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ABSTRACT OF THE DISSERTATION

Novel Machine Learning Approach for Protein Structure Prediction

By

Ken Nagata

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Pierre Baldi, Chair

The side-chain prediction and residue-residue contact prediction are sub-problems in the

protein structure prediction. Both predictions are important for protein prediction and

other applications.

We have developed a new algorithm, SIDEpro, for the side-chain prediction where an en-

ergy function for each rotamer in a structure is computed additively over pairs of contacting

atoms. A family of 156 neural networks indexed by amino acids and contacting atom types is

used to compute these rotamer energies as a function of atomic contact distances. Although

direct energy targets are not available for training, the neural networks can still be optimized

by converting the energies to probabilities and optimizing these probabilities using Markov

Chain Monte Carlo methods. The resulting predictor SIDEpro makes predictions by ini-

tially setting the rotamer probabilities for each residue from a backbone-dependent rotamer

library, then iteratively updating these probabilities using the trained neural networks. After

convergences of the probabilities, the side-chains are set to the highest probability rotamer.

Finally, a post processing clash reduction step is applied to the models. SIDEpro represents

a significant improvement in speed and a modest, but statistically significant, improvement

in accuracy when compared with the state-of-the-art for rapid side-chain prediction method

SCWRL4 on the 379 protein test set of SCWRL4. Using the SCWRL4 test set, SIDEpro’s

x



accuracy (χ1 86.14%, χ1+2 74.15%) is slightly better than SCWRL4-FRM (χ1 85.43%, χ1+2

73.47%) and it is 7.0 times faster. SIDEpro can also predict the side chains of proteins

containing non-standard amino acids, including 15 of the most frequently observed PTMs

in the Protein Data Bank and all types of phosphorylation. For PTMs, the χ1 and χ1+2

accuracies are comparable with those obtained for the precursor amino acid, and so are the

RMSD values for the atoms shared with the precursor amino acid. In addition, SIDEpro

can accommodate any PTM or unnatural amino acid, thus providing a flexible prediction

system for high-throughput modeling of proteins beyond the standard amino acids.

We have also developed a novel machine learning approach for contact map prediction using

three steps of increasing resolution. First, we use 2D recursive neural networks to predict

coarse contacts and orientations between secondary structure elements. Second, we use an

energy-based method to align secondary structure elements and predict contact probabili-

ties between residues in contacting alpha-helices or strands. Third, we use a deep neural

network architecture to organize and progressively refine the prediction of contacts, inte-

grating information over both space and time. We train the architecture on a large set of

non-redundant proteins and test it on a large set of non-homologous domains, as well as on

the set of protein domains used for contact prediction in the two most recent CASP8 and

CASP9 experiments. For long-range contacts, the accuracy of the new CMAPpro predictor

is close to 30%, a significant increase over existing approaches.

Both SIDEpro and CMAPpro are part of the SCRATCH suite of predictors and available

from: http://scratch.proteomics.ics.uci.edu/.
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Chapter 1

Introduction

1.1 Protein Strucure Prediction

Proteins are chains of amino acids and have a variety of functions in living organisms. They

can bind and interact with other specific proteins or molecules like DNA. The structure

defines molecule types to which the protein can bind or interact.

There are four levels of proteins structures: primary structure, secondary structure, tertiary

structure, and quaternary structure. The primary structure of a protein is a sequence of

amino acids. Since there are 20 types of amino acids, the primary structure is represented

by a sequence of 20 letters. The secondary structure is a local structure of a protein. There

are three common types of secondary structure: alpha-helix, beta-sheet, and random coil.

Alpha-helix is a right-handed spiral structure and every four amino acids have a hydrogen

bond, whereas the beta-sheet is a flat structure consists of several beta-strands. If the

structures are neither an alpha-helix nor a beta-sheet, they are called a random coil. The

tertiary structure is the 3D structure of a single protein. The quaternary structure is the

structure of several proteins or protein complex.
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Since the tertiary structure of a single protein or quaternary structure of protein complex

can help the understanding or predicting its function, several experimental methods were

invented to identify its structure. X-ray crystallography [39] and Nuclear Magnetic Reso-

nance (NMR) spectroscopy [87, 7]are common methods. The structures determined by those

methods are stored in The Protein Data Bank (PDB) [8], and more than 100,000 structures

are currently available. The problem of experimental methods like X-ray crystallography

and NMR spectroscopy is that it is very time consuming and expensive to get the structure

of proteins.

Protein structure prediction is an unsolved problem in bioinformatics and computational

biology. The objective of the problem is to predict the tertiary structure from the primary

structure. Being able to accurately predict the tertiary structure, we will be able to solve

the mystery of the protein folding process in living organisms. In addition, accurate tertiary

structure prediction will speed up the experimental process because experimental methods

will become unnecessary.

There are several sub-problems in protein structure prediction. The secondary structure

prediction predicts the secondary structure from the primary sequence [68]. The contact

map prediction predicts the pair of amino acid residues which are contacted in 3D space [17].

The side-chain prediction predicts the side-chain conformations from the backbone structure

[45, 61]. I have worked on the contact-map prediction and the side-chain prediction. In

Chapter 2, the details of new side-chain prediction algorithm, SIDEpro, will be introduced.

In Chapter 3, the new contact-map algorithm using a neural networks will be introduced.

2



1.2 Contribution

My main contributions to the side chain, contact map prediction and other projects are as

follows:

• Designed the SIDEpro algorithm for both training and prediction (Section 2.2)

• Extended the SIDEpro capability to predict side chain structures of non-standard

amino acids (Section 2.3)

• Evaluated results for the SCWRL4 test set (Part of Section 2.4.2, and Section 2.4.3)

• Evaluated FPTMs and NSAs accuracy levels (Section 2.4.5-2.4.7)

• Created coarse contact maps, designed feature inputs for its prediction, and evaluated

its method (Section 3.2.3 and Section 3.3.1)

• Created the algorithm for element alignment prediction and evaluated its method (Sec-

tion 3.2.4 and and Section 3.3.2)

• Designed the neighborhood pattern shown in Figure 3.5.

• Evaluated part of the residue-residue contact prediction (Section 3.3.3 and Section

3.3.4)

• Applied the deep architecture for 1D prediction

• Collaborated with Dr. Chang C. Liu on the HIV project to find the best sequence of

a protein called 412d which has high affinity with a protein (gp120) produced by HIB

virus. In this project, I predicted the protein structures for mutated sequences with

SIDEpro, ran MD simulations, calculatd binding energy, and applied the greedy search

to find the sequences with lowest energy levels.

• Created input features for alpha-beta transmembrane classification

3



Chapter 2

Side Chain Prediction

2.1 Introduction

Protein structure prediction is a fundamental problem in computational molecular biology

and predicting the side-chain conformations for a given fixed backbone is an important

subproblem [73]. Side-chain prediction methods are also critical for protein engineering,

protein design, protein-protein docking [33, 4]. In both protein structure prediction and

flexible protein-protein docking, the side-chain conformation predictions are relatively time

intensive, and can be the limiting factor in how much search space can be explored. Thus,

improvements in both speed and accuracy are highly desirable.

As a result, several methods have been proposed to address the side-chain prediction prob-

lem. SCWRL is one of the best methods and is widely used because it is generally fast and

accurate, in addition it is convenient to download and run locally [15, 45]. SCWRL finds

a combination of rotamers which minimizes an energy function based on rotamer probabil-

ities and physical/chemical energy terms [15, 45]. There are two types rotamer libraries,

backbone-independent and backbone-dependent. Backbone-independent rotamer libraries
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contain information on side-chain dihedral angles and rotamer populations. Backbone-

dependent libraries contain the same information as a function of the backbone dihedral

angles φ and ψ [22, 23, 21, 20]. SCWRL, and most other successful prediction methods,

utilize the probabilities from backbone-dependent rotamer libraries [15, 45] and some com-

bination of physics-based energy terms based on electrotatics, hydrogen bonding, solvation

free energy [25, 54], van der Waals forces or at least simple steric energy. In addition, many

search methods have been applied to the side-chain prediction problem, such as dead-end

elimination [32], Monte Carlo [51, 73, 25, 54], cyclical search [88, 89], self-consistent mean

field optimization [44, 56], integer programming [43], and graph decomposition [91, 45].

These methods rely on reducing the search space to pre-defined discrete sets of conformers

for each side-chain (rigid rotamers) in order to make rapid predictions [4].

While physics-based energy functions have been applied with some success to the side-chain

prediction problem in combination with discretized rigid rotamer models, they are not ideally

suited for handling the coarseness of such models. In particular, repulsive physics-based

energy terms are quite sensitive to slight changes in atom-atom distances. As a result, in

the most accurate discretized models, some of the side-chains interactions inevitably have

much higher repulsive energies relative to the native structures. In contrast, knowledge-

based energy functions extracted from large training sets, which have been widely used in

the field of protein structure prediction (e.g. [78, 93]), can be more tolerant to discretization.

Furthermore, these knowledge-based energy functions can potentially capture subtle effects

not captured by the physics-based approximations, and they can be trained directly on the

most accurate discretized models.

Motivated by these issues, here we develop a new kind of knowledge-based energy function

which is designed specifically for the rigid rotamer search space, and incorporate it into a

novel side-chain prediction method, SIDEpro, which surpasses SCWRL4 in speed and accu-

racy. SIDEpro uses a family of artificial neural networks (ANNs) that are trained to compute

5



an energy function based on atom-atom distances [6]. The structure models used to train

the ANNs are modified versions of Protein Data Bank (PDB) structures [8], where each side-

chain is independently set to the most accurate rigid rotamer. SIDEpro makes predictions by

initially setting the probability of the rotamers for each residue using a backbone dependent

rotamer library [22, 23, 21, 20]. Then it iteratively updates these rotamer probabilities using

the ANNs energy until all the rotamer probabilities converge. Then, the side-chains are set

to the rotamer with highest probability. Finally, a post-processing clash reduction procedure

is applied to the models.

Post-translational modifications (PTMs) are critical to the function of many proteins in living

systems and understanding their effects at the molecular level is important for both basic and

applied research in biology and medicine. To further this understanding, open databases of

curated PTM information have been published. For instance, Phospho.ELM [19] is a publicly

available database dedicated to phosphorylation. The database provides the exact positions

of experimentally determined phosphorylation sites as well as information on the specific ki-

nases that produce the modifications. Other databases such as PhosphoSitePlus, HPRD, and

PHOSIDA [36, 40, 30] include information on additional types of PTMs (e.g. ubiquitination,

acetylation, methylation) but are still dominated by phosphorylation data. An automated

curator of information on PTMs [41] found in Swiss-Prot [5] provides the following summary

statistics: there are a total of 82,505 PTMs determined by experimental methods, with the

following types having a frequency greater than 1%: phosphorylation - 70.9%; acetylation

8.2%; N-linked glycosylation 6.8%; amidation - 3.5%; hydroxylation - 2.0%; methylation -

1.9%; O-linked glycosylation - 1.4%; ubiquitylation - 1.1%; and pyrrolidone carboxylic acid

- 1.0%.

In addition to methods for curating and organizing existing PTM data, there are also meth-

ods for predicting which sites are modified in sequences with unknown PTM status. These

methods typically use supervised machine-learning, statistical, and motif based approaches
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to predict sites of phosphorylation [11, 84], acetylation [49], glycosylation [34, 50, 38], sumoy-

lation [92, 71], and less common types of PTMs as well [66]. Some of these methods predict

both the specific phosphorylated sites and the specific kinases responsible for the phospho-

rylation [42, 12, 63].

In contrast with these approaches, the fundamental problem of predicting accurate 3D models

of PTMs in proteins has been largely ignored. None of the widely used, or recently published

side-chain prediction methods that are free for academic research [35, 54, 45, 94, 52, 61]

are capable of incorporating PTMs or unnatural amino acids into their predictions. The

widely used template-based modeling software Modeller [74] does allow for manual creation

of custom residues; however, the process for doing so is somewhat cumbersome and not

realistic for most Modeller users. For protein-peptide interface, incorporating unnatural

amino acids into Rosetta[48] was successfully done [72].

We recognize the need for generating accurate models that incorporate PTMs; however,

there are a number of practical challenges that have stymied progress in this area: (1) there

is far less data in the Protein Data Bank (PDB) [8] for PTM residues than native residues

for building rotamer libraries or developing statistical potentials; (2) while 1-character codes

(e.g. A for Alanine) work well for efficiently defining protein sequences, it is unfeasible to

use 1-character codes for all possible PTMs (there are over 100 PTMs documented in the

literature); (3) some important modifications (e.g. O-linked glycosylation) correspond to

broad classes of chemical structures rather than a unique chemical structure, and each of

the possible molecules would need to be uniquely identified; and (4) modified residues are

generally larger and contain more rotatable bonds than their natural counterparts.

Beyond the 20 standard amino acids and their PTMs, there are also other natural or synthetic

amino acids that can be incorporated into proteins. Two additional natural amino acids,

Selenocysteine (Sec,U) and Pyrrolysine (Pyl,O), are coded in some species by codons that are

usually interpreted as stop codons. Pyrrolysine, for instance, is used by some methanogenic
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archaea in enzymes used to produce methane. In addition, over 40 non-natural amino acids

have been incorporated into proteins through synthetic biology projects, often by creating

a unique codon (recoding) and a corresponding transfer-RNA, to explore protein structure

and function and create novel proteins [90, 85]. A tool for modeling the side chains of these

rare natural or non-natural amino acids would also be desirable.

Thus, despite the challenges described above, we have taken on the problem of rapidly

generating reasonably accurate 3D side chain models of proteins that incorporate amino

acids beyond the standard 20 amino acids. In the remainder of this article the term “Non-

Standard Amino Acid” (NSA) is used to refer to any amino acid other than the 20 standard

amino acids. This includes PTMs, rare natural amino acids, and unnatural amino acids.

In this chapter, we intorduce the SIDEpro algorithm for natural amino acids in the section

2.2. Then, the training and prediction methods for non-standard amino acids will be shown

in the section 2.3. The section 2.4 shows 1) comparative evaluation of SIDEpro and SCWRL4

for natural amino acids, and 2) evaulation for Frequent PTMs and other non-standard amino

acids.

2.2 SIDEpro Algorithm

Here we present the details of the SIDEpro method in the following subsections: (1) the

ANN architecture and energy function; (2) the training data and rotamer targets; (3) the

full probabilistic model; (4) the Markov Chain Monte Carlo optimization procedure; (5) the

fast identification of atom contacts; (6) the elimination of rotamers with backbone clashes;

(7) the prediction of rotamers; (8) the clash reduction procedure; and (9) the incorporation

of fixed external atoms into the prediction method. A pseudocode outline of the prediction

steps is also presented in Algorithm 1.
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2.2.1 ANN Architecture and Energy Function

At its core, SIDEpro utilizes a family of neural networks to compute an energy function.

This is a computational energy function and is not necessarily meant to represent a physical

quantity. Each neural network is specialized to compute a particular term of the total

energy associated with a particular amino acid and the distance between a particular pair

of atom types. Thus, for instance, there is a neural network for Cysteine specialized for

Sulphur-Carbon distances. While we did experiment with various ANN architectures, here

we report the results obtained by using a simple three layer perceptron ANN architecture,

for each member of the family (Figure 2.1). Each ANN receives a single external input,

corresponding to a distance d between a pair of atoms of the given type, and produces a

single output corresponding to the “energy” of the pair. The hidden layers typically have

15-20 units. The family comprises 156 different ANNs (Table 1), indexed by three variables

corresponding to: (1) the amino acid type; (2) the atom type of the first atom in the pair,

restricted to side chain atoms (no backbone atoms); and (3) the atom type of the second

atom in the pair, including backbone atoms. The set of atom types is {N,C,O,S,H}. When

the distance between two atoms is large enough they are not considered to be interacting in

our model, thus we set the energy to zero when the distance, d, is greater than 7 Å. Thus

the output e of a single network can be expressed as (Figure 2.1):

e = f(d;w) =


H∑
h=1

w4hσ(w2hd+ w1h) + w31, d < 7

0, otherwise

(2.1)

where

w : ANN weights

σ : logistic sigmoid function (σ(x) = 1/(1 + e−x))
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H : number of hidden states (15-20)

Note that a sigmoid function is not applied to the output layer because the output is not

restricted to [0,1].

Table 2.1: The number of ANNs for each amino acid. Note that ALA and GLY are excluded
because no side-chain search is needed for these residues. For CYS, we use two different
ANNs for Sulphur-Sulphur interactions corresponding to S-S(CYS) and S-S(MET).

Amino Acid Number of ANNs
CYS 6
ASP 10
GLU 10
PHE 5
HIS 10
ILE 5
LYS 10
LEU 5
MET 10
ASN 15
PRO 5
GLN 15
ARG 10
SER 5
THR 10
VAL 5
TRP 10
TYR 10
Total 156

By adding the contributions of each neural network applied to each pair of interacting atoms

it is possible to compute the total energy of each rotamer, or the total energy of a protein.

In particular, the energy of rotamer j for amino acid i is calculated as follows:

Eij =

Ni∑
k=1

L∑
l=1,l 6=i

Nl∑
n=1

faibikbln(||Xijk −Xlrln||;w) (2.2)

where
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Figure 2.1: Network Architecture

Eij : training energy for rotamer j at residue i

Ni : the number of atoms of residue i

L : the length of the amino acid sequence

Xijk : coordinate of k-th atom of rotamer j of residue i

ai : amino acid type of residue i

bik : atom type of k-th atom of residue i

faibikbln(·) : energy term computed by the ANN associated with the amino acid type of

residue i, the atom type of the k-th atom of residue i, and the atom type of the n-th

atom of residue l

ri : rotamer target associated with residue i (see next section)
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Here and in the rest of the paper we use bold-face fonts to denote vectors and contrast them

with scalar variables.

A fundamental observation is that we do not have direct energy values that can be used

to train the neural networks. However, we can derive rotamer targets from structures in

the PDB [8]. As we shall see the energies computed by the ANNs can be converted into

probabilities, and the ANNS can then be trained to maximize the probability of the target

rotamers of the true structures. This optimization cannot be carried analytically but is

implemented here using a Markov Chain Monte Carlo methods, essentially a variant of

simulated annealing.

2.2.2 Training Data and Rotamer Targets

SIDEpro uses the publicly available backbone dependent rotamer library used by SCWRL3

[22][23][21][20][15] which was calculated from a set of 850 protein chains. The PISCES server

was used to curate a diverse set of proteins to train the SIDEpro ANNs with the maximum

mutual sequence identity set to 30%, maximum resolution of ≤ 1.8 Å, and a maximum

R-factor of 20%. 2,661 proteins resulted from this search and 300 were randomly selected.

Next, the 48 proteins with at least 25% sequence identity with one or protein in the SCWRL4

dataset were removed from the training set leaving 252 proteins for training. Table 2.2 shows

a list of PDB IDs in the SIDEpro training set.

Rather than using the raw PDB coordinates of these proteins, we set each side chain to the

best matching rotamer in the corresponding rotamer library. Specifically, consider an amino

acid i in a protein with Ri rotamers in the corresponding library. The library comes with a

prior distribution pij, j = 1, . . . , Ri. For each one of these rotamers, there is a vector of up

to four angles χij = (χkij), k = 1, . . . , 4, with four corresponding normal distributions with

known mean and standard deviations [20], so that: P (χij|µij ,σij) = Πk=4
k=1P (χkij|µkij, σkij).
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Table 2.2: SIDEpro Training Set

PDB IDs
1A68, 1A7S, 1A8D, 1ABA, 1ADS, 1AKO, 1AL3, 1AOP, 1AQB, 1ARB, 1AYL, 1B6G,
1BFD, 1BFG, 1BG6, 1BJ7, 1BM8, 1BS9, 1BX7, 1C3D, 1CEM, 1CEX, 1CNZ, 1CSH,
1CTF, 1CTJ, 1CV8, 1DGW, 1DHN, 1DIN, 1DQG, 1E9G, 1ECA, 1EDG, 1EU1,
1EV5, 1EZM, 1FD3, 1FNA, 1FNC, 1GAI, 1GOF, 1GQ6, 1GVF, 1GYX, 1H2C,
1HKA, 1IFC, 1ISP, 1IXH, 1JER, 1JO0, 1K0M, 1K3X, 1KAP, 1KUH, 1LBU, 1LCL,
1LK9, 1LWB, 1M6K, 1MLA, 1MRP, 1N0W, 1N4W, 1NOX, 1NPS, 1O08, 1OAA,
1OCY, 1ODM, 1OFL, 1ONW, 1OPD, 1ORC, 1P4C, 1PDA, 1PZ4, 1QG8, 1QNF,
1RCQ, 1RHS, 1ROC, 1RTQ, 1RWH, 1RWR, 1RXY, 1RYC, 1S1D, 1SBP, 1SMB,
1T4B, 1T6E, 1TIF, 1TKJ, 1TT8, 1TYV, 1U53, 1UAE, 1UAS, 1UCR, 1US5, 1USH,
1UUJ, 1UWC, 1VBW, 1VHH, 1VLB, 1VQS, 1WC2, 1WKR, 1WV3, 1X1N, 1XLQ,
1XNB, 1XTE, 1XWW, 1Y6X, 1YBI, 1YCD, 1YD0, 1YE8, 1YGE, 1YKU, 1YNP,
1YWF, 1Z70, 1Z9N, 1ZIN, 1ZLD, 1ZND, 2A2K, 2ABS, 2AFW, 2AG4, 2AI4, 2AML,
2AYH, 2B0V, 2BBA, 2BF6, 2BJQ, 2BT9, 2BU3, 2BW4, 2CE2, 2D81, 2DSK, 2DT4,
2DTJ, 2DXQ, 2E2R, 2END, 2EPL, 2FCT, 2FR5, 2FUR, 2GS8, 2GX5, 2H1T, 2H30,
2H98, 2HA8, 2HBG, 2HJE, 2HW2, 2I02, 2I0O, 2I7D, 2IMZ, 2IUW, 2J3X, 2JLI,
2O7R, 2ODI, 2OGX, 2OIK, 2OIT, 2OML, 2OOC, 2OU6, 2P1M, 2P3P, 2PLR, 2PMQ,
2PR7, 2Q99, 2QJL, 2QS9, 2QSW, 2QZU, 2R31, 2RFP, 2RKQ, 2SAK, 2SNS, 2V25,
2V2G, 2VB1, 2VE8, 2VLG, 2VQ2, 2VYO, 2YVR, 2Z3V, 2Z51, 2Z72, 2ZK9, 2ZPT,
2ZSG, 2ZYJ, 3B7S, 3BCW, 3BLN, 3BMZ, 3BON, 3C1Q, 3C9Q, 3CHJ, 3CK1, 3CLA,
3CNH, 3CWN, 3CZX, 3D0J, 3D1P, 3D33, 3D3Z, 3DG9, 3DS2, 3DXY, 3EKG, 3ERP,
3F7L, 3FDH, 3FFR, 3FGH, 3FLA, 3FOJ, 3FPW, 3G5T, 3GA3, 3GFP, 3GJ0, 3GPG,
3GY9, 3H7C, 3HA9, 3HM4, 3I4Z, 3IAR, 3IRB

Thus for a given amino acid i in a training protein in the PDB with observed angles χPDBi ,

we can use Bayes theorem to compute a posterior probability for each rotamer in the corre-

sponding family in the form:

P (rij|χPDBi ) =
P (χPDBi |rij)pij
P (χPDBi )

(2.3)

Thus we assign a rotamer ri to this amino acid by maximizing the posterior:

ri = argmax
j

P (χPDBi |µij ,σij)pij (2.4)

where χPDBi is the vector of χ angles calculated from residue i in the native structure and
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pij is the probability of the j-th rotamer in the library for residue i.

2.2.3 Full Probabilistic Model

We can now proceed to use the energy computed by the ANNs to derive a full probabilistic

model. The posterior probability of the training rotamer at residue i is the combination of

the energy calculated by equation (2.2) when the weights of neural network w are given,

with the rotamer library probability and is defined by:

P (ri|w) =
exp(−KEiri)piri∑Ri

j=1 exp(−KEij)pij
(2.5)

where Ri is the number of rotamers for residue i and K is a constant (K = 0.1). We make

the following standard independence approximation

P (r|w) = Πi(ri|w) (2.6)

This equation can be treated as a likelihood function with the posterior distribution of w

given the data r provided by Bayes theorem:

P (w|r) =
∏
i

P (ri|w)P (w)

P (r)
(2.7)

Here P (w) is the prior distribution on the weights w of the ANNs and P (r) is a normalizing

constant that does not depend on w and can be ignored during the optimization process.

Each ANN has its own prior distribution, which is modeled using a set of four independent

zero-mean normal distributions in the form:

P (w|α) =
4∏
i=1

√
αi
2π

exp(−αi
2

∑
j

w2
ij) (2.8)
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where α is a vector of hyper parameters, and each component αi controls the distribution

of the corresponding weights [62, 55].

To complete the description of the full hierarchical probabilistic model, the positive hyper-

parameters αi can be assumed to be independent and follow a Gamma distribution

P (α) =
4∏
i=1

αk−1i

exp(−αi/θ)
θkΓ(k)

(2.9)

parameterized by k and θ. After some experimentation, we fix the value of these parameters

to k = 2 and θ = 0.5.

2.2.4 Markov Chain Monte Carlo Optimization

To optimize the ANN weights, we use a Markov Chain Monte Carlo method [62], essentially

a form of simulated annealing described, for instance, in [59]. More precisely, the idea is to

use Gibbs sampling to sample from the posterior of α, and Metropolis sampling to sample

from the distribution of w. By assuming r and α are independent,, the posterior of w for a

single ANN can be written as:

P (w|r,α) =
P (w, r,α)

P (r,α)
=
P (r|w,α)P (w|α)P (α)

P (r)P (α)
=
P (r|w)P (w|α)

P (r)
(2.10)

so that:

P (w|r,α) ∝

(
4∏
i=1

√
αi
2π

)
exp

(
−

4∑
i=1

αi
2

∑
j

w2
ij +

∑
i

logP (ri|w)

)
(2.11)

Note that the last sum of Equation 2.11 ranges over all the amino acids in the training

proteins where the corresponding ANN is used (e.g. for instance over all the cysteines in the

set of training proteins). Similarly, for a single hyperparameter αi associated with a specific
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ANN, we have

P (αi|r,w) =
P (αi, r,w)

P (r,w)
=
P (r|w, αi)P (w|αi)P (αi)

P (r,w)
=
P (r|w)P (w|αi)P (αi)

P (r,w)
(2.12)

so that:

P (αi|r,w) ∝ αk−1i exp

(
−αi

(
θ−1 +

1

2

∑
j

w2
ij

))
∝ Gamma

k,(θ−1 +
1

2

∑
j

w2
ij

)−1
(2.13)

Thus a Markov Chain Monte Carlo method is applied to get samples of the posterior distri-

bution P (w,α|r) by iteratively using:

1. Gibbs sampling for α(j)

2. Metropolis sampling for w(j)

Training proceeds by amino acid type, using all the ANNs associated with that particular

amino acid type. For a given amino acid type and a given ANN, the learning algorithm

alternates between Gibbs sampling and Metropolis sampling. Thus at the j-iteration, we

first get samples of α(j+1) by

α
(j+1)
1 ∼ P (α1|α(j)

2 , α
(j)
3 , α

(j)
4 ,w(j)) (2.14)

α
(j+1)
2 ∼ P (α2|α(j+1)

1 , α
(j)
3 , α

(j)
4 ,w(j)) (2.15)

α
(j+1)
3 ∼ P (α3|α(j+1)

1 , α
(j+1)
2 , α

(j)
4 ,w(j)) (2.16)

α
(j+1)
4 ∼ P (α4|α(j+1)

1 , α
(j+1)
2 , α

(j+1)
3 ,w(j)) (2.17)

Then we get a corresponding sample w(j+1) by:
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1. get candidate sample using

w∗ ∼ N(wj, σ2) (with σ2 = 0.1) (2.18)

2. accept samplew∗ asw(j+1) with probability min
[

P (w∗|r,α(j+1))

P (w(j))|r,α(j+1))
, 1
]
, otherwisew(j+1) =

w(j)

The process is repeated for 500 iterations and the best observed weight w∗ is saved and used

in prediction. The number of iterations was chosen empirically based on prediction accuracy

results obtained on the training set.

w∗ = argmax
w(j)

P (w(j)|r,α) (2.19)

2.2.5 Fast Identification of Atom Contacts

In principle, the previous approach could require looking at all pairs of atoms in a protein

in order to compute the corresponding energy term. However, most pairs of atoms are

separated by a distance greater than the 7 Å cutoff and therefore are considered as non-

interacting. Thus, in order to significantly reduce the calculation costs, and associated

CPU time, SIDEpro identifies the spatial neighbors of each residue and then ignores all

non-neighbors in the energy calculations. The corresponding pruning is implemented using

simple bounding boxes: if two bounding boxes do not intersect, then the corresponding pair

of atoms is separated by more than 7.0 Å and can be ignored from the energy calculation.

Neighbors are defined by checking for overlap between boxes in 3D space which are deter-

mined by subsets of residue atoms. For each residue i, a box in 3D space is calculated for the

backbone atoms (3DboxBB(i)), the side-chain atoms allowing all rotamers (3DboxSC(i)), and

for each rotamer j (3DboxRot(i, j)). Each box is defined as the space bound by six planes.
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For 3DboxBB(i) the planes are:

x = min
k∈backbone(i)

Xi1kx − 3.5 (2.20)

x = max
k∈backbone(i)

Xi1kx + 3.5 (2.21)

y = min
k∈backbone(i)

Xi1ky − 3.5 (2.22)

y = max
k∈backbone(i)

Xi1ky + 3.5 (2.23)

z = min
k∈backbone(i)

Xi1kz − 3.5 (2.24)

z = max
k∈backbone(i)

Xi1kz + 3.5 (2.25)

The planes which determine 3DboxSC(i) are defined in the same manner, but the coordinates

of all rotamers are searched:

x = min
j∈rotamers(i),k∈side−chain(i)

Xijkx − 3.5 (2.26)

x = max
j∈rotamers(i),k∈side−chain(i)

Xijkx + 3.5 (2.27)

y = min
j∈rotamers(i),k∈side−chain(i)

Xijky − 3.5 (2.28)

y = max
j∈rotamers(i),k∈side−chain(i)

Xijky + 3.5 (2.29)

z = min
j∈rotamers(i),k∈side−chain(i)

Xijkz − 3.5 (2.30)

z = max
j∈rotamers(i),k∈side−chain(i)

Xijkz + 3.5 (2.31)

The planes which determine 3DboxRot(i, j) are defined in the same manner, but using the
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side-chain atoms of a specific rotamer:

x = min
k∈side−chain(i)

Xijkx − 3.5 (2.32)

x = max
k∈side−chain(i)

Xijkx + 3.5 (2.33)

y = min
k∈side−chain(i)

Xijky − 3.5 (2.34)

y = max
k∈side−chain(i)

Xijky + 3.5 (2.35)

z = min
k∈side−chain(i)

Xijkz − 3.5 (2.36)

z = max
k∈side−chain(i)

Xijkz + 3.5 (2.37)

Once the boxes are calculated, neighbor sets are defined for the backbone, side-chain, and

each rotamer of each residue. The backbone neighbor set of residue i, NbrBB(i), consists

of all residues l such that 3DboxBB(l) intersects 3DboxSC(i). The side-chain neighbor set,

NbrSC(i), consists of all residues l such that 3DboxSC(l) intersects 3DboxSC(i). The rotamer

neighbor set, NbrRot(i, j), consists of all rotamers l,m such that 3DboxRot(l,m) intersects

3DboxRot(i, j). Note, however, that only the rotamers of residue-level neighbors need to be

checked. This is a simple version of the approach used in SCWRL4 to construct bounding

boxes for checking for clashes [45], but it is used here efficiently to avoid calculating distances

for the vast majority of residue and atom pairs.
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2.2.6 Elimination of Rotamers with Backbone Clashes

Once the residue neighbors are defined, the next step is to eliminate any rotamers which

clash with the protein backbone. We define a rotamer’s backbone clashing energy as:

EV DW
ij =

∑
k∈side−chain(i)

∑
l∈NbrBB(i)

∑
n∈backbone(l)

(vdwik + vdwln − ||Xijk −Xl1n||)2,
||Xijk −Xl1n||
vdwik + vdwln

< 0.67

0, otherwise

(2.38)

where vdwik is the van der Waals radii of atom k of residue i. If EV DW
i j > 1.0 the rotamer is

considered to be clashing with the backbone and it is excluded from the search. An exception

is made if all of the rotamers are clashing according to this criteria, in which case the least

clashing rotamer (with lowest clashing energy) is used and all others are excluded. This

approach reduces the search space significantly: on the SCWRL4 dataset approximately

20% of the rotamers are excluded from the search, resulting in a reduction of approximately

10% in average CPU time.

2.2.7 Prediction of Rotamers

After the rotamers which result in backbone clashes are excluded, the next step is to calculate

the interaction energies between each rotamer of each residue and the entire backbone (EBB)

and the side-chains of the previously defined neighboring residues (ESC). These interaction
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energies are calculated as:

EBB
ij =

∑
k∈side−chain(i)

∑
l∈NbrBB(i)

∑
n∈backbone(l)

faibikbln(||Xijk −Xl1n||;w∗) (2.39)

ESC
ijlm =

∑
k∈side−chain(i)

∑
n∈side−chain(l)

faibikbln(||Xijk −Xlmn||;w∗) (2.40)

where i and l represent amino acids, and j and m represent rotamers in the corresponding

libraries. This decomposition is computationally efficient because the backbone is fixed and

thus the backbone contribution EBB is constant.

The probability estimates for each rotamer are initially set to the values from the rotamer

library. Then, the structure-dependent energy values, EBB and ESC , are combined with

the rotamer library probabilities to calculate the posterior probabilities for each rotamer.

The predicted energy of the individual rotamers (EP
ij ) and the corresponding probability

estimates (qij) are the updated iteratively. Thus we first initialize the probability qij using

the rotamer library default probabilities qij = pij and we then iterate the following two

update equations:

EP
ij = EBB

ij +
∑

l,m∈NbrRot(i,j)

qlmE
SC
ijlm (2.41)

qij =
exp(−KEP

ij )pij∑Ri

k=1 exp(−KEP
ik)pik

(2.42)

SIDEpro uses only 6 iterations of this procedure, which in general is sufficient for the values

to converge and yield a predicted rotamer for each residue i by setting: r̂i = argmax
j

qij.
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Algorithm 1 SIDEpro Pseudocode.

Calculate boxes: 3DboxBB, 3DboxSC , and 3DboxRot
Calculate neighbor sets: NbrBB, NbrSC , and NbrRot
//set qij to be pij and remove clashing rotamers
for all residue i do

for all rotamers at residue j do
qij=pij
Evdw(i, j) = calculate equation (2.38)
if Evdw(i, j) > 1.0 then

remove rotamer j
end if

end for
end for
//calculate EBB
for all residue i do

for all rotamers j at residue i do
EBB(i, j) = calculate equation (2.39)

end for
end for
//calculate ESC
for all residue i do

for all rotamers j at residue i do
for all l,m ∈ NbrRot(i, j) do
ESC(i, j, l,m) = calculate equation (2.40)

end for
end for

end for
// update energies and probabilities until r converges
while any qij does not converge do

for all residue i do
//update energy of rotamers at residue i
for all rotamers j at residue i do
eij = calculate equation (2.41)

end for
//update probability of rotamers at residue i
for all rotamers j at residue i do
qij = calculate equation (2.42)

end for
end for

end while
for all residue i do
r̂i = argmax

j
qij

end for
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Algorithm 2 SIDEpro Pseudocode (continued).

where

qij : updated probability of rotamer j at residue i

pij : initial probability of rotamer j at residue i (from library)

r : current set of rotamers i

r̂i : predicted rotamer for residue i

2.2.8 Clash Reduction Procedure

The initial model produced by SIDEpro uses the means of the rotamer angles, thus it can

be considered to be a rigid rotamer model. When a rigid rotamer model is used, some

clashes are almost always observed in a compact protein model. In fact, the structures used

for training contain some clashes because the rotamers were set to the mean of the closest

rotamer in the library instead of using the raw coordinates. Since the SIDEpro energy

function is a computational energy function learnt from data that contains some clashes,

the initial model produced by SIDEpro may contain a certain number of steric clashes. To

resolve these clashes we use a post-processing method which incorporates some flexibility

into the rotamers.

The clashes are minimized using the following protocol. First, each residue is checked for

clashes and for those with one or more clashing atoms, the χ angles are updated to the mean

(µ) ± the standard deviation (σ) multiplied by m (initially set to 0.5), then the distances

between atoms are recalculated and the number of clashes are recounted. Next, the χ angles

are set such that the number of clashes is minimized among the combination of µ± σ. This

operation is repeated until the clash counts converge. When the clash counts converge, the

value of m is increased to 1.0 and the process is repeated. When the clash counts converge,

the value of m is again increased to 1.5 and the process is repeated for the final time. This

method reduces the number of clashes without a noticeable effect on accuracy.

23



2.2.9 Incorporation of Fixed External Atoms into the Prediction

Method

SIDEpro can optionally incorporate fixed atoms from external molecules (other proteins,

RNA, DNA, ligands, etc.) into the prediction process. These external fixed atoms are

handled in a manner similar to backbone atoms. SIDEpro builds boxes and neighbors for

them, and calculates the energy EBB as if the fixed atom were backbone atoms. Since the

SIDEpro ANNs are trained only on C, O, N, H and S atoms, any other atoms types are

simply treated as C. In addition to handling external molecules, a subset of side-chains in

the protein being predicted can be treated as fixed. These are handled by ignoring the

rotamers at the fixed positions and using the input coordinates for all calculations.

2.3 SIDEpro for Non-Standard Amino Acids

2.3.1 Training and testing datasets

Since we use machine learning methods to predict the side chain conformations of NSAs, we

first describe our curated datasets. We distinguish the 15 more frequent PTMs from all the

other NSAs, since there is far more data available for them in the PDB.

Non Standard Amino Acid Dataset

The Protein Data Bank assigns a 3-letter identifier to unique chemical structures. The

system is used for standard amino acids as well as other chemical structures (e.g. ligands,

non-standard amino acids) that have coordinates in PDB files. To curate a set of NSAs

observed in protein structures, we started from a set of 1449 chemical structures identified as
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“non-standard polymeric components” by the PDB. From this starting set, we first removed

molecules that were not amino acids, leaving 614 amino acids after this step. Then we

downloaded all of the PDB structure files that contained one or more of these 614 identifiers

yielding a total of 12,294 PDB files. Next, we checked the integrity of the peptide backbone

for each potential NSA. If either peptide bond distance was greater than 1.5 Å, the NSA was

excluded from the dataset, leaving 603 NSAs after this step. Next, we excluded any NSA

that did not have at least one standard amino acid adjacent to it in the peptide chain. After

this step, 549 distinct NSAs contained in 12,045 PDB files remained. The reason for this step

was to exclude NSAs observed only in short peptides composed exclusively of NSAs, that

are never observed integrated into proteins. Then, we excluded NSAs which have no carbon

γ, or multiple carbon γs, because only amino acids with a single χ1 angle are considered

for the prediction stage. After this step, 459 NSAs contained in 11,543 PDB files remained.

Next, we excluded pdbs which have NSAs with high B-factors (>40) because those side chain

conformations are doubtful. Finally, we removed redundancy at the protein sequence level

using a sequence similarity threshold of 30% and set aside the data corresponding to the

15 most frequent PTMs (see next section on FPTMs). The final NSA (non-FPTM) dataset

consists of 316 unique NSAs contained in 1,308 PDBs files. The NSA (non-FTPM) data

set is used exclusively for estimating the generalization accuracy of SIDEpro (see below).

Frequent PTMs Dataset

Our main criteria for categorizing an NSA as a PTM was that a substructure of the NSA

must be one of the standard 20 amino acids. We sought to discover the set of PTMs with

sufficient instances in the PDB to allow for training and creating rotamer libraries. For this

purpose we set a threshold of at least 50 instances. We sorted the curated NSA dataset

by the total number of times the NSA is observed in the PDB. Multiple occurrences in the

same PDB file were counted as unique occurrences. After ordering the dataset we observed
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that there were 15 NSAs with 50 or more occurrences, and all of them were PTMs according

to our definition. Tables 2.3 and 2.4 show the chemical structures of the PTMs and their

precursor standard amino acids (e.g. tyrosine is the precursor of phosphotyrosine) using the

PDB atom naming scheme to label individual atoms.

Selenomethionine (MSE) was associated with a particularly large number of PDB files, and

thus we selected 500 of them at random.

Finally, for each PTM, we split the corresponding files were split into five folds to use cross

validations. The total number of PDB files in the FPTM set is 1168.

Table 2.5, 2.6, 2.7 and 2.8 show PDB 3-letter code and the corresponding list of PDB file

names in the FPTM set.
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Table 2.3: Frequent Post-Translational Modifications (FPTMs)
Precursor PTM

AA Structure ID Name Structure

ALA
OO

N
CA

CB
CG

OO

OG
N

CA
CB

OO

N SG
CA

CB
CG CE

OO

N Se
CA

CB
CG CE

OO

N
CA

CB

CG

CB

CD

OO

N

O

CA

CG

CB

CD

OO

N

O

OO

N
CA

CG

CB

CD

CA

CG

CB

CD

ABA
ALPHA-
AMINOBUTYRIC
ACID

OO

N
CA

CB
CG

OO

OG
N

CA
CB

OO

N SG
CA

CB
CG CE

OO

N Se
CA

CB
CG CE

OO

N
CA

CB

CG

CB

CD

OO

N

O

CA

CG

CB

CD

OO

N

O

OO

N
CA

CG

CB

CD

CA

CG

CB

CD

CYS
SG

OO

N
CA

CB

OO

N
SG

O
CA

CB

OO

N O

O

SGCA
CB

OO

N
O

O

SG
O

CA
CB

OO

N S
OSGCA

CB

CSO
S-
HYDROXYCYSTEINE SG

OO

N
CA

CB

OO

N
SG

O
CA

CB

OO

N O

O

SGCA
CB

OO

N
O

O

SG
O

CA
CB

OO

N S
OSGCA

CB

CSD 3-SULFINOALANINE

SG

OO

N
CA

CB

OO

N
SG

O
CA

CB

OO

N O

O

SGCA
CB

OO

N
O

O

SG
O

CA
CB

OO

N S
OSGCA

CB

CME
S,S-(2-
HYDROXYETHYL)
THIOCYSTEINE

SG

OO

N
CA

CB

OO

N
SG

O
CA

CB

OO

N O

O

SGCA
CB

OO

N
O

O

SG
O

CA
CB

OO

N S
OSGCA

CB

OCS
CYSTEINESULFONIC
ACID

SG

OO

N
CA

CB

OO

N
SG

O
CA

CB

OO

N O

O

SGCA
CB

OO

N
O

O

SG
O

CA
CB

OO

N S
OSGCA

CB

LYS
N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ

OO

CA
CB

CG
CD

CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O
O

P O

O

O

O

NZ
CA

CB
CG

CD
CE

KCX
LYSINE NZ-
CARBOXYLIC ACID

N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ

OO

CA
CB

CG
CD

CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O
O

P O

O

O

O

NZ
CA

CB
CG

CD
CELLP

2-LYSINE(3-
HYDROXY-2-
METHYL-5-
PHOSPHONOOXYMETHYL-
PYRIDIN-4-
YLMETHANE)

N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ

OO

CA
CB

CG
CD

CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O
O

P O

O

O

O

NZ
CA

CB
CG

CD
CE

MLY N-DIMETHYL-LYSINE
N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ

OO

CA
CB

CG
CD

CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O
O

P O

O

O

O

NZ
CA

CB
CG

CD
CE

M3L
N-
TRIMETHYLLYSINE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ

OO

CA
CB

CG
CD

CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O

NZ
CA

CB
CG

CD
CE

N

O O
O

P O

O

O

O

NZ
CA

CB
CG

CD
CE

2.3.2 Building Rotamer Libraries for NSAs

A fixed rotamer is defined by a specific set of χ angles whose values are typically equal to the

mean of the values observed in a set of corresponding side-chain conformations that cluster

in 3D space. A flexible rotamer is defined by both the means and variances of each one of
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Table 2.4: Frequent Post-Translational Modifications (Continued)
Precursor PTM

AA Structure ID Name Structure

MET

OO

N
CA

CB
CG

OO

OG
N

CA
CB

OO

N SG
CA

CB
CG CE

OO

N Se
CA

CB
CG CE

OO

N
CA

CB

CG

CB

CD

OO

N

O

CA

CG

CB

CD

OO

N

O

OO

N
CA

CG

CB

CD

CA

CG

CB

CD

MSE SELENOMETHIONINE

OO

N
CA

CB
CG

OO

OG
N

CA
CB

OO

N SG
CA

CB
CG CE

OO

N Se
CA

CB
CG CE

OO

N
CA

CB

CG

CB

CD

OO

N

O

CA

CG

CB

CD

OO

N

O

OO

N
CA

CG

CB

CD

CA

CG

CB

CD

PRO

OO

N
CA

CB
CG

OO

OG
N

CA
CB

OO

N SG
CA

CB
CG CE

OO

N Se
CA

CB
CG CE

OO

N
CA

CB

CG

CB

CD

OO

N

O

CA

CG

CB

CD

OO

N

O

OO

N
CA

CG

CB

CD

CA

CG

CB

CD

PCA
PYROGLUTAMIC
ACID

OO

N
CA

CB
CG

OO

OG
N

CA
CB

OO

N SG
CA

CB
CG CE

OO

N Se
CA

CB
CG CE

OO

N
CA

CB

CG

CB

CD

OO

N

O

CA

CG

CB

CD

OO

N

O

OO

N
CA

CG

CB

CD

CA

CG

CB

CD

HYP 4-HYDROXYPROLINE

OO

N
CA

CB
CG

OO

OG
N

CA
CB

OO

N SG
CA

CB
CG CE

OO

N Se
CA

CB
CG CE

OO

N
CA

CB

CG

CB

CD

OO

N

O

CA

CG

CB

CD

OO

N

O

OO

N
CA

CG

CB

CD

CA

CG

CB

CD

SER
OG

OO

N
CA

CB

OO

N P

O

O
O

OGCA
CB

OG

OO

N
CA

CB

CG

OO

N P

O

O
O

OGCA
CB

CG

OO

N

OH

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

OO

N

OH

P

O

OO

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

SEP PHOSPHOSERINEOG

OO

N
CA

CB

OO

N P

O

O
O

OGCA
CB

OG

OO

N
CA

CB

CG

OO

N P

O

O
O

OGCA
CB

CG

OO

N

OH

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

OO

N

OH

P

O

OO

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

THR

OG

OO

N
CA

CB

OO

N P

O

O
O

OGCA
CB

OG

OO

N
CA

CB

CG

OO

N P

O

O
O

OGCA
CB

CG

OO

N

OH

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

OO

N

OH

P

O

OO

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

TPO PHOSPHOTHREONINE

OG

OO

N
CA

CB

OO

N P

O

O
O

OGCA
CB

OG

OO

N
CA

CB

CG

OO

N P

O

O
O

OGCA
CB

CG

OO

N

OH

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

OO

N

OH

P

O

OO

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

TYR

OG

OO

N
CA

CB

OO

N P

O

O
O

OGCA
CB

OG

OO

N
CA

CB

CG

OO

N P

O

O
O

OGCA
CB

CG

OO

N

OH

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

OO

N

OH

P

O

OO

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

PTR
O-
PHOSPHOTYROSINE

OG

OO

N
CA

CB

OO

N P

O

O
O

OGCA
CB

OG

OO

N
CA

CB

CG

OO

N P

O

O
O

OGCA
CB

CG

OO

N

OH

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

OO

N

OH

P

O

OO

CA
CB

CG

CD1
CE1

CD2

CE2

CZ

its χ angles. Both types of rotamers are widely used in side-chain conformation prediction,

with rigid rotamer libraries [75, 9] generally leading to faster, but slightly less accurate,

algorithms than flexible rotamer libraries [45, 53, 61]. While several rotamer libraries have

been published for natural amino acids, a few libraries for NSAs have been published[29, 72].

Flexible Rotamer Library for FPTMs

For 14 of the 15 PTMs in this study, the atoms of the precursor amino acid that is being

modified are a subset of the atoms in the modified residue. The exception is Selenomethio-
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nine. Of the 14 FPTMs where the precursor atoms are a subset, 12 introduce new rotatable

bonds (i.e. additional χ angles) that must be dealt with. The two FPTMs with proline as

the precursor are the exceptions. For instance, Serine (SER) has only one χ angle, whereas

phosphorylated Serine (SEP) has three χ angles.

In Tables 2.3 and 2.4, when FPTMs have additional χ angles, the last χ angle of the precursor

amino acid is highlighted in red, and the additional χ angles in the FPTM are highlighted

in green. For instance, in Table 2.4 the last χ angle of Serine, corresponding to the CA-CB

bond, is highlighted in red. The two additional χ angles, corresponding to the CB-OG and

OG-P bonds in Phosphoserine, are highlighted in green. Note that for Phospho-Tyrosine

(PTR), with Tyrosine (TYR) as the precursor, the first χ angle is treated as the last χ angle

because the second (and final) χ angle corresponding to the CB-CG bond is non-rotameric

[77].

The χ angles present in the precursor will be denoted by χp and those that are additional

in the modified residue by χa. To model the χ angles in FPTM residues that are present in

the precursor residues (χp), a standard native amino acid rotamer library was used without

modification [77]. The additional χ angles in χa were handled with a new customized method

designed to accommodate cases where only few training instances are available, relative to

the case of natural amino acids. For each FPTM type, except LLP and CME, we placed each

i-th χ angle (χai) in χa into one of three angle bins: (0◦,120◦), (120◦,240◦), and (240◦,360◦).

We calculated the corresponding means µraiai and standard deviations σraiai where rai is a

rotamer type for χai. By assuming that each χ angle is independent, χa can be assigned to

a maximum of Ra = 3|χa| rotamers (rotamers with zero counts are eliminated).

For symmetric bonds(O-P bonds in LLP, SEP, TPO and PTR; CB-SG bond in OCS; NZ-C

bond in KCX; and CE-NZ bond in M3L), since their χ angles are almost constant, we set

their mean χ angle to 180◦ in the rotamer library. The χ angles for PCA are also constant,

and thus we set χ1 = 0◦, χ2 = 0◦, and χ3 = 180◦ for PCA. In all these cases, we set the
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standard deviations to a small default value equal to 10◦.

For LLP and CME, since they have many additional χ angles and more possible rotamers,

we found that the prediction accuracy is lower comparing to other FPTMs when using the

library defined above. Because of this, we decreased the number of possible rotamers by

decreasing the size of the bins. For LLP, the bins are: (0◦,120◦) and (120◦,360◦) for χa1;

(0◦,240◦) and (240◦,360◦) for χa2 and χa4; (0◦,180◦) and (180◦,360◦) for χa3; and a single bin

(0◦,360◦) for χa5. For CME, the bins are: (0◦,180◦) and (180◦,360◦) for χa1 and χa2; and we

treated χa3 and χa4 as fixed bonds with values 180◦ and 300◦. These bins were determined

from the empirical distribution of χa.

We assume that χa is dependent on the last χ angle in χp, marked in red in Tables 2.3

and 2.4, and referred to as χp,last. This angle (χp,last) is associated with one of three bins of

equal size 120◦ as above. For each rotamer of χp,last, we calculated the rotamer probabilities

p(ra|rp,last), where ra is the rotamer types for the additional χ angles, and rp,last is the

rotamer type for χp,last. Since there are Ra rotamers for the additional χ angles in χa and

Rp rotamers for the precursor residue, the total number of rotamers for a FPTM is Ra×Rp,

and the probability of combined rotamer (rp, ra) is p
rp
p × p(ra|rp,last) normalized by the sum

of all Ra ×Rp probabilities where rp is a rotamer for the precursor residue.

Restricted Flexible Rotamer Library for NSAs(non-FPTM)

Our approach to the generic prediction of NSAs, which do not correspond to FPTMs, treats

only the first χ1 (usually CA-CB) as rotatable, and considers the rest of the NSA structure

as fixed. We built a general backbone independent flexible rotamer library for the χ1 angle

using the original SIDEpro training data set [61] (listed in Table 2.2). First, the χ1 angles for

all natural amino acids (except Alanine and Glycine which have no χ1 angle) in the training

set combined (not type specific) were calculated and placed into one of three bins: (0◦,120◦),
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Figure 2.2: Training pipeline.

31



FPTMs 20 AAs

C-C
C-N
C-O
C-S

NSA (non PTM)

C-CARG
C-NARG
C-OARG
C-SARG

C-CCYS
C-NCYS

C-CPTR
C-NPTR
C-OPTR
C-SPTR

C-CSEP
C-NSEP

(3) Calculate energy 
for all pair of atoms 
using NNs

(6) Convert expected 
energy to rotamer 
probabilities

(4) Select residue 
randomly

Ei,1 Ei,2

(1) Initialize all rotamer 
probabilities using 
corresponding library

(2) Measure distances between 
pairs of interacting atoms

(5) Calculate expected 
energy of its rotamers

pi,1 pi,2

FPTMs

20 AAs

Other AAs

SCWRL4 
library

FPTM library

Χ1 library
+COSMOS

(7) Repeat six 
times per protein

pi,1 pi,2

pj,1

pj,2
pj+1,1 pj+1,2

NC
Cα NC

C
Cα

Cβ
Cβ

N N
Cα

C
C

Cβ

NC
Cα NC

C
Cα

Cβ
Cβ

N N
Cα

C
C

Cβ

NC
Cα NC

C
Cα

Cβ
Cβ

N N
Cα

C
C

Cβ

NC
Cα NC

C
Cα

Cβ
Cβ

N N
Cα

C
C

Cβ

Figure 2.3: Prediction pipeline for optimizing all the rotamer probabilities. Once the op-
timization is completed, final predictions are produced by first selecting the most likely
rotamer and then going through a clash reduction algorithm.
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(120◦,240◦) and (240◦,360◦). The mean and standard deviation of the χ1 angles for each

rotamer bin were calculated. By default, the values of the χi, i ≥ 2 angles are fixed to those

of the original NSA structure. If a user provides multiple structures for a given NSA, then

SIDEpro automatically builds a uniform rotamer library for χi, i ≥ 2. For the SIDEpro

web server and downloadable program, we use the COSMOS program [3] for predicting the

conformations of small molecules, to produce 10 conformations for each NSA that is not a

FPTM.

2.3.3 Training Energy and Prediction

To predict side chains, SIDEpro uses an additive energy function parameterized using a large

number of neural networks trained from the data. All the neural networks have identical

structure with one input unit corresponding to a distance between a pair of atoms, one

hidden layer with 15 sigmoidal hidden units, and one linear output unit computing the

corresponding energy term as shown in Figure 2.1.

Neural Networks

For natural amino acids, there are 156 neural networks, one per amino acid type and per

atom pair type. For the most frequent PTMs there are 130 new neural networks, one per

FPTM type and per atom-pair type. Thus, for instance, there is one carbon-carbon neural

network for phosphorylated Serine. For NSAs (non-FPTMs) we use a more generic approach

with 25 neural networks, one per atom pair type. Note that as a slight simplification in all

cases we consider only five atom types (C, H, N, O, S), treating P as if it were C, and using

H only in the second position of an interaction.
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Training

The training pipeline is summarized in Figure 2.2. For a given protein in the training set with

a fixed backbone, we initialize each rotamer to the value closest to the native conformation.

Then we cycle once through each protein in the training set from the C-terminus to the

N-terminus. When a given amino acid is being considered, we compute the energy of all

its rotamers using the corresponding neural networks. These energies are converted into

probabilities and then compared to the native conformation. The mismatch information is

used to adjust the weights of the neural networks using Markov Chain Monte Carlo methods

(see [61] for more details). For NSAs (non-FPTMs), we use the original SIDEpro training set

(Table 2.2) of 252 proteins to train generic energy function neural networks using distances

between pairs of atoms in all types of natural amino acids. The SIDEpro training set is a

non-redundant dataset with SCWRL4 test dataset [45] with 25% sequence similarity. For

FPTMs, the final downloadable and server version using neural networks trained on entire

FPTM datasets. We set the hidden size which maxmize the cross validated accuracy.

Prediction

The prediction pipeline is summarized in Figure 2.3. In prediction, we are given a protein

with a fixed backbone and possibly also a set of additional atoms with fixed coordinates,

which typically correspond to fixed side chains or atoms in ligand moledules. For the re-

maining amino acids, we cycle through them in random uniform order without replacement.

Each amino acid has its own library of rotamers and rotamer probabilities as described in

Section 2.2. This is true for natural amino acids, for FPTMs, and for other NSAs initialized

uniformly over 10 conformations produced by COSMOS. For a given non-fixed amino acid,

we compute the expected energy of each one of its rotamers, given all the other fixed atoms,

rotamers, and rotamer probabilities. These energy values are converted to probabilities and
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the corresponding rotamer probability table is updated. The full cycle is repeated 6 times

for each protein.

It is important to note that the neural networks are used only once to compute all the

possible energy values, since the set of all possible pairwise distances, across all possible

rotamer values, does not change during the prediction phase. For the final prediction, we

choose the most likely rotamer configuration for each amino acid that is not fixed by the

user. Finally, we run the same clash reduction algorithm as in previous section.

2.4 Results

2.4.1 Evaluation Data and Protocol

To conduct a comparative evaluation of SIDEpro and SCWRL4, the following datasets are

used: (1) the benchmark dataset of 379 proteins used to evaluate SCWRL4 [45] (SCWRL4

dataset); (2) 94 proteins determined by X-ray crystallography and released in the most

recent Critical Assessment of Protein Structure Prediction Experiment (CASP9 dataset);

(3) a small set of seven large protein complexes (pdb: 1RYP, 2JES, 2UVB, 3GND, 3GZU,

3K1F, 3KQK) ranging in size from 2760 to 8767 residues (COMPLEXES dataset); and (4)

a ribosome (pdb: 1FJG) with and without the RNA (RIBOSOME dataset).

In SCWRL4 the default predictor utilizes a Flexibile Rotamer Model (FRM), but a Rigid

Rotamer Model (RRM) is also available. The basic tradeoff between the two is that FRM

is more accurate but slower than RRM [45]. Our preliminary tests of SCWRL4 confirmed

this tradeoff, thus, both FRM and RRM are evaluated on each test dataset in this work and

the summary results of both are compared to SIDEpro; however, only the FRM results are

reported in the residue specific accuracy results for the SCWRL4 dataset (Table 2.17) and
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the CASP9 dataset (Table 2.12).

The summary results tables present the χ1 accuracy, χ1+2 accuracy, and RMSD averaged

over all residues, the average CPU time per protein, and the total number of severe clashes

and moderate clashes. The summary results are presented as follows: SCWRL4 dataset

in Table 2.9, CASP9 dataset in Table 2.11, COMPLEXES dataset in Table 2.13, and the

RIBOSOME dataset in Table 2.14. In all tables the best result according to each metric is

shown in bold.

2.4.2 Accuracy

Accuracy is assessed using three standard metrics: (1) percentage of side-chains where χ1 is

within 40◦ degrees of the experimental structure angles; (2) percentage of side-chains with

both χ1 and χ2 within 40◦; and (3) root mean square deviation (RMSD), which is calcu-

lated using the absolute coordinates of the corresponding model and experimental structure

side-chain atoms. For χ1 evaluation, the symmetries of Phe and Tyr are accounted for by

calculating χ1 using both symmetric atoms and checking each result versus the experimental

structure. For χ1+2 evaluation the symmetries of Asp, Phe, and Tyr are accounted for simi-

larly. In evaluating the RMSD the symmetries of Arg, Asp, Glu, Phe, and Tyr are accounted

for by calculating the RMSD using both possible atom mappings and keeping the minimum

result.

The accuracy summaries calculated on the SCWRL4 dataset are presented in Table 2.9.

Overall, SIDEpro is slightly more accurate than SCWRL4-FRM according to all three ac-

curacy measures: χ1 (86.14% vs 85.43%), χ1+2 (74.15% vs 73.47%), and RMSD (0.911 Å

vs 0.948 Å). SCWRL4-RRM is the least accurate according to all three measures. Table

2.17 provides the residue specific accuracy results of SIDEpro and SCWRL4-FRM on the

SCWRL4 dataset [45].
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The accuracy summaries calculated on the CASP9 dataset are presented in Table 2.11.

Again, SIDEpro is slightly more accurate than SCWRL4-FRM according to all three accuracy

measures: χ1 (85.01% vs 84.21%), χ1+2 (72.76% vs 72.21%), and RMSD (0.940 Å vs 0.977

Å). Again, SCWRL4-RRM is least accurate according to all three measures. Table 2.12

provides the residue specific accuracy results of SIDEpro and SCWRL4-FRM on for the

CASP9 dataset.

The accuracy summaries calculated on the COMPLEXES dataset are presented in Table

2.13. On this set SIDEpro is clearly more accurate than SCWRL4-FRM according to all three

accuracy measures: χ1 (79.73% vs 77.99%), χ1+2 (64.19% vs 62.57%), and RMSD (1.109 Å

vs 1.184 Å). Again, SCWRL4-RRM is least accurate according to all three measures.

The accuracy summaries calculated on the RIBOSOME dataset with and without RNA

are presented in Table 2.14. When the predictions are made without the RNA coordinates

provided to the methods SIDEpro is more accurate than SCWRL4-FRM according to all

three accuracy measures: χ1 (71.50% vs 70.61%), χ1+2 (53.60% vs 52.37%), and RMSD

(1.504 Å vs 1.559 Å). SCWRL4-RRM is the least accurate according to all three measures.

When the predictions are made in the presence of the RNA coordinates the accuracies of all

three methods improve according to all three measures. SIDEpro is still the most accurate,

followed by SCWRL4-FRM, with results of χ1 (74.30% vs 72.31%), χ1+2 (56.00% vs 54.49%),

and RMSD (1.423 Å vs 1.480 Å). SCWRL4-RRM is still the least accurate according to the

three measures.

2.4.3 CPU Time

Figure 2.4 shows the relationship between the number of residues in a protein and the

prediction time for SIDEpro, SCWRL4-FRM, and SCWRL4-RRM using the 379 proteins

from the SCWRL4 dataset. For SIDEpro, the time follows a predictable linear increase
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according to the number of residues with a Pearson correlation of 0.97. For both SCWRL

methods, the time generally increases with the number of residues, but the relationship is

much less predictable. The Pearson correlation for SCWRL4-RRM is 0.53 and for SCWRL4-

RRM it is 0.48. On the SCWRL4 dataset the average CPU time needed by each method to

make prediction is 1.61s for SIDEpro, 11.09s for SCWRL4-FRM, and 3.84s for SCWRL4-

RRM (Table 2.9). The gap in CPU time between SIDEpro and SCWRL is more significant

on the CASP9 dataset where the average CPU times are 2.06s for SIDEpro, 19.06s for

SCWRL4-FRM, and 10.64s for SCWRL4-RRM (Table 2.11). For both of these datasets the

times are calculated using all protein chains in each PDB file as input. The CPU times for all

experiments are obtained using an AMD Turion 64 X2 Mobile Technology TL-60+ at 2.00

GHz, with 3.00 GB of RAM, and running 32-bit Microsoft Windows Vista Home Premium

Service Pack 2.

For the COMPLEXES dataset the gap between the CPU times required by the different

methods is much more significant. The average CPU times are 26.9s for SIDEpro, 583.9s

for SCWRL4-FRM, and 409.4s for SCWRL4-RRM (Table 2.13). For this dataset the times

are calculated using the biological assemblies as input. On the RIBOSOME dataset without

the RNA the CPU times are 11.8s for SIDEpro, 180.0s for SCWRL4-FRM, and 102.1s

for SCWRL4-RRM. When the RNA coordinates are provided the CPU time for SIDEpro

increases only slightly to 13.7s; in contrast the time jumps to 4020.7s for SCWRL4-FRM

and 796.2s for SCWRL4-RRM (Table 2.14). Note that all three methods exhibit similar

increases in accuracy when the RNA coordinates are utilized in prediction. In sum, once

trained, SIDEpro is significantly faster than the other programs.
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Figure 2.4: CPU Times versus Protein Length for the 379 Protein SCWRL4 Dataset. The
CPU time required by SIDEpro increases linearly with the number of residues, with a Pearson
correlation of 0.97. For both SCWRL methods, the CPU time generally increases with the
number of residues, but the relationships are less predictable. The Pearson correlation for
SCWRL4-FRM is 0.53 and for SCWRL4-RRM it is 0.48.
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2.4.4 Clash Assessment

Two types of clashes are defined here and used for assessment: severe and moderate. In order

to assess the frequency of clashes appropriately and to make fair comparisons we utilized

SCWRL parameters related to steric repulsion to define clashes.

The SCWRL repulsive energy term applies no penalty if the observed distance, d, between

atoms i and j is greater than the sum of their hard sphere radii (vdwij). The maximum

penalty is applied if d/vdwij < .8325, and a linear ramp is used if .8235 ≤ d/vdwij ≤ 1

[13, 15, 45]. Thus, we define a moderate clash to occur if .8235 ≤ d/vdwij ≤ 1, and a severe

clash if d/vdwij < .8325. Clashes are counted at the level of residue pairs and only the

minimum observed d/vdwij for each residue pair is considered. This means that each residue

pair can only be counted as one of: (1) unclashed, (2) moderate clash, or (3) severe clash.

The radii used in this assessment are the same as those used in the SCWRL steric energy:

carbon, 1.6 Å; oxygen, 1.3 Å; nitrogen, 1.3 Å; and sulfur 1.7 Å.

The counts of severe and moderate clashes observed in the models produced by SIDEpro,

SCWRL4-FRM, and SCWRL4-RRM are presented in the summary tables for each dataset.

The clashes observed in the corresponding PDB structures are also included for comparison.

In general, the disparity in the number of clashes between the PDB structures and the models

produced by all methods demonstrates that there is still room for improvement in terms of

clash resolution.

On the SCWRL4 dataset the SIDEpro models have fewer severe clashes (305 vs 1047) and

fewer moderate clashes (7227 vs 9743) than SCWRL4-FRM models, and also fewer severe

clashes than SCWRL4-RRM models (496); however, SCWRL4-RRM has the smallest num-

ber of moderate clashes (6661).

On the CASP9 dataset the pattern is repeated. SIDEpro models have fewer severe clashes
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(112 vs 356) and fewer moderate clashes (2403 vs 3170) than SCWRL4-FRM models, and

also fewer severe clashes than SCWRL4-RRM models (172); however, SCWRL4-RRM has

the smallest number of moderate clashes (2117).

On the COMPLEXES dataset the pattern is repeated again. SIDEpro models have fewer

severe clashes (253 vs 972) and fewer moderate clashes (6114 vs 7493) than SCWRL4-FRM

models, and also fewer severe clashes than SCWRL4-RRM models (540); however, SCWRL4-

RRM has the smallest number of moderate clashes (5490). This same pattern is also repeated

on the RIBOSOME dataset both with and without RNA.

2.4.5 Generic Energy vs Amino Acid Specific Energy

The generic neural networks and the corresponding energy can first be tested on the 20

natural amino acids and compared to the amino acid specific neural networks of SIDE-

pro. Comparison of these two approaches on the SCWRL4 test set, using the SCWRL4

rotamers[45], are reported in Table 2.15, with a summary for each amino acid of the RMSD,

the average χ1 and average χ1+2, and the corresponding p values for a paired t test on the

RMSD. For each metric and each amino acid, the best results are shown in bold together

with all p values that are less than 0.15. When all amino acid types are considered as a single

large test set, the amino acid specific neural networks produce slightly more accurate models

according to all three metrics with high significance (p < 0.001). For ten amino acid types,

the amino acid specific neural networks perform better than the generic neural networks sig-

nificantly p < 0.03. Note that the generic neural networks produce better results for all three

metrics for Tyrosine and Phenylalanine, and for at least one of the three metrics for four

other residue types. However, these differences are not statistically significant since there

is no amino acid type for which the generic neural networks perform better at a significant

level p < 0.15. Taken together these results show overall that: (1) as expected, the amino
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acid specific neural networks perform better than the generic neural networks on the natural

amino acids; (2) the generic neural networks are not far behind, with RMSDs below 1Å most

of the time, and provide reasonable models and a reasonable alternative, with considerably

less parameters.

2.4.6 Prediction of FPTMs

Here we compare the performance of the FPTM specific neural networks and the generic

neural networks for the prediction of FPTMs. One FTPM type, PCA, is excluded from

the comparison since it has only one rotamer. We used five-folds cross validation on FPTM

datasets. Table 2.16 shows the average number of atom pairs used for training the FPTM

specific neural networks, the number of neural networks, the ratio of these two numbers, and

the corresponding cross validated RMSDs and p values for a paired t test on RMSDs of each

fold. The best RMSD values are in bold together with p values less than 0.15. The number

of training atom pairs divided by the number of neural nets provides a rough estimate of the

number of examples used for training the neural networks of each FPTM. For four FPTM

types (LLP, MLY, PTR and MSE), the FPTM specific neural networks perform better than

the generic neural networks with significance p < 0.15. These four types are one of the

five highest values of the average number of training pairs per neural network. For all of

PTMs except OCS and SEP, the specific neural networks perform better, but the difference

is not significant. For two PTM types (OCS and SEP), the generic neural networks perform

better with no significance. Since none of PTM shows better performance with statistical

significance, we decided to use the specific energy for all FPTMs.

Table 2.17 summarizes the cross validated prediction accuracy results for the FPTMs,

grouped according to their precursor amino acid, on the FPTM datasets. Each precur-

sor amino acid is shown in bold together with the corresponding SIDEpro results. The table
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presents the average number of instances observed in the test set for each of the 15 FPTMs,

as well as the cross validated results of the three accuracy metrics (RMSD, χ1, and χ1+2).

Two average RMSD results are presented using: (1) only the atoms in common with the

precursor amino acid; and (2) all the atoms. The former allows for a direct comparison with

the accuracy of SIDEpro on the precursor amino acid.

Considering the RMSD metric, and only atoms shared with the precursor, the accuracy for

the FPTM is somewhat comparable to the accuracy of SIDEpro on the precursor amino

acid. In fact, four PTMs have lower mean RMSD than their precursor: KCX-Lysine, M3L-

Lysine, MLY-Lysine and MSE-Methionine. When all the atoms in the PTM amino acid are

considered, the average RMSD results are significantly higher. This results directly from the

increase in size and degrees of freedom of each PTM amino acid with respect to its precursor

amino acid. Considering the χ1 metric, six of the FPTMs have higher accuracy values

than their precursor amino acid: CSD-Cysteine, KCX-Lysine, LLP-Lysine, M3L-Lysine,

MSE-Methionine, and PCA-Proline. Six other PTMs have χ1 accuracy that is within 10%

of the corresponding precursor amino acid result. Considering the χ1+2 metric, only the

PTMs associated with Lysine, Tyrosine, Methionine, and Proline can be compared. Out

of the eight corresponding PTMs where a direct comparison to the precursor atoms can

be made, four have higher accuracy values than their precursor: KCX-Lysine, M3L-Lysine,

MSE-Methionine, PCA-Proline. In short, by multiple metrics, the prediction accuracy of

SIDepro on the 15 FPTMs is roughly comparable to its accuracy on the natural amino

acids, including by the RMSD metric when only atoms in common with the precursor are

considered. A significant but expected deterioration in RMSD metric is observed when

all atoms are considered, due to the increase in the size and number of rotatable bonds

associated with PTMs.
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2.4.7 Prediction of NSAs

The generic NSA prediction method requires a 3D structure model of the NSA be provided

as input and in order to test the NSA method with more data we tested it on both the FPTM

and the NSA (non-FPTM) test sets. Structure models are derived from two sources: (1)

true structures from the PDB; and (2) conformations generated by COSMOS [[3]]. Results

obtained using true structures do not reflect what can be expected from prediction in a

realistic setting, but rather provide a sense of the limits of the methods. In true prediction

mode, the structure of the NSAs must be generated by a small molecule structure predictor.

Table 2.18 presents the results of the generic NSA prediction method on the FPTM set,

when the FPTM amino acids are treated as non-standard. The best results for each metric

and each FPTM are in bold. In this experiment, for each modified amino acid, we use a

single predicted structure obtained with COSMOS. As shown in the next section, further

improvements can be obtained by using multiple predicted structures. As expected, with a

few exceptions, when the true structures are used as input the resulting models are more

accurate than when predicted structures are used as input. Overall, the predicted structures

lead to reasonable performance, given the complexity of the problem and the high-throughput

nature of the approach. In all cases using predicted structure leads to RMSD values that

are always below 2.5Å on the atoms shared with the precursor amino acids.

Finally, Table 2.20 summarizes the results obtained on the NSA (non-FPTM) test set. For

this experiment, we compare the results obtained using the true structure from the PDB,

a single predicted structure, and multiple (10) predicted structures as structural models for

the NSAs. As expected, using the true structure provides the most accurate results, with

an average RMSD of 1.75Å and a χ1 of 66.63%. Using multiple predicted structures helps

improve the performance. For instance, the average RMSD improves from 3.54 to 3.08 Å, a

value that is reasonable given the high-throughput nature of the approach and the complexity
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and variability of NSAs, but requiring further refinements for high-precision tasks. In terms

of the χ1 metric, using 10 structures improves the performance from 56.39% to 65.30%, a

value very close to the performance obtained using the PDB structures.

2.5 Discussion

Methods that can predict protein side-chains quickly and accurately can be applied in many

important applications in computational molecular biology. In this investigation, we have

described a new machine learning approach to the problem, resulting in a new predictor

SIDEpro, and compared its performance to SCWRL4 on various datasets. In all cases, we

found the same basic result: SIDEpro is more accurate and faster than both versions of

SCWRL4. Table 2.21 summarizes the statistical significance of SIDEpro’s improvements in

accuracy, with respect to SCWRL4-FRM and SCWRL4-RRM, for each dataset using each

metric. Considering the results on the large datasets, SCWRL4, CASP9, and COMPLEXES,

the difference between SIDEpro and SCWRL4-FRM accuracies is significant at p<0.001 for

all results except CASP9 χ1+2 where p=0.05. When comparing SIDEpro and SCWRL4-RRM

on the large datasets, all of the accuracy results presented are significant at p<1.0e-10.

When compared to the SCWRL4 Free Rotamer Model SIDEpro represents a moderate,

but statistically significant improvement in accuracy, but the difference in CPU time is

significant: SIDEpro is from 7 to 20 times faster depending on the dataset. When compared

to the SCWRL4 Rigid Rotamer Model the improvement in accuracy is more significant, and

SIDEpro is still from 2 to 15 times faster.

We have extended the capabilities of SIDEpro to PTMs and NSAs. For natural amino acids

and very frequent PTMs, SIDEpro uses amino acid specific energy functions. In order to

flexibly accomodate for any non-standard amino acid, SIDEpro allow users to provide 3D
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structures of NSAs to be incorporated into SIDEpro models. Alternatively, the COSMOS [3])

program is used to predict these structures, and any other similar program (e.g. OpenBabel

[64]) can be used for the same purposes. The generic neural networks, trained on all possible

pairs of atom types agnostic of residue type, are used to score the atom-atom interactions

for these NSAs. Naturally, as more data on NSAs becomes available in the PDB, it will

be possible to further expand the set of specific energy functions, thereby increasing the

accuracy of the program over time. As demonstrated here for some of the NSAs, accuracy

can also be improved by increasing the number of 3D samples produced by COSMOS, at

the expense of time.

Finally, SIDEpro is to be used in protein structure prediction and engineering projects for

the rapid prediction of side chains conformations in high-throughput mode, or to provide

good starting points for molecular or quantum mechanics simulations of side chain atoms,

for both standard and non-standard amino acids.

46



Table 2.5: FPTM dataset

PDB
Ligand
ID

PDB IDs

ABA
1A3P, 1B6J, 1BAH, 1BBO, 1C2U, 1CSA, 1CYA, 1CYB, 1IKF,
1K09, 1RBD, 1T1Q, 1T9E, 1WZ5, 1ZII, 2ESL, 2M1P, 2M2G,
2M2H, 2M2S, 2M2X, 2X7K, 2ZOK, 3FSM, 3LO6

CME

1A1V, 1EUD, 1HQS, 1JN9, 1PME, 1PZG, 1Q9U, 1QQQ,
1YKM, 2AQ5, 2CZL, 2J83, 2P3A, 2Q59, 2QXS, 2V0Y, 2Y3C,
2Y6V, 3CFA, 3D6I, 3GUI, 3IXL, 3KK4, 3N5G, 3NHE, 3T5W,
3UWL, 4A1K, 4B8X, 4BGP, 4D9G, 4GOA, 4MPB

CSD

1DIN, 1DNC, 1EU1, 1FNK, 1OCH, 1Q1Y, 1Q78, 1QMV, 1RT1,
1SUB, 1UKK, 1VGX, 1VI9, 1XW4, 2BC0, 2DD5, 2E2M, 2EG3,
2HAI, 2OPL, 2P0U, 2PVZ, 2QUG, 2R3I, 2RIL, 3A9C, 3BC2,
3EUO, 3F5V, 3H56, 3OQI, 3P5U, 3PSZ, 3SED, 3SQZ, 3TKS,
3VYH, 3WEU, 4EKF, 4FLM

CSO

1DMP, 1EQ2, 1G55, 1GSN, 1I9T, 1JOA, 1JZ7, 1K3I, 1LG7,
1LOQ, 1O4C, 1O8V, 1O9Q, 1OET, 1PL1, 1PRX, 1Q79, 1RQ4,
1SVY, 1W2M, 1W6M, 1WL4, 1WL8, 1XCM, 1XVW, 1Y1F,
1YJA, 1YML, 2AOU, 2AQ5, 2BFZ, 2BJA, 2CIR, 2CVO, 2D1Q,
2DD5, 2EG4, 2F2L, 2FHJ, 2FHX, 2HCJ, 2HP0, 2HPR, 2ID4,
2ISY, 2J89, 2NQA, 2ORA, 2PVJ, 2QTZ, 2QX0, 2RFV, 2RG2,
2VH3, 2VR8, 2VRN, 2WAW, 2X2H, 2XF1, 2ZCT, 3AAY,
3B4Y, 3B8B, 3BB0, 3BOO, 3BQG, 3C6B, 3CIW, 3CKC, 3CV2,
3D3W, 3DQY, 3F71, 3FE5, 3FSG, 3HRM, 3IB4, 3IV0, 3KEV,
3KMZ, 3LAC, 3MII, 3NA8, 3NON, 3OT4, 3P5V, 3QD5, 3QSB,
3QSR, 3RJT, 3SUJ, 3TU8, 3U11, 3U1P, 3U2A, 3U7E, 3UBW,
3UUC, 3VYH, 3ZVH, 4ASC, 4AZ4, 4BG4, 4BGC, 4C5P, 4DFE,
4DWN, 4EO7, 4EOC, 4EVX, 4FST, 4GE7, 4GQZ, 4HTF, 4JIH,
4LIX, 4PGT

HYP

1AG7, 1AS5, 1DLZ, 1EYO, 1G1P, 1GQ0, 1IEO, 1IH9, 1JLP,
1JOH, 1K64, 1KCP, 1MTQ, 1OB4, 1OB6, 1OB7, 1P1P, 1PQR,
1Q7D, 1R9I, 1R9U, 1TCG, 1UW9, 1VIB, 1WCT, 2B5P, 2B5Q,
2CCO, 2EW4, 2H9X, 2IH6, 2IH7, 2IHA, 2J15, 2JQB, 2JQC,
2JRY, 2JTU, 2KLW, 2LAQ, 2M32, 2VUV, 2W65, 2YYF, 3P46,
3POD, 3U29, 4G13, 4G14
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Table 2.6: FPTM dataset

PDB
Ligand
ID

PDB IDs

KCX

1BWV, 1E8C, 1JBV, 1L6F, 1M6K, 1OIR, 1ONW, 1PU6,
1RQB, 1W78, 2FVM, 2GWN, 2ICS, 2JFF, 2P9V, 2QF7, 2QPX,
2UYN, 2WTZ, 3C0Q, 3HBR, 3JZE, 3KZN, 3LA4, 3MTW,
3NWR, 3OVG, 3PNZ, 3TN3, 4C12, 4GN2, 4MWA

LLP

1AX4, 1BJN, 1BW0, 1D7K, 1IUG, 1S06, 1YIZ, 2BWN, 2CB1,
2FM1, 2GB3, 2OKJ, 2PYD, 2QLR, 2VYC, 2W8T, 2X3L, 3B46,
3BC8, 3BWO, 3CEB, 3CQ6, 3F0H, 3F6T, 3G0T, 3GWP, 3H7F,
3HA1, 3IAU, 3JTX, 3JU7, 3K40, 3KE3, 3KW3, 3L44, 3L6R,
3LLX, 3LUL, 3NNK, 3NRA, 3NYU, 3OP7, 3PIU, 3PJ0, 3QQM,
3R4T, 3SPX, 3U9X, 3VAB, 4DZA, 4E3R, 4F4E, 4H27, 4IXO,
4JE5, 4LHC

M3L

1CCR, 1PDQ, 1PRW, 2B2U, 2F6J, 2G6Q, 2GFA, 2H6Q, 2JMJ,
2K17, 2L11, 2L3R, 2L75, 2LBM, 2LGK, 2M0O, 2OQ6, 2RR4,
2RSN, 2V83, 2X4W, 2YK3, 3AVR, 3C6W, 3GL6, 3GV6, 3JPX,
3KQI, 3KV4, 3LQJ, 3M5A, 3ME9, 3MP1, 3O7A, 3QL9, 4BD3,
4HON, 4L58, 4L7X

MLY

1GUW, 1KNA, 1LLN, 1R1G, 1VK1, 2F4I, 2FSA, 2H13, 2KVM,
2LVM, 2QHQ, 2RFI, 2RHI, 2V88, 2VD9, 2VPE, 2ZPM, 3BED,
3C0F, 3F9X, 3KV4, 3LM9, 3LN3, 3LTI, 3M56, 3MC3, 3MET,
3MP6, 3NIO, 3QDP, 3QWZ, 3TZD, 3V0S, 3VWW, 4AU7,
4DWS, 4EE6, 4GNR, 4IQ0, 4JDU, 4KM8

MSE

4GHN, 3I7M, 2DC0, 3QVQ, 3CQ1, 2J43, 3FLK, 3VCX, 2V6V,
1K8U, 2Z07, 3TOS, 2QSX, 3NRE, 2GUH, 1RXD, 2ORD, 1J58,
3S83, 2RGQ, 2RA9, 2BHY, 3KGY, 3CGH, 2EWR, 3K0B,
3D33, 1H65, 2QNT, 2NQW, 3QOM, 3OF5, 4EQ8, 3L1W,
1ZMA, 1UWW, 3BWL, 2VRZ, 3OUV, 2QFF, 1Z67, 3EBT,
2ICP, 1U61, 2NYI, 4FR9, 3BJD, 3KBY, 2NL9, 2EVE, 3K1Z,
1AZO, 2I9W, 2QHQ, 1J2V, 3KA7, 3OIO, 1QX0, 3LQ9, 3H36,
1FBN, 1UI5, 2YZ8, 3S3T, 3O46, 4HUJ, 2O57, 4I8I, 2INW, 4LII,
1U7H, 4EBG, 3F67, 3CHV, 2QLX, 1RRE, 4KT3, 3GVZ, 2GHS,
2OQK, 3QUF, 3EC9, 3MCW, 4M8K, 2QV8, 3G5T, 2EVR,
3VPI, 1K7K, 3I0Y, 3H0N, 3NNB, 3H75, 3FSD, 3CED, 1JB6,
3EJK, 3N0X, 1P3D, 3C8M, 4EAE, 3KWR, 3FCD, 3JQ1, 1X99,
1OUO, 1IXC, 2X9X, 4LBA, 3AL2, 3K7C, 2ZPL, 3GO9, 2OZH,
3U54, 2CVB, 3I0Z, 4MU9, 3K0T, 3FUT, 3DMC, 3CIT, 3BCZ,
3MAJ, 1MFW, 1YVO, 1UPG, 1MPX, 3CCG, 1LR0, 4LZK,
3RPD, 2UVK, 3UF6, 3GMY, 1WK2, 2YH9, 2C2I, 3IB5, 3F40,
3BLZ, 1UUH, 3KWK, 2RHF, 1KGS, 3MQO, 3L22, 4IAU, 3E0X,
3KKG, 1US4, 2HTD, 3E9V, 3P02, 3H4Y, 1DNL, 3KHN, 3CP0
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Table 2.7: FPTM dataset

PDB
Ligand
ID

PDB IDs

MSE

3NPF, 3IHV, 3MFN, 3EXQ, 1J4J, 3R13, 3DCZ, 3BKX, 2RBB,
3FJ2, 2Q0Q, 4ECF, 4IAG, 2W1S, 2RAU, 2R0X, 1O3U, 3EPV,
2FB0, 3OXP, 3III, 1YOD, 2FPD, 3M6Y, 3A10, 2III, 3GJU,
3OFG, 3IEH, 1XY7, 3PFE, 3BM3, 4N0R, 2PN0, 3O0W, 2ODA,
1VAJ, 1PBJ, 3C0S, 2GKP, 4ACY, 2PRV, 1UKK, 3HTL, 3KOG,
3H71, 3BU9, 2R2Z, 1O1X, 3FG8, 3ZQO, 1DFM, 2W3D, 2O0P,
1FG3, 1Y9B, 2OT9, 1R43, 3C9Q, 1SC0, 2NLV, 3OWR, 3LJI,
4BWR, 4ID0, 3KAO, 2EXR, 1DOW, 4EW7, 3SEE, 4HKF,
2IA4, 3NBM, 3ODT, 3K12, 1ZGK, 1FVG, 2CWZ, 3CK2,
2OEE, 3D1P, 1DUS, 3MSR, 1VHU, 4EW5, 1KKO, 3DMW,
3I10, 2I8D, 3L51, 3DCY, 4HDE, 3MCX, 3S6F, 1CT5, 2X9Z,
1UIX, 3DZ1, 3E23, 2FHQ, 2XIW, 3LWJ, 2AKO, 2FG1, 3I4G,
2WML, 3OOU, 2P3P, 2D4O, 2A5L, 2R8W, 4F0J, 2O55, 2W7V,
3PAN, 2OP5, 2O2X, 3KIZ, 2IOC, 3KE7, 2IAI, 2VQC, 1Y81,
3FZ4, 3IUO, 3OOS, 1TZA, 1JI7, 2R6V, 1XHD, 2D9R, 1KR4,
3B5E, 2ODI, 3TD9, 2RK9, 3LYD, 2WVX, 3LM3, 1WGB,
1A7A, 2HO4, 2QHP, 3EC6, 3OLQ, 2GQ1, 1FIM, 3MCQ, 1YQ5,
2GS5, 1NS5, 3IKB, 3ZIE, 3R6D, 2A5Z, 3BGU, 4FXV, 1K7J,
4A3Z, 3UWB, 2OGF, 2HLZ, 3H9M, 2UV0, 4I95, 3I09, 2EH3,
1ZS9, 3HVW, 1IXL, 3TLG, 3GXX, 3I2V, 1QBQ, 1ZKO, 4IYH,
4JWO, 3K11, 3KNW, 3OOX, 3KA5, 2BZ1, 3FWZ, 2QNG,
3LD7, 3CJY, 3H74, 3D5P, 3MWZ, 2QMA, 3SGG, 2BSH, 3G14,
2ATF, 4FS7, 3GYK, 3M7A, 3MC3, 2QEU, 3KC2, 4KQC, 3PJY,
3S9X, 2FYK, 2QRU, 1YI7, 2Q2X, 2R0S, 3SN0, 3K9I, 4GHJ,
3ZXJ, 2WOY, 2I2O, 3OSD, 2OYZ, 4MLZ, 4EZI, 3FG9, 4HCF,
2QXY, 3ECF, 1M1S, 3HYN, 3CI6, 3K0Z, 1T5H, 1L8R, 1Y5H,
3D4E, 3RJV, 4M1Q, 1UWN, 2XQO, 3KZT, 1ZK8, 3BWS,
2A13, 3KYZ, 1Z7A, 2Q4X, 3HN0, 3JYB, 2RLC, 3CBT, 3DD7,
2IHT, 3PT1, 2WQ4, 3EY5, 3HEB, 2NXF, 3JYG, 3DUL, 1PMH,
3KPA, 5FIT, 2QSI, 3IWF, 4E6F, 2NMU, 3E6Q, 3BCY, 2RIL,
4J4Z, 3G5S, 4K05, 2I5U, 2YG8, 3LOP, 2HXI, 2CXY, 1VHF,
3LWC, 3UE2, 3DV9, 1MGP, 3IEE, 3H96, 3EXN, 4G68, 1QWX,
3E8O, 3EN8, 3QXF, 2PEB, 3G23, 2V9D, 3EJV, 3K1U, 3ER7,
2IMH, 2P2R, 3E4V, 3LCU, 4GJY, 2FA8, 1KLL, 3AZO, 2CDO,
4JVT, 3POH, 3EH7, 3FW2, 3GR3, 2QU1, 2OOC, 3G36, 1Y0B,
1Y0K, 3O6C, 2QSB, 1QO2, 1VJU, 3HRP, 4JJA, 3OHE, 1TR9,
2O0M, 4H4J, 2WLR, 1YLE, 1Z42, 2Z0U, 4G5A, 3CGG, 3B79,
3GBY, 2DXQ, 3S8M, 2P42, 2QNK, 4IRH, 4GD5, 4HMP, 2IAY,
3U97, 3GHJ, 3MZ2, 4K4K, 3LLX, 3SY6
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Table 2.8: FPTM dataset

PDB
Ligand
ID

PDB IDs

OCS

1CS8, 1E6Y, 1HAV, 1J98, 1LIC, 1LME, 1MZS, 1NHS, 1O1X,
1O1Y, 1OEO, 1V3Y, 1Y1G, 1YMD, 1ZB8, 2CIO, 2CYJ, 2F1K,
2GPC, 2HHF, 2HL9, 2ILU, 2P8E, 2PN0, 2PT0, 2R47, 2RLC,
2UYJ, 2V1M, 2WFI, 2Y8B, 2ZZE, 3C4B, 3EF2, 3EIT, 3FBX,
3FGR, 3GS9, 3IU6, 3KOM, 3MC4, 3O5A, 3OMD, 3P9S, 3Q3X,
3QQD, 3RH0, 3ZVH, 3ZXO, 4AIW, 4FR7

PCA

1AYJ, 1BAH, 1BOM, 1BRZ, 1BUS, 1C4E, 1CGN, 1COR,
1CP9, 1D7C, 1DTX, 1EHD, 1FJ0, 1GQ8, 1H4H, 1KB3, 1KFP,
1KM8, 1KUG, 1MXQ, 1OE1, 1OFL, 1OLR, 1P9G, 1Q2J,
1Q8O, 1QI9, 1QOZ, 1R9I, 1RCK, 1S8K, 1THG, 1WGT, 1YM0,
1YY1, 2AXK, 2BNJ, 2CIV, 2GFR, 2K1V, 2KBC, 2LJS, 2LQA,
2LYW, 2OYV, 2OYW, 2PSP, 2XSP, 2YEN, 2Z49, 3C9X, 3E80,
3G2Y, 3KQ0, 3O8Q, 3T0V, 3VLA, 3ZYP, 4APJ, 4BUH, 4GFT,
4JP6, 5ACN

PTR

1AD5, 1AYB, 1BMB, 1CSY, 1D4W, 1EEN, 1FHR, 1H9O, 1IRS,
1J4X, 1JU5, 1K4T, 1KA6, 1LCJ, 1M0V, 1PKG, 1QG1, 1SHC,
1TCE, 1YRK, 2BBU, 2CI9, 2DVJ, 2H7D, 2HDX, 2I6O, 2IUH,
2L4K, 2LCT, 2LNW, 2LQW, 2NMB, 2OQ1, 2Q8Y, 2QO7,
2RMX, 2ROR, 2VIF, 3BUM, 3EB0, 3GB2, 3KVW, 3MAZ,
3OLR, 3SAY, 3U3Z, 3VRO, 4DWP, 4GFU, 4GVC, 4K45

SEP

1B4G, 1GZ2, 1H4X, 1HJK, 1LWN, 1MKI, 1P5D, 1T6R, 1VKL,
1VRV, 2AFF, 2AZM, 2CEF, 2CEZ, 2CFJ, 2FEP, 2FWN, 2G57,
2JPW, 2KMD, 2L0I, 2L5J, 2LAJ, 2LAX, 2LB0, 2LIC, 2LID,
2LO6, 2LXT, 2M3B, 2PUM, 2Q0N, 2W3O, 3D9N, 3F3Z, 3GA7,
3HRC, 3L41, 3MK0, 3OB2, 3P35, 3Q4A, 3QPD, 3SHV, 3TMP,
3TPV, 3UBW, 3ZI7, 4BJU, 4FIH, 4HJH, 4IAC, 4ICD, 4IGK,
4N6Y, 4PEP

TPO

1G6G, 1GXC, 1I8G, 1J4L, 1J4P, 1J4X, 1V50, 2AFF, 2ERK,
2FF4, 2JOC, 2JQL, 2K7L, 2KFU, 2KMD, 2LAX, 2LB2, 2PIE,
2Q5A, 2Q8Y, 2RLT, 2W3O, 2W8D, 3AL3, 3BZI, 3E6Y, 3MVJ,
3OB1, 3OUN, 3POA, 3Q52, 3UNN, 3VA4, 4BU0, 4JG1, 4KAV,
4LR7
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Table 2.9: SCWRL4 Dataset Summary Results: 379 Proteins, 58229 Residues.

Method χ1(%) χ1+2(%)
RMSD

Time(s)
Severe Moderate

(Å) Clashes Clashes
PDB 31 2048
SIDEpro 86.14 74.15 0.911 1.61 305 7227
SCWRL4-FRM 85.43 73.47 0.948 11.09 1047 9743
SCWRL4-RRM 84.15 71.24 0.995 3.84 496 6661

Table 2.10: SCWRL4 Dataset Residue Specific Accuracy Results.

AA AA χ1(%) χ1+2(%) RMSD (Å)
Type Count SIDEpro SCWRL4 SIDEpro SCWRL4 SIDEpro SCWRL4
ARG 3636 78.8 78.3 65.2 66.0 2.24 2.33
ASN 2883 85.4 83.9 61.6 59.5 1.04 1.09
ASP 4018 84.8 84.0 75.3 75.4 0.81 0.82
CYS 1001 90.4 90.3 0.48 0.47
GLN 2512 79.1 78.7 60.9 58.9 1.64 1.69
GLU 4644 73.2 72.8 57.6 56.2 1.47 1.50
HIS 1543 89.6 87.9 53.4 50.7 1.27 1.35
ILE 3968 95.6 96.0 83.4 84.7 0.45 0.43
LEU 6558 93.5 92.1 86.5 86.2 0.56 0.58
LYS 3901 79.3 76.9 66.5 63.3 1.63 1.73
MET 1410 83.8 83.8 74.5 70.3 1.14 1.27
PHE 2717 95.7 95.3 92.7 92.6 0.65 0.72
PRO 3233 83.7 85.5 80.2 81.6 0.27 0.26
SER 4107 74.0 70.8 0.73 0.80
THR 3790 90.8 90.5 0.39 0.39
TRP 979 91.6 92.1 82.6 79.5 1.16 1.37
TYR 2346 94.5 94.7 91.0 92.1 0.83 0.86
VAL 5019 93.2 93.1 0.32 0.32
All 58265 86.14 85.43 74.15 73.47 0.911 0.948

Table 2.11: CASP9 Dataset Summary Results: 94 Proteins, 17885 Residues.

Method χ1(%) χ1+2(%)
RMSD

Time(s)
Severe Moderate

(Å) Clashes Clashes
PDB 7 620
SIDEpro 85.01 72.76 0.940 2.06 112 2403
SCWRL4-FRM 84.21 72.21 0.977 19.06 356 3170
SCWRL4-RRM 82.83 69.79 1.030 10.64 172 2117
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Table 2.12: CASP9 Dataset Residue Specific Accuracy Results.

AA AA χ1(%) χ1+2(%) RMSD (Å)
Type Count SIDEpro SCWRL4 SIDEpro SCWRL4 SIDEpro SCWRL4
ARG 1118 78.2 78.8 64.3 66.2 2.19 2.24
ASN 901 86.0 83.0 63.3 58.0 0.98 1.07
ASP 1396 85.9 85.5 73.1 73.6 0.81 0.81
CYS 249 89.2 90.8 0.52 0.48
GLN 756 82.7 80.0 65.5 60.3 1.51 1.64
GLU 1488 69.3 69.2 55.4 54.4 1.51 1.53
HIS 548 86.3 87.0 53.3 54.9 1.34 1.31
ILE 1341 94.6 94.6 79.6 81.4 0.53 0.51
LEU 2064 92.0 90.1 83.9 82.7 0.63 0.67
LYS 1172 78.6 77.9 64.9 63.7 1.61 1.66
MET 72 79.2 77.8 76.4 68.1 1.06 1.20
PHE 866 95.6 94.2 91.3 91.2 0.67 0.77
PRO 931 83.9 86.8 75.4 77.8 0.30 0.28
SER 1340 72.6 68.6 0.77 0.85
THR 1105 87.4 86.2 0.48 0.50
TRP 302 92.4 92.1 82.5 76.8 1.18 1.42
TYR 821 94.3 93.8 90.7 91.4 0.86 0.91
VAL 1415 89.0 89.1 0.44 0.43
All 17885 85.01 84.21 72.76 72.21 0.940 0.977

Table 2.13: COMPLEXES Dataset Summary Results: 7 Protein Complexes with 91 Chains,
30734 Residues.

Method χ1(%) χ1+2(%)
RMSD

Time(s)
Severe Moderate

(Å) Clashes Clashes
PDB 37 2349
SIDEpro 79.73 64.19 1.109 26.9 253 6114
SCWRL4-FRM 77.99 62.57 1.184 583.9 972 7493
SCWRL4-RRM 76.87 59.87 1.237 409.4 540 5490
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Table 2.14: RIBOSOME Dataset Summary Results: 21 Protein Chains, 2001 Residues.

Method χ1(%) χ1+2(%)
RMSD

Time(s)
Severe Moderate

(Å) Clashes Clashes
Without RNA

PDB 0 370
SIDEpro 71.50 53.60 1.504 11.8 13 386
SCWRL4-FRM 70.61 52.37 1.559 180.0 54 433
SCWRL4-RRM 69.57 50.31 1.607 102.1 32 309

With RNA
SIDEpro 74.30 56.00 1.423 13.7 14 371
SCWRL4-FRM 72.31 54.49 1.480 4020.7 65 477
SCWRL4-RRM 71.46 52.81 1.524 796.2 39 340

Table 2.15: AA Specific Energy vs Generic Energy Tested on Standard Amino Acids

AA
Type

AA Specific Generic
P value

RMSD χ1 χ1+2 RMSD χ1 χ1+2

ARG 2.21 78.7 64.8 2.23 77.9 64.6 0.1019
ASN 1.04 85.4 62.5 1.08 83.9 60.9 0.0002
ASP 0.80 84.9 76.9 0.82 84.3 75.5 0.0272
CYS 0.49 90.0 0.47 90.6 0.1755
GLN 1.69 77.3 58.7 1.69 77.4 58.5 0.8869
GLU 1.46 74.1 58.0 1.48 73.7 57.4 0.0178
HIS 1.31 88.3 54.8 1.29 89.4 53.2 0.3103
ILE 0.44 95.7 84.5 0.46 95.4 82.7 0.0002
LEU 0.53 93.9 87.6 0.55 93.4 86.8 0.0001
LYS 1.63 79.5 66.2 1.69 77.9 64.9 <0.0001
MET 1.09 85.7 77.2 1.11 85.1 75.8 0.1881
PHE 0.67 95.0 92.9 0.66 95.3 93.0 0.1979
PRO 0.26 84.7 81.0 0.30 85.3 79.9 <0.0001
SER 0.75 73.2 0.78 71.5 0.0004
THR 0.39 90.7 0.40 90.1 0.0239
TRP 1.09 92.7 84.4 1.14 92.7 82.7 0.1724
TYR 0.85 94.0 91.4 0.83 94.5 91.6 0.2292
VAL 0.32 93.1 0.34 92.5 0.0057
All 0.91 86.2 74.7 0.93 85.7 73.8 <0.0001
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Table 2.16: PTM Specific vs Generic Energy for Frequent PTMs

AA
Type

# of
Pairs

# of
NNs

# of Pairs
# of NNs

RMSD
p value

Specific Generic
ABA 6807 5 1361 0.99 1.1433 0.512
CME 408706 15 27247 2.83 2.9194 0.650
CSD 108032 10 10803 1.46 1.598 0.606
CSO 173731 10 17373 1.17 1.18584 0.709
HYP 54104 10 5410 1.05 1.2102 0.411
KCX 1392310 15 92821 1.72 1.79402 0.745
LLP 6902687 15 460179 4.08 5.084 0.002
M3L 309919 10 30992 1.71 1.903 0.195
MLY 1654694 10 165469 2.06 2.1562 0.128
MSE 8102641 10 810264 1.06 1.0818 0.105
OCS 45379 10 4538 0.89 0.8572 0.491
PTR 926740 10 92674 2.02 2.2858 0.143
SEP 121541 10 12154 1.77 1.7664 0.993
TPO 102497 10 10250 1.43 1.4888 0.255
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Table 2.17: Accuracy for Frequent PTMs and their Precursor Amino Acid

AA Type Count
RMSD(Å)

χ1(%) χ1+2(%)
Precursor All

ALA
ABA 12 0.99 0.99 61.5

CYS 1001 0.49 90.0
CME 16.4 0.86 2.83 75.4 48.0
CSD 16.6 0.56 1.46 91.7 44.0
CSO 44.8 0.64 1.17 88.0 57.1
OCS 17.2 0.60 0.89 86.4 81.6

LYS 3901 1.63 79.5 66.2
KCX 14 1.20 1.72 91.3 66.3
LLP 29.4 1.82 4.08 85.9 36.4
M3L 10 1.31 1.71 82.2 70.6
MLY 51.8 1.43 2.06 76.6 64.6

TYR 2346 0.85 94.0 91.4
PTR 13.8 1.24 2.02 88.1 79.1

SER 4107 0.75 73.2
SEP 17.2 0.88 1.77 68.0 39.2

THR 3790 0.39 90.7
TPO 10.4 0.91 1.43 71.9 66.3

MET 1410 1.09 85.7 77.2
MSE 742.6 1.06 1.06 88.0 80.5

PRO 3233 0.26 84.7 81.0
HYP 45.8 0.87 1.05 78.7 67.1
PCA 15.2 0.43 0.48 100 100
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Table 2.18: Accuracy of NSA Method on FPTM Set

AA Type Count
True Structure COSMOS
χ1(%) χ1+2(%) χ1(%) χ1+2(%)

ABA 60 60 55
CME 82 86.59 86.59 89.02 3.659
CSD 83 86.75 86.75 71.08 12.05
CSO 224 85.2 84.75 81.25 8.482
HYP 229 100 100 95.2 29.26
KCX 70 98.57 98.57 74.29 47.14
LLP 147 89.12 89.12 87.76 42.86
M3L 50 80 80 64 56
MLY 259 83.01 83.01 64.48 52.12
MSE 3713 85.38 85.29 82.01 50.9
OCS 86 91.86 91.86 86.05 74.42
PCA 76 100 100 56.58 55.26
PTR 69 82.61 82.61 69.57 60.87
SEP 86 65.12 65.12 66.28 25.58
TPO 52 70.59 70.59 75 63.46

Table 2.19: RMSD(Å) of NSA Method on FPTM Set

AA Type
Count

True Structure COSMOS
precursor all precursor all

ABA 60 1.054 1.054 1.162 1.162
CME 82 0.6276 0.3462 0.6648 4.783
CSD 83 0.6829 0.782 1.17 2.387
CSO 224 0.6782 0.6404 0.8186 1.892
HYP 229 0.1067 0.1331 0.5366 0.5366
KCX 70 0.3971 0.5761 2.151 3.377
LLP 147 1.056 2.029 1.919 6.709
M3L 50 1.125 1.407 2.059 2.535
MLY 259 1.044 1.259 2.098 2.777
MSE 3713 0.367 0.367 2.023 2.023
OCS 86 0.5527 0.7119 0.785 1.096
PCA 76 0.08948 0.08601 0.7811 0.8356
PTR 69 1.43 2.019 2.215 3.553
SEP 86 0.8974 1.411 0.9638 2.054
TPO 52 0.9129 1.397 0.9065 1.793

56



Table 2.20: Accuracy of NSA Method on NSA (non-FPTM) Test Set

Default structures RMSD(Å) χ1(%)
Single Predicted Structure 3.54 56.39
10 Predicted Structures 3.08 65.30
True Structure 1.75 66.63

Table 2.21: Statistical Significance (p-values) of SIDEpro Improvement with Respect to
SCWRL4. Results significant at p<0.001 are shown in bold.

Dataset AA Count χ1 χ1+2 RMSD
SIDEpro wrt SCWRL4-FRM

SCWRL4 58265 3.1e-08 9.8e-05 <1.0e-10
CASP9 17885 7.1e-04 5.1e-02 3.4e-08
COMPLEXES 30734 <1.0e-10 1.5e-09 <1.0e-10
RIBOSOME 2001 1.7e-01 1.4e-01 1.4e-02
RIBOSOME + rna 2001 1.5e-02 9.3e-02 1.4e-02

SIDEpro wrt SCWRL4-RRM
SCWRL4 58265 <1.0e-10 <1.0e-10 <1.0e-10
CASP9 17885 <1.0e-10 <1.0e-10 <1.0e-10
COMPLEXES 30734 <1.0e-10 <1.0e-10 <1.0e-10
RIBOSOME 2001 2.1e-02 2.2e-03 2.1e-05
RIBOSOME + rna 2001 1.3e-03 3.1e-03 4.1e-05
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Chapter 3

Contact Map Prediction

3.1 Introduction

Protein residue-residue contact prediction is the problem of predicting whether any two

residues in a protein sequence are spatially close to each other in the folded 3D structure.

Contacts occurring between sequentially distant residues, i.e. long-range contacts, impose

strong constraints on the 3D structure of a protein and are particularly important for struc-

tural analyses, understanding the folding process, and predicting the 3D structure. Even

a small set of correctly predicted long-range contacts can be useful for improving ab-initio

structure prediction for proteins without known templates [81].

The performance of many contact predictors has been assessed every two years during the

CASP experiments, since CASP2 in 1996. Unfortunately, the ∼20% accuracy for long-range

contacts, routinely reported at CASP for the best predictors [26, 46], suggests that contact

prediction is not yet accurate enough to be systematically useful for ab-inito protein structure

prediction or engineering.
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In broad terms, there are four main approaches for residue-residue contact prediction. Ma-

chine learning approaches use methods such as neural networks [28, 70, 76], recursive neural

networks [17, 83], support vector machines [17], and hidden Markov models [10] to learn

how to predict contact probabilities, from a training set of experimentally determined pro-

tein structures. Inputs to these approaches typically include predicted secondary structure,

predicted solvent accessibility, as well as evolutionary information in the form of profiles.

Template-based approaches use homology or threading methods to identify structurally sim-

ilar templates from which residue-residue contacts are then inferred [79, 57]. Correlated

mutations approaches apply statistical measures, such as as Pearson correlation [31, 65] and

mutual information [24, 14], to multiple alignments in order to identify pairs of residues that

co-evolve and thus are likely to be in contact. Recently, a new elegant mutual information-

based measure for correlated mutations, PSICOV, has been proposed in [37] and used for

fold recognition [80]. While this method has been reported to yield significant accuracy

improvements, its performance is very dependent on the availability and quality of multiple

alignments. Finally, 3D model-based approaches rely on predicted 3D structures for deriving

distance constraints through a consensus strategy. Although 3D model-based approaches

have been reported to be the most accurate at CASP [46], in practice their applicability

remain somewhat limited since the main goal of contact prediction is to improve ab-initio

structure prediction, and not the converse.

Here we introduce several new ideas for contact prediction using primarily a multi-stage

machine learning approach, with increasingly refined levels of resolution. First, we predict

coarse contact maps corresponding to contacts between secondary structure elements. By

itself, the idea of coarse contact maps is not new and several useful methods have been de-

veloped [82, 17, 69]. Yet none of these approaches has been able to convincingly demonstrate

that coarse prediction is useful for residue-residue contact prediction. Here we both refine

the previous coarse prediction methods, in part by extending the notion of coarse contact

beyond a simple binary value to include information about orientation (parallel vs antipar-
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allel) between contacting segments, and demonstrate that coarse-grained prediction can be

used to improve fine-grained prediction of contact maps. Second, we use a novel energy

based neural network approach to refine the prediction of the alignment and orientation of

contacting secondary structure elements and predict residue-residue contact probabilities for

residues in contacting pairs of alpha-helices or beta-strands. Finally, we introduce a deep

neural network architecture in the form of a deep stack of neural networks, with the same

topology but different parameters, to predict all the residue-residue contact probabilities by

integrating information both spatially and temporally. Spatial integration refers to the idea

that contacts are spatially correlated, for instance long-range contacts often include other

long-range contacts in their neighborhood. Temporal integration refers to the idea that

protein folding is not an instantaneous physical process. While the stack is not necessarily

meant to mimic the actual physical process, the stack is used to organize the prediction in

such a way that each level in the stack is meant to refine the prediction produced by the

previous level. Inputs at a given level of the stack include both information coming from

the previous level in the stack as well as static information produced by the previous coarse

prediction stages, as well as predicted secondary structure and solvent accessibility, and evo-

lutionary profiles. Thus these dynamic and static inputs are used to iteratively refine the

contact prediction. We next describe these methods in detail together with the data used

for rigorous training and assessment results.

3.2 Materials and Methods

3.2.1 Contact definition and evaluation criteria

We adopted the same intramolecular contact definition and the same evaluation criteria

as in the most recent CASP experiments. Two residues are defined to be in contact if

the Euclidean distance between their Cβ atoms (Cα for Glycines) is lower than 8Å. Three
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distinct classes of contacts are defined, depending on the linear sequence separation between

the residues: (1) long-range contacts, with separation ≥ 24 residues; (2) medium-range

contacts, with separation between 12 and 23 residues; and (3) short-range contacts, with

separation between 6 and 11 residues. Contacts between residues separated by less than 6

residues are dense and can be easily predicted from the secondary structure. Conversely, the

sparse long-range contacts are the most informative and also the most difficult to predict.

Thus, as in the CASP experiments, we focus primarily on long-range contact prediction.

The performance is evaluated using two main measures: the accuracy (Acc) and the distance

distribution (Xd). The accuracy is defined as the fraction of correctly predicted contacts with

respect to the total number of contacts evaluated:

Acc = TP/(TP+FP),

where TP and FP are the true positive and false positive predicted contacts, respectively.

The distance distribution score measures the weighted harmonic average difference between

the predicted contacts distance distribution and the all-pairs distance distribution. The Xd

is defined by

Xd =
15∑
i=1

(Ppi − Pai)
i

,

where Ppi is the fraction of predicted pairs whose distance is in the bin di = [4(i − 1), 4i]

and Pai is the fraction of all pair of targets in the bin di. The higher Xd is, the better the

performance (a random predictor corresponds to Xd = 0). Contact predictors usually assign

a probability score to every possible pair of residues or to a subset of the possible pairs. The

Acc and Xd measures are computed for the sets of L/5, L/10 and 5 top scored predicted

pairs, where L is the length of the domain sequence. While predictions are evaluated on

all three sets, the most widely used performance measure is Acc for L/5 pairs and sequence

separation ≥ 24.
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3.2.2 Training and test sets

The training set is derived from the ASTRAL database [16]. We extract from the ASTRAL

release 1.73 the (precompiled) set of protein domains with less than 20% pairwise sequence

identity, removing domains of length less than 50 residues, domains with multiple 3D struc-

tures, as well as non-contiguous domains (including those with missing backbone atoms). We

further filter this list by selecting just one representative domain–the shortest one–per SCOP

family [60], ending up with a final set of 2,356 structures. For cross-validation purposes, this

set is then partitioned into 10 disjoint groups of roughly the same size and average domain

lengths, so that no domains from two distinct groups belong to the same SCOP fold. In this

way, training and validation sets share neither sequence nor structural similarities.

For performance assessment, a non-redundant test set is derived from ASTRAL release 1.75,

by selecting all the new folds, with respect to version 1.73, belonging to the main SCOP

classes (all-alpha, all-beta, alpha/beta and alpha + beta). From this set (256 new folds and

287 new families), we remove all the domains of length <50 residues and those with <L/5

long-range contacts (239 new folds and 268 new families). Redundancy is filtered out by

clustering each group of domains belonging to the same SCOP family at 40% of sequence

similarity. The final set of 364 domains contains at least one representative for each one

of the 268 new families. A BLAST [1] search with E-value cutoff 0.01 of the test domain

sequences against the set of training domain sequences returns no hit.

For comparison with the current state-of-art contact predictors, the performance is tested

on the template-based/free-modeling (TBM/FM) domain targets used in the last two CASP

experiments, CASP8 [26] and CASP9 [58] for contact prediction assessment. Note that

ASTRAL 1.73 was released in 2007, before the CASP8 experiment held in 2008, thus no

structural similarities exist between the domains in the training set and those from CASP8

(12 domains) and CASP9 (28 domains). An additional test is performed with BLAST [1] to
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detect sequence similarities between the CASP and the training target sequences. A BLAST

search with an E-value cutoff of 0.01 returns no similar domain pairs. The predictions for

the groups participating at the CASP8 and CASP9 meetings are obtained from the CASP

website1. As in CASP, performance is assessed here only at the domain level, although

predictions are available for the entire protein targets. To simplify the comparison, we select

only those groups that submitted a prediction for all the targets in the respective CASP8 and

CASP9 sets. Furthermore, we considered all the domain targets for each group, regardless

of the number of predicted contacts per domain. CASP assessors typically exclude from the

analysis the results of a predictor on any domain where the number of predicted contacts is

not high enough. This filtering step is not used here since it does not affect the performance

of the top-scoring predictors.

3.2.3 Coarse contact and orientation prediction (BRNN)

We use two-dimensional bidirectional recurrent neural networks (2D-BRNNs) [17] to predict

coarse contact probabilities and orientations between secondary structure elements. Specif-

ically, ignoring for robustness coils, short strands (≥ 3 residues), and short helices (≥ 6

residues), we predict the probability of whether two elements are in parallel contact, an-

tiparallel contact, or no-contact. The distance between two secondary structure elements is

defined to be the minimum Euclidean distance among all the possible pairs of Cα atoms, one

from each element. A pair of elements is defined to be in contact if and only if their distance

is less than 8Å. The orientation angle of two elements is defined as the angle between their

orientation vectors. The orientation vector is computed by joining the centers of gravity

(Cα coordinates) of the first and second half of the element. Two elements are in parallel

contact if their distance is less than 8Å and their orientation angle is less than 90 degrees,

anti-parallel contact if their distance is less than 8Å and the their orientation angle is greater

1http://predictioncenter.org/
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than 90 degrees, and no-contact if their distance is larger than 8Å.

For each pair Sn and Sm of secondary structure elements, the output of the 2D-BRNN is a

probability vector corresponding to the probability of parallel contact, anti-parallel contact,

or no-contact. The input of the 2D-BRNN for the pair Sn, Sm consists of two feature vectors

Fn and Fm, as well as the number of elements between Sn and Sm. The feature vector Fn

for segment Sn has the following components.

1. Three vectors (20 entries each), representing the average amino acid distribution com-

puted over the profiles of Sn−1, Sn and Sn+1.

2. The lengths (3 entries) in residues of Sn−1, Sn, and Sn+1.

3. The lengths (2 entries) in residues of the intervals between Sn−1 and Sn, and Sn and

Sn+1. These intervals correspond to the sum of the lenghts of the coils and short

elements that are ignored between the elements under consideration. This lenght is 0

for adjacent elements (Figure 3.1).

4. A vector of flags (4 binary entries) to identify the first, second, second-to-last, and last

elements in the sequence.

5. Two vectors (20 entries each) containing the average amino acid distribution for alter-

nate even- and odd-numbered columns in the profile of Sn. Specifically, if Sn consists of

residues s1, s2, s3, .., the first vector contains the average sequence profile over residues

(s1, s3, s5, ...) and the second vector over (s2, s4, s6, ...). This feature is designed ex-

plicitly for strands, since these two sets of positions tend to have similar properties

when the two strands are paired in a beta-sheet.

The 2D-BRNN is trained using 10-fold cross-validation.
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(a) Coarse contact map
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(b) Coarse contact map in relation to the protein sequence

Figure 3.1: Coarse contact map in (a) with its relation to the protein sequence for the CASP
target T0604-D1 in (b). Blue, green, and red squares correspond to anti-parallel contact,
parallel contact, and no-contact respectively. Coils, short helices (≥ 6), and short strands
(≤ 3) are ignored and shown in black.
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3.2.4 Element alignment prediction (Energy)

We use an energy-based method [61] to assign energies then probabilities to the alignment

between contacting secondary structure elements and derive approximate probabilities of

contact for their residue pairs. This approach is used only for helix-helix and strand-strand

contacting elements, since these are by far the most frequent among well defined secondary

structure elements (i.e. strand-helix contacts are relatively rare). Furthermore, it is generally

hard to align strand and helix elements at the residue-level because helices are more compact

when compared to strands.

Alignments between secondary structure elements are described by two components: the rel-

ative shift and the phase. The relative shift is an integer representing how the residues in the

first element are shifted with respect to the second element. For instance, the shift between

two strands of length 5 can have any integer value from 0 to 9. The phase is an integer

assigned to pairs of residues, one from each contacting element, which is meant to capture in

approximate fashion the periodic component of strand-strand and helix-helix contacts with

some partial correlation to physical distance. Since the side-chains of contacting strands

are alternatively distributed on each side of the corresponding beta-sheet, and alpha-helices

make approximately two turns every seven residues, it is reasonable to view strands and

helices as periodic structures with periods 2 and 7 respectively. The phase value is assigned

periodically by starting from the two residues with the closest Cαs and moving away from it

in both directions. For strand-strand contacts, the phase values alternate between 0 and 1,

while for helix-helix contacts, the phase values cycle periodically from 0 to 6 (Figure 3.2(a)

and 3.2(b)).

Given a pair of contacting elements Sn and Sm, we need to evaluate the energy of all the

possible alignments obtained by shifting Sn over Sm (which is kept fixed), such that at least

one residue in Sn is paired with one residue in Sm. If |Sn| = kn+1 and |Sm| = km+1 are the
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Figure 3.2: (a) Phase values (0-1) for pairs of residues in contacting strands. (b) Phase values
(0-6) for pairs of residues in contacting helices. (c) Phase values for anti-parallel strands and
corresponding energy terms gA(i, j, k).
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lengths of Sn and Sm, there are exactly kn+km+1 possible shifts numbered a = 0, 1, .., kn+km.

Each one of these shifts can be in O different phases numbered θ = 0, .., O − 1, with O = 2

for strands and O = 7 for helices. Thus we need to evaluate the energy of O · (kn + km + 1)

alignments. Assume that the segment Sn consists of residues i, i + 1, .., i + kn and Sm of

residues j, j + 1, ..., j + km. Then, the energy for the a-th shift with phase θ of segment Sn

versus segment Sm is given by

EP (a, θ) =
km∑
k=0

gP (i− km + a+ k, j + k, (θ + k) mod O) (3.1)

EA(a, θ) =
km∑
k=0

gA(i− km + a+ k, j + km − k, (θ + k) mod O) (3.2)

where the function gP (i, j, k) (resp. gA(i, j, k)) returns the estimated energy for the residue

pair i,j, under the assumption that Sn and Sm are parallel contacting (resp. anti-parallel

contacting) and that the phase of i, j is k (Figure 3.2(c)). As a manageable example, Figure

3.3(a) shows all the alignment positions and the corresponding energies for two anti-parallel

strands of hypothetical length 3. The alignment energies EP (a, θ) and EA(a, θ) are normal-

ized into probabilities by

PP (a, θ) =
e−K·EP (a,θ)∑km+kn

j=0

∑O−1
k=0 e

−K·EP (j,k)
(3.3)

PA(a, θ) =
e−K·EA(a,θ)∑km+kn

j=0

∑O−1
k=0 e

−K·EA(j,k)
(3.4)

where K is a fixed constant.

In order to compute the alignment energies (3.1) and (3.2) and the corresponding normalized

probabilities (3.3) and (3.4), we need to define the residue-residue energy functions gP (i, j, k)

and gA(i, j, k). We model these functions by using two-layer feedforward NNs. There are

four NNs: two for the strand-strand parallel and anti-parallel cases, and two for the helix-
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helix parallel and anti-parallel cases. In all four cases, the NN input simply encodes the two

sequence profile vectors (20 entries each) for the residue pair (i, j). The output size of the

NNS is O = 2 for the strand-related predictors and O = 7 for the helix-related predictors

and represents the phases. The function gA(i, j, k) thus represents the k-th output of the

(anti-parallel) NN for the residue pair (i, j). The network weights for the anti-parallel case

are trained by gradient-descent minimization of the log-likelihood objective function

EA = −
n∑
i=1

logPA(âi, θ̂i) (3.5)

where n is the number of anti-parallel contacting element pairs used in training and âi, θ̂i

are the true shift and phase for the i-th example (the objective function is similar for the

parallel case). Thus, we can train the NN weights by gradient descent, back-propagating the

partial derivatives:

∂EA

∂EA(ai, θi)
=


−K · (PA(ai, θi)− 1), (ai, θi) = (âi, θ̂i)

−K · PA(ai, θi), otherwise

(3.6)

The four alignment predictors are also trained using 10-fold cross-validation on the data

described in Section 3.2.2.

The alignment probabilities provide an estimation of the possible spatial arrangement of two

secondary structure elements. These probabilities can easily be mapped to residue-residue

contact probabilities. The mapping is obtained by choosing the probability score of the

unique alignment in which the two residues are paired together and are close (i.e. their

phase is 0). For instance, assume that i and j belong to two anti-parallel elements Sn and

Sm. Then, there is a unique shift a of Sn over Sm in which i and j are paired together. For

this shift, there is a unique overall phase 0 ≤ θ < O such that i and j are given phase 0.

69



Then, the probability PA(a, θ) represents the probability of contact for the pair (i, j) (Figure

3.3(b)).

3.2.5 Residue-residue contact prediction (Deep NN)

The deep neural network architecture for residue-residue contact prediction consists of a three

dimensional stack of neural networks NNk
ij. Each network NNk

ij in the stack is a standard

three-layer feed-forward network trainable by back propagation, and all the networks share

the same topology: same input size, same hidden layer size, with one single output, which

represents the residue-residue contact probability computed at position i, j and level k. Thus

i and j are spatial indexes over the contact map, whereas k is a “temporal” index. Each

layer k of NNs in the stack produces a contact map prediction, which is then refined in the

subsequent layers. The range of k is determined during the training phase, as described

below. Each NNk
ij has two different kinds of input features: purely spatial features and

temporal features. For fixed i and j, the purely spatial features are identical for all the NNk
ij

as k varies and consist of typical features used in contact map prediction. The temporal input

features for NNk+1
ij consist of the predicted contact map around i and j at the previous level

of the stack, i.e. the outputs of the networks NNk
rs, where r, s ranges over a “receptive field”

neighborhood of i, j. The receptive fields used in the simulations results are essentially 15×15

square patches (Figure 3.5). The integration over time provided by the different levels in the

stack corresponds to the intuition that folding is a somewhat organized, non-instantaneous,

process which proceeds through successive stages of refinement. The integration over space

provided by the receptive fields of the temporal features captures the idea that residue-

residue contacts in native protein structures are generally not isolated: a contacting residue

pair is very likely to be in the proximity of a different pair of contacting residues. Over 98%

of long-range contacting residues are in close proximity of another contact, compared to 30%

for non-contacting pairs. Furthermore, over 60% of contacting pairs are in the proximity of
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(a) Alignments and corresponding energies

(b) Mapped contact probabili-
ties

Figure 3.3: (a) Alignments and corresponding energies for two anti-parallel beta-strands
of hypothetical length 3. (b) Alignment probabilities mapped to residue-residue contact
probabilities for the two elements.
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(a) Deep-NN Architecture

25×9×2 3×7×7 4×7×7 81

Spatial features Temporal features
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(b) NN input features

Figure 3.4: (a) The deep-NN architecture consists of a 3D stack of neural networks NNk
ij

with identical architecture, but different weights. When i and y vary, the outputs of the NNk
ij

correspond to the predicted contact map at level k of the stack. A neural network NNk+1
ij

purely spatial input features that depend only on i and j and are identical at all levels of
the stack, and temporal input features associated with the contact probabilities predicted in
the previous layer over a receptive field neighborhood of ij. (b) Input feature vector of each
NNk

ij.
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at least 10 different contacts, compared to 2.5% for non-contacting pairs (Figure 3.6). In

other words, for a residue pair (i, j), the higher the number of its neighboring contact pairs,

the higher the probability that i and j are in contact. Most previous machine learning-based

contact predictors learn the contact probabilities of residue pairs independently of the contact

probabilities in their neighborhoods. Thus one of the aims of the deep-NN architecture is

to leverage this important information during the learning phase. Note that even if the

individual contact predictions at a given stage are inaccurate, the contact probabilities can

still provide a rough estimate of the number of contacts in a given neighborhood.

There are three types of purely spatial input features: residue-residue features coarse fea-

tures, and alignment features. Residue-residue features encodes three kinds of informa-

tion (for a total of 25 values): evolutionary information (20 values, one for each amino acid

type), predicted secondary structure (3 binary values, β-sheet, α-helix, or coil) and predicted

solvent accessibility (2 binary values, buried or exposed). The evolutionary information is

encoded in the standard way, as residue frequency profiles extracted from multiple sequence

alignments. Frequency profiles are obtained by running PSI-BLAST [2] with E-value cut-

off equal to 0.001 and up to ten iterations against NCBI’s non-redundant protein sequence

database NR. The secondary structure is predicted with SSPRO [68] and the solvent ac-

cessibility with ACCPRO [67]. We used two versions of SSPRO and ACCPRO older than

2008, without retraining them. We used two previously published versions of SSpro [68] and

ACCpro [67], derived before 2008 [18], without retraining them. The residue-residue features

for the pair (i, j) are included in the network input by taking a fixed-size window centered

at each residue. That is, for the pair (i, j), the network input includes the residue-residue

feature vectors for residues i′ ∈ [i− l, i+ l] and j′ ∈ [j − l, j + l], where l ≥ 0 is the radius of

the window. After some experimentation, we use l = 4 since larger radiuses lead to slower

training with no significant performance improvement. Coarse features (3 values) contain

the predictions obtained with the coarse contact and orientation predictor (see Section 3.2.3).

If residues i,j are in elements Sn,Sm, the feature vector is setup with the predicted contact
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Figure 3.5: Neighborhood of (i, j), or receptive field, of the level-dependent inputs. The
temporal input feature vector (81 values) contains contact predictions computed in the pre-
vious layer of the stack. That is, for a pair of residues (i, j), the network-specific feature
vector of NNijk+1 contains the contact predictions obtained by the networks NNrsk for all
the pairs (r, s), where r ∈ [i − l, .., i + l], s ∈ [j − l, .., j + l] and l ≥ 0 is the “radius” of
the neighborhood. We considered different topologies for the receptive pattern and different
sizes for the radius parameter. In general, we found that larger radiuses provide better per-
formance. On the other end, larger radiuses imply larger input and thus a longer training
time and risk of overfitting. Our best results are obtained using a radius equal to 7 and
the receptive field shown in Figure 3.5. The details of this receptive field are derived from
the pattern of contacts in native contact maps between helical secondary structures. Since
helical structures go around twice every seven residues or so, they tend to have contacts at
(i± 7, j ± 7) when the residue pair (i, j) is in contact. Furthermore, they also tend to have
contacts at (i ± 7, j ± 4) or (i ± 4, j ± 7) because helical structures take a turn every 3-4
residues.

orientation probabilities (parallel, anti-parallel, and non-contact) for Sn and Sm (Figure 3.1).

If either Sn or Sm is an ignored elements (i.e. coil element or short helix/strand element)

the three values in the feature vector are set by default to zero. The coarse contact features

are included in the network input by taking a fixed-size window (of radius 3) centered at

the element pair. Alignment features (4 values) contain the predictions obtained with
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Figure 3.6: Contact proximity distribution for contacting residue pairs (continue line) and
non-contacting residue pairs (dotted line), computed over long-range pairs of residues.

the element alignment predictor (see Section 3.2.4). If residues i,j are in elements Sn,Sm

and Sn,Sm are both helix elements, the first and second entries of the vector contain the

alignment probability score between i and j for the cases parallel and anti-parallel contact,

respectively. The remaining two entries are set to zero. The encoding is symmetrical for

the strand-strand case. If Sn and Sm are not both helix or both strand elements, the four

entries of the feature vector are set by default to zero. As for the coarse contact features,

the alignment features are included in the network input by taking a fixed-size window (of

radius 3) centered at the residue-residue pair.
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Deep-NN training.

Training deep multi-layered neural networks is generally hard, since the backpropagated

gradient tends to vanish or explode with a high number of layers [47]. Here we use an

incremental approach to overcomes this problem. The weights of the first level networks,

NN1
ij, are randomly initialized and their temporal input features set to 0. These networks are

then trained by on-line back-propagation for one epoch. The weights of NN1
ij are then used

to initialize the weights of NN2
ij and all the outputs of the NN1

ij networks on the training set

are stored and used to compute the temporal input features of the networks NN2
ij which are

then trained by back-propagation during one epoch. Then the weights of the networks NN2
ij

are used to initialize the weights of the networks NN3
ij and so forth all the way to the top

of the stack. This progressive initialization is critical: initialization with random weights at

each level of the stack results in poor performance, from unstable learning to getting stuck in

poor local minima. Likewise, more stable training is obtained by using the same training set

at each level of the stack, as opposed to randomizing the training data. Thus in practice at

each training epoch we append a new neural network to the growing deep-NN architecture,

initialize it with the weights of the previous level, and train it by back-propagation using

the true contacts as the targets (or softer targets could be derived from folding data). We

have experimented with many variations such as growing the stack up to a maximum of 100

networks, or growing it to a smaller depth but then repeating the training procedure through

one or more epochs. The approach described earlier in the text provides a good compromise

between training time and average cross-validation accuracy. Note that, although a deep-

NN with n levels comprises n × 3 layers, the number of free training parameters is rather

small. Only the parameters of the first level are free, all other parameters are initialized in

succession using the parameters from the previous level after one training epoch.

Since the non-contact pairs are considerably more abundant than the contact pairs, a stan-

dard approach to deal with unbalanced training set is to rebalance the data. For contact
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map prediction, this is often done randomly selecting only 5% of the negative examples,

while keeping all the positive examples. In our experiments, we obtain considerable better

overall performance by increasing this percentage to 20% (data not shown).

We train 10 different deep-NN predictors by cycling through the 10 training subsets (Section

3.2.2), each time holding one subset for early stopping or validation purposes. Furthermore,

we synchronize the early stopping across the 10 deep-NN architectures, so that they all have

the same depth n, retaining the depth providing the best prediction performance (n = 71,

Figure 3.7).
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Figure 3.7: Cross validation performance of CMAPpro for the selection of the best network
depth. The curve plots the cross-validation accuracy - standard deviation over the ten val-
idation sets for the set of true number of long range contacts. The accuracy on the true
number of long range contacts shows more variation than the accuracy on the L/5 long range
contacts. The highest peak of accuracy is found at depth 71.
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Table 3.1: Average performance for the coarse contact and orientation predictor.
Parallel (P ) Anti-parallel (A) No-contact (N)

Class Q3 PPVP TPRP PPVA TPRA PPVN TPRN

All 0.80 0.45 0.15 0.65 0.39 0.82 0.95
All-Alpha 0.73 0.40 0.13 0.63 0.47 0.77 0.92
All-Beta 0.86 0.29 0.06 0.69 0.35 0.88 0.97
Alpha/Beta 0.81 0.57 0.25 0.67 0.36 0.83 0.96
Alpha+Beta 0.79 0.38 0.09 0.64 0.38 0.82 0.95

Parallel contact (P ), Anti-parallel contact (A) and No-contact (N) are the three classes
considered by the coarse contact and orientation predictor. Q3 is the percentage of correctly
predicted pairs in Equation (3.7), PPVX is the Positive Predictive Value on class X in
Equation (3.8) and TPRX is the True Positive Rate on class X in Equation (3.9).

3.3 Results and Discussion

3.3.1 Coarse contact and orientation prediction

We evaluate the average classification performance of the coarse contact and orientation pre-

dictor on the three classes Parallel contact (P ), Anti-parallel contact (A) and No-contact (N)

on the 364 test domains (Section 3.2.2). We evaluate the performance using the percentage

of correctly predicted pairs

Q3 =
PP + AA+NN∑

X

∑
Y XY

(3.7)

the Positive Predictive Value (or precision)

PPVX = (XX)/(AX + PX +NX) (3.8)

and the True Positive Rate (or recall)

TPRX = (XX)/(XA+XP +XN) (3.9)
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where XY denotes the number of segment pairs in class X ∈ {P,A,N} predicted to be in

class Y ∈ {P,A,N}. Table 3.1 reports the cross-validation average performance on the full

set of protein domains (All) and as a function of the main structural domain classes: All-

Alpha (mainly alpha-helices), All-Beta (mainly beta-sheets), Alpha/Beta (alpha-helices and

beta-sheets, mainly parallel beta sheets) and Alpha+Beta (alpha-helices and beta-sheets,

mainly anti-parallel beta sheets). As shown in Table 3.1, the performance of the coarse

predictor on the Parallel (P) class are highly affected by the protein structural domain; in

particular, the prediction precision and recall are higher for the Alpha/Beta proteins and

are quite low for the All-Beta proteins. Conversely, the performance on the Anti-parallel

class (A) are nearly uniform, regardless of the domain structural classification. The anti-

parallel contacts appear to be easier to predict than the parallel contacts, even within the

Alpha+Beta class. Though not directly comparable (due to a different definition of segment-

segment contact), the coarse contact predictor has higher precision and lower recall than the

2D-BRNN developed for the same classification problem in [69].

3.3.2 Element alignment prediction

We evaluate the contact prediction performance of the element alignment predictor at the

residue level on the (predicted) strand-strand and helix-helix regions of the contact map. We

use the same accuracy measure adopted for the evaluation of contact prediction performance

on the entire contact map (Section 3.2.1).

Recall that the element alignment predictor can be used to derive approximate probabilities

of contacts for residue pairs in helix-helix and strand-strand elements, under the assumption

that the elements are contacting (Section 3.2.4). A probability of parallel or anti-parallel

contact between two elements is provided by the coarse contact and orientation predictor

(Section 3.2.3). One can thus evaluate two different probability measures of contact at the
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Table 3.2: Average accuracy on long-range contacts for the element alignment predictor.
E-E H-H

Class L/5 L/10 Best 5 L/5 L/10 Best 5
All 0.24 0.25 0.25 0.09 0.10 0.10
All-Alpha - - - 0.09 0.10 0.11
All-Beta 0.19 0.21 0.20 - - -
Alpha/Beta 0.22 0.19 0.21 0.07 0.07 0.07
Alpha+Beta 0.26 0.27 0.27 0.08 0.08 0.08

E-E+ H-H+

Class L/5 L/10 Best 5 L/5 L/10 Best 5
All 0.35 0.36 0.37 0.11 0.12 0.13
All-Alpha - - - 0.10 0.11 0.11
All-Beta 0.19 0.17 0.17 - - -
Alpha/Beta 0.52 0.55 0.54 0.11 0.14 0.12
Alpha+Beta 0.34 0.37 0.35 0.09 0.11 0.10

Contact prediction accuracy (Acc, see Section 3.2.1) of the element alignment predictor for
long-range residue pairs. The length L refers to the sum of the lengths of helix/strand
elements in the protein sequence. The protein domains having less that 5 contacts in the
strand-strand and helix-helix regions have been excluded from the evaluation. We do not
consider the strand-strand predictions on the All-Alpha class, as well as the helix-helix
predictions on the All-Beta class. The performance on the strand-strand regions, E-E, E-E+,
and helix-helix regions, H-H, H-H+, have been obtained by using the contact probabilities
in Equations (3.10), (3.12), (3.11) and (3.13), respectively.

residue level for the alignment predictor: a naive measure that uses only the alignment

scores, and a more refined measure that combines alignment and coarse scores. Specifically,

consider two residues i and j in secondary structure elements Sn and Sm, where Sn and Sm

are both helices or strands. A naive probability of contact between i and j can be derived

from the alignment scores only by

pH-H
ij = aPH + aAH (3.10)

pE-Eij = aPE + aAE (3.11)

where aPH (helix-helix parallel contact), aAH (helix-helix anti-parallel contact), aPE (strand-

strand parallel contact) and aAE (strand-strand anti-parallel contact) are the contact proba-
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bilities obtained with the alignment predictor for residues i and j. A more refined probability

of contact can be defined by combining the alignment scores with the coarse predictor scores

pH-H+

ij = pP · aPH + pA · aAH (3.12)

pE-E
+

ij = pP · aPE + pA · aAE (3.13)

where pP and pA are the probability of parallel and anti-parallel contact, obtained with the

coarse contact predictor, between the secondary structure elements Sn and Sm.

The average accuracy on the 364 test domains for these two probability measures and for

long-range residue pairs are reported in Table 3.2. The prediction accuracy is reported

on the full set of protein domains (All), as well as on the main structural classes (All-

Alpha, All-Beta, Alpha/Beta, Alpha+Beta). Overall, the prediction performance obtained

by combining alignment and coarse probabilities (H-H+ and E-E+) is higher than the one

obtained by considering the alignment probabilities alone (H-H and E-E). Thus the coarse

contact and alignment features alone contain relevant information on long-range residue-

residue contacts, although the accuracy of this information is unevenly distributed with

respect to the different structural classes and secondary structure elements. In particular,

the prediction accuracy for beta-residues is much higher than for helix-residues, regardless

of the structural class. This uneven distribution of performance is consistent with the native

distribution of contacts between the respective classes of secondary structure elements: the

strand-strand contacts are more dense than the helix-helix contacts and thus also easier to

predict.

3.3.3 Residue-residue contact prediction: test set

We compare the performance on the 364 test domains of different contact predictors in order

to separate the contribution of the deep-NN architecture from the contribution of the features
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Table 3.3: Average accuracy and Xd comparison on long-range contacts.
Method Acc Xd

L/5 L/10 Best 5 L/5 L/10 Best 5
CMAPpro 0.28 0.32 0.36 0.14 0.15 0.16
NN+CA 0.25 0.29 0.32 0.13 0.14 0.15
DNN 0.25 0.28 0.32 0.13 0.14 0.15
NN+C 0.23 0.27 0.30 0.12 0.13 0.14
NN+A 0.21 0.23 0.26 0.11 0.12 0.13
NN 0.20 0.24 0.26 0.10 0.12 0.13

Table 3.4: Average accuracy and Xd on long-range contacts for CMAPpro.
Set Acc Xd

L/5 L/10 Best 5 L/5 L/10 Best 5
All 0.28 0.32 0.36 0.14 0.15 0.16
All-Alpha 0.20 0.22 0.25 0.12 0.13 0.13
All-Beta 0.28 0.31 0.36 0.12 0.13 0.15
Alpha/Beta 0.50 0.59 0.68 0.22 0.24 0.27
Alpha+Beta 0.27 0.32 0.36 0.14 0.15 0.16
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Figure 3.8: Accuracy (L/5 long range contacts) versus network depth for the set of test
domains (All), the test domains of length between 50 and 100 residues (50-100), between
101 and 150 (>100-150), between 151 and 200 (> 150 − 200 and longer than 200 (>200).
The dotted vertical line indicates the actual depth of CMAPpro.
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obtained with the coarse contact/orientation and alignment predictors (CA-features). Table

3.3 reports the performances of the full predictor (CMAPpro), a single-hidden-layer back-

propagation neural network with CA-features (NN+CA) and without CA-features (NN), and

a deep-NN architecture (DNN) that does not incorporate CA-features. In order to consider

separately the contribution of coarse and alignment features, we also train a single-hidden-

layer neural network that incorporates only coarse (NN+C) and only alignment (NN+A)

features. For all such predictors, we build a corresponding ensemble by averaging the 10

cross-validation models. In Table 3.3, note that the performance of the basic neural network

NN reflects the state-of-the-art in contact prediction, as assessed by all previous CASP

experiments. Both the CA-features and the deep-NN architecture help improve the contact

prediction accuracy in comparison to the performance of the plain neural network NN. The

performance of the NN incorporating the CA-features (NN + CA) is indistinguishable from

the performance of the deep-NN without CA-features (DNN). CMAPpro (deep-NN with

CA-features) achieves the best performance among the predictors, indicating that both CA

features and deep architecture play a role in improving contact prediction. Furthermore,

in Table 3.3, the coarse features (NN+C) seem to be more informative than the alignment

features (NN+A). On the other end, the performance comparison on the CASP datasets in

the next Section shows that in specific cases the alignment features are more informative

than the coarse features (compare NN+A versus NN+C in Table 3.5 and 3.7).

Table 3.4 shows the cross-validation performance of CMAPpro as a function of the main

protein structural classes. This performances is somewhat consistent with what has been

reported in literature: the residue contacts in the Alpha/Beta class are relatively easy to

predict, while the contacts in the All-Alpha class are more difficult [27]. The 20% accuracy

of CMAPpro on the All-Alpha class still represents some improvement with respect to the

state-of-the-art for long-range contact prediction (∼15%) on this class of proteins [27].

The prediction performance of CMAPpro as a function of architecture depth is shown in
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Table 3.5: Average Acc and Xd for seq. sep. ≥ 24 on CASP8 set.

Method Acc Xd
L/5 L/10 Best 5 L/5 L/10 Best 5

CMAPpro 0.32 0.41 0.42 0.13 0.15 0.15
NN+CA 0.28 0.38 0.40 0.12 0.15 0.15
NN+A 0.26 0.33 0.32 0.11 0.12 0.14
DNN 0.25 0.35 0.37 0.11 0.13 0.14
RR157 0.24 0.30 0.32 0.09 0.10 0.11
RR072 0.24 0.30 0.28 0.11 0.13 0.13
NN+C 0.23 0.32 0.30 0.10 0.12 0.11
RR453 0.23 0.30 0.38 0.11 0.13 0.15
RR477 0.23 0.28 0.28 0.10 0.12 0.11
RR197 0.22 0.22 0.22 0.09 0.09 0.11
RR131 0.21 0.24 0.22 0.10 0.09 0.08
PSICOV 0.21 0.20 0.20 0.07 0.08 0.08
RR249 0.20 0.25 0.28 0.12 0.14 0.15
RR413 0.20 0.24 0.20 0.10 0.12 0.11
NN 0.20 0.25 0.27 0.09 0.10 0.10

Figure 3.8 for the full set of test domains (All), as well as for different subsets organized

by domain lengths. Overall, the contact prediction accuracy improves up to depth ∼50 and

then remains roughly constant for depths in the range of 50-100. Even for architectures with

depth as large as 100, CMAPpro does not show any sign of overfitting. The apparent weaker

performance on domains of length >100-150 is artificially due to an uneven distribution of

the easiest targets across the different sets.

3.3.4 Residue-residue contact prediction: CASP test datasets

In addition to the top 8 CASP predictors, we include in the comparison also the recent

mutual-information-based approach PSICOV, using multiple alignments obtained by run-

ning jackhammer (http://hmmer.org) for three iterations on the NR database [37]. The

performance comparison on the CASP8 and CASP9 datasets are shown in Table 3.5 and

Table 3.7, respectively.
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Figure 3.9: Native and predicted contact map for the T0604-D1 target from CASP9 set. The
lower triangle shows the native contacts. The upper triangle shows contacts predicted by
CMAPpro. The blue and red dots represent the correctly and incorrectly predicted contacts,
respectively, among the L top-scored residue pairs.
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Figure 3.10: Predicted contact map for the T0604-D1 target from CASP9 dataset. The lower
triangle shows the predictions obtained with DNN and the upper triangle those obtained with
NN+CA. The blue and red dots represent the correctly and incorrectly predicted contacts,
respectively, among the L top-scored residue pairs.
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Table 3.6: Average Acc and Xd for seq. sep. ≥ 24 on CASP9 set.

Method Acc Xd
L/5 L/10 Best 5 L/5 L/10 Best 5

RR490 0.32 0.37 0.44 0.15 0.17 0.20
CMAPpro 0.31 0.35 0.34 0.13 0.15 0.15
DNN 0.27 0.31 0.41 0.12 0.14 0.16
NN+CA 0.23 0.27 0.29 0.11 0.12 0.13
RR051 0.22 0.24 0.24 0.11 0.12 0.12
RR103 0.21 0.27 0.31 0.10 0.12 0.12
NN+C 0.21 0.27 0.25 0.10 0.11 0.11
RR002 0.21 0.23 0.23 0.11 0.12 0.12
PSICOV 0.20 0.28 0.33 0.08 0.10 0.11
NN+A 0.20 0.20 0.21 0.09 0.09 0.09
RR138 0.19 0.23 0.26 0.09 0.11 0.11
NN 0.19 0.19 0.19 0.09 0.09 0.09
RR375 0.18 0.21 0.24 0.08 0.09 0.10
RR204 0.18 0.20 0.22 0.09 0.10 0.11
RR422 0.17 0.20 0.21 0.09 0.10 0.09

On the CASP datasets the performance improvements obtained by considering separately the

coarse/orientation and alignment features (NN+CA) and the deep-NN architecture (DNN)

are somewhat different from those in Table 3.3. NN+CA performs better on the CASP8

dataset, whereas DNN performs better on the CASP9 dataset. CMAPpro combines and

refines the qualities of these two predictors achieving higher accuracy on both the CASP8

and CASP9 datasets. This behavior can be explained by considering an example. Figures

3.9 and 3.10 show the predicted contacts for the CASP9 domain T0604-D1. The red and

blue dots in the picture represent the L top-scored true positive and false positive contacts,

respectively. The predictions obtained by DNN and NN + CA are compared in Figure 3.10.

Globally, the two predictors assign a high probability of contact (grey dots) to approximately

the same regions. Locally, however, they assign different contact probabilities to the indi-

vidual pairs of residues, leading to different sets of correctly predicted contacts (blue dots).

CMAPpro combines and refines the characteristics of these two predictors (Fig. 3.9): the

segmentsegment features improve the identification of contacting regions between secondary
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structure elements and the DNN is able to refine the prediction scores. Compared to other

methods, CMAPpro is considerably more accurate on both CASP datasets. In particular, on

the CASP8 dataset, CMAPpro achieves the best ranking both in terms of Acc and Xd. The

only method [86] outperforming CMAPpro on the CASP9 dataset by a small margin relies

on 3D structure models for deriving contact predictions through consensus, which defeats

the purpose of predicting contact maps from scratch. Indeed, if we remove the only 3 TBM

domains from the CASP9 dataset and focus exclusively on the FM targets which are harder

to predict, then RR490’s accuracy (L/5) drops down from 0.32 to 0.28 while CMAPpro’s

accuracy increases from 0.31 to 0.32.

Due to the small number of targets, the average performances on the CASP8 and CASP9

are consistently affected by the network depth (Figure 3.11). In particular, on the CASP8

set, for architectures depths in the range of 10-100, the average accuracy on L/5 long range

contacts varies from 0.30 to 0.35. On the CASP9 set, the average accuracy varies from

0.28 to 0.31. Notwithstanding such variability, on both CASP datasets, the performance of

CMAPpro remains above the performance of the other methods at all depth values. As a

general trend, on both CASP8 and CASP9 datasets the improvement obtained in contact

prediction with CMAPpro is ∼10% or higher with respect to methods that do not use 3D

structures. In Table 3.5 and 3.7, we also note that the performance of the plain neural

network predictor NN is comparable to the average performance across all groups. This

confirms that the overall good performance of CMAPpro is not due to the particular set of

protein domains used for training.

The accuracy of PSICOV (∼20%) is lower than previously reported (>50%) [37]. The

performance of PSICOV is considerably affected by the quality of the multiple alignments.

Since TBM/FM targets for contact prediction at CASP usually have few homologs in the

protein sequence databases, this considerably lowers the prediction accuracy of PSICOV.

The performance of PSICOV may suggest that even the most updated database of protein
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Figure 3.11: Accuracy (L/5 long range contacts) versus network depth for the set of test
domains (test), CASP8 domains (casp8) and CASP9 domains (casp9). The dotted vertical
line indicates the actual depth of CMAPpro.

sequences (i.e. the NR database used to extract sequence profiles) does not contain enough

information to derive rich evolutionary profiles for the CASP hardest targets. On the other

hand, PSICOV relies only on multiple alignments and thus a direct comparison with methods

that make use of predicted secondary structure or solvent accessibility is somewhat unfair.

Finally, Tables 3.7 and 3.8 report the head-to-head comparison of the ten top predictors

on the CASP data. These results show that the average accuracies of the best performing

methods are not biased by just a few very good predictions. With very few exceptions, in

head-to-head comparisons, CMAPpro achieves a better accuracy for over 60% of the targets

and worse accuracy for less than 30% of the targets.
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Table 3.7: CASP8 1-to-1 comparison of top ten predictors
CMAPpro RR157 RR072 RR453 RR477 RR197 RR131 PSICOV RR249 RR413

CMAPpro - 0.58 0.42 0.83 0.67 0.67 0.75 0.75 0.67 0.67
RR157 0.33 - 0.42 0.33 0.50 0.58 0.50 0.67 0.42 0.58
RR072 0.33 0.33 - 0.50 0.42 0.42 0.58 0.83 0.50 0.58
RR453 0.17 0.58 0.42 - 0.50 0.58 0.50 0.75 0.50 0.67
RR477 0.17 0.42 0.42 0.33 - 0.58 0.42 0.50 0.50 0.50
RR197 0.25 0.33 0.42 0.42 0.25 - 0.50 0.50 0.33 0.42
RR131 0.25 0.33 0.42 0.25 0.42 0.33 - 0.58 0.33 0.33
PSICOV 0.25 0.33 0.17 0.25 0.42 0.50 0.42 - 0.42 0.33
RR249 0.08 0.42 0.33 0.25 0.33 0.50 0.50 0.58 - 0.58
RR413 0.08 0.42 0.42 0.33 0.42 0.33 0.42 0.58 0.33 -

The entries of the table show the percentage of targets for which the Acc of the method in the row is strictly higher than the
Acc of the method in the column. The Acc is computed for L/5 pairs and sequence separation ≥ 24.

Table 3.8: CASP9 1-to-1 comparison of top ten predictors
RR490 CMAPpro RR051 RR103 RR002 PSICOV RR138 RR375 RR204 RR422

RR490 - 0.50 0.64 0.61 0.61 0.82 0.64 0.64 0.68 0.68
CMAPpro 0.46 - 0.61 0.71 0.61 0.86 0.61 0.71 0.64 0.71
RR051 0.29 0.21 - 0.50 0.43 0.82 0.46 0.57 0.57 0.61
RR103 0.29 0.11 0.36 - 0.36 0.64 0.43 0.39 0.46 0.43
RR002 0.32 0.25 0.36 0.46 - 0.68 0.46 0.39 0.54 0.50
PSICOV 0.14 0.11 0.07 0.25 0.25 - 0.21 0.21 0.21 0.18
RR138 0.25 0.18 0.32 0.46 0.32 0.68 - 0.57 0.54 0.50
RR375 0.25 0.14 0.32 0.29 0.46 0.75 0.32 - 0.32 0.46
RR204 0.18 0.25 0.32 0.36 0.29 0.71 0.36 0.39 - 0.36
RR422 0.25 0.14 0.21 0.29 0.32 0.71 0.32 0.36 0.39 -

The entries of the table show the percentage of targets for which the Acc of the method in the row is strictly higher than the
Acc of the method in the column. The Acc is computed for L/5 pairs and sequence separation ≥ 24.

3.4 Conclusion

Here we have introduced a new approach for the prediction of protein contact maps. In par-

ticular, partly inspired by the observation that nature uses an iterative refinement approach

to “compute” the structure of proteins, we have developed modular deep architectures that

can integrate information over multiple temporal and spatial scales. In rigorous tests, these

architectures have been shown to predict contact maps with an accuracy close to 30%, a

significant improvement. Although further improvements are necessary, it should be obvious

that there are many generalizations and variations on the architectures and training meth-

ods we have described that remain to be explored, giving us hope that further progress lies

ahead.
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Chapter 4

Conclusion

We described new machine learning approaches for the side-chain prediction and the contact

prediction. These predictors had a better performance than the existing methods.

We described the new predictor, SIDEpro. Accuracy was improved by using neural networks

as energy functions between two atoms in contact. Fast identification of atom contacts

using boxes in 3D space also aided in improving the speed of SIDEpro. SIDEpro had a

slightly better accuracy than the latest SCWRL, and SIDEpro was 7 to 20 times faster

in its predictions. In addition, we created the rotamer library for FPTMs which enabled

SIDEpro to predict the side-chains of FPTMs. SIDEpro can also predict any other non-

standard amino acids by creating rotamers with COSMOS. The accuracy for FPTMs and

non-standard amino acids is roughly comparable to its accuracy on the natural amino acids.

We could improve the contact predictor, CMAPpro, by using new deep neural networks

architecture and the results of two predictors, coarse contact and orientation prediction and

element alignment prediction. The accuracy of this method was close to 30% for long-range

contacts on CASP8 and CASP9 datasets. This is a relevant improvement over the state-of-

the-art in contact prediction.
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Since both SIDEpro and CMAPpro show better performances compared to the other existing

methods, the machine learning approach with neural networks worked well for the protein

structure prediction. Although the protein structure prediction is a difficult and unsolved

problem, machine learning has undoubtedly improved its accuracy. They are part of the

SCRATCH suit of predictors and are available from : http://scratch.proteomics.ics.uci.edu/.
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