestep t, Ct−1 indicates the nodes
that have been expanded, and all nodes contained in Ot−1 will
also be contained in Ct−1 . St contains the successors of each
node in Ot−1 .

Proof: The loop in line 2 of Algorithm 2 evaluates all nodes
(x, Σ) that are in Ot−1 but not in Ct−1 , and adds them to Ct−1 ,
in addition to evaluating the motion model along the nodes and
placing the result in St . �

Proof of Theorem 1: To prove part (i) of Theorem 1, we note
that after line 4 of Algorithm 1, all sets are empty except S0 and
O0 , which both contain the initial node (x0 , Σ0). No elements
are ever removed from a set, and sets grow as ImprovePath is
called with decreasing pruning parameters.

In a call to ImprovePath, the set Ot contains all non-(ε, δ)-
redundant nodes (Lemma 1), and Ct contains all nodes previ-
ously searched (Lemma 2). Thus the set Ot \ Ct contains all not
previously searched non-(ε, δ)-redundant nodes, which guaran-
tees an (ε, δ)-optimal solution will be produced.

To prove the monotonicity property (ii), we recall the (ε, δ)-
suboptimality bound ([14]):

0 ≤ Jε,δ
T − J∗T ≤ (ζT − 1)

[
J∗T − log det(W )

]
+ εΔT

where ζT :=
t−1∏

τ =1

(1 +
τ∑

s=1

Ls
f Lm δ) ≥ 1

(16)

and ΔT , Ls
f and Lm are constants. The suboptimality gap (16)

is monotone in (ε, δ). This implies that the cost itself, Jε,δ
T de-

creases monotonically in (ε, δ). In line 9 of Algorithm 2, (ε, δ)
decrease monotonically in runtime, which implies that the so-
lution cost decreases monotonically in runtime.
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Finally, to prove (iii) we note that in Main, (ε, δ) → (0, 0),
which is known to preserve optimality ([14]). From the first part
of the the theorem, it is guaranteed that any call to ImprovePath
will return an (ε, δ) optimal solution. Thus, given enough time
ImprovePath(0,0) will be called and return the optimal solution.
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