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Highlights

• Soil moisture statistical fractal temporal evolution shows seasonal trends and a three-phase event-induced 
hysteretic patterns.

• Soil texture is the main cause of hysteresis in fractal temporal evolution; groundwater has important influences 
that interact with other factors.

• We separated out the effects of different controls and generalized phenomenological rules that govern fractal 
evolution.

Abstract

Soil moisture statistical fractal is an important tool for downscaling remotely-sensed observations and has the potential 
to play a key role in multi-scale hydrologic modeling. The fractal was first introduced two decades ago, but relatively little 
is known regarding how its scaling exponents evolve in time in response to climatic forcings. Previous studies have 
neglected the process of moisture re-distribution due to regional groundwater flow. In this study we used a physically-
based surface-subsurface processes model and numerical experiments to elucidate the patterns and controls of fractal 
temporal evolution in two U.S. Midwest basins. Groundwater flow was found to introduce large-scale spatial structure, 
thereby reducing the scaling exponents (τ), which has implications for the transferability of calibrated parameters to 
predict τ. However, the groundwater effects depend on complex interactions with other physical controls such as soil 
texture and land use. The fractal scaling exponents, while in general showing a seasonal mode that correlates with mean 
moisture content, display hysteresis after storm events that can be divided into three phases, consistent with literature 
findings: (a) wetting, (b) re-organizing, and (c) dry-down. Modeling experiments clearly show that the hysteresis is 
attributed to soil texture, whose “patchiness” is the primary contributing factor. We generalized phenomenological rules 
for the impacts of rainfall, soil texture, groundwater flow, and land use on τ evolution. Grid resolution has a mild 
influence on the results and there is a strong correlation between predictions of τ from different resolutions. Overall, our 
results suggest that groundwater flow should be given more consideration in studies of the soil moisture statistical 
fractal, especially in regions with a shallow water table.

1. Introduction

Spatial and temporal variations in soil moisture strongly affect many hydrologic processes, including infiltration, 
evapotranspiration (ET), and subsurface flow [1], [2], [3], [4], [5], [6], [7], [8]. Downscaling (inferring fine-scale spatial 
distribution from coarse-resolution data) soil moisture can help improve the accuracy of modeling these nonlinear, 
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moisture-dependent processes [9], [10], [11]. Spatial scaling laws are useful tools for downscaling coarse-grained 
remotely-sensed observations [12], [13], [14], [15], [16].

Current techniques for the soil moisture downscaling problem include model-based disaggregation [17], Empirical 
Orthogonal Function [18], Proper Orthogonal Decomposition Mapping Method [10] and multi-fractal-based 
approaches [19], [20], with which our work is primarily concerned. Since the seminal paper by Rodriguez-Iturbe et 
al. [21], it has been widely known that statistical moments of observed soil moisture exhibit power-law decay (e.g., 
see [11], [12], [19], [22], [23], [24], [25], [26], [27], [28]), which resembles a self-similar structure, or fractal, in a 
statistical sense (for a brief introduction, see Section 2.1). Previous modeling results [23], [29], [30] also show similar 
scaling relationships. These scale-invariant relationships and the associated scaling exponents may hold the key to enable
estimation of subgrid-scale states from large scale dynamics for modeling purposes [14], [31].

In addition to providing a tool for observation-based downscaling, the statistical fractal may also contribute to solving the
spatial scaling issue in hydrologic modeling. Hydrologic spatial scaling and heterogeneity have for decades been 
recognized as among the most significant challenges in hydrologic modeling [32]. Scaling problems arise when the 
models and their associated governing equations are applied at inappropriate spatial scales [33], leading to identifiability 
(or equifinality) problems [34] for scale-dependent hydrologic models [14], [35], [36], [37], [38]. Despite the importance 
of this problem, there is a lack of generalized subgrid scale integration theory. It has been common in other disciplines, 
e.g., soil structure [39], reactive transport [40], [41], modeling of orographic precipitation [42], geomechanics [43], etc., 
to employ scale-invariant relationships to infer fine-scale distributions with macro-scale data (e.g., [44], [45], [46]). 
However, we are not aware of the applications of scale-invariance in land surface hydrologic modeling.

Despite the potential usefulness of the soil moisture statistical fractal (SMSF), there is limited knowledge of how it 
evolves in time as watersheds undergo seasonal and daily climatic forcing. Although it is generally understood that a 
more ‘patchy’, disconnected, or ‘wet islands’ pattern has higher spatial ‘intermittency’ [20], [21], leading to higher scaling
exponents, no quantitative or qualitative descriptions exist for the continuous temporal evolution of the SMSF, except for
its relationships with mean moisture [25], [30]. There is even less understanding of the abiotic and biotic controls of the 
SMSF. Mascaro et al. [20]used mean moisture and calibrated parameters representing soil texture and vegetation as 
predictors for the SMSF scaling exponents, but did not examine the impacts of regional groundwater flow. In more humid
regions, since groundwater flow likely produces hillslope-scale spatial soil moisture structure [47], we expect 
groundwater dynamics to exert controls on the SMSF scaling exponents. Whether the mean-moisture-driven formula 
proposed by Mascaro et al. [20] works for different geologic and groundwater flow settings is therefore worth 
investigation. Since an analytical formulation of SMSF scaling exponent evolution considering groundwater flow is not 
available, empirical evidence can be collected to synthesize patterns and phenomenological laws. Recent discussions 
encouraged the identification and use of patterns, emergent behaviors, and organizing principles to reduce the 
dimensionality of the prediction problem [48], [49], [50], [51], [52], [53].

The goals of this paper are two-fold: (1) to test the hypothesis that in humid regions, lateral groundwater flow can exert 
short- and long-term controls on the temporal evolution of the SMSF scaling exponents, comparable to the effects of soil 
texture, on the 10−2–101 km2 scale. More specifically, groundwater flow maintains spatial soil moisture structure and 
thus reduces the values of the SMSF scaling exponents; and (2) to identify and understand how SMSF scaling exponents 
evolve in response to seasonal and storm-event forcings. The span of spatial scales studied here is chosen because it fills 
the gap between regional climate modeling and physically-based hydrologic modeling scales, and is therefore of interest 
to future multi-scale modeling. We analyze the temporal evolution of the SMSF scaling exponents using a tested, 
physically-based, surface-subsurface processes model applied in two temperate watersheds. We focus on “deep why” 
explanations of the temporal dynamics and, ultimately, methods for representing heterogeneity in numerical models.
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In the following, we first provide basic background of the soil moisture statistical multi-fractal. Then we present the 
impact of groundwater flow on fractal evolution by comparing simulations with and without lateral groundwater flow. 
Subsequently, we synthesize the temporal evolution patterns of the scaling exponents, explain their responses to 
seasonal and event forcings, and analyze their controls by soil texture, groundwater flow, and land use. Finally, we show 
results from different resolutions, as well as a different basin, and discuss the potential for application of the SMSF in 
large-scale models.

2. Methods

2.1. Multi-fractal analysis

We denote by θ(λ) the depth-averaged soil moisture (or, more generally, any spatially-distributed variable) in an 
observation window of size (support scale) λ   × λ in a domain of size L  × L. The qth order central moment of θ(λ), Sq(λ), is
calculated as

where the average operator is taken over the specified domain of size L  × L. As discovered from both field observations 
and numerical simulations, increasing the support scale λ at steady state often leads to an approximate power-law decay 
of Sq:

where τ(q) are the scaling exponents for each moment. Since the relationship is scale-invariant and self-similar, i.e.,

 is a constant for all λ (within the λ bounds where this relationship holds), the field is fractal in a 
statistical sense when 0 < τ(q) < 2. At the bounds, τ(q) = 2 corresponds to a completely uncorrelated random field, or 
white noise, and τ(q) = 0 corresponds to a homogeneous field. When τ(q) ∝q, the field is called monofractal and 
when τ(q) is a nonlinear function of q, the field is called multifractal. τ(q) characterizes the spatial “intermittency” or 
“irregularities” of the field [25]. On a soil moisture map, a lower “intermittency” field (lower τ) presents a more 
recognizable large-scale pattern with less local concentration. On the other hand, a higher intermittency field, typically 
associated with drier days, is more random, patchier, with less apparent structure and higher values (closer to 2) of τ. We
use τz1:z2 (q)to denote the qth order scaling exponents calculated for the layer between depths z1 and z2 (cm). To improve 
clarity, we will focus on τ0: 10(2).

For this paper, we run our numerical model (Section 2.3) at the finest support scale, λmin. Moments at support scale λ are 
obtained by aggregating simulated data from λmin.

2.2. Multi-fractal models

Mascaro et al. [25] employed a multi-fractal model (MFM) to describe the theoretical expectation for τ as a function of q,
drawn from simulated rainfall fields [54]:
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where c and β are fitting parameters. When β = 0, Eq. (3) describes a monofractal, and a multifractal otherwise. Mascaro 
et al. [20] further related c to field mean moisture:

Alternatively, we also attempted the linear model:

where c∞, δ, λ, a, and b are fitting parameters they attributed to environmental factors such as soils and slopes. Eqs. 
(3) and (4) predict that τ will be higher when the field is drier, consistent with our understanding that drier days are 
associated with higher intermittency. For each simulated moisture field, a set of c and β can be obtained by fitting Eq. 
(3) to extracted τ(q). Following Mascaro et al. [20], we fixed β while calibrating c. Then, we examined the relationships 
between c and θ¯ to evaluate whether Eqs. (4) and (5) are appropriate.

2.3. PAWS+CLM

PAWS (Process-based Adaptive Watershed Simulator) [47], [55], [56] is a computationally-efficient, physically-based 
hydrologic model that has been coupled with the community land model, CLM4.0 (hereafter called PAWS+CLM; Fig. 1). 
PAWS+CLM explicitly solves physically-based governing equations for 2D overland flow, 1D flow in channel network, 
quasi-3D subsurface flow, wetlands, and the dynamic, two-way interactions among these components. The quasi-3D 
subsurface flow is an approximation to the 3D Richards equation, with vertical soil water flow governed by a series of 1D 
Richards equation, which are coupled to the saturated quasi-3D groundwater flow at the bottom using a physically 
consistent boundary condition [55]. By reducing the dimensionality of the fully three-dimensional (3D) subsurface 
problem, the model significantly reduces computational demand with little loss of physics representation. PAWS+CLM 
emphasizes subgrid mechanisms (e.g., lowland depressions, overland-channel exchange) that attempt to account for lack
of spatial resolution.
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Fig. 1. Definition sketch of PAWS+CLM. This figure is modified from Fig. 1 in [55] and the CLM processes have 
been added. Blue arrows indicate water fluxes; yellow arrows indicate short-wave radiation fluxes; brown arrows 
with outlines indicate longwave radiation; orange arrows indicate heat fluxes; gray arrows indicate carbon fluxes 
and green arrows are nitrogen fluxes. Abbreviations: ED: evaporation from depression storage; Eo: evaporation 
from channels; Ec: canopy evaporation; I: infiltration; R: recharge; P: precipitation; T: transpiration; Tc: canopy 
temperature; EB: evaporation from bare ground; Qthru: through flow; Qstem: stemflow; Ndep: nitrogen deposition; 
SW: short-wave radiation; LW: long-wave radiation; SH: sensible heat. Carbon and nitrogen fluxes were not 
annotated to avoid clutter. Un-annotated terms include carbon storage and allocation, litterfall, soil respiration, 
mineral nitrogen uptake, denitrification, and leaching. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

CLM [57], [58] is a comprehensive land surface model encompassing energy and radiation cycles, hydrology, 
momentum/vapor/heat transfers, soil temperature, freeze and thaw, prognostic vegetation phenology, carbon and 
nitrogen cycles, and many other processes, through mostly mechanistic descriptions. The energy, momentum, vapor 
transfers and photosynthesis are solved simultaneously. The soil water flow and groundwater components in CLM have 
been replaced by PAWS components in the coupled model, while Evapotranspiration (ET) and soil freeze-thaw is 
calculated by CLM modules and passed to PAWS. Because PAWS is coupled to CLM4.0 (and soon to CLM4.5 [59], [60]), 
we can explicitly investigate interactions between carbon and nitrogen biogeochemical and hydrological dynamics.

PAWS+CLM has shown consistently good performance when compared with many observations from seven basins. The 
model obtained good Nash-sutcliffe performance coefficient on streamflow (Nash) in U.S. Midwest basins (1140 km2 to 
22,260 km2), from 0.6 to 0.75 for calibrated and uncalibrated gages. In the 1837 km2 Clinton River basin [47], we obtained
a Nash of 0.61 at the calibration gage and 0.65 at an internal gage, partially influenced by increased missing climatic 
records after 2006 and the climate station unable to capture a large storm in 2004. Moreover, the R2 between observed 
and simulated depths to water table (wtd) and soil temperature was 0.66 and 0.97, respectively. The baseflow was 
shown in log-scale plots to be better captured than peak flows, yielding higher Nash based on root-square-transformed 
data. In addition, the soil moisture [9], Leaf Area Index (LAI), and ET were shown to be in general agreement with in-
situ and satellite-based observations. Similar good performance with different variables was achieved also in the 
14,431 km2 Grand River basin and the 22,556 km2 Saginaw River basin [61]. In that study, the model agreed well with 
terrestrial water storage anomalies from GRACE data [62], and time series of groundwater table (R2 = 0.72), streamflow, 
ET and soil moisture.

2.4. Study sites and model setup

In this paper we applied the PAWS+CLM model to two U.S. Michigan basins (Fig. 2a and b): the Clinton River Basin (CRB, 
1837 km2) and the Upper Grand River Basin (UG, 4531 km2). The two basins share similar humid continental climate, with
strong seasonality and an annual average precipitation input of ∼900 mm year−1, but they have different topography. The
UG has very mild terrain (elevation: 195–355 m) and unconsolidated glacial drift surficial geology (moraines and tills) 
underlain by transmissive Marshall and Saginaw formations (fractured sandstones and shale), while the CRB (175–366 m)
has rugged hills in the western half of the basin descending to a flat plain in the eastern half. The CRB also has glacial 
drift surficial geology, but it is underlain by low-permeability coldwater shale formations. Both CRB and UG have “patchy”
soil spatial aggregation pattern (Fig. A.1 shows the distribution of clay percentages in the CRB), as in many other basins. 
There are higher percentages of fine-texture lacustrine sediment in the southeast, near the Lake St. Clair, due to lake 
deposition. As discussed later, we found the soil texture spatial aggregation pattern to be important for the fractal 
evolution during rainfall hiatus.
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Download high-res image     (642KB)
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Fig. 2. Map of the two basins studied: (a) Upper Grand River Basin (UG) and (b) Clinton River Basin (CRB) in 
Michigan, USA. The CRB has rugged hills in the western half and a lowland plain in the eastern half, and is 
adjacent to the Lake St. Clair to the east. The UG has mild relief and lacked the topographical contrast in CRB.

Throughout the paper, we present results from the CRB, and include discussion about the UG in Section A.2. To focus our 
analysis on the temporal dynamics and basins’ SMSF responses, we followed the approach of Gaur and Montanty [63] by
using homogenized climatic input from one representative station in each basin (Oxford MI, COOPID 206303 for CRB and 
East Lansing, COOPID 202395 for UG). We acknowledge that spatial patterns in precipitation may have important 
influence at larger scales on soil moisture distributions [12] and modality [64].

We applied PAWS+CLM at 220 m × 220 m horizontal resolution (λmin) for the CRB and 400 m × 400 m resolution for the 
UG, leading to 256 × 280 and 270 × 240 grids, respectively. We used 20 vertical soil layers with variable thicknesses: 
layers are thinner near the surface and thicker near the bedrock. Both basins were parameterized using similar input 
sources. The 30-m resolution National Elevation Dataset (NED) was used to generate cell elevation, river bed elevation, 
and lowland storage bottom elevation in each gridcell. The 30-m resolution IFMAP 2001 land use and land cover 
data [65] were aggregated to provide Plant Functional Type (PFT) information, with three dominant land use types (PFTs) 
in each cell. The 1:24,000 SSURGO dataset [66] was processed by a hierarchical pedotransfer function (PTF), Rosetta [67],
to provide water retention and unsaturated vertical conductivity parameters for the vadose zone. We obtained the 
spatial maps of lateral conductivities of the unconfined aquifer (glacial drift) and depths to bedrock by interpolating well 
records from the WELLOGIC database [68], [69], [70] using Kriging.

Table 1. Codes of simulations.

Abbreviations Procedures Objectives

ctrl
Use the baseline parameters; weather input 
in the basin was set as from one single 
station

To show seasonal and rainfall-
induced dynamics with less 
noise
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Abbreviations Procedures Objectives

rs
The soil textures were reshuffled and 
randomly placed in the domain, breaking 
existing spatial autocorrelation

To demonstrate the effects of 
soil texture pattern on scaling 
exponents

hl
LULC was uniformly set to Deciduous 
Broadleaf Forest (DBF)

To show the effects of LULC 
spatial pattern on scaling 
exponents

hd
Initial water table was homogenized to the 
average water table depths in the basin

To reduce the impact of initial 
conditions on -GW and -nGW 
comparisons

storm
Based on ctrl, some precipitation events 
were removed

To present two prototypical 
rainfall-induced cycles

noForcing
Based on ctrl, source terms (ET and 
precipitation) were removed.

To show effect of basin self-
organization

res2 Based on ctrl, grid resolution reduced in half
To show the effect of grid 
resolution on analyzed scaling 
exponents

nGW
Lateral groundwater flow was disabled by 
setting aquifer conductivity, K, to 
1e−14 m day−1

To show the effect of having no 
lateral groundwater flow

GW
Groundwater flow was enabled and K was 
given the original input values

The model was calibrated using root-transformed Nash–Sutcliffe model performance coefficient by adjusting global 
multipliers. The procedures and comparisons are given in Shen et al. [47]. A warm-up period was provided from 2001 to 
2004, and we only examine the results after 2004.

2.5. Numerical experiments and analysis

We designed a series of numerical experiments highlighting the effects of soil texture and regional groundwater flow on 
the evolution of the fractal exponents (Table 1). In our previous study in the region, we identified soil texture, 
groundwater flow, and land use/landcover (LULC) as controls of soil moisture [71]. Therefore, we adopted a factorial 
experimental design, in which these three factors were enabled or disabled to examine their effects on the SMSF. For 
LULC, we considered both the original input data and a homogenized landscape (hl) with only deciduous broadleaf 
forest. For soil texture, we considered both the original input and a reshuffled soil texture (rs), in which the positions of 
the original soil textures were randomly switched in the watershed to eliminate any spatial autocorrelation and 
correlation with topography and LULC. For each combination of LULC and soil texture inputs, we conducted experiments 
with (a) groundwater flow enabled (GW); and (b) lateral groundwater flow disabled (nGW) by setting lateral groundwater
conductivity, K, to 0. As we modify the K values, the steady state water table position also changes, and it will take many 
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simulation years for the model to re-establish near-equilibrium water table. To reduce the effects of initial data, we 
considered simulations with the initial water table depths of all simulations set uniformly to the basin-average values 
(hd).

We developed software utilities to export simulated daily-averaged soil moisture fields and calculate τ(q) from the fields. 
Simultaneously calculated were the moments of the fields. For the CRB, we divide the basin into roughly two halves: the 
western hills and eastern plain. We also distinguish between frozen and non-frozen periods, since the SMSF behaved 
dramatically different between the two periods (Section 3.1). We define the non-frozen period as the first day with soil 
ice after April 1st to the last non-frozen day before October 31st. For all the simulations listed in Table 1, we computed 
scaling exponents and calculated the temporal average and standard deviation for non-frozen period for the entire basin.
For the CRB, we also calculate the temporal mean and standard deviation of τ(q) for the two sub-domains.

Several numerical simulations were also designed to demonstrate the temporal evolution of the scaling exponents under
idealized situations. Simulation noForcing shows how τ evolves in the absence of ET and rainfall, thereby allowing the 
basin to purely re-organize via vertical soil moisture movement and groundwater flow. Baseflow and exchange with 
lowland depressions were still allowed to occur. Such a scenario would obviously never happen, but it helps illustrate the 
isolated effects of groundwater flow on τ0: 10(2). In noForcing, following a precipitation event on July 15, 2006, ET or 
precipitation inputs were stopped from July 16 onwards. To show the typical temporal evolution trajectories of scaling 
exponents during and after storm events, we ran a hypothetical simulation, storm, which is identical to the control 
simulation (ctrl) except that precipitation inputs are modified to allow the excursions to evolve without disturbance from 
new storm events. The precipitation amounts on two starting days have been set to 32 mm and the storms following 
these two events were removed to produce two complete, un-interrupted cycles.

In addition, we also conducted experiments to examine the impact of grid resolution on our results. The CRB simulations 
were conducted using 220 m spatial resolution simulation (resulting in 256 × 280 × 20 grid cells). It was currently 
computationally difficult to run at higher resolutions. Therefore we ran simulation res2, which used a coarser grid 
(λmin = 440 m).

3. Results and discussion

First, we verified the scale-invariance of the simulated soil moisture spatial field by examining the relationships between 
the spatial moments and the observation window size (Section A.1). We noted that there were a range of scales where 
the log–log linear relationship held true, and the upper-limit of the scale-invariant relationship (λmax, fractal cut-off) was 
related to the size of the computational domain, so we always calculated the log–log slopes using data below λmax. In the 
following, we first examine the fractal temporal evolution on a seasonal time scale. Then we demonstrate the influence 
of groundwater flow on the scaling exponent. Then we focus on how the fractal evolves during rainfall and rainfall hiatus.
Subsequently, we show how the scaling exponent is related to variance, how grid resolution influences the results, and 
confirmation results from the UG.

3.1. Seasonal dynamics of the SMSF scaling exponent

Time series of the scaling exponents of top 10 cm soil moisture in the CRB basin have very different dynamics between 
summer and winter (Fig. 3a); similar differences occur in the UG basin (Section A.2). We identified common seasonal and
event-driven patterns in the time series for both basins: (a) a slowly varying seasonal mode during the non-frozen period,

in which  increased from spring to summer, and declined back down during the cooler season when the basin is 
wetting; (b) short-lived spikes to near maximum values during the winter due to freezing; (c) storm-induced disturbances 
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superimposed on the non-frozen seasonal trend, creating first a small peak, which in a few days reverted to a dip, and 
then merged into the seasonal mode (Fig. 3a subpanel).
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Fig. 3. (a) Time evolution of the scaling exponents in the CRB. The seasonal withdrawing and storing limbs and 
the effects of freezing have been annotated. The subpanel zooms into June, 2005 on the whole basin time series.
The dashed boxes indicate days with rainfall; (b) Relationship between τ0: 10(2) and basin-average water storage 
(w) anomaly during non-frozen period (April–October, nfrz) in 2005–2009.

Since τ0: 10(2) is related inversely to the spatial organization of the moisture field, pattern (a) suggests that the field was 
most organized (or, “connected”) during wetter seasons and that the structure gradually weakened during the summer 
dry-down, which is consistent with the observations from aircraft-based remotely-sensed data [20]. The non-frozen 
period fractal exponent is related to seasonally-varying basin states, and in particular basin water storage. This pattern is 
consistent with the model Mascaro et al. [20] applied, where mean soil moisture was used a predictor. There was a 
strong negative correlation between τ0: 10(2) and non-frozen period basin-average subsurface water storage (w, in 
cm) anomaly (defined as water storage minus 5-year mean; Fig. 2b) in each year except for 2009, with R2 ranging 
between 0.48 and 0.98. R2 in 2009 was only 0.21, perhaps because this was a particularly wet year, and therefore the 
effects of dry-down periods were weak. Water storage in this region generally declines during Spring and Summer and 
increases during Fall and Winter [47]. As a result, there are two seasonal limbs to the fractal τ0: 10(2) dynamics: the 
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“withdrawing limb” and the “storing limb” (marked in Fig. 3a). In the withdrawing limb (early Spring to Summer), water is
being withdrawn from the basin, and τ0: 10(2) increases. In the storing limb (end of Summer through Winter), water is 
being stored in the subsurface and the scaling exponents decrease, with large variations occurring during freezing 
periods.

The scaling exponent for the entire CRB was consistently less than those for the two sub-domains. This pattern occurred 
because the entire basin showed more spatial organization than each sub-domain, due to the large contrast in soil 
moisture between the two sub-domains. Between the two sub-domains, the non-frozen period scaling exponent for the 
western hills was relatively more static in time and was generally higher than in the plain domain. The eastern plain sub-
domain has in general higher soil moisture than the western hills due to basin-scale groundwater flow providing subsidy 
from the west to the east (Fig. A.2a and b; also [47]). There is a local spatial pattern within the plain sub-domain: the 
lower elevation region in the southeast has higher moisture than the northeast. In contrast, the moisture structure in the
hills sub-domain is patchier and more isolated, mainly attributable to hillslope-valley contrasts, resulting in higher scaling 
exponents compared to the plains. The eastern plain domain also showed larger seasonal variation in τ0: 10(2) due to the 
shallower groundwater table, which was more strongly influenced by seasonal climate forcings. In a similar finding from 
field studies, Rosenbaum et al. [72] showed that groundwater-influenced areas (shallow water table) experience a larger 
range of spatial variance of soil moisture. In a percolation theory framework, Domenico and Laguardia [29] showed that, 
using another hydrologic model, the percolation probability is influenced by terrain morphology such as bifurcation and 
elongation ratios.

3.2. The impact of groundwater flow on scaling exponents

3.2.1. Impact on temporal mean and variability of τ

We now examine how the temporally aggregated τ behavior is influenced by groundwater, LULC, and soil properties. To 
reduce influence from initial conditions and present a fair comparison between with and without groundwater flow, here
we plotted results from the simulations that homogenized the initial depth to water table (-hd). Fig. 4a shows that the 
temporal mean of non-frozen-period τ0: 10(2) declined dramatically with increasing physical controls (from right to left). 
Recall that a τ(2) value of 2 corresponds to a completely uncorrelated soil moisture distribution (i.e., white noise). For the
case with reshuffled soil, homogenized landuse, and disabled groundwater flow, τ0:10(2) = 1.97, therefore representing a 
nearly random field with no spatial structure. Proceeding in the order of control (cntl), rs-hd, and rs-hl-hd (from left to 
right in Fig. 4a), more physical controls were added, and we observed a decreasing trend in τ0: 10(2). This pattern indicates
that spatial structures form in the moisture fields as LULC heterogeneity and spatial soil texture patterns are introduced.
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Fig. 4. (a) Temporal mean and (b) temporal standard deviation of τ0: 10(2) as a function of controls. The colors 
indicate domains. The solid-filled bars are groundwater enabled simulations (GW) while the hatched bars are 
groundwater disabled (nGW) simulations.

For all cases except for the hills sub-domain of the CRB, groundwater flow led to lower scaling exponents. However, the 
changes caused by groundwater flow were situation-dependent, and not predictable as an additive effect. Based on the 
control cases, where soil texture patterns were in effect, there was only a difference of ∼0.1 between enabled and 
disabled groundwater flow. However, based on randomly-distributed-soil cases (rs-), which in general have much 
higher τ0: 10(2), there were differences in τ0: 10(2) of 0.19, 0.6, 0.4, and 0.22, respectively, for CRB-hill, CRB-plain, CRB-
whole, and UG. This phenomenon may be attributed to how other controlling factors spatially co-vary with groundwater 
convergence patterns, yielding both correlated and anti-correlated interactions on moisture. Groundwater flow tends to 
induce higher moisture in lowland areas, foothills, and riparian zones, while wetter areas are often found with finer 
textures (clay) because they are better at retaining moisture. The two factors are sometimes correlated, as there are 
more clayey soils in the eastern lowland plains, especially near Lake St. Clair (Fig. A.1). Therefore the soil-texture-
dominated pattern is correlated with the groundwater-dominated pattern. However, there can also be conflicting trends. 
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For example, near the stream riparian zones, where groundwater discharges, there is notably less clay. As a result, adding
the groundwater flow in the ctrl cases yielded a smaller difference in τ, while adding it to the rs case yielded a much 
larger difference.

In addition to reducing the mean of τ0: 10(2), groundwater flow also increased the temporal standard deviation of τ0: 10(2), 
while the magnitude of the difference is also case-dependent (Fig. 4b). Higher standard deviation indicates stronger 
temporal variation of soil moisture pattern in response to climate forcings. Especially, for rs-hl-hd, when the dominant 
controls of soil texture and LULC were removed, groundwater alone contributed to the temporal dynamics of τ0: 10(2). The
corresponding temporal standard deviation of τ0: 10(2) in the rs-hl-hd-nGW cases were all very small, suggesting that the 
pattern created by groundwater flow is very steady in time, while the soil texture-dominated pattern is very patchy.

3.2.2. Impact on the predictive formula

Since the Mascaro-2010 formulation (Eq. (3)) does not include groundwater, its effects can be implicitly accounted for 
during site-specific calibration using the c ∼ θ¯ relationship. Therefore, if groundwater flow substantially alters the c ∼ 
θ¯ relationship, we hypothesize that it can affect the transferability of the calibrated parameters. The c ∼ θ¯ (c as in Eq. 
(3)) relationships, based on daily data from several simulations, again highlight the complex interaction between the 
groundwater flow effects and other controls (Fig. 5). In Fig. 5a, the ctrl-hd-nGW points show a simple, generally 
decreasing relationship between c  and θ¯, which can be well described by the linear function in Eq. (5). However, 
enabling groundwater flow (ctrl-hd-GW) introduced many hysteretic excursions which reduced the overall slope of the 
scattered points. The disturbance effect resulted from groundwater flow patterns not entirely matching the soil texture 
pattern, as explained in previous section. When soils were reshuffled, however, the c ∼ θ¯ completely changed, showing 
a positive correlation between c and θ¯ in both rs-hd-nGW and rs-hd-GW simulations (Fig. 5b). Compared to rs-hd-nGW, 
rs-hd-GW has increased scattering of c ∼θ¯ points in the lower c range. Further, when the LULC was uniformly set to a 
deciduous broadleaf forest, the contrast between GW and nGW simulations was more prominent (Fig. 5c): c and θ¯ were
positively correlated in rs-hl-hd-GW and negatively correlated in rs-hl-hd-nGW.
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Fig. 5. Relationships between c and θ¯ in the hypothetical simulations.

The complete change of behavior from Fig. 5a to b suggests that soil texture spatial distribution may be the primary 
factor responsible for the observed negative c ∼ θ¯ correlation found in the literature. Consider the rainfall hiatus, 
when θ¯ decreases (going from the right of panel to the left in any panel in Fig. 5). With the original soil texture 
distribution (ctrl-), the moisture pattern was heavily influenced by small, isolated soil texture patches, leading to higher c.
On the other hand, in a soil-reshuffled domain, the remaining dominant control besides groundwater flow is the LULC. 
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The smooth, large-scale structure induced by either LULC (e.g., due to canopy shading effects, evapotranspiration) or 
groundwater flow (due to topography) emerged as drydown occurs, leading to a more organized pattern and thus 
lower c. Consistent with this theory, in Fig. 5c, the c ∼ θ¯ was almost flat, as no factors introduce patterns, but when 
groundwater flow was added (rs-hl-hd-GW), it dominated, leading to positively correlated c ∼ θ¯.

3.2.3. Impact on the temporal evolution pattern

In noForcing, the model predicted a slow decline in τ, accompanied by a slow loss of water due to baseflow (Fig. 6a). The 
correlation between mean moisture and τ is strong after Day 0. In the absence of mass exchange with the atmosphere, 
the basin moisture continuously converged to lowland areas (hereafter termed the re-organization phase), leading to a 
stronger pattern and thus lower τ. In Fig. 6b, the decline in τ was fastest immediately after D0, and became gradually 
slower as re-organization proceeded. An analogous experiment with the UG showed a similar pattern (data not shown). 
Therefore, we can expect the fractal scaling exponent to gradually decrease as the basin releases water during recession 
periods. However, when the forcing terms (ET and precipitation) are present, the change in τ depends on the competing 
effects of inputs and re-organization.
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Fig. 6. τ0: 10(2) evolution from noForcing where all water source terms (precipitation and ET) are set to zero on Day
0 (July 16th, 2006; Julian day 573 of the simulation; red square in (a)) and the basin is subject to pure 

redistribution. (a) τ(0: 10)(2) vs. θ0: 10; (b)  vs. time. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

In summary of the results in Section 3.2, soil texture seems to be a dominant controller of the c ∼ θ¯ relationship, and, 
as expected, the soil texture spatial distribution will be a primary contributor to the parameters describing this 
relationship. However, apart from soil texture and LULC, groundwater flow also introduces noticeable disturbances to the
relationship, and characteristically alters the c ∼ θ¯ relationship. The calibrated parameters implicitly compensate for 
the groundwater flow, implying that its transferability may be limited. Therefore, the role of groundwater should be 
explicitly included in an improved predictive formula.

3.3. Rainfall-induced hysteresis

3.3.1. Typical τ response to rainfall and rainfall hiatus

In this section we examine how τ typically evolves during and after rain events. From Fig. 7a and b, note that the  

values were not a single-valued function of θ0: 10. Rather, we observed loops and shifts of the  orbits, indicative of 
system hysteresis. Hysteresis in the coefficient of variation vs. mean moisture state plane was also observed in 
simulations of an arid system [48], [73] and a humid temperature basin [72].
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Fig. 7. (a) τ0: 10(2) vs. θ0: 10 (top 10 cm layer soil moisture) orbits from May 24th to August 18th, 2005 for 
the ctrl simulation, with color indicating time; (b) Close-up of the upper half region of (a). The three phases of 
rainfall-induced excursion have been annotated. The red squares in (b) mark out points corresponding to three 
annotated days (MM-DD). Color of the lines in all panels indicates time (MM-DD); (c) and (d) same as in (a), but 
for, respectively, the groundwater disabled (ctrl-nGW) case and the reshuffled soil texture simulation (rs). When 
soil textures were reshuffled (LULC and groundwater flow are both in effect), τ0: 10(2) vs. θ0: 10 relationship 
changed to positive correlation with little hysteresis, indicating that the patchiness of soil is the primary 
contributor to the hysteresis and inverse τ0: 10(2) vs. θ0: 10 relationships observed in the field. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

These excursion loops can be broadly divided into three phases (Fig. 7b): (1) a wetting phase; (2) the subsequent 're-
organizing'-dominated phase, shown as the curve bending downward in tau; and (3) a dry-down phase, where θ0: 10 
decrease steadily while τ0: 10(2) increases. After the re-organizing phase finishes, the hysteretic loop merges back onto the
seasonal mode. As shown in Fig. 7b the curve slopes down along an almost constant slope on the τ0:10(2)−θ0:10 plane 
during multiple reorganization periods. A storm event is easily spotted on Fig. 7a and b as a sudden excursion toward the 
right (increasing θ0: 10), which then gradually bends its way back toward the left, along a separate path, until the next 
rainfall hits. Fig. A.2b shows the moisture field on June 28th, which was the last day of a dry-down phase. On the next 
day, June 29th, 2005, 3.56 mm of rain fell. The difference in 0–10 cm soil moisture between these two days (Δθ0: 10; Fig. 
8b) shows higher values in the highland hills in the West and North of the domain. Because these highland hills were 
much drier after a long drying phase, they were able to absorb more moisture as the storm hit than the lowland plains 
and local depressions. Therefore, rainfall acted to reduce the variability of the field, thereby very mildly weakening the θ0:

10 spatial structure. Rainfall stopped on July 9th. Over the next three days, τ0: 10(2) declined and erased the “gain” during 
the rainfall (Fig. 7a). Basin redistribution immediately following rainfall strongly impacts these patterns (Fig. 8c). The 
redistribution is the emergent combination of infiltration, ET, and groundwater lateral flow. However, as we demonstrate 
in Section 3.3.2, the main factor contributing to the hysteresis is the spatial aggregation pattern of soil texture. Ensuing 
the redistribution, the dry-down phase started and the wet clusters became patchier (Fig. 8a shows the change in θ0: 
10 during a typical dry-down day), resulting in an increasing τ0: 10(2).
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Fig. 8. Δθ=θ(t)−θ(t−1) on selected days in 2005 (these days are marked out by red squares on Fig. 7c) from ctrl: 
(a) 06-28: last day of a dry-down period; (b) 06-29: a small precipitation event (3.56 mm); (c) 07-10: first dry day 
after a large precipitation event.

3.3.2. Controls of hysteresis and temporal evolution

Orbits from hypothetical simulations clearly established that the soil texture pattern was the main cause of the rainfall-
induced hysteresis (Fig. 7c and d). The simulations with reshuffled soil texture (rs) did not exhibit any hysteresis. Rather, 
the orbit showed a positive linear τ0: 10(2) vs. θ0: 10 relationship, which is contrary to the ctrl case. The ctrl-nGW, on the 
other hand, has a strong hysteresis, and has maintained the negative τ0: 10(2) vs. θ0: 10 relationship during dry-down. 
Therefore groundwater could not have been the main cause of hysteresis.

We attribute the hysteresis to different soils’ infiltration and water retention behavior. Immediately after rainfall, 
moisture continues to infiltrate and re-organize as driven by pressure gradients. These processes tend to create smooth 
patterns that lead to lower τ. However, when the re-organization finishes, ET drives the dynamics as the rainfall hiatus 
continues. Finer texture soils are better at retaining moisture from evaporation and transpiration, and the patchy soil 
texture aggregation pattern emerges, therefore leading to higher τ. In the rs-simulations, as the patchy aggregation 
pattern does not exist, τ decreases during dry-down because of the organizing effects of groundwater flow and LULC.

The competing influence of multiple factors on τ can be qualitatively generalized into several phenomenological laws, as 
illustrated in Fig. 9. During rainfall hiatus, patchy soil texture spatial patterns produce hysteretic loops. Groundwater and 
LULC always tend to create regional structures and therefore lower τ. These phenomenological laws seem to work for all 
the cases we simulated for the two basins.
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Fig. 9. Phenomenological behaviors of different competing processes acting on τ0: 10(2): the blue circle indicates 
initial state. The blue arrow shows the behavior of storm event. The brown arrows show the individual potential 
effect of groundwater flow (GW), land use land cover (LULC) and spatial aggregation of soil texture (Patchy soil) 
on fractal evolution during rainfall hiatus following the rainfall. When all factors are present, the system evolves 
according to the predominant factor (soils), but the effects of other factors are noticeable. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

In the storm experiments, for the withdrawing limb response (Fig. 10a), ET is strong, the re-organization phase is short-
lived and under-developed, and the excursion quickly returns to the dry-down phase. For the storing limb response (Fig. 
10b), the re-organization phase is longer, well-developed, the corresponding drop in τ is significant, and the effect of ET is
small. It is through these long re-organization phases that τ returns to its annual lows. The shapes of the τ0: 10(2) vs. θ0: 
10 curves are qualitatively similar in the withdrawing and storing limbs, with the strengths of ET and precipitation 
determining the relative differences in the shapes.

Using 8 days of airborne ESTAR soil moisture data and simulation from a land surface model TOPLATS, which was coupled
to TOPMODEL, Peters-Lidard et al. [74] also found similar three-phase responses which they termed 
“atmospheric/infiltration dominated”, “transitional” and “drainage/evaporation dominated”. During the last phase, they 
also found the scaling exponent increased. Due to the short length of the campaign, their data was limited. While their 
model did not explicitly simulate groundwater flow, our results are comparable and our phase-plane clearly illustrated 
the three phase response to storm as a general phenomenological rule. This fact provided further evidence that the 
hysteresis was due to soil properties. Moreover, we show that the rainfall response is embedded in the larger-amplitude 
seasonal cycle. Their study did not explain how physical processes (soil and landuse variability and groundwater flow) 
each control the evolution of the τ, their interacting effects, and their influence on the predictive formula. Nor did they 
examine the different behavior of the hysteresis loops in different limbs of the seasonal cycle. The results presented here 
should improve our understanding of the general rule of fractal evolution.
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Fig. 10. Prototypical rainfall-induced excursions during (a) seasonal withdrawing limb and (b) seasonal storing 
limb. Colors indicate number of days after the last precipitation event and a dot indicates a single day. Both 
excursions include 17 dry days following the same precipitation amounts (32 mm) on day 1. For easy comparison,
both panels are set to the same extent on θ0: 10 and τ0: 10(2) axes.

3.4. Relationship between mean, variance, and the scaling exponent

Since an identifiable pattern must be supported by sufficient spatial variability, one may be tempted to think of τ as a 

proxy for variance. We show next that this is not the case (Fig. 11). Hysteretic loops between τ0: 10(2) and  are 
noted, suggesting complex and non-unique relationships between them. As compared to Fig. 7, each storm event in Fig. 

11 is indicated by a straight movement toward the left with a slight increase in τ0: 10(2) but a significant drop in , in 
synchrony with increases in the mean moisture (color-coded), which agree with previous studies that showed variance 

decreasing due to storm events [48]. During the wetting phase, the τ0: 10(2) and  seemed to have a very stable 
linear relationship, as all wetting events show the same slope. During the re-organization-dominated phases, the orbit 
returned to the right along a different path than the wetting phases. The correlation between the two variables seemed 
to break down during the dry-down phases (notwithstanding a few smaller rainfall events), when the variance changed 
only slightly while τ0: 10(2) climbs substantially higher. This pattern suggests that τ0: 10(2) may be better at revealing 
internal structures of the field than variance. The change in variance seemed to ‘stall’ during the dry-down process, but 
the structural pattern continued to evolve. Although a direct mathematical explanation is not presently available, this 
result highlights the difference between variance and organization.
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Fig. 11.  vs.  with color of the line representing the mean moisture from May 24th to August 18th, 
2005, the same days as in Fig. 7.

3.5. Effect of grid resolution (λmin)

In our resolution refinement analyses, the exponents from higher-resolution simulations (res2) closely followed the 
patterns from ctrl and the correlation was very strong (R2 = 0.975) (Fig. 12). However, the fine resolution τ is always 
slightly lower than the coarser resolution one. We believe this pattern is due to the ability of the higher-resolution 
simulation to capture more fine-scale variability in elevation, which leads to more organization of the field (and thus 
lower τ). Nevertheless, the temporal pattern discussed in previous sections will still hold if we had used the 440 m 
simulation results. The strong correlation suggests it is possible to predict fine-resolution τ using coarser-resolution 
simulations, after applying some corrections to remove the negative bias, making a fractal-based multi-scale modeling 
approach more tractable.
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Fig. 12. Effect of simulated grid resolution on τ0: 10(2) from 2002 to 2009. Two groups of points are shown: April to
October each year, and November to March next year.
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3.6. Implications for potential predictive formula for τ

Previous observational studies reported higher scaling exponent on drier days, and proposed that scaling exponents can 
be related to mean moisture and ancillary environmental predictors [25]. Indeed, this is a promising direction and our 
results also suggest that fractal exponents may be controlled by environmental factors. However, we note that caution 
must be exercised when prescribing a relationship between τ and mean moisture. As the hysteretic loops and seasonal 
limbs in Fig. 7 suggest, not only is there no simple 1-to-1 mapping between τ and θ, their relationship may also depend 
on seasonal basin water storage and phase position in the excursion. A static regression equation is therefore not likely 
to accurately capture these dynamics.
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Fig. A.1. Map of top-layer clay percentages in the Clinton River basin.
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Fig. A.2. Spatial maps and related scaling of moments for the CRB: (a) θ0: 10 map on 2005-06-28; (b) θ0: 10 map on
2005-12-01; (c) power-law decay of spatial moments in map (a); and (d) power-law decay of spatial moments in 
map (b). The black dashed lines indicate the fractal cutoff, above which the fractal relationship breaks down. Our 
estimation of scaling exponents uses only data below the cutoff threshold; (e) detecting nonlinearity using 
robust regression weights for the points corresponding to λ = 3520, 5280 and 7080 m window sizes, which shows
that the 7080 m point is always above fractal cutoff, 5280 m point seasonally above cutoff, and 3520 m point 
always below the cutoff (never showed statistically significant nonlinearity). Therefore, we choose λmax = 3520.

4. Limitations and future work

This study did not examine the relative impact of rainfall, humidity, wind speed, solar radiation, and temperature spatial 
variability on basin fractal evolution. It is known that rainfall fields also show multifractal scaling [54], making 
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interpretation of the impacts of watershed surface and subsurface properties on fractal scaling exponents substantially 
more complex. However, we argue that understanding the fractal exponent responses related to land properties is a first 
step toward understanding the overall system responses. Climate variability can play a significant role on the meso-scale 
(10 km), but there is still substantial sub-cell heterogeneity that can be addressed by fractal-based multi-scale 
approaches.

As in other modeling studies, the results of this study are influenced by the model employed. Although we have utilized a
well-tested physically-based hydrologic land-surface model, PAWS+CLM, all models have simplifications that may impact 
their predictions. For example, PAWS+CLM makes a simplifying assumption, for computational reasons, that moisture 
does not flow laterally above the fluctuating water table. This simplification may introduce errors where a shallow 
perched water table is important. Our current model also does not simulate hydrophobicity or soil shrinkage and 
swelling, which could be important for soil water bypass flow, and influence upslope soil water recharge. We expect 
different hydrologic models will produce somewhat different responses in fractal evolution, but do not expect qualitative 
changes.

Admittedly, the patterns we discovered through numerical studies are far from being applicable in a predictive formula, 
but it is an important step toward characterizing soil moisture fractal evolution. Synthesis of observed patterns and 
behaviors (and, in our case, patterns from numerical simulations) is an important approach toward a coherent body of 
knowledge [75]. For example, given that the scaling exponents better reflect the moisture organization than variance 
(Section 3.4), future work may consider using this knowledge and the observed scaling exponents (e.g., from satellite 
observations) to infer the phase of soil moisture dynamics.

5. Conclusions

In general, groundwater flow introduces large-scale spatial patterns in near-surface soil moisture and therefore reduces 
the fractal scaling exponents and increases their temporal variation. However, the complexity lies with the interaction 
and covariation between groundwater and other physical controls, which may limit the transferability of calibrated 
parameters. These interactions make it difficult to propose a general predictor-based formula for the scaling exponents.

We identified a seasonal mode that is related to seasonal variation in basin water storage, while storm events induce 
hysteretic excursion loops which can be divided into wetting, re-organization-dominated, and dry-down-dominated 
phases. A predictive formula for the scaling exponents will likely need to include phase-dependent terms. The responses 
of τ to climatic forcing seem to generally follow a set of phenomenological rules. All of our simulations in the two basins 
agree with these rules, and their applicability can be examined in other basins. Although in this study we made no 
attempt to propose governing equations to describe these rules, they have the potential to help us develop such a 
predictive formula. The hysteresis is shown to be due to heterogeneous infiltration, basin self-organization of moisture, 
and, more importantly, soil texture spatial aggregation. The more “patchy” the soil texture, the higher the fractal scaling 
exponents will be. Topography and groundwater flow play important roles in modulating the fractal evolution.
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A.1. Evidence of scale invariance in simulated soil moisture fields

The clay percentages in the CRB have been shown in Fig. A.1. As we can see, the spatial aggregation of soil texture tends 
to be patchy, showing many small clumps. This is an important factor determining fractal evolution. To illustrate the 
validity of the scale-invariance assumption, we show the spatial fields of soil moisture (liquid phase only) on two days of 
the simulation in the CRB and the related power-law decay of spatial moments in Fig. A.2, for both the whole basin and 
the sub-domains. Although both panels show a large-scale moisture gradient, the contrast is larger in Fig. A.2b 
(December 01, 2005). The eastern lowland on average was much wetter than the Western hills due to groundwater 
lateral redistribution. The soil moisture field on the lowland was also smoother. June 28, 2005 represents a day with 
large τ0: 10(2), when soil moisture was near the driest in the year. December 02, 2005 represents a day with low τ0: 10(2), 
showing a stronger large-scale contrast between the western half and eastern halves of the basin.

In the whole basin and the two sub-domains there are a range of scales where the log–log linear relationship holds true. 
We also notice an upper-limit of the scale-invariant relationship (λmax, fractal cut-off), indicated by the dark dashed lines, 
beyond which the scaling curves deviate from a linear relationship. For the CRB (basin area of 1837 km2), λmax has been 
determined to be around 3520 m after examining the scale-invariance plot (Fig. A.2) from a random sample of 30 days of 
simulation. In addition, for the whole time series, we have verified there is no statistically significant departure from the 
linear trend within the fractal cut-off. On each day, a robust regression with the Huber weighting function [76] was 
applied to the data. The Robust regression iteratively reweights the data points to check for violation of assumptions of 
least squares fit, e.g., outliers, or nonlinearity, which will be assigned lower weights in the fitting. Thus, a low weight 
(here we take as <0.9) for a data point indicates that it fell off the scale-invariance relationship. From the time series of 
the weights (Fig. A.2e), the λ = 7080 m point was always considered an outlier (due to nonlinearity); the λ = 5280 m point
was assigned low weight only during driest parts of the year, and the weight for point λ = 3520 was always above 0.98. 
Therefore, it was reasonable to set λmax as 3520 m. Similarly, for the UG (4531 km2, data not shown here), λmax is around 
9000 m. We believe this divergence from linear scaling is due to the limited size of our basins, and not an intrinsic 
property of the scaling structure. All scaling exponents are estimated from scales ∈ [λmin, λmax].
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Fig. A.3. (a) Time series of τ0: 10(2) in the UG in 2004–2006 and (b) τ0: 10(2) ∼ θ0: 10between May 30th and October 
18th, 2005. Similar to the CRB, we notice seasonal withdrawing and storing limbs, and rainfall-induced 
excursions, although the range of τ0: 10(2) is smaller with the UG.

A.2. Results from the upper grand

The UG basin has similar climatic forcing but different topography than the CRB. Fig. A.3a shows the time series of τ0: 
10(2) from UG and Fig. A.3b shows the τ0: 10(2) ∼ θ0: 10 plot in 2005, also from a weather-homogenized simulation. 
Generally, the results were similar to those from the CRB, with some differences. First, τ0: 10(2) was much larger than the 
CRB, but with a tighter range, varying between 0.95 and 1.05. We attribute the larger τ values and smaller variation to (a)
much patchier soil texture, especially in the upper basin; and (b) lack of large-scale topography patterns in the UG, which
does not have a hill-plain contrast as the CRB does. As a result, the large-scale pattern was weak and moisture patterns in
the UG were more spatially intermittent and appear more like scattered islands [21] compared to the CRB. The model did
predict seasonal withdrawing and storing limbs, and the significant impacts by freezing. The model also predicted 
rainfall-induced excursions. Fig. A.3b shows many rainfall-induced excursions between May 30th and October 18th, 2005,
which are similar to those observed in the CRB. The rises accompanying the storm events were larger than those in the 
CRB, perhaps due to the milder terrain, which can lead to stronger ‘homogenizing’ effects by storms.

In the UG, freezing also caused more obvious downward spikes when only a clustered fraction of the domain froze, and 
created a temporary spatial pattern. For example, our model predicted that soil covered by forest froze earlier than 
urban and agricultural areas. When only the forested areas froze in the UG simulations, the soil moisture pattern created 
a downward spike in τ0: 10(2).
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