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We review the role of R symmetries in models of supersymmetric unification in four and
more dimensions, and in string theory. We show that, if one demands anomaly freedom
and fermion masses, only R symmetries can forbid the supersymmetric Higgs mass term

μ. We then review the proof that R symmetries are not available in conventional grand
unified theories (GUTs) and argue that this prevents natural solutions to the doublet–
triplet splitting problem in four dimensions. On the other hand, higher-dimensional
GUTs do not suffer from this problem. We briefly comment on an explicit string-derived
model in which the μ and dimension-5 proton decay problems are solved simultaneously

by an order four discrete R symmetry. We also comment on the higher-dimensional
origin of this symmetry.

Keywords: Supersymmetry; grand unification; discrete symmetries; string theory.

1. Introduction and Outline

The minimal supersymmetric Standard Model (MSSM) provides an attractive

scheme for physics beyond the Standard Model (SM) of particle physics. The MSSM

has the following, attractive features:

• it is based on supersymmetry, which is, under certain modest assumptions, the

maximal extension of the Poincaré symmetry of our four-dimensional Minkowski

spacetime;

∗Based on invited talks given at String Phenomenology 2012, CETUP 2012, PACIFIC 2012, 4th
Bethe Center Workshop and the Universe Cluster Science Week 2012.
‡Corresponding author
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• it provides automatically a dark matter candidate, which is stable due to the �M
2

matter parity;

• supersymmetry allows us to stabilize the gauge hierarchy against radiative cor-

rections.

In the context of unified theories, the perhaps most important property of the

MSSM is that it provides us with the very compelling picture of precision gauge

coupling unification.1 That is, if one assumes that the superpartners have masses

of the order TeV and extrapolates the gauge couplings gi of the SM gauge factors

SU(3), SU(2) and U(1) to higher energies, one finds that they meet with a high

precision at the scale of a few× 1016 GeV. This property of the MSSM represents,

given the still persisting lack of evidence for superpartners at the LHC, perhaps the

greatest motivation for supersymmetry. Arguably, the most compelling explanation

of this fact arises if the SM gauge group is embedded in a simple gauge group,

specifically

GSM = SU(3)× SU(2)×U(1) ⊂ SU(5) (1.1)

or a group containing SU(5).

This brings us to the scheme of grand unified theories (GUTs). Specifically,

GUTs based on the gauge groups SU(5) and SO(10) have many appealing features

(for a review see, e.g., Ref. 2):

1. GUTs explain charge quantization;

2. They simplify the matter content. The five irreducible representations (irreps)

forming one generation of SM matter can be grouped into two SU(5) irreps,3

SM generation = 10+ 5̄ . (1.2)

A further simplification of the matter sector happens in SO(10),4 where

16 = 10⊕ 5̄⊕ 1

= SM generation with “right-handed” neutrino . (1.3)

One of the main assumptions of this review is that these features are not by accident.

In this review, we will specifically discuss the role of (discrete) R symmetries in

supersymmetric models of unification. After a short review of some of the issues of

the MSSM, we will discuss the importance of anomaly constraints and in particular

“anomaly universality” for their resolution. Using these techniques, we will show

that only R symmetries can forbid the μ term in the MSSM. Furthermore, as we

will then argue, these R symmetries are already almost uniquely determined by the

anomaly universality conditions. However, given certain general assumptions which

we will specify, R symmetries are not available in four-dimensional models of grand

unification. On the other hand, R symmetries are available in higher-dimensional

and, in particular, in stringy settings, where they arise as discrete remnants of the

Lorentz symmetry of compact space. We will comment on explicit models where
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precisely the phenomenologically desired symmetries arise this way. Finally, we will

provide a short summary.

2. The MSSM, Grand Unification and All That

We start by reviewing the problems of the MSSM in Sec. 2.1 and describe specifically

the proton decay problems in Sec. 2.2. As we shall see, the conventional solutions

to the MSSM problems are, arguably, not fully satisfactory.

2.1. Problems of the MSSM

As is well known, the MSSM has, besides many desired features, certain short-

comings. Several of them are connected to the appearance of operators in the

superpotential which are consistent with all symmetries of the MSSM but have

phenomenologically undesired effects, or are plainly inconsistent with observation.

The gauge invariant superpotential terms up to order four include

W = μHdHu + κiLiHu

+ Y ij
e LiHdĒj + Y ij

d QiHdD̄j + Y ij
u QiHuŪj

+λijkLiLjĒk + λ′

ijkLiQjD̄k + λ′′

ijkŪiD̄jD̄k

+ κ
(0)
ij HuLiHuLj + κ

(1)
ijk�QiQjQkL� + κ

(2)
ijk�ŪiŪjD̄kĒ� . (2.1)

Here, in an obvious notation, Hu and Hd denote the MSSM Higgs doublets, and Qi,

Ūi, D̄i, Li and Ēi the three generations of MSSM matter. The μ term in the first line,

for phenomenological reasons, has to be of order TeV, and the Yukawa couplings

Y ij
e , Y ij

u and Y ij
d are required in order to describe fermion masses. Moreover, the

perhaps simplest explanation of small Majorana neutrino masses needs a nontrivial

κ
(0)
ij of the order (1014 GeV)−1.

Unfortunately, there are various additional terms, which turn out to be very

problematic. First of all, the so-called R-parity violating couplings κi, λijk , λ
′
ijk and

λ′′
ijk are strongly constrained by the experiments, i.e. they have to be either very

small or completely absent (cf. e.g., Ref. 5). Second, there are strong bounds on the

coefficients κ
(1,2)
ijk� of the so-called dimension-5 proton decay operators. This shows

that supersymmetry alone is not a viable theory. It has to be amended by some

additional structure, preferably by symmetries which ensure that the phenomeno-

logical predictions of the extended model are in agreement with experimental data.

2.2. Proton decay problems

2.2.1. The conventional approach to the proton decay problems

Of course, these problems are well known and there are some standard solutions. Let

us specifically discuss the traditional cure of proton decay problems. The R-parity

1230044-3
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Table 1. Matter parity �M
2 , baryon triality B3 and proton hexality P6.

Q Ū D̄ L Ē Hu Hd ν̄

�
M
2 1 1 1 1 1 0 0 1

B3 0 −1 1 −1 2 1 −1 0

P6 0 1 −1 −2 1 −1 1 3

violating terms can be forbidden by R- or matter parity �M
2 (Refs. 6 and 7), either

of which is usually assumed to be part of the definition of the MSSM. Formally, these

two symmetries differ by the transformation of the superpartners. However, there

is an intrinsic symmetry in any supersymmetric theory which sends the superspace

coordinate θ to minus itself. Using this ambiguity, one can easily convince oneself

that the two symmetries are equivalent. After imposing this symmetry, there are

still the dimension-5 proton decay operators, which can, however, be forbidden by

baryon triality B3 (Ref. 8) (see Table 1 for the charge assignment). The combination

of both symmetries, i.e. �M
2 times B3, is known as “proton hexality” P6.

8–10 The

P6 symmetry has several very appealing features:

(1) it forbids dimension-4 and -5 proton decay operators;

(2) it allows the usual Yukawa couplings of the MSSM as well as the Weinberg’s

neutrino operator κ
(0)
ij HuLiHuLj ;

(3) it is the unique anomaly-free symmetry with the above features assuming tra-

ditional anomaly cancellation.

Unfortunately, P6 has also some disturbing aspects:

(1) it is not consistent with unification of matter, i.e. it is inconsistent with having

universal discrete charges for all matter fields (cf. Ref. 11);

(2) it does not address the μ problem, i.e. it does not provide us with a solution to

all the above-mentioned problems of the MSSM.

2.3. Origin of proton decay operators in GUTs

One may now wonder how serious the fact is that P6 is not consistent with (SU(5)

or SO(10)) unification. To this end, it is instructive to recall where the proton decay

operators come from. One distinguishes between dimension-6 and -5 proton decay

operators. While the dimension-6 operators can come from gauge boson exchange

(cf. Fig. 1(a)),3 the dimension-5 ones (Fig. 1(b)) may originate from the color-

triplet Higgs exchange.7,12 While the SUSY GUT predictions for the proton decay

rates mediated by dimension-6 operators are still consistent with observation,13

the dimension-5 proton decay and the associated doublet–triplet splitting problems

cast some shadow on the scheme of (four-dimensional) SUSY GUT models (cf. e.g.,

Refs. 13 and 14). Some coefficients of the QQQL operators have to be smaller

than 10−8/MP,
15 which leads to a lower bound on the color-triplet Higgs mass far

1230044-4
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u
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(a) Dimension-6
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Fig. 1. (a) Dimension-6 and (b) dimension-5 proton decay diagrams in GUTs leading to the
proton decay modes (a) p → π0 + e+ and (b) p → K+ + ν̄. While the SUSY GUT prediction for
(a) is still consistent with experimental limits, the decay mode (b) often challenges explicit SUSY
GUT models.

above MGUT unless one arranges for very precise cancellations between unrelated

couplings (see e.g., Refs. 16 and 17).

Given that P6 is incompatible with grand unification, we see that this symmetry

cannot be used to solve the most severe problems of GUT models. This is also in

accordance with the fact that P6 does not address the μ problem, i.e. it cannot help

us to understand the doublet–triplet splitting.

Various other solutions to the dimension-5 proton decay problem of SUSY GUTs

rely on intricate GUT breaking sectors.18–20 The Higgs fields typically used for the

GUT breaking and the generation of fermion masses are in representations as large

as 75 of SU(5) or 126 of SO(10). The corresponding large amount of GSM charged

states typically induces large threshold corrections, which may clash with our basic

assumption that gauge unification is not an accident.

In what follows, we will therefore discuss alternative discrete symmetries which

do not suffer from these shortcomings. Specifically, we will identify anomaly-free

discrete symmetries which are consistent with (precision) gauge unification and

allow us to control the μ term.

3. Non-Anomalous Discrete Symmetries and Unification

In this section, we will first discuss (discrete) anomaly cancellation in general. Then

we will focus on symmetries that are consistent with unification and forbid the μ

term. In contrast to the traditional approach, we make use of the Green–Schwarz

(GS) mechanism for anomaly cancellation.21

3.1. Anomaly universality

We begin our discussion with the observation that, in the framework of GUTs, once

one allows for GS mechanism, the requirement of anomaly freedom is depleted to

the demand of “anomaly universality”, i.e. common anomaly coefficients of the SM

gauge factors Gi.

Let us explain what that implies in practice. Consider, for example, the mixed

Gi −Gi − �N anomaly coefficient for a �N symmetry,

1230044-5
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AGi−Gi−�N
=

∑

f

�(r(f)) · q(f) . (3.1)

Here the sums extend over all fermion representations r(f), while �(f) denotes the

Dynkin index of the fermions f , w.r.t. the gauge group Gi and q(f) are the discrete

�N charges. The traditional anomaly constraints22,23 correspond to the condition

that the AG2

i
−�N

coefficientsa have to vanish for all Gi,

AGi−Gi−�N
= 0 mod η ∀ Gi , (3.2)

where

η :=

⎧

⎪⎨

⎪⎩

N for N odd ,

N

2
for N even .

(3.3)

On the other hand, “anomaly universality” only amounts to the requirement that

the anomaly coefficients be universal,

AGi−Gi−�N
= ρ mod η ∀ Gi , (3.4)

but that they do not necessarily have to vanish. Here ρ can be thought of as the

contribution of a GS axion a, whose shift transformation under the �N symmetry

cancels the anomaly.

Where does the “anomaly universality” come from? Although universality of

anomaly coefficients is empirically found to be a property of most heterotic string

models,24,25 it is, as correctly pointed out in Ref. 26, in general not a necessary

condition for anomaly freedom. This can most easily be seen in the path integral

formulation27,28 of the GS mechanism (see e.g., Refs. 29 and 30). The crucial in-

gredient is the coupling of the GS axion a to the FF̃ term of the gauge group G.

The GS axion a is contained in the superfield S, S|θ=0 = s + ia, and shifts under

the symmetry transformation. The GS anomaly cancellation requires the coupling
∫

d2θ fSSWαW
α ⊃ L , (3.5)

in the Lagrange density. Given this term, s = ReS|θ=0 contributes to 1
g2 , see

Refs. 29 and 30 for more details. In general, different couplings of a to different SM

gauge factors Gi would allow for different ρ constants for the different gauge factors

of the SM. However, in general, the “saxion” s has a nontrivial vacuum expectation

value (VEV), such that nonuniversal couplings imply nonuniversal contributions to
1
g2

i

. This, in turn, would imply that precision gauge unification is spoilt. Since this

would contradict our assumption that precision gauge unification is not an accident,

we will require anomaly universality in the rest of our discussion.

aNote that there are no meaningful �3
N

anomaly constraints. This has been first shown in Ref. 23
and can be seen more directly in the path integral approach.24

1230044-6
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3.2. Non-R symmetries cannot forbid the μ term in the MSSM

Let us now look at discrete anomalies of non-R symmetries in the MSSM. After

imposing SU(5) relations for the matter charges, the relevant anomaly coefficients

read

ASU(3)2−�N
=

1

2

3∑

g=1

(3qg
10

+ qg
5̄
) , (3.6)

ASU(2)2−�N
=

1

2

3∑

g=1

(3qg
10

+ qg
5̄
) +

1

2
(qHu

+ qHd
) . (3.7)

Here, in an obvious notation, qg
10

and qg
5̄
denote the discrete charges of the gth

10- and 5̄-plet, respectively, with g playing the role of a generation index while qHu

and qHd
are the charges of the Higgs doublets. Now, imposing anomaly universality,

i.e. demanding that

ASU(2)2−�N
−ASU(3)2−�N

= 0 mod η , (3.8)

leads to a condition on the Higgs charges:

1

2
(qHu

+ qHd
) = 0 mod

⎧
⎪⎨

⎪⎩

N for N odd ,

N

2
for N even .

(3.9)

It is easy to see that this implies that the �N symmetry does not forbid the Higgs

bilinear. We hence see that ordinary, i.e. non-R, �N symmetries cannot forbid the

μ term.

3.3. Only discrete R symmetries may forbid the μ term

It is also obvious that, if anomaly-free discrete non-R symmetries cannot forbid the

μ term, this also applies to continuous non-R symmetries, for which the anomaly

constraints are even stronger. We are hence left with R symmetries. Recalling that

there are no anomaly-free continuous R symmetries in the MSSM,31 the only re-

maining option is the discrete R symmetries.

3.4. R symmetries and ’t Hooft anomaly matching

’t Hooft’s concept of anomaly matching is a powerful tool for analyzing symme-

tries,32 which can also be used for discrete symmetries.33 Let us spell this out

for the case of discrete R symmetries in the MSSM, still assuming unification.30

Trivially, at the SU(5) level, there is only one anomaly coefficient,

ASU(5)2−�R

M

= Amatter
SU(5)2−�R

M

+Aextra
SU(5)2−�R

M

+ 5qθ , (3.10)

1230044-7
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which we have decomposed into the contribution from matter Amatter
SU(5)2−�R

M

, extra

states Aextra
SU(5)2−�R

M

and gauginos 5qθ with qθ denoting the R charge of the superspace

coordinate.b M is the order of the R symmetry transformation, which might be

part of a larger symmetry. In addition to the anomaly constraint from the whole

gauge group, we can also consider the SU(3) and SU(2) subgroups of SU(5). The

corresponding anomaly coefficients read

A
SU(5)

SU(3)2−�R

M

= Amatter
SU(3)2−�R

M

+Aextra
SU(3)2−�R

M

+ 3qθ +
1

2
· 2 · 2 · qθ , (3.11a)

A
SU(5)

SU(2)2−�R

M

= Amatter
SU(2)2−�R

M

+Aextra
SU(2)2−�R

M

+ 2qθ +
1

2
· 2 · 3 · qθ . (3.11b)

Here we have decomposed the gaugino contributions into their SU(3) and SU(2)

parts, respectively, and into the contributions from SU(5)/GSM. Assume now that

some mechanism eliminates the extra gauginos. This will lead to a nonuniversality

of the anomaly coefficients, which will, given our assumption that matter charges

commute with SU(5), have to be compensated for by the extra states. That is,

the extra states have to come in split multiplets. In other words, ’t Hooft anomaly

matching for (discrete) R symmetries implies the presence of split multiplets below

the GUT scale. The arguably simplest possibility to “repair” the gaugino mismatch

is to assume that there is a pair of massless weak doublets, which is chiral w.r.t. �R
M ,

but no corresponding triplets. From this one infers that, in the presence of an R

symmetry, the same mechanism that breaks the GUT symmetry will also provide

a mechanism for doublet–triplet splitting. However, as we will discuss later, it is

impossible to construct a four-dimensional GUT with a low energy R symmetry

without states beyond those of the MSSM. This is also consistent with the observa-

tion that there are no natural (in ’t Hooft’s sense) solutions to the doublet–triplet

splitting problem in such schemes.

3.5. A unique discrete R symmetry for the MSSM

Let us now impose, instead of SU(5) relations, stronger SO(10) relations, i.e. that

the charges q for matter fields are universal. That is, consider a �R
M symmetry under

which quarks and leptons have the universal charge q. As we shall demonstrate, this

implies a unique symmetry.29,30 In the first step, we require that the symmetry

allows for u- and d-type Yukawas, implying that

2q + qHu
= 2qθ modM and 2q + qHd

= 2qθ modM . (3.12)

bNote that there exists some confusion in the literature. It is often assumed that the superpotential
W has R charge 2, corresponding to R charge 1 of the superspace coordinate, qθ = 1. However, as
pointed out in Ref. 30, one cannot, in general, make this choice and, at the same time, demand
that all discrete charges are integer. We follow the convention that all discrete charges are integer
and keep qθ variable.

1230044-8
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Subtracting these equations from each other,

qHu
− qHd

= 0 modM , (3.13)

shows that also the charges of the two Higgs fields coincide. The conditions for the

presence of u-type Yukawa couplings and the Weinberg operator are

2q + qHu
= 2qθ modM and 2q + 2qHu

= 2qθ modM , (3.14)

implying that qHu
= 0 modM . Altogether we see that

qHu
= qHd

= 0 modM and q = qθ modM . (3.15)

From the conditions that the symmetry must be an R symmetry,

qθ �= 0 mod η , (3.16)

and that it is “anomaly universal” in the MSSM,

ASU(3)2−�R

M

= 3qθ mod η
!
= qθ mod η = ASU(2)2−�R

M

, (3.17)

it follows that η is even which in turn implies that the order M of the symmetry is

a multiple of 4,

M = 4m, m ∈ N . (3.18)

Furthermore, given the ambiguity discussed on p. 4, Eqs. (3.16) and (3.17) fix the R

charge of the superspace coordinate θ to qθ = m. As a result, the simplest nontrivial

possibility isM = 4 and q = qθ = 1, i.e. a �R
4 symmetry. As is straightforward to see,

the extensions to �R
4m symmetries, m > 1, are trivial extensions as far as the MSSM

is concerned. While it might certainly be worthwhile to study such symmetries in

the context of (singlet) extensions of the MSSM, we can conclude that there is a

unique symmetry for the MSSM: a �R
4 with q = qθ = 1 and qHu

= qHd
= 0.

This symmetry was first discussed in Ref. 34. A version of the uniqueness proof

appeared in Ref. 35. However, there it was assumed that the superpotential has

charge 2 in a normalization in which all discrete charges are integer, which is, in

general, not a valid assumption (cf. footnote b). The uniqueness proof has been

completed in Ref. 30.

The �R
4 anomaly coefficients are

ASU(3)2−�R

4

= 6q − 3qθ = qθ = 1 mod 4/2 , (3.19a)

ASU(2)2−�R

4

= 6q +
1

2
(qHu

+ qHd
)− 5qθ = qθ = 1 mod 4/2 . (3.19b)

The fact that the coefficients are nontrivial implies that the �R
4 is anomaly-free

only via a nontrivial GS mechanism.

1230044-9
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3.6. GS anomaly cancellation and non-perturbative effects

Let us briefly comment on the implications of GS anomaly cancellation. As discussed

above, the GS axion a is contained in a superfield S, S|θ=0 = s + ia. Since a =

ImS|θ=0 shifts under the �
R
M transformation, R non-covariant superpotential terms

can be made invariant by multiplying them with e−bS . To be specific, consider, as an

example, the Higgs bilinear. The μ term is obviously forbidden by the �R
4 symmetry,

but the term

Be−bSHuHd , (3.20)

will be allowed for appropriate values of b. In other words, the holomorphic e−bS

terms appear to violate the �R
M symmetry. Such terms have a well-known interpreta-

tion. Given the coupling (3.5), s = ReS|θ=0 contributes to
1
g2 , and the holomorphic

Be−bS terms can be interpreted as non-perturbative effects (cf. the “retrofitting”

discussion36). Altogether we see that there is a unique symmetry of the MSSM

that (i) forbids the μ term, (ii) is compatible with SO(10) and (iii) is anomaly-free;

this symmetry has the feature that the μ term appears non-perturbatively and is

naturally suppressed.

3.7. Further implications of �R

4

The �R
4 symmetry has important implications for the MSSM. Among the gauge

invariant terms shown in (2.1), the μ term, the R-parity violating terms and the

dimension-5 proton decay operators are forbidden at the perturbative level while,

by construction, the Yukawa couplings and the Weinberg operator are allowed. As

discussed above, μ and the dimension-5 proton decay operators appear at the non-

perturbative level, whereas the R-parity violating terms are still forbidden at the

non-perturbative level by a “non-anomalous” �2 subgroup which is equivalent to

matter parity. How can one determine the size of the non-perturbative terms? The

order parameter for R symmetry breaking is the superpotential VEV 〈W 〉, or, in

other words, the gravitino mass m 3

2

. Hence

μ ∼ m 3

2

�
〈W 〉

M2
P

, (3.21)

with MP denoting the Planck scale. The non-perturbatively generated dimension-5

proton decay operators are phenomenologically harmless,

κ
(1,2)
ijk� ∼

m 3

2

M2
P

�
10−8

MP
, (3.22)

where we compare the theoretical expectation with the experimental constraints.15

4. No R Symmetries in Conventional 4D GUTs

In the previous section, we have seen that only R symmetries can forbid the μ term

in the MSSM. However, as we shall show now, R symmetries are not available in

four-dimensional GUTs.37 More specifically, if one assumes

1230044-10
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(i) a GUT model in four dimensions based on G ⊃ SU(5),

(ii) that the GUT symmetry breaking is spontaneous, and

(iii) that there is only a finite number of fields,

one can prove that it is impossible to get a low-energy effective theory with both

1. just the MSSM field content, and

2. residual R symmetries.

For the purposes of this review, we will restrict ourselves to presenting the basic

argument. Consider an SU(5) model with an (arbitrary) R symmetry and a chiral

24-plet breaking SU(5) → GSM. Recall the branching rule

24 → (8,1)0 ⊕ (1,3)0 ⊕ (3,2)− 5

6

⊕ (3̄,2) 5

6

⊕ (1,1)0 . (4.1)

Since the 24-plet attains a VEV but may not break the R symmetry, it has to

have R charge 0. In the course of GUT breaking, the multiplets (3,2)− 5

6

⊕ (3̄,2) 5

6

are absorbed by the extra gauge bosons from SU(5)/GSM. Thus, there are extra

massless states in the representations (8,1)0 ⊕ (1,3)0, whose masses are forbidden

by the R symmetry.

One can now ask the question whether it is possible to make these unwanted

states massive. It is easy to see that the introduction of extra 24-plets with R

charge 2 only shifts the problem of massless states to different representations.

In particular, in this case there would be massless states in the representation

(3,2)− 5

6

⊕ (3̄,2) 5

6

representations. Repeating this argument inductively shows that

with a finite number of 24-plets one will always have massless exotics. The only

way to circumvent this argument is to have infinitely many 24-plets.

It is possible to generalize the basic argument to

• arbitrary SU(5) representations;

• larger GUT groups G ⊃ SU(5);

• singlet extensions of the MSSM.

The proof can be found in Ref. 37. Here we shall only discuss the implications of

these statements. A “natural” solution of the μ and/or doublet–triplet splitting

problem requires a symmetry that forbids μ. So far we have learned that:

1. only R symmetries can forbid the μ term;

2. anomaly matching requires the existence of split multiplets;

3. R symmetries are not available in 4D GUTs.

This implies that “natural” solutions to the μ and/or doublet–triplet splitting prob-

lems are not available in four dimensions! This might be interpreted as the necessity

to go to models with extra dimensions, such as string compactifications.
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5. Higher-Dimensional and String Models

In this section, we will discuss how going to extra dimensions allows us to evade

the no-go theorem presented in Sec. 4. In such settings it is moreover possible to

answer the question of the origin of R symmetries and one has better control over

the higher-dimensional operators such as the effective μ term.

5.1. Grand unification in higher dimensions

It is often stated that higher-dimensional GUTs appear more “appealing”. This is

because new possibilities of symmetry breaking arise.38,39 In addition, the Kaluza–

Klein towers provide us with, from a four-dimensional point of view, infinitely

many states (cf. the discussion in Ref. 40), thus allowing us to evade the no-go

theorem.

What is more, R symmetries have a clear geometric interpretation. They origi-

nate from the Lorentz symmetry of compact dimensions (cf. e.g., the discussion in

Ref. 41) and are arguably on the same footing as the fundamental symmetries C,

P and T .

5.2. Extra-dimensional/stringy origin of �R

4

String models offer a geometric explanation of discrete symmetries (for a recent

review see e.g., Ref. 41). Specifically, in stringy heterotic orbifolds, one obtains

effective theories with residual discrete R symmetries. In particular, one can deter-

mine the R charges of the different states. Such models often exhibit a �R
4 sym-

metry, under which localized fields have odd R charges while bulk fields have even

R charges. This harmonizes nicely with the scheme of “local grand unification”42

where matter fields are localized in regions with SO(10) symmetry and, therefore,

come in complete SO(10) multiplets, while Higgs fields come from the bulk and,

therefore, are split.c

Let us now discuss globally consistent string models with these features.46,47

These are �2 × �2 orbifold models with the exact MSSM spectrum. They exhibit

vacua, i.e. field configurations that preserve supersymmetry perturbatively, with

various good features

(1) non-local GUT breaking;

(2) no “fractionally charged exotics”;

(3) (most) exotics decouple at the linear level in SM singlets, i.e. just MSSM below

GUT scale with masslessness of Higgs fields ensured by �R
4 ;

(4) nontrivial full-rank Yukawa couplings;

(5) gauge-top unification;

(6) SU(5) relation yτ � yb.

cIn concrete models the third family comes partially from the bulk43 (and is a so-called “patchwork
family”,44 among other things giving rise to gauge-top unification45).
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Note that these are, unfortunately, just toy models since they exhibit certain unreal-

istic features such as SU(5) Yukawa relations also for light generations. Nevertheless

such models illustrate that a successful string embedding of the �R
4 symmetry is

possible.

6. Conclusions

In this review, we have discussed the role of R symmetries in supersymmetric mod-

els that give rise to (precision) gauge unification. Specifically, we have made the

following assumptions:

(i) anomaly freedom (allowing for GS anomaly cancellation);

(ii) μ term forbidden at the perturbative level;

(iii) Yukawa couplings and Weinberg neutrino mass operator allowed;

(iv) SU(5) or SO(10) GUT relations for quarks and leptons.

We have then shown that

1. assuming (i) and SU(5) relations, only R symmetries can forbid the μ term in

the MSSM;

2. assuming (i)–(iii) and SO(10) relations, there is a unique �R
4 symmetry;

3. R symmetries are not available in 4D GUTs, implying that there is no “natural”

solution to doublet–triplet splitting in four dimensions.

The simple anomaly-free �R
4 symmetry turns out to provide a solution to the μ

problem and, as a bonus, automatically suppresses proton decay operators. Models

with this symmetry predict that proton decay proceeds via dimension-6 operators,

i.e. via gauge boson exchange. Yet, since such settings cannot be embedded into

four-dimensional GUTs, one will have to analyze higher-dimensional models in order

to make more detailed predictions.

Deriving the �R
4 symmetry from string theory allows us to understand where it

comes from: it can arise as a discrete remnant of Lorentz symmetry in extra dimen-

sions. Guided by this �R
4 symmetry we have reported on a globally consistent string

model with (i) the exact MSSM spectrum; (ii) nonlocal/Wilson line GUT breaking;

(iii) nontrivial full-rank Yukawa couplings; (iv) exact matter parity; (v) μ ∼ m 3

2

and (vi) dimension-5 proton decay operators sufficiently suppressed.

• universal anomaly coefficients
• universal charges for matter
• forbid μ @ tree-level
• allow Yukawa couplings
• allow Weinberg operator

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

� unique �R
4

(a) Assumptions leading to �R
4 .

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

• dimension-4 proton decay
operators completely forbidden

• dimension-5 proton decay
operators highly suppressed

• μ appears non-perturbatively

(b) Implications of �R
4 .

Fig. 2. (a) Assumptions leading to the unique �R
4 and (b) implications.
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33. C. Csáki and H. Murayama, Nucl. Phys. B 515, 114 (1998).

1230044-14



Supersymmetric Unification and R Symmetries

34. K. S. Babu, I. Gogoladze and K. Wang, Nucl. Phys. B 660, 322 (2003).
35. H. M. Lee, S. Raby, M. Ratz, G. G. Ross, R. Schieren, K. Schmidt-Hoberg and P. K.

Vaudrevange, Phys. Lett. B 694, 491 (2011).
36. M. Dine, J. L. Feng and E. Silverstein, Phys. Rev. D 74, 095012 (2006).
37. M. Fallbacher, M. Ratz and P. K. Vaudrevange, Phys. Lett. B 705, 503 (2011).
38. E. Witten, Nucl. Phys. B 258, 75 (1985).
39. J. D. Breit, B. A. Ovrut and G. C. Segre, Phys. Lett. B 158, 33 (1985).
40. M. W. Goodman and E. Witten, Nucl. Phys. B 271, 21 (1986).
41. H. P. Nilles, M. Ratz and P. K. Vaudrevange, arXiv:1204.2206.
42. W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, arXiv:hep-ph/0512326.
43. O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sánchez, M. Ratz, P. K. S. Vaudrevange

and A. Wingerter, Phys. Rev. D 77, 046013 (2007).
44. D. K. M. Pena, H. P. Nilles and P.-K. Oehlmann, arXiv:1209.6041.
45. P. Hosteins, R. Kappl, M. Ratz and K. Schmidt-Hoberg, JHEP 07, 029 (2009).
46. M. Blaszczyk et al., Phys. Lett. B 683, 340 (2010).
47. R. Kappl, B. Petersen, S. Raby, M. Ratz, R. Schieren and P. K. Vaudrevange, Nucl.

Phys. B 847, 325 (2011).

1230044-15




