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Abstract

To Fix the Image in Memory: Adaptive Analog Coding in Emerging Memory Systems

by

Ryan Zarcone

Doctor of Philosophy in Biophysics

University of California, Berkeley

Associate Professor Michael R. DeWeese, Chair

Motivated by (i) nature’s ability to perform reliable, efficient computation with stochastic
components, (ii) the end of Moore’s Law (and other associated scaling laws) for our current
computational paradigm, and (iii) the exponentially increasing amount of data (especially
of the image variety) generated over the last decade, we examine herein the ability of analog
valued emerging memory devices to directly store analog valued data. Specifically, we start
by recasting the problem of data storage as a communication problem, and then use tools
from the field of analog communications and show, using Phase Change Memory (PCM) as
a prototypical multi-level storage technology, that analog-valued emerging memory devices
can achieve higher capacities when paired with analog codes. Further, we show that storing
analog signals directly through joint coding can achieve low distortion with reduced coding
complexity. We then scale the problem up to store natural images on a simulated array
of PCM devices. Here, we construct an autoencoder framework, with encoder and decoder
implemented as neural networks with parameters that are trained end-to-end to minimize
distortion for a fixed number of devices. We show that the autoencoder achieves a rate-
distortion performance above that achieved by a separate JPEG source coding and binary
channel coding scheme. Next, we demonstrate, this time by experiment, an image storage
and compression task by directly storing analog image data onto an analog-valued Resistive
RAM (RRAM) array. A joint source-channel coding algorithm is developed with a neural
network to encode and retrieve natural images. This adaptive joint source-channel coding
method is resilient to RRAM array non-idealities such as cycle-to-cycle and device-to-device
variations, time-dependent variability, and non-functional storage cells, while achieving a
reasonable reconstruction performance of ∼ 20 dB using only 0.1 devices/pixel for the analog
image. Finally, in an attempt to explicitly tackle device-device variation and drift, we use
data from a commercial fabrication facility at TSMC and demonstrate preliminary results
showing the ability to create an effective drift model capable of inferring values stored at
previous times.
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material and the pulsing scheme. Reproduced with permission. c© 2019 Journal
of Physics D: Applied Physics. Original source: [101] . . . . . . . . . . . . . . . 38

1.18 Conditional density, P (R|V ), for an example PCM device (not one of the seven
used in this study). Darker color indicates higher probability density at that
location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.19 Measuring P (R|V ). (a) Plot of the data collected for 100 different values of
voltage pulse VWL for seven different devices shown superimposed (each in a
different color). Rather than plotting the 84,000 raw data points collected, we
instead plot filled-in curves where the top and bottom boundary of each curve
are +/- one standard deviation from the mean of R, respectively. This gives
a better sense of where most of the raw data is concentrated for each of the
seven devices. Values of VWL between those collected (and the corresponding
+/- standard deviations) are linearly interpolated. Lumping all seven devices
together into a single ‘virtual device’ yields a capacity of 1.54 bits. Notice that
the different devices exhibit qualitatively similar behavior but with slightly offset
RESET resistances and slopes of annealing. (b) The same as in (a), but now
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1.24 Optimal joint coding of a Gaussian source. (a) Samples, S, distributed according
to a Gaussian (blue distribution, top) are mapped through the learned encoding
function (red line). For reference, a linear mapping is shown with a dashed line.
This encoding transforms the Gaussian distribution into a highly non-Gaussian
distribution over VWL (red distribution, right). Encouragingly, this distribution
qualitatively matches the capacity achieving source distribution, Pcap (VWL) (a
quantitative comparison is difficult as the former has compact support over dif-
ferent regions while the latter has finite support). (b) Samples, VWL, distributed
according to P (VWL) (red distribution, top), are then stochastically mapped
through the channel (heat map in center), resulting in a distribution over resis-
tances, P(R) (green distribution, right). (c) Samples passed through the channel,
R, are then sent through the decoder, G (green line), which transforms them
into estimates of the original input, Ŝ (again, a linear mapping is shown with a

dashed line). This results in a distribution over reconstructed samples, P
(
Ŝ
)

(blue distribution, right), which is very close to the original Gaussian distribu-
tion (indicated with a dashed line). (d) Heatmap demonstrating how samples of
S are transformed through the whole pipeline, resulting in reconstructions Shat.
Note that as the majority of the mass for S is between [-1,1], this is where the
encoding/decoding functions learn to do the best. . . . . . . . . . . . . . . . . . 45

1.25 Distributions from learned mapping. (a) Reproduction from Fig. 1.20a of the
capacity achieving source distribution, rainbow, overlaid on the distribution pro-
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from Fig. 1.24c of the mapped output distribution, blue, overlaid on the source
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Abstract

To Fix the Image in Memory: Adaptive Analog Coding in Emerging Memory Systems

by

Ryan Zarcone

Doctor of Philosophy in Biophysics

University of California, Berkeley

Associate Professor Michael R. DeWeese, Chair

Motivated by (i) nature’s ability to perform reliable, efficient computation with stochastic
components, (ii) the end of Moore’s Law (and other associated scaling laws) for our current
computational paradigm, and (iii) the exponentially increasing amount of data (especially
of the image variety) generated over the last decade, we examine herein the ability of analog
valued emerging memory devices to directly store analog valued data. Specifically, we start
by recasting the problem of data storage as a communication problem, and then use tools
from the field of analog communications and show, using Phase Change Memory (PCM) as
a prototypical multi-level storage technology, that analog-valued emerging memory devices
can achieve higher capacities when paired with analog codes. Further, we show that storing
analog signals directly through joint coding can achieve low distortion with reduced coding
complexity. We then scale the problem up to store natural images on a simulated array
of PCM devices. Here, we construct an autoencoder framework, with encoder and decoder
implemented as neural networks with parameters that are trained end-to-end to minimize
distortion for a fixed number of devices. We show that the autoencoder achieves a rate-
distortion performance above that achieved by a separate JPEG source coding and binary
channel coding scheme. Next, we demonstrate, this time by experiment, an image storage
and compression task by directly storing analog image data onto an analog-valued Resistive
RAM (RRAM) array. A joint source-channel coding algorithm is developed with a neural
network to encode and retrieve natural images. This adaptive joint source-channel coding
method is resilient to RRAM array non-idealities such as cycle-to-cycle and device-to-device
variations, time-dependent variability, and non-functional storage cells, while achieving a
reasonable reconstruction performance of ∼ 20 dB using only 0.1 devices/pixel for the analog
image. Finally, in an attempt to explicitly tackle device-device variation and drift, we use
data from a commercial fabrication facility at TSMC and demonstrate preliminary results
showing the ability to create an effective drift model capable of inferring values stored at
previous times.



1

Chapter 0

Introduction

0.1 Motivations

0.1.1 Scientific: Perform Computations with Stochastic
Components

Nature. Much wow.2

Cells are astoundingly energy-efficient sensing and actuating machines. Cells process their
electrical, chemical, and mechanical inputs with highly noisy and imprecise parts. Neverthe-
less, they perform highly complex, sensitive, and collectively precise hybrid analog-digital
signal processing such that reliable actions are carried out [105].3

If we look specifically at neurons, bodies’ “computational hardware”, the comparison to
our own engineered systems is quite remarkable. To quote (very rough numbers from) Carver
Mead4 [78]:

[The] ultimate silicon technology that we can envision today will dissipate on the
order of 10−9 J of energy for each operation... We can compare these numbers
to the energy requirements of computing in the brain. There are about 1016

synapses in the brain. A nerve pulse arrives at each synapse about ten times/s, on
average. So in rough numbers, the brain accomplishes 1016 complex operations/s.
The power dissipation of the brain is a few watts, so each operation costs only

2I’ll be breaking this dissertation up into many subsections so that the one personI who reads this can
skip around to the parts they care about.

3See this reference for some great examples of biological efficiency.
4John Von Neumann was one of the first to realize that neurons must operate at a fairly low level of

precision, and that no known computing machine could (or can) operate reliably on such low precision. Von
Neumann called this “a deterioration in arithmetics for an improvement in logics” [120].

II’ve been repeatedly told that it’s likely no one will ever read your thesis. If this is the case, then a
typical thesis, I suppose, is a graduate student talking to themselves.
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10−16 J... [The brain is] a factor of 10 million more efficient than the best digital
technology that we can imagine.

We have far to go
If we look at our own computational paradigm, there’s a massive gulf between where we are
and what biology is capable of. But it doesn’t end there. Biology isn’t the only thing that
computes. We can generalize some of our thinking about computation and look at nature
as a whole. The computational mechanics archive summarizes the situation well [24]:

One quickly comes to the conclusion [then] that contemporary notions of com-
putation and of useful information processing, colored as they are by the recent
history of digital computer technology, must be extended in order to be use-
ful within empirical science. Why? Because the processes studied by natural
scientists involve systems that are continuous, stochastic, spatially extended, or
even some combination of these, and these characteristics fall strictly outside the
purview of discrete computation theory.

Part of the progress towards approaching nature’s computational abilities has come (and
will continue to come) from realizing the importance of error (i.e. “stochasticity”) consider-
ations from the start. Von Neumann’s view was exactly this [119]:

Our present treatment of error is unsatisfactory and ad. hoc. It is the author’s
conviction, voiced over many years, that error should be treated by thermody-
namical methods and be the subject of a thermodynamical theory, as information
has been by the work of L. Szilard and C. E. Shannon.

Looking forward
Part of the solution to “catch up” with nature will be to use physics (or more generally
the dynamics of systems) to do computation for us. This isn’t a new idea. Many of those
involved in the founding of computing and those studying the future of electronic systems
have discussed this in some form or another. See [119], [120], [112], [33]5, and [78] for some
great discussions.

A lot of work has been done on trying to understand the trade-offs between computations
and the resources used for said computations. One paper that I think lays a nice intuitive
foundation for this is “A universal tradeoff between power, precision and speed in physical
communication” [74]. In addition to this, a recent review paper, “Thermodynamic Comput-
ing” [22], summarizes a lot of the great work that has happened in this area over last few

5A decent dead canary for a paradigm mismatch is when you see terrible scaling (something we see in
simulating many physical systems, including quantum and biological). Also see [1] for a great discussion of
the importance of scaling considerations.
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decades.6

If we take a look again specifically at biological systems, we might be able to find further
inspiration. Living systems continuously adapt to embody efficient general solutions to the
problems they encounter . As a particular instantiation of “using physics to compute”, some
roboticists have taken inspiration from animals in designing robots for specific motor tasks.
This idea, “morphological computation”, uses the physical body as a computational resource
for the problem at hand [41].7

Looking lower, as already mentioned, cells have evolved complex biochemical reaction
networks for doing all sorts of computations. As we begin to understand the specifics of these
processes in more detail, we’ll (potentially) be able to engineer complex cellular computing
systems [128]8.

Finally, specifically looking at specialized biological computational machinery (i.e. neu-
rons/brains), there’s been progress on trying to understand the origin of these systems’
efficiency. There’s been a lot of great work in this area, but two pieces that stand out to me
are Raoul Sarpeshkar’s “Analog Versus Digital: Extrapolating from Electronics to Neurobi-
ology” [99] and Sterling and Laughlin’s book “Principles of Neural Design” [108]. Both of
these take, in some sense, an engineer’s perspective on the brain. And, as I too believe that
what one cannot create one does not understand, this perspective smells like one of the best
ways to understand brains.

Charitably, each of these works summarizes the principles they’ve uncovered. And, as I
think these are sufficiently important to always keep in mind, I’ll reproduce the main ones
here (and with that end this long, prosaic rant on performing computations with stochastic
components). Please see Table 1.19.

0.1.2 Engineering: End of Moore’s Law ⇒ Need to Move Away
from Discrete, Deterministic Paradigm

Here, I’d like to summarize from two papers and use them as frames (and as jumping off
points for some other key papers) for the current state of the computational electronics field-
/industry.

Thermodynamic Computing [22]
In the 1960s two “laws” regarding the current computing paradigm were observed. The first
was Moore’s Law, in which Gordon Moore noted that the number of transistors on a chip
doubles approximately every 18 months. The second was Dennard Scaling, an observation by

6For those who are strapped in and ready to spelunk down in the 10-dimensional rabbit-hole, I suggest
looking at [9], [124], and [125].

7See [56] (and check out the company founded by the last author, Agility Robotics ) for an awesome
example of how exploiting the interplay between passive dynamics and control can yield robust locomotion.

8And see [47] for a great review.
9Oh exquisite table, if only I had had more time to make you. . . A lightning flash. Too late! Ô toi que

j’eusse aimée, ô toi qui le savais!
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Neurobiological Principles to Remember
Analog vs Digital Principles of Neural Design
∗Analog computation is efficient at low-
precision processing, and digital computation
is efficient at high-precision processing.

∗Compute with chemistry

∗The advantages of analog computation arise
from its exploitation of physical primitives for
computation. The advantages of digital com-
putation arise from its multiwire representa-
tion of information and information process-
ing, and from its signal restoration properties.

∗Compute directly with analog primitives

∗Analog computation that distributes its pre-
cision and processing resources over many
wires is maximally efficient at a certain signal-
to-noise ratio per wire, due to the trade-offs
between computation and communication.

∗Combine analogue and pulsatile processing

∗In neurobiological systems, where communi-
cation costs are relatively low compared with
communication costs in silicon, the optimal
signal-to-noise ratio per wire is lower than that
in silicon. Thus, we believe that nature was
smart to distribute computational resources
over many noisy neurons (dendrites and so-
mas) and communicate information between
neurons over many noisy wires (axons).

∗Sparsify (only small subset of resources used
for given situation)

∗Since the brain appears to be extremely ef-
ficient in its information processing and hy-
brid representations are the most efficient rep-
resentations in massively complex systems, it
is likely that the brain uses hybrid representa-
tions.

∗Send only what is needed

∗From numerous examples, it is qualitatively
clear that in neurobiology, the reduction of
noise is accomplished through resource con-
sumption as it is in electronics. Neurobiology
and electronics behave similarly because phys-
ical and mathematical laws such as the laws of
thermodynamics and the law of large numbers
do not change with technologies. It is such
laws that, with a few technology-dependent
parameters, determine noise resource equa-
tions.

∗Send at the lowest acceptable rate

∗ Minimize wire
∗ Make components irreducibly small
∗ Complicate (to optimize)
∗ Adapt, match (capacity), learn, and forget

Table 0.1: Summary of main principles from [99] and [108].

Robert H Dennard that as transistors reduced in size the circuits designed with them would
increase in speed. However, in the 60 years since these laws were recorded, we have begun to
see the limitations of them in the computing paradigm. As devices have become smaller and
smaller, we have struggled to eliminate the effects of thermodynamic fluctuations that occur
at the nanometer scale, driving up the power densities and cost of building next-generation
semiconductor chips, slowing Moore’s Law, and eventually ending Dennard Scaling. This
performance limit is known as the “power wall”, and our inability to breach this wall has



5

killed the advancement of microprocessor performance.
This paper claims that Moore’s Law is still kicking, but I think a better framing of the law

(as it’s inextricably intertwined with economic motivations) is the number of transistors/$.
And, as indicated by an article in the Economist, “After Moore’s Law” [29], this law is dead.

The main reasons for this death are summarized nicely in “A Neuromorph’s Prospectus”
[10]: You can think about the surface of a transistor as a road that cars (electrons) travel
down (see Fig. 0.1). As transistors shrink to nanometer scales, the number of “lanes”
of traffic shrinks to single digits. Dangling bonds at the silicon-silicon-dioxide interface of
transistors are “traps” for these electrons. If thermal fluctuations can break these bonds
quickly, the traps yield stochastic transistors (i.e. the current through the device fluctuates
stochastically). If the bonds aren’t broken quickly, the traps yield heterogenous transistors
(i.e. the current going through a given device will vary depending on trap density). Either
of these types of error in a transistor with a few lanes would be catastrophic for a computer.
To address this trap problem, the fabrication industry switched from a planar design to a
3D “fin” design (see Fig. 0.1). This increased the “lanes” but significantly increased the
cost of production (hence the dip seen in 2014; inset of Fig. 0.2). But this strategy is not
scalable. The smallest transistor theoretically possible with current technology would have
an 4% chance of having one of these traps. Such an error rate would be insurmountable in
the current computing paradigm.

Fig. 0.1. Planar (left) vs. 3D “fin” design (right) for transistors. Electrons (red) travel
along surface in “lanes”. c© 2017 IEEE. Reproduced with permission. Original source: [10]

Or, in the words of Jan Rabaey and Sharad Malik [91]:

As the critical dimensions of CMOS devices reach the nanometer range, we are ap-
proaching some fundamental limits, making routine technology scaling no longer
a viable solution. This will force the adoption of drastically different strategies
for manufacturing, device engineering, and design creation. The spiraling cost
associated with some of these technologies challenges an important corollary of
Moore’s law: that the cost per function is reduced proportionally with technology
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scaling. If this no longer holds, the economic drive behind the continuation of
technology scaling will quickly vanish.

See Fig. 0.2 for a great summary of all the above trends.

Fig. 0.2. Plot of scaling trends for different technologies summarizing the main points of the
corresponding section: Denard scaling laws have stopped while the number of transistors per
dollar has actually decreased. c© 2016 The Economist. Reproduced with permission. Original
source: [29].

The Institute of Electrical and Electronics Engineers (IEEE)’s Rebooting Computer Ini-
tiative is focused on addressing the issue of slowing computer power by understanding how
different approaches to computation impact energy efficiency on various levels of the comput-
ing stack, from devices to algorithms. Their observations are in Fig 0.3 below, which shows
four different approaches to the future of computing, and the relative level of disruption
those approaches would cause to different levels of the computing stack.

Challenges and Solutions for Late and Post Silicon Design [91]
Interestingly, we’ve already started to see the “complicating to optimize”, mentioned previ-
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Fig. 0.3. In response to the slowing of long cherished scaling laws (see Fig. 0.2), IEEE
started the Rebooting Computing Initiative in 2012 to rethink computing all the way from
devices to algorithms. This is an illustration of how different approaches to the future of
computing could change different levels of the computing stack. Computing with stochastic
components is a “level 4” approach. Reproduced with permission. c© 2017 IEEE. Original
source: [21]

ously by Sterling and Laughlin as principles of neural design, in our computing hardware:
As laid out by Rabaey and Malik:

Specifically, integrated systems are becoming increasingly more heterogeneous,
combining various computation and communication paradigms. On the compu-
tation side, this includes hardwired and programmable logic blocks as well as
domain-specific and general-purpose programmable processors. On the commu-
nication side, this includes traditional busbased architectures, emerging packet-
switched networks on a chip, and memories with varying properties. In addition
to these, analog (including RF) subsystems enable external signal interfaces. In
light of the divergence of the technology roadmap we have just discussed, an
integrated system could consist of more than one chip in a single package.

From this perspective, the approaches we’ll be discussing later are very much in line with
emerging trends in computing (i.e. specializing hardware/software to optimally perform
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specific, but common, tasks): power considerations are already pervasive throughout design
considerations and can no longer be separated from the overall design flow. This means that
performance metrics are transitioning from things like MIPS – million of instructions per
second – to things like MIPS/Watt .

In this work, Rabaey and Malik describe a road-map for addressing the “long-term woes
of electronic systems design” with various time horizons. The two most related directions
for our work here are “The Age of Error Resiliency” and the “Age of Randomness”. Below,
I’ll reproduce the sections most relevant to the current discussion:

The Age of Error Resiliency :

• Systems will experience dynamic variations over time and will be subject to numerous
failure mechanisms

• Adaptability to changing conditions and resiliency against failures and operating-
condition variations must be intrinsic properties of the next generation of computation
and communication systems

• Without these safeguards, the design will be uneconomical or the product’s lifetime
will be too short to be of any value

• Note that perfect adaptivity and resiliency are not necessary at every single individual
level, and can be accomplished by cooperation between different levels of the design
stack. Individual levels (such as device or logic) can occasionally fail as long as the
overall system shows correct behavior

The Age of Randomness (The far beyond) :

• Ultimately, the combined factors of variation and reliability will be such that main-
taining traditional computational models – such as purely deterministic Boolean logic
– becomes untenable

• The only possible solution at that point is to slowly but surely abandon them in favor
of statistical models that inherently support error-resiliency

• The domains of signal-processing, communications and information theory provide
ample examples on how such models could work

• It is further our conjecture that such computational models will be of essence in the
post-silicon nano-device age with its promise of uncountable devices, operating under
conditions of tiny noise margins, random variations and unreliability in computation

Going further and looking at future trends, we’re seeing a fundamental shift in the kinds of
devices being manufactured and deployed. We’re moving to a model where an infrastructural
core (e.g. servers) talks to a network of mobile devices (e.g. smartphones) which in tern talk
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to a dense network of devices in a “sensory swarm” (e.g. fitness trackers) – potentially more
than a trillion sensory nodes per year will be deployed in the near future, with the majority
of these communicating wirelessly [92] (see Fig. 0.410).

This culminates in what has been called Ambient Intelligence [25]:

...the ‘embedded-everywhere’ world in which all objects around us become intelli-
gent microsystems interacting with each other, and with people, through wireless
sensors and actuators. . . a vision of a world in which people will be surrounded
by networked devices that are sensitive to, and adaptive to, their needs. . . .The
design of [these] wireless-transducer-network devices requires creative engineering
to get to the ultimate limits of miniaturization, cost reduction, and energy con-
sumption. This leads to the need for “more-than-Moore” that is a cost-effective
integration of CMOS with MEMS, optical- and passive- components, new mate-
rials, bio-silicon interfaces, lifelong autonomous energy sources, and grain-size 3D
packaging. The complexity is not in the number of transistors, but in combin-
ing technologies, circuit- and global- networking architectures to obtain utmost
simplicity for the sensor nodes themselves.

A final tangential thought: while we’re certainly approaching this futuristic, (scientifically-
) romantic vision, we must remember that we’re far from being able to effectively engineer
these swarms (i.e. to call them “intelligent”). The Michael Jordan of computer science
[11] has a great article where he discusses challenges we’ll face in building this “Intelligent
Infrastructure” [59]:

...the principles needed to build planetary-scale inference-and-decision-making
systems of this kind, blending computer science with statistics, and considering
human utilities, [are] nowhere to be found... Whereas civil engineering and chem-
ical engineering built upon physics and chemistry, this new engineering discipline
will build on ideas that the preceding century gave substance to, such as informa-
tion, algorithm, data, uncertainty, computing, inference, and optimization. [This]
“Intelligent Infrastructure”, whereby a web of computation, data, and physical
entities exists that makes human environments more supportive, interesting, and
safe . . . is beginning to make its appearance in domains such as transportation,
medicine, commerce, and finance, with implications for individual humans and
societies. This emergence sometimes arises in conversations about an Internet of
Things, but that effort generally refers to the mere problem of getting ‘things’
onto the Internet, not to the far grander set of challenges associated with building
systems that analyze those data streams to discover facts about the world and
permit ‘things’ to interact with humans at a far higher level of abstraction than
mere bits.

10Press F to pay respects for the flip phone.
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Fig. 0.4. Evolving computational device ecosystem. Importantly, a (growing) majority of
the devices are at the “edge” or part of the “sensory swarm”. Reproduced with permission.
c© 2008 IEEE. Original source: [92]

0.1.3 Focus: Storage as a Particular Type of Computation

You have to start somewhere
Considering (i) communication is a fundamental prerequisite for more complex computa-
tions [74] and (ii) there’s a whole field (that’s over 70 years old) dedicated to the study of
communication, communication seems like a great place to start.

On a more practical note, there’s been an exponential increase in the amount of data hu-
mans have generated over the last few decades (see Fig. 0.5). More specifically, a paradigm
shift in the type and quantity of storable information is currently underway. Internet-
connected devices are projected to reach 50 billion, more than 6 devices per person, by
the year 2020 [32]. Much of the data produced by these devices, such as pixel intensities
from cameras, sound recordings from microphones, and time-series from sensors, comes from
signals that are intrinsically analog-valued or many-valued (> 100 values) and ordinal. These
signals are also highly redundant and compressible, with a large degree of their joint activity
explained by a smaller number of factors than the intrinsic dimensionality of the signal.
Furthermore, an increasing portion of the operations performed on the data are analog, with
much of it being used for statistical inference or human perception (e.g. object-detection for
images).
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Fig. 0.5. Plot showing the exponentially increasing amount of data generated per year, by
type. Importantly, the majority of this data is image data, (in either static or video form)
and a growing portion is from embedded or “Internet of Things” devices (with much of this
data being natively continuous). Reproduced with permission. IDC White Paper, sponsored
by Seagate, Data Age 2025: The Digitization of the World from Edge to Core, November
2018)

A concurrent paradigm shift is underway in the media we use to store data. With this
rapid increase in the amount of data generated has come an increase in research aimed at
designing and characterizing smaller and more power-efficient devices for information storage
– i.e. “emerging memory devices”. Early storage media such as phonograph records and VCR
tapes relied on perturbing an analog-valued state (wax height and magnetic polarization,
respectively). Digital computation led to the popularity of binary storage representations
that inhibit noise propagation and utilize the concurrently developed theories of binary
error-correcting codes [76] (see Table 0.1). However, many emerging memory technologies
have shifted back to analog-valued media to create multi-level devices that fill the need for
inexpensive, high-density storage. MLC-Flash, Phase Change Memory (PCM), Resistive
RAM (RRAM), and Conductive Bridge RAM (CBRAM) are all examples of technologies
that have an analog state (threshold voltage or resistance) determined by the gate-charge,
resistive amorphous capping region, and conducting filament, respectively [127], [126]. One
of the goals of many researchers and developers studying emerging memory technologies is
to create a “Storage Class Memory” [16]. This is, essentially, a system of memory that
combines the benefits of storage systems like HDDs (e.g. high density, long life) with the
benefits of “high performance” systems like DRAM (e.g. fast access time). From this
traditional perspective, the emerging memory devices we will be considering in this work
are approaching a Storage Class Memory system in that they have the ability to reach high
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densities (through 3D integration) with very fast access times (∼100 ns).
The aforementioned trends of (i) analog data generation and operation and (ii) analog

storage media development motivated us to investigate the use of analog coding in emerging
memory systems. We examine here the potential for memory systems that utilize analog
representations – analog-valued signals stored in analog-valued devices – to achieve higher
capacity and reduced coding complexity, leading to reduced latency and increased energy
efficiency.

0.1.4 Specifically: Image Storage

The most abundant form of data stored and processed on electronic devices is now image
data, in both static and video form, and this dominance is only expected to increase [30]
(see Fig. 0.5).

At the same time, the scientific field dedicated to studying natural images has made
progress on understanding natural image structure. There’s a long history of research that’s
made progress on modeling the structure found in natural images – see [98], [107], [137], and
[57] for some great overviews.

Virtuous Loop
Scientific → Practical: an implicit (and sometimes explicit) hypothesis of neuroscientists
studying natural image statistics is that brains evolved to take advantage of the structure
of the world said brains are embedded in [34]. Thus, by learning about the structure of
said world, neuroscientists might gain some insights into the functions of brains. As will be
discussed later, compression essentially is the process of removing structure. Thus, if we’re
aware of some structure present in the data we want to compress, we can explicitly remove
that structure to get a reduced representation. This has happened with images (and video)
over the years, with understandings in spatial (or temporal) structure leading to advances
in compression (e.g. Study of Gabor wavelets and the development of JPEG 2000 [93]).
Practical → Scientific: (Essentially) simultaneously, the desire to perform compression has
lead to a better understanding of natural image statistics. See, for example, the development
of color spaces and the psychophyiscs of color vision [60][129][53].

0.1.5 Motivation: TL;DR:

Scientific understanding → engineering considerations → specific case of storage → specific
case of image storage 11

• Scientific: understanding computations with stochastic dynamical systems

– Nature’s amazing computational efficiency comes from using the massively-parallel

11Alas, many of us grad students end up grasping only the smallest of nutshells for the infinite space we
call ourselves kings of, despite the enormity of the giants we stand on.
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Fig. 0.6. “Virtuous loop” between scientists studying natural images statistics and engi-
neers looking to compress images. Those studying natural images attempt to capture their
structure (e.g. sparse coding (bottom left), divisive normalization (bottom middle), and
deep neural networks (bottom right)). As compression involves the removal of structure,
what is captured by those studying natural images can be used to compress images. At
the same time, those seeking to compress images look for redundancies (i.e. structure) in
them to try and remove (e.g. dependencies between different color channels in video). These
redundancies can then be incorporated into a deeper understanding of images (and the way
they are processed by creatures with visual systems; e.g. in the psychophysics of color per-
ception). Each portion reproduced with permission. c© 1998 Nature, c© 2001 Nature, c© 2014
MathWorks.

dynamics of in-precise systems to “compute”

• Engineering: end of Moore’s Law ⇒ need to move away from discrete, deterministic
paradigm

– as we scale our computational systems down to the nanometer scale, we’re re-
alizing that physics will no longer let us remain within the traditional Turing
abstraction – Maxwellian Demons are in the details

• Focus: storage as a particular type of computation

– Have to start somewhere, and since we can think about storage as communica-
tion over time, and since communication is a fundamental prerequisite for more
complex computations, we’ll start with storage. But also: ∼*Big Data*∼.
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• Specifically: Image Storage

– Images (in static and video form) are the majority of our exponentially increasing
data, so finding more efficient ways to store these will have practical value. As
storage involves compression, and as compression is the removal of structure from
a signal, and as the study of natural image statistics has uncovered some of the
structure in images, we can use some of the ideas from the study of natural images
to help with storage. At the same time, trying to do a better storage job might
help us uncover more of the structure in natural images (something neuroscientists
care about).

0.2 Main Results

0.2.1 Published Works

The first three chapters of this dissertation are a summery of results presented in three
previously published works:

• Analog coding in emerging Memory Systems [132]

• Joint source-channel coding with neural networks for analog data compression and
storage [133]

• Error-Resilient Analog Image Storage and Compression with Analog-Valued RRAM
Arrays: An Adaptive Joint Source-Channel Coding Approach [135]

0.2.2 Storage as a communication problem; single analog variable

Here, we recast the storage problem as a communication problem. This then allows us to
use ideas from analog coding and show, using phase change memory as a prototypical multi-
level storage technology, that analog-valued emerging memory devices can achieve higher
capacities when paired with analog codes. Further, we show that storing analog signals
directly through joint coding can achieve low distortion with reduced coding complexity.
Specifically, by jointly optimizing for signal statistics, device statistics, and a distortion
metric, we demonstrate that single-symbol analog codings can perform comparably to digital
codings with asymptotically large code lengths. These results show that end-to-end analog
memory systems have the potential to not only reach higher storage capacities than discrete
systems but also to significantly lower coding complexity, leading to faster and more energy
efficient data storage.
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0.2.3 Image storage with neural networks; simulating
multi-variable case

Here, we provide an encoding and decoding strategy for efficient storage of analog data
onto an array of Phase-Change Memory (PCM) devices. The encoder and decoder are
implemented as neural networks with parameters that are trained end-to-end to minimize
distortion for a fixed number of devices. Similar to [7], we find that incorporating divisive
normalization in the encoder, paired with de-normalization in the decoder, improves model
performance. We show that the autoencoder achieves a rate-distortion performance above
that achieved by a separate JPEG source coding and binary channel coding scheme. These
results demonstrate the feasibility of exploiting the full analog dynamic range of PCM or
other emerging memory devices for efficient storage of analog image data.

0.2.4 Image storage with neural networks; experimental
realization with device non-idealities

Here, we demonstrate, this time by experiment, an image storage and compression task
by directly storing analog image data onto an analog-valued RRAM array. A joint source-
channel coding algorithm is developed with a neural network to encode and retrieve natural
images. This adaptive joint source-channel coding method is resilient to RRAM array non-
idealities such as cycle-to-cycle and device-to-device variations, time-dependent variability,
and non-functional storage cells, while achieving a reasonable reconstruction performance of
20 dB using only 0.1 devices/pixel for the analog image.

0.2.5 Image storage with neural networks; explicitly tackling
device-device variability and drift

Here, we’re using data from a commercial fabrication facility at TSMC (which has 1 Million
device arrays) in an attempt to get enough data to model drift and, potentially, variation
across arrays. Preliminary results show that we’re able to create an effective drift model and
infer original stored values. Additionally, further preliminary work shows that we might be
able to learn transformations around the array to account for device-device variation (but
this is still very early).

0.3 Conclusion

Motivated by (i) the search for a deeper, more comprehensive understanding of computa-
tion and (ii) the practical limitations of a significant portion of our current computational
paradigm, we have explored here a new approach for storing analog-valued media in emerg-
ing analog-valued devices showing that analog coding strategies have the potential to create
robust storage with relatively low complexity. Designing systems to match the statistics of
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the source, channel, and task-at-hand provides unique opportunities not captured by systems
that try to enforce determinism.

With the rise of machine learning applications, the nature of computation is changing,
and many of the data-centric applications of the present and future do not require perfect
data retrieval. With the data deluge faced by internet companies, it is often not the storage
of data that is important, but the storage of information which performs well when retrieved
for human or statistical machine inference (e.g., perception of audio and video). While losing
some generality, representations that reduce the redundancy of signals to match the statistics
of storage media and applications can be more efficient than universal representations.

In one sentence: Guided by the idea that computing should (and will likely soon
need to) match physical primitives with desired computations, we have come up
with a way of storing analog data, such as images – the most abundant data in
the world – on a set of emerging memory devices.
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Chapter 1

Storage as a communication problem;
single analog variable

Whuh-oh! It’s that
retro-muto-thingamabob!

Michelangelo

We’ll first start by looking at the storage problem for a single variable (see Fig. 1.1).
The key we found to making progress on this problem: recast storage as a communication
problem. I.e. think about the analog memory device as a noisy channel. First step in this is
to realize that what we’re really dealing with then is distributions P (S), P (V ), P (R|V ), P (R),
and P (Ŝ) (see Fig. 1.2). This is a general framework that will allow us to consider many,
qualitatively different devices.

Fig. 1.1. General goal: Take samples S (from distribution P (S)) and transform them with
a function F to then be sent through a single channel (the red dot). The value sent through
the channel is then passed to the decoding function G which tries to reconstruct the original

sample, Ŝ, resulting in a distribution P
(
Ŝ
)

).

This then allows us to utilize tools from the study of communications, Information The-



18

Fig. 1.2. Storage as a Communication Problem. (a) The capacity (Eq. 1) is determined
by the ability to infer a write voltage pulse distribution P (V ) from the read resistance
distribution P (R). The conditional dependence between the two, P (R|V ), is unique for
each technology and pulsing scheme. While we chose a particular technology (and therefore
a particular P (R|V )) to illustrate the main points here, the framework could be applied to
any emerging memory device (e.g. RRAM, STT-MRAM).

ory, to frame and tackle the problem. For all those following along at home 12, here’s a crash
course on the relevant information theory:

1.1 Background

In classic form, the gladiatorial nature of Wikipedia article contribution for popular topics
has yielded some pretty good overviews of the concepts I’ll be speed-outlining here. I’ll
mostly follow their structure here, but if you’d like more info on any one of these specific
topics, I recommend starting with a combination of the Wikipedia summary, The Bible [23],
and [76].

On a final note, like most foundational topics, there are many different ways to intro-
duce/describe/illustrate them. For example, there are many different ways to introduce the
concept of “information”. Below I’ll only give one way that fits nicely into the framework
we’ll be working with, but there are many others that might fit better for different problems
(e.g if we were dealing with discrete variables for our main problem, thinking about entropy
as the optimally coded message length might be more intuitive).

12Or, for those who aren’t already on the bandwagon [103].
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1.1.1 Information

We can think about the “information” of a random variable as something like “the amount
that we have learned after measuring the outcome of the variable” or how “surprised” we
are (or should be) when a particular outcome happens. Thought about in this way, it’s
essentially an alternative way of expressing the probability of an event. Shannon set this
definition up to meet some basic requirements:

• A probability 1.0 outcome is completely unsurprising and thus yields zero information
(e.g. we will learn nothing/will never be surprised by the outcome of coin toss with a
coin that has heads for both sides).

• The less probable an outcome is, the more surprising it is and, thus, the more we learn
(e.g. a coin that has P = 0.99 heads that comes up tails would be very surprising).

• If two independent outcomes are measured separately, the total amount of surprise
should be the sum of the surprise for each (e.g. the surprise of separate coin flips
should add).

It turns out that there’s a unique function (up to a constant) that meets these require-
ments!

I (x) := − logb [P (x)] = logb

[
1

P (x)

]
(1.1)

The base of the log is the constant mentioned above and determines what “informational
units” you’d like to use for your problem. E.g. log2 () is bits (binary units) while loge ()
is “nats” (natural units). Also, though the first form of the definition is easier/cleaner to
write, I think it’s more helpful to think of the information or “surprisal” as the second: log
of one over a probability (as opposed to a negative log which isn’t as intuitive).

So, in summary, the amount of information a measurement outcome has is equal to it’s
“surprise”.13

13Of course, we can’t scrutanize these abstractions too closely. Only up the point that they are useful for
our purposes. For as briefly mentioned previously, information is in some sense physical, and we should keep
that in mind when dealing with it (especially when we’re talking about doing computations with “continuous”
devices).I

IFundamentally, there’s a finite amount of information that can be contained in a given space.i

iIf you’ve chewed on the requisite amount of creative paper, this is formalized in the holographic bound,
a modification of the Bekenstein bound: S = A/

(
L2
p

)
, where Lp is the planck-length and A is the surface

area of the membrane containing the system (i.e. surface area of a black hole the size of the system).A

AThat’s all to say, don’t think you can perform hypercomputation just because you’ve got the magic of
the Rs on your side.
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1.1.2 Entropy

The entropy of a random variable is the expected amount of surprise over all possible out-
comes:

H (x) := E [I (x)] =
∑
x

P (x)I (x) (1.2)

So, for example, the entropy of a fair coin is 1 bit (i.e. you get 1 bit of information each
time you measure it).

1.1.3 Mutual Information

The mutual information between two random variables is the amount of information you get
about one random variable by observing the other (i.e. how much information is “shared”
between the two).14

I (X;Y ) :=
∑
x

∑
y

P (x, y) log

[
P (x, y)

P (x)P (y)

]
(1.3)

Some sanity checks: (i) if X and Y are independent, they should share zero information.
(ii) if X is a deterministic function of Y (or vice versa), then all the surprise should be
contained in one of the variables (so the mutual information should just be the entropy of
X (or Y ). These check out (exercises left to the two people who read this).

1.1.4 Channel Capacity

In information theory, a channel is defined as the conditional distribution between two vari-
ables: P (Y |X), where X is defined as the “input” variable and Y is defined as the “output”
variable. Given a source distribution over X and a channel (i.e. a P (Y |X)), the channel
capacity is defined as the maximum amount of mutual information between two variables
over all possible input distributions:

C := max
P (x)

I (X;Y ) (1.4)

Another way of thinking about the capacity is as the maximum amount (over all pos-
sible input distributions) of information you can communicate over a channel (this will be
important later).

14Things get pretty hairy/ill-defined if you start talking about more than two variables, so we’ll swiftly
sweep that under the rug.
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1.1.5 Rate Distortion

I’ve avoided the discussion of continuous variables up until this point to avoid having to
discuss measures and such , but it’s important here: the magic of the Rs implies that we
need an infinitely long sequence of numbers to specify a sample from, say, (you guessed it)
a Gaussian distribution. But no one has time for that (or the resources), so we need to
approximate this. Essentially, rate-distortion tries to analyse the trade-off between how well
you describe the outcome of a random variable and how many resources you used for this
description. I.e. it tries to quantify the trade-off between compression (your description of
the variable) and distortion (how much your description distorts the outcome). The “how
well” or “distortion” is up to you – you must specify a “distortion metric”. So, unlike for
channel capacity, rate-distortion inherently has a degree of subjectivity (you must specify
what aspect of the variable you care about). Given (i) a distribution for the random variable
and (ii) a particular scheme for coding the variable, the rate-distortion function tells you the
best you can possibly do in terms of this trade-off:

R (D) = min
P (x̂|x):

∑
x

∑
x̂ P (x̂|x)P (x)d(x,x̂)≤D

I
(
X; X̂

)
(1.5)

Essentially, what all these squiggles mean is the following: given some way of trans-
forming the data X into another variable X̂, given by P (x̂|x), R (D) tells you the smallest
representation you can have given a particular desired distortion limit. In practice, analyt-
ically calculating this ins’t always possible (and doing it numerically can be challenging for
high-dimensional sources), so R (D) isn’t known for many source-distortion pairs.

Fig. 1.3. Classic example of the rate-distortion function for a Gaussian source with variance
σ2 and squared-error distortion. Gray region (and red line) are achievable, white region is
unachievable. Reproduced with permission. Original source: Rate–distortion theory. In
Wikipedia, The Free Encyclopedia.

15Technically, there are two “Blahut-Arimoto” algorithms, one for channel capacity and one for the rate-
distortion function. They’re both special cases of a general iterative optimization algorithm (which also
includes the expectation-maximization algorithm as a specific case), but since we only care about channel
capacity here, this is the one we’ll discuss. Conceptually, they’re very similar.
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1.1.6 Blahut-Arimoto Algorithm

The motivation for the Blahut-Arimoto algorithm15 is that the channel capacity is difficult
to calculate analytically for most channels. The idea then is to use an optimization based
strategy to find the capacity (and the capacity achieving source distribution). Essentially,
the trick is to first rewrite the channel capacity in the following form:

C = max
r>0

max
Q

∑
x

∑
y

r (x)P (y|x) log

[
Q (x|y)

r (x)

]
(1.6)

and then use an alternating optimization:

Q(k) (x|y) =
r(k) (x)P (y|x)∑
x′ r

(k) (x′)P (y|x′)
(1.7)

r(k) (x) =

∏
yQ

(k−1) (x|y)
P (y|x)∑

x′
∏

yQ
(k−1) (x|y)

P (y|x)
(1.8)

An analogy I like for this comes from Raymond Yeung’s “A First Course in Information
Theory” [131]:

Suppose a hiker wants to reach the summit of a mountain. Starting from a
certain point in the mountain, the hiker moves north–south and east– west al-
ternately. (In our problem, the north–south and east–west directions can be
multi-dimensional.) In each move, the hiker moves to the highest possible point.
The question is whether the hiker can eventually approach the summit starting
from any point in the mountain16.

Armed with these tools, we can now understand an interesting phenomenon: fractional
bits of information (key to our scenario, as explained later). See Fig. 1.5.

In traditional coding, the problem is split into two phases: source coding and channel
coding. The goal of source coding is to remove redundancy (structure) in the signal. The
goal of channel coding is to add controlled redundancy to protect against errors that will be
introduced by the channel (e.g. parity-bits to guard against a bit being flipped). These two
stages of coding are typically considered in the case of “block coding”: here, many samples
from a source are taken and coded into “blocks” (strings of samples). E.g. let’s assume we
were trying to send samples from a biased coin over a binary symmetric channel (simply, a
channel that will flip a bit with a specific small probability). Optimal source coding would
take m samples of this coin and treat these blocks of length m as the messages to be sent.
Then, an entropy-coding scheme (e.g. Huffman coding) would be used to create source coded
“words” whose average length was equal to the entropy of the coin. Finally, a channel coding

16Answer: yes.
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Fig. 1.4. Illustration of alternating optimization used in BA algorithm. Reproduced with
permission. 2012 Springer Nature. Original source: [131]

scheme would be used to add back in bits so that the messages would be robust to bit flips
by the channel.

To get very concrete: consider a coin with P = 0.8 heads. The entropy of this coin
is ' 0.72 bits. Via a Huffman coding scheme, we can take blocks of 2 and code these in
the following way: 00 → 0, 01 → 10, 10 → 110, and 11 → 111. This yields an average
length per coin flip of 0.74. Close to the entropy! We could get closer if we went with
larger blocklengths, but (i) the point is hopefully clear and (ii) the three people reading this
probably don’t care. To channel code, we could use something like a Hamming(7,4) code
[121] – this takes in 4 bits and maps them to strings of 7 bits (so there are 3 parity bits). The
details of this are straightforward but too long to include here, so I’ll just give the intuition:
let’s assume that the channel has a low enough error probability to expect up to 1 bit flip
per 7 uses. If we think of messages of length 4 as points in a space, the idea is that we’d
like to map these to a new space where all points within 1 bit flip get mapped back to the
correct 4 bit point. If we define the “Hamming distance” as the number of bit flips a message
is away from another, then what we desire is a “Hamming ball” around each message such
that all messages within a ball of 1 bit get mapped to one message. Thus, when the channel
inevitably flips one of the message bits, the receiver will be chill as the flipped message will
get mapped back to the original message. It turns out that a Hamming(7,4) code will do this
by taking messages of length 4 and mapping them to a larger space of length 7. All words
in this new space are at least 3 bits away, so taking one of these messages and decoding it
will get back the intended original 4 bit message. So, by sending the message into a larger
space, we can correct for errors by essentially making the channel behave deterministically
(by separating the intended messages far enough in this new space).
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Fig. 1.5. b) Example of two state system, with input voltages V0 and V1. If there is no
overlap between the output distributions (left), the capacity is log2 (#write states) = 1 bit.
For complete overlap (right), the capacity is 0 bits, as it is impossible to infer anything
about the inputs from reading the outputs. For partial overlap (center), redundancy needs
to be added to the signal to correctly infer the inputs, reducing the effective bits/device. c)
‘Soft information’ increases capacity. For a given number of write states (4), the capacity
increases with number of read states (4 left, 7 right). The read resistance is discretized into
bins separated by black dotted lines. Even though there are only 4 input states, the extra
read states increase the capacity of the system by providing ‘soft information’, the degree
of belief that a read value belongs to each write value. Further read states provide greater
granularity of belief values, allowing for easier inference of the input values. Analog codes,
such as artificial neural networks, can use the actual resistance values, intrinsically benefiting
from high granularity.

Note that what we’ve done here is take a single dimensional variable, take many samples
to source code, and then take strings of these source coded words and channel code them by
adding parity bits (putting them in a larger space). See Fig. 1.6

Importantly though, this splitting of source and channel coding is only guaranteed to
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be able to reach the optimal solution in the limit of asymptotically long blocklengths (for
our above example, the case where we take many many samples from the coin, source code
these, and then take blocks of these and send them into a very large space so that they’re
sufficiently separated). Again, the intuition for why this is the case is that in traditional
coding, many samples are taken so that we can jam as many words in the space as possible.
Then, we try and force an approximately deterministic channel – we blow the sample up
into a high dimensional space where things look deterministic.17

Fig. 1.6. Traditional separate approach to coding a continuous signals. In the first step,
source coding, many samples are taken from the source and put into a “block”. Typically,
this is “vector quantization”. The idea is that the signal space can be packed with many cells
(see Fig. 1.7) so that, on average, the squared error between a sample and the center of the
cell its assigned to is fairly small (decreasing in size with the number of cells you can pack
in there). This in effect blows the signal up into a higher dimensional space as you’re now
considering sample sequences or vectors. The next step, channel coding, adds “controlled
redundancy” to these sample vectors, increasing the dimensionality even further. The idea
here is that given a certain level expected amount of channel noise, with enough of the right
kind of redundancy, you’ll be able to essentially deterministically transmit long sequences
without error (the noise will only push you around so much in this high dimensional space
that you have embedded the original signal). For reference, these two steps together, source
encoding and channel encoding, correspond to F in Fig. 1.1 (reciprocally for G and the
decoding steps).

There are two major limitations to this approach: (i) it requires long system delays and

17Of course, as the Library has already noted, random strings with sufficient length contain All - the
gnostic gospel of Basilides, why the Answer is 42, and what happened to the Berenstein Bears.
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Fig. 1.7. Example of how vector quantization can work when just encoding two samples
from a normal distribution (with resulting joint distribution shown here). See how “cell
packing” tries to place cells in areas with largest number of samples. So the more cells you
have, the finer they can be squeezed into the space.

high complexity to implement and (ii) there are no guarantees on robustness with changing
channel conditions (usually does extremely poorly). As summarized by Romero et al. [97]:

Channel codes are designed to protect data at a certain channel signal to noise
ratio (CSNR). If the CSNR increases, the channel codes will over-protect the
data, which leads to low efficiency. On the other hand, if the CSNR decreases,
the channel codes will no longer offer sufficient protection, and this can lead to
a breakdown in system performance.

How did we get here?
(Read if you’d like a short summary18 of electronic communication/computation, skip if your
time is valuable.)

18Though my (surely unmet) goal here is to search for the descent – not the erecting of foundations; to
show the heterogeneity of what was imagined consistent with itself – here I too will deform; make groan and
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A Genealogy of Electronic Communication/Computation
Communication Over Space Communication Over Time ISO numeric Code
1830s: Telegraph 1860s: photopaper 1870s: Wheel-and-disc me-

chanical integrator
1870s: Telephone 1860s: microfilm 1890: Tabulating Machine

(kernel to IBM)
1890s: Radio 890s: roll film 1930s: Mechanical differential

analyzer
1920s: TV 1890s: punch cards 1930s: Turing does Turing

stuff
1950s: Semiconductor Era
Begins

1930s: LP/Vinyl 1940s: Electromechanical relay
computers

1960s: Commercial Telecom-
munications Satellite

1940s: Williams Tube 1940s: Colossus electronic
computer

1970s: Computer networks/In-
ternet

1950s: Drum memory 1940s: Turing-Welchman
electro-mechanical Bombe

1980s: Cell phones 1950s: Magnetic tape 1940s: Turing’s “Proposed
Electronic Calculator” report

1990s: Telecommunications
networks almost entirely digi-
tized

1950s: Hard disc drive 1940s: von Neumann’s “ED-
VAC” report

1990s: (Digital) wireless net-
work revolution begin

1970s: Floppy disc 1940s: ENIAC electronic com-
puter (first general-purpose
computer)

2000s: “Smart” phones 1970s: Compact cassette 1940s: Shockley and Co. in-
vent transistor at Bell Labs

1970s: VHS 1950s: Pilot Model ACE
1970s: DRAM 1950s: Integrated circuit

(“computer chip”)
1980s: Compact disc 1960s: First computer with

GUI 20

1980s: Flash Memory 1960s: Microprocessor
1990s: DVD 1970s: first personal computers

enter market
2000s: Blu-ray 1980s: explosion of personal

computers
2000s: Solid State Drive 1990s: “mobile computing” be-

gins 21

Table 1.1: Summary of key developments in electronic communications and computations.

For the purposes of this work, we’ll consider “storage” as communication over time, so
we’ll also consider storage media

. Like any single, feedforward description of a highly coupled, nonlinear, recurrent 19

dynamical system – e.g. a history – this description is incomplete.
The events are a fascinating interplay between scientific, technological, and cultural prod-

ucts : Humans originally built communications devices (over space and time) to communicate
“natural data” (i.e. data produced for and consumed by us “human computers”): images,
sounds, words . But we then started to transition to symbolic representations to commu-
nicate with computers, whose representations were designed to be digital , and we thus

protest (but not explicitly tribute).
19While it is true that “future” events can’t causally influence the “past”, new information acquired in the

future can change the way we see the past, and for us story-telling creatures [46], that’s basically equivalent.
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contorted our communications/representations to fit this model. A focus on improving IC
technologies and digital signal processing lead to great advances in digital communication
systems, fully realizing the “digital revolution” (e.g. Moore and Denard scaling laws). I.e.
Digital communication overtook analog in large part due to advances in DSP (including
quantization and error control techniques – necessary for communicating symbolic computer
instructions) and the prevalence of digital processors. But, looking now and forward, as dig-
ital computation/communication is, in some sense, an extreme form of analog (in the way
we do it at least), we’re starting to reach the limits of what we can compute/communicate
without worrying about what’s “below” (e.g. the aforementioned laws are breaking down).
Furthermore, as we start to, exponentially, want to go back to communicating more “cog-
nitive data”; data about processes and systems with structure that’s meaningful to human
computers (or their artificial duplicates), we’re finding that the way we’re communicating
and computing isn’t the right match. End of tangent.

Back to the main point
So, in summary, the traditional approach tries to force the channel to be deterministic by
spreading out the code words in a larger space, in such a way that errors introduced by the
channel all get mapped to the correct source points (e.g. idea of a “hamming ball”).

But there’s another way of looking at the problem of coding. For many cases, we don’t
need errorless communication. We want to capture some statistical structure in the data
for some downstream task (and it’s ok if each sample is little off). Importantly, essentially
any communication system is a specific case of the general mapping in Fig. 1.9. A typical
digital scheme is just an extreme case – it’s still just a mapping from the source space Rm

to the channel space Rk and then back to the reconstruction space [3]. One can think of
the goal of coding as finding a mapping that makes the input distribution “probabilistically
well-matched” to the channel. Traditional coding achieves this by essentially removing the
randomness introduced by the channel. But it does this often at a huge cost to complexity
(something not really considered in standard information theory22).

Our proposal then is to take this “probabilistically well-matched” perspective and try
to find efficient mappings. When we take this perspective, we think about this mapping as
“Joint Source-Channel Coding” (JSCC). Here, we’re considering both the statistics of the
source and the channel and designing our mappings with these in mind (as opposed to the
traditional approach which thinks about them separately).

Of course, this in some sense is just another of the countless instances of the engineering
principle “specialize to optimize”: the traditional separate approach is highly general in that
you can design source coders without thinking about the specific channel to be used (and vice
versa). But this comes at a complexity cost. Alternatively, you can employ a joint strategy,
which can be significantly more efficient (and even outperform the separate approach when

22See [103], [74], [22], and [130] for some interesting thoughts on this.
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Fig. 1.8. In the joint coding case that we’re considering, single symbols are mapped to
the channel (i.e. blocklength = 1). Instead of trying to make the system asymptotically
deterministic (like in the separate case), this joint case tries to structure the encoding function
in such a way that the distribution that results as the input to the channel (what’s sent in
from the left side of the red dot) is probabilistically “well-matched” to the channel statistics.
(see [44] for a great discussion of the details of this).

you constrain complexity23,24).
Below I’ll give a cartoon example to illustrate the point, and then will, finally, get to

what we’ve done. The general picture is outlined in Fig. 1.9 (we’ll be doing the 1-D case
for this chapter but will be scaling things up in subsequent chapters). Let’s assume X is
1-D Gaussian and that the Channel is a Gaussian channel (i.e. an “Additive White Noise
Gaussian” (AWGN) channel). It turns out that the capacity achieving source distribution for
this scenario is a Gaussian! So the optimal solution is to do no coding (just simple scaling)
and send symbols directly through25 (Fig. 1.10). But the traditional approach destroys this
favorable condition by attempting to create a deterministic channel (with high probability).
So if we assume that we start off with some initial distribution that’s non-Gaussian and we
have a Gaussian channel, the goal then is to transform the input into a distribution that’s
well-matched (in this case, a Gaussian; see Fig. 1.11).

I lied 0xF0 0x9F 0x92 0xA9 (f09f92a9) . . . one last thing: I’ll quickly review here some
of the great work people have done for analog coding – i.e. “standard communications”.
Again, we can reformulate the problem of storing analog data on an emerging memory
device as that of transmitting a discrete-time, continuous alphabet source over a discrete-
time, additive noise channel. When thought of in this manner, we can then look at the
general problem of analog coding in the field of communications and see what ideas can
be brought to bear on this specific problem. This field has a rich history, with the original
treatment of this problem dating back to Shannon [104] and Kotelnikov [69]. Their proposed
analog coding scheme was based on the use of space-filling curves. The use of space-filling
curves was then significantly extended in the work of [42], [19], [94], [113], [35], [51], [52], and
[55]. In these works, space-filling curves were investigated for the transmission of Gaussian

23See [68]; but also rememeber that there’s no free lunch, and joint coding limits you to mappings tied
to specific source-channel pairs.

24Though it should also be noted that, in general, the best source-channel schemes with finite delay, either
separate or joint, may not reach the asymptotic coding bound [102], [44].

25See [44] and [3] for great discussions of this and extensions to higher dimensional cases.
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Fig. 1.9. In the most general case, a signal X of dimensionality m is encoded by an encoding
function h into a signal Y of dimensionality k (where k can be less than, equal to, or greater
than m). This signal is then sent over a channel which adds noise to each component of the
signal. The resulting signal, Ŷ , is then sent through a decoder to be reconstructed into an
estimate of the original signal, X̂. Importantly, virtually all communication schemes are a
special case of this general framework (including traditional digital approaches). Reproduced
with permission. c© 2014 IEEE. Original source: [3]

Fig. 1.10. Simple illustration of a Gaussian source going over a Gaussian channel. Here, it
turns out that the capacity achieving source distribution is just a Gaussian. I.e. a Gaussian
distribution is probabilistically well-matched for a Gaussian channel, so no coding is needed
(just a simple scaling). See [44] and [3] for more details and some good examples.

sources over AWGN channels. These ideas, primarily using variants of the “Archimedean
spiral”, were further extended by [37], [36], [50], and [97] to the case of different kinds of
channels. [38] looked at the operations for actually implementing the Archimedean spiral
scheme and showed it was significantly more efficient for communicating over the Gaussian
channel compared to the all-digital solution. Following these, a major breakthrough was
made in 2014 [3] when it was shown that instead of using parameterized spirals, a functional
optimization approach could be used to achieve state-of-the-art performance on the problem
of Gaussian sources over AWGN channels.

So, finally, here, inspired by the general success of optimization-based methods and uti-
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Fig. 1.11. Now let’s assume the source is non-Gaussian (in the case of this illustration,
some funky bi-modal distribution). The goal of coding is still the same: we must find a way
to transform this distribution into something that is well-matched to the Gaussian channel.
But we know from the previous example that Gaussians are well-matched for Gaussians, so
this amounts to finding a way to transform this non-Gaussian channel into a Gaussian, and
then from a Gaussian back into an estimate of the original.

lizing ideas from the analog communications literature to frame the problem, we show that
using analog codes with analog emerging memory devices can improve system performance
over digital codes in both the separate coding and joint coding regimes.

1.2 Setup

Getting past all the convoluted explanations and jargon that follows, Fig. 1.12 is the main
picture to have in mind.

Capacity
The devices are perturbed by voltage pulses of different magnitudes drawn from the input
probability distribution P(V). These pulses modulate a device’s resistance, resulting in an
output resistance distribution P (R) =

∫
P (R|V )P (V ) dV . The conditional dependence of

the read resistance on the write voltage, P (R|V ), defines the noisy channel through which
information must be communicated. In the limit of an infinite blocklength code, the capacity
is the number of bits of information per use of the device that can be communicated without
error [6]. It is equivalently given by the maximum mutual information between the input
and output distributions,
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Fig. 1.12. What we want here is to take samples of a Gaussian distributed variable and
store these individual samples on a single PCM device (channel) – one sample per one use of
the device. E.g. let’s say we drew s = 0.1. We then want to come up with a way of storing
that 0.1 on the device such that we can later retrieve it with some degree or reliability.
Importantly though, we don’t care about getting the exact number right. Just that the
distribution of these numbers follows the original distribution if we repeat this process with
many times.

C = max
P (V )

∑
V

P (V )P (R|V ) log2

P (R|V )

P (R)
(1.9)

The capacity achieving input distribution given by equation 1.9 exhibits an optimal trade-
off between having as many input states as possible and having as little overlap in the output
distributions as possible. As a simple example, consider a two-state system shown in Fig.
1.5b, with input voltages V0 and V1. If there is no overlap between the output distributions
P (R|V0)P (V0) and P (R|V1)P (V1) (left panel), the capacity is the log (base two) of the
number of input states (1 bit). If there is complete overlap (right panel), the capacity is 0
bits, as it is impossible to infer V from R. For cases of partial overlap, redundancy needs
to be added to the signal to correctly infer the inputs, reducing the effective bits/device
(center panel). Increasing the number of read states can also increase the capacity for a
given number of write states (Fig. 1.5c). Practically, having more read states than write
states gives additional information in the form of greyscale belief as to which input state they
belong. This ‘soft information’ is currently used by MLC-Flash LDPC decoders to improve
inference during belief propagation decoding [63]. Intuitively, analog representations that
use the resistance values directly can have higher capacity because they operate at higher
granularity (ultimately limited by circuit noise).

P (R|V )
In order to calculate capacity, we need to get P (R|V ).
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1.2.1 Memristors (a.k.a. emering memory devices)

But first, as the devices we’ll be considering are a unique type of electronic circuit element,
I’ll give a brief summary of what this general class of devices is and how they work.

If we’re being sloppy with our terminology, we can call the devices we’ll be using here
“memristors” (a cheeky portmanteau of “memory” and “resistor”). The memristor was
theorized by Leon Chua in the 1970s as the fourth element of a “fundamental quartet” of
electronic circuit elements, along with the capacitor, inductor, and (yes) the resistor. The
original elegant formulation of this quartet (see Fig. 1.13) has

I = G (φ) · V

φ̇ = V

However, there are a number of works that (cogently) argue that such a device isn’t
physically possible (see the Wikipedia article for a great summary [122] ). For our purposes
though, what we really mean here is a two terminal electronic circuit element that shows a
“pinched” hysteresis loop26 in a voltage vs. current plot. The key property we care about
here is that the device has a variable dependence between current and voltage, with a memory
of past voltages (or currents).

On a final general note, as these are relatively new, highly non-standard channels, rigorous
fundamental limits are still unknown, and coding techniques for these devices are practically
non-existent.

1.2.2 Device Operation

Device operation is carried out in the following manner: as diagrammed in Fig. 1.15, a
PCM material can either be in a conductive crystalline structure (Poly GST, light blue) or
a resistive amorphous structure (α-GST “cap”, light purple). The resistance of the PCM
cell is determined by the size and structure of the resistive amorphous cap, with larger caps
yielding higher resistances. The resistance is set to a high resistance state by a short current
pulse (Fig. 1.15, top panel, left-most light blue pulse) that first melts the film through Joule
heating. The short pulse then quickly quenches the material, causing it to form a resistive
amorphous cap. The resistance can be decreased by slowly passing a lower current pulse
(Fig. 1.15 top panel, second pulse from the left, light red) that heats the material above its
crystallization temperature, annealing the amorphous cap, allowing some of the crystalline
structure to slowly reform while cooling. Different resistance levels can then be achieved by
applying different magnitudes of current pulses (e.g. the two different light red pulses in
Fig. 1.15, top panel), resulting in different volumes of resistive amorphous and conducting
crystalline phases [127]. In general, closed form mathematical models do not do a good job

26Technically the hysteresis in actual devices like RRAM has been found to not actually go through the
origin [114] .
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Fig. 1.13. Fundamental circuit elements and their relationships, as originally conceived by
Chua [18]. Reproduced with permission. Original source: [122]

of describing the dynamics of emering memory devices. To describe the dynamics of these
devices requires highly detailed finite-element modeling (e.g. COMSOL [28]), and even this
is not very accurate in most circumstances because there are intricate interactions between
the electric field, current, and temperature-dependent conductivity of the GST that all must
be simulated self-consistently [73], [58]. For these reasons, we construct a numerical model of
these devices for our study based on empirical measurements. We describe the data collection
and model in the following paragraphs.

For this study, we performed pulsed resistance measurements of seven different devices
(Fig. 1.15b, circuit diagram for one such device) on a 100-device PCM array. Details of
fabrication and characterization of these arrays can be found in previous reports [13], [20],
[31]. Each cell is equipped with its own access transistor (Fig. 1.15b) to prevent cross-talk
and sneak paths in the array. Current flowing through the cell is controlled by the gate ‘word
line’ voltage (VWL), which we pulse to control the shape and magnitude of current pulses.
To ensure independence between pulses, we first ‘RESET’ the cell to a high resistance state
with a short melting pulse. We then apply a longer variable-magnitude ‘Partial SET’ pulse
to decrease the resistance of the cell. This facilitates analysis by constraining device behavior
to a memoryless zeroth-order Markov process. For example, let us say that at t = 1 second
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the value of VWL = 1.0 Volts was applied across the device. This will result in a resistance
that is drawn from the conditional distribution P (R|VWL = 1.0). Now because of the way
the device is being pulsed, this conditional distribution will be the same regardless of what
the previous resistance value was. I.e. if the process had memory, P (R|VWL = 1.0) could be
different depending on what R at t = 0 seconds was. But since the process does not have
memory, P (R|VWL = 1.0) will always be the same. 27

Fig. 1.14. Illustration of device operation. In this example, the default state for the device is
crystalline (light purple). By applying a voltage pulse across the top and bottom electrodes
(TE, BE), electrons flow through the material and heat a portion of it past the melting
point (here shown in darker purple). As the pulse falls quickly (i.e. the width of the red
spike is small), the device is quenched, with the portion that melted unable to relax back
down to the crystalline state. Instead, this portion ends up in an in-between, “amorphous”
state (again, darker purple). As the crystalline state has a low resistance (electrons can
travel through it easily) and the amorphous state has a higher resistance (the electrons have
a harder time passing through the partially disordered lattice), the resistance of the PCM
device is determined by the amount of material in the amorphous state. And, the magnitude
of the voltage pulse determines the amount of material that undergoes this phase transition
process. Importantly though, there are uncertainties in the initial conditions of the device
and write process. Thus, each time you apply the same voltage pulse you will get a slightly
different value of resistance. If we do this many times, a distribution of resistances will result
for each voltage pulse. Additionally, different voltages have different resistance distributions.
E.g. the distribution resulting from Va (blue) might have a lower mean and a smaller variance
than the distribution resulting from Vb (gold).

27It should be noted that a digital system would need to apply a similar pulse scheme if it was to achieve
greater than 1 bit of information transmission across the channel.
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Fig. 1.15. Device Operation for our particular case. (a) Illustration of the pulsing scheme.
Between each measurement, the cell is consistently “RESET” into the high resistance state
via a short current pulse that melts the region above the bottom electrode (BE) and quickly
cools to form a resistive amorphous cap (left). The cell is then “Partial SET” to a lower
resistance with a long wordline (VWL) voltage pulse that anneals the amorphous cap region
(second from the left). Larger voltage pulses (larger VWL) create smaller amorphous caps
(far right) and thus yield lower resistances. (b) Circuit diagram of a single device within
the 10 x 10 PCM array. Devices in the array are individually addressed by applying voltage
VWL to the gate of the access transistor. PCM resistance is modulated by current flow whose
magnitude is controlled via applying a large bitline voltage (VBL = 3 V) and pulsing the
wordline.

If we take all of these distributions together, we get a conditional distribution, P (R|V )
(see Fig. 1.18 for an example distribution).

As mentioned earlier, device-to-device variation and resistance drift will have a dramatic
effect on the capacity of PCM arrays. The channel noise characteristics are determined by
both the memory controller and memory devices, and indeed multi-pulse read-verify control
schemes have proven effective at achieving high capacities despite device-to-device variation
and resistance drift [82], [87]. As a compromise between simplicity and realism, we ignore
drift in our current treatment and approximate a simple memory controller to measure the
responses of seven different devices on this 100-device array.

For each of the seven different devices, we first collect 120 trials at each voltage level.
With seven devices, this corresponds to 840 points at each voltage level. For this study, we
used 100 voltage levels. To then calculate a continuous probability density for P (R|VWL), we
first performed Gaussian kernel density estimation (KDE) of the distribution of resistances
resulting from each voltage level. That is, for each of the 100 voltage levels, v, a Gaussian
KDE of P (R|VWL = v) was made from the 840 measured points. To estimate P (R|VWL = v)
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Fig. 1.16. Illustration of difference between crystalline and amorphous phase. Top left:
a random or “completely disorded” phase. (un-normalized) Radial distribution function,
g (r), monotonically increases for a random arrangement of molecules (e.g. a gas) (would
be constant if normalized by density). For a crystalline material, not all values are possible
– because of the fixed lattice, you will only find other particles at certain specific distances
(r). Here there is both short- and long-range order. In-between these two, you find the
amorphous phase, which has short-range order (i.e. looks somewhat ordered locally (i.e.
are more likely to find particles at specific distances from each other than others; hence
the peaks in g (r))), but long-range disorder. Thus, it locally looks like a crystal but over
large scales looks more like a liquid or gas. Reproduced with permission. Original source:
Muhammad A. Alam’s Course notes: ECE 695: Reliability Physics of Nano-Transistors -
Lecture 5: Amorphous Material/Interfaces.

for v’s that were not measured, we simply interpolate between the two closest P (R|VWL = v)
that we have measurements for.

Plotted in Fig. 1.19a are 1 standard deviation above and below the mean for each of
the seven devices measured (interpolating between the 100 measured v’s to get the smooth
estimates shown). As can be seen, the different devices exhibit qualitatively similar behavior
with slightly offset RESET resistances and slopes of annealing. We approximate the very
simple single-pulse memory controller, mentioned above, by normalizing the RESET resis-
tances between devices through measuring the relative resistance (to the RESET resistance)
rather than the absolute resistance, which can be accomplished with two resistance reads
and a divide operation.

Another way of thinking about this with Fig. 1.19a in mind is that we’re simply applying a
vertical shift to each of the curves so that their left most points align, yielding the curves seen
in Fig 1.19b. Now, in this new space, the relative resistance value of a point is the logarithmic
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Fig. 1.17. Illustration of the what this looks like for our specific case in terms of phase of
material and the pulsing scheme. Reproduced with permission. c© 2019 Journal of Physics
D: Applied Physics. Original source: [101]

Fig. 1.18. Conditional density, P (R|V ), for an example PCM device (not one of the seven
used in this study). Darker color indicates higher probability density at that location.

ratio between RRESET and the measured resistance, i.e. log10 (RRESET/R) (y-axis, Fig 1.19b).
Thus, all the points to the farthest left are centered around 0.0, by construction (as this is
log10 (RRESET/RRESET)), while all the points that are, for example, 10 times smaller than
RRESET are at 1.0.



39

The effect of this normalization on the actual measured resistances is that it brings all
of the points for each voltage closer together. Thus, the seven curves described previously
from Fig. 1.19a now lie on top of each other (Fig. 1.19b) as the seven sets of 120 points that
yielded each curve are now much closer together. Finally, when the Gaussian KDE (with
interpolation) is done on this new, renormalized set of points, the P (R|VWL)28 shown in Fig.
1.19c results.

Fig. 1.19. Measuring P (R|V ). (a) Plot of the data collected for 100 different values of
voltage pulse VWL for seven different devices shown superimposed (each in a different color).
Rather than plotting the 84,000 raw data points collected, we instead plot filled-in curves
where the top and bottom boundary of each curve are +/- one standard deviation from
the mean of R, respectively. This gives a better sense of where most of the raw data is
concentrated for each of the seven devices. Values of VWL between those collected (and the
corresponding +/- standard deviations) are linearly interpolated. Lumping all seven devices
together into a single ‘virtual device’ yields a capacity of 1.54 bits. Notice that the different
devices exhibit qualitatively similar behavior but with slightly offset RESET resistances and
slopes of annealing. (b) The same as in (a), but now with normalized RESET resistances
(achievable via a simple single-pulse memory controller). This normalized data yields a
capacity of 2.08 bits. (c) Heat map of the conditional distribution, P (R|VWL), estimated
using Gaussian KDE and linear interpolation on the normalized data points.

28More precisely, this is P (log10 (RRESET/R)|VWL), but for brevity and clarity we’ll refer to
log10 (RRESET/R) simply as R in the rest of the text.



40

1.3 Results

1.3.1 Capacity

From this empirically obtained P (R|VWL) we then solve for the capacity-achieving input
distribution, Pcap (VWL), using the Blahut-Arimoto algorithm. The effect of the simple single-
pulse memory controller is that it increases the capacity of the channel from 1.54 bits to 2.08
bits (for reference, the average capacity for any individual channel is 2.5 bits). While more
realistic arrays would contain more variation and drift, they would typically also be paired
with more powerful controllers, regardless of the coding scheme (either analog or digital).
Thus, as they would affect both schemes, we will not factor them into our central comparison
of analog vs. digital coding for emerging memory devices. Furthermore, opportunities exist
to jointly learn the behavior of the controller with the encoder and decoder – e.g., with a
neural network – which is in fact an avenue we explore here later.

As the Blahut-Arimoto algorithm technically only applies to discrete distributions, we use
a discrete approximation to the channel, finely discretizing the P (R|VWL) that we calculated
as discussed above. Our criterion for sufficient discretization is that the capacity no longer
increases with the addition of more states (e.g. >1000 states). As the goal is to optimize
the trade-off between the number of output states and these states’ overlap (Fig. 1.20a),
the number of nonzero values in Pcap (VWL) eventually saturates. That is, beyond a certain
number of discrete input states, the addition of more states does not increase the mutual
information (if the full analog output range is used). For this channel, saturation is reached
at 13 states29. Note that the output distributions for these states partially overlap and cover
the full range of R (Fig 1.20a, bottom panel), meaning that higher capacity can only be
achieved if the full analog output range is used (as opposed to the traditional discrete case
where there is no overlap). Put another way, any decoding algorithm that is to achieve the
channel capacity must perform inference over the entire analog range of R.

As mentioned previously, the capacity is the maximum possible rate of information trans-
mission over a given channel. To gain a better understanding of the effect of discretization
on the rate of information transmission, we examine the case where there are a finite number
of read and write states. This analysis is done to illustrate and make quantitative, for the
case of the device we’re considering, the idea of “soft information” presented in Fig. 1.5. We
model this discretization behavior by marginalizing the continuous probability Pcap (VWL)
between discrete read levels, creating a reduced discrete channel. We then use simulated
annealing to search for optimal values of the read levels to maximize the rate of information
transmission. Fig. 1.20b demonstrates how the capacity of this reduced channel increases
with the number of read levels for a given number of write levels. In each case, the capacity
monotonically asymptotes as the number of read levels increases, corresponding to the case
of an analog read circuit. As the number of allowed input levels increases above 13, the
optimal number for the full analog channel, the discrete capacity asymptotes to the analog

29Non-uniform input state probabilities like those here are difficult to achieve for many applications, but
setting them equal only decreases the channel capacity by 5%.
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capacity of 2.08 bits. Put another way, the maximum possible rate of information transmis-
sion is only possible in the limit that the full analog range for the output is used. As analog
systems inherently operate over the full continuous range of values, it is possible for them
to achieve the capacity. This use of the full continuous output range can be thought of as a
necessary condition to achieve the maximum possible rate of information transmission over
the channel. Of course, developing the specific code that achieves this maximum information
transmission is an unsolved problem. I.e. the capacity tells you what the upper bound is,
but not how to achieve it. This discretization analysis shows that it is necessary to consider
the full continuous range of outputs to achieve this bound, but it too does not show you how
to achieve it.

Fig. 1.20. Calculating Channel Capacity. (a) Capacity achieving input distribution,
P (VWL), and corresponding output distributions, P (RRelative|VWL)), shown for each of
the discrete levels in P (VWL) (each in a different color)[Note: Here we have replaced
log10 (RRelative/R) with RRelative to not clutter the figures.]. The optimal input distribu-
tion contains 13 discrete levels, spaced so as to minimize overlap in the output distributions
(additional input states beyond this can be used, but they do not increase the capacity).
Note that even though the input distribution is over a finite number of states, the output
distribution covers the full analog range of R. (b) Discrete capacity as a function of the
number of read and write states. Limited by the number of write states, capacity increases
with the number of read states due to the creation of ‘soft information’. For more than
13 write states, the discrete capacity asymptotes to the analog capacity as the number of
read states increases. Thus, error-correcting codes that utilize analog circuits and the actual
cell resistance values (such as those in an artificial neural network) can achieve the highest
possible rates.
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1.3.2 Joint Coding

Finally, we explore an approach to directly store analog-valued information in the resistance
values of the PCM devices. While many interesting opportunities exist for exploiting the
rich statistics of natural signals, for this preliminary study, we restrain ourselves to the
canonical case of a single Gaussian source signal, P(S), with an MSE distortion metric.
The most näıve approach to store analog values would be to employ no coding and directly
map source values, S, into voltages and directly provide reconstructions, Ŝ, from resistances.
Such a näıve approach leads to an “effective channel” (conditional probability distribution of

reconstruction, P
(
Ŝ|S

)
) identical to the original channel, Pcap (VWL). While this is the ideal

approach for a Gaussian source with Gaussian channel and MSE distortion [44], the nonlinear
PCM device is far from a Gaussian channel. Correspondingly, the näıve implementation
exhibits a low SNR (<0dB) at a rate of 1 device/symbol.

Given that we are working with a Gaussian source and MSE distortion, we would like a
parameterized model to learn an encoding and decoding function that minimizes the average
cost (to bring back and slightly modify our old friend, see Fig. 1.21). We start with a
parameterized model:

V = F (S) (1.10)

Ŝ = G (R (V )) (1.11)

where F and G are nonlinear mappings corresponding to the encoder and decoder, respec-
tively. We then solve numerically for the mappings that minimize the distortion,

F ∗, G∗ = argmin
F,G

D = argmin
F,G

∫∫ (
Ŝ − S

)2

P
(
Ŝ|S

)
P (S) dŜdS (1.12)

The encoding and decoding functions are parameterized by a sum of un-normalized Gaus-
sians. Specifically, F(.) and G(.) are described by:

yα (x) =
N∑
i=1

yαiK

(
x− xi
σ

)
(1.13)

K

(
x− xi
σ

)
=
e
−(x−xi)

2

2σ2

√
2πσ2

(1.14)

Here, the Gaussian centers, xi, as well as their widths, σ, are fixed, and the only variables
to be adapted are the weights of each Gaussian, y(αi). Ultimately, two different yα are
learned, one for the encoder and one for the decoder. The y(αi) for each of these are learned
by minimizing Eq. 1.12 via gradient descent. A sum of Gaussians is chosen because they
are smooth (with well-behaved derivatives for the gradient-based optimization), are easily
parameterizable, have support over the whole region considered, and are highly non-linear
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Fig. 1.21. Same as the first plot in this section, but now indicating the specific probabalistic
relationship between channel input and output with the plot of P (R|V ) replacing the channel
picture.

Fig. 1.22. Showing the relationship between the measured P (R|V ) and how it is modeled.
Modeled as conditionally Gaussian, with mean and variance at each of the V s measured given
by green and red curves, respectively (points in-between those measured are interpolated).

and thus, when combined, able to approximate a large class of functions.
The results of this minimization are presented in Fig. 1.24. Here, the Gaussian dis-

tributed variable, S (blue distribution, top of Fig. 1.24a), is passed through the learned
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Fig. 1.23. Illustration of how the un-normalized sum of Gaussians can be used to approxi-
mate a function. Here the function is just a strait line (given by the gray dotted line). Each
gray dot is the sum of all the components beneath it.

encoding function F (red line, Fig. 1.24a). That is, each sample from P(S) is mapped,
deterministically, through F into a specific voltage, VWL. For example, a sample of S=0.0 is
mapped to approximately 0.9 V. This mapping transforms the original Gaussian distribution
into a highly non-Gaussian distribution (red distribution, Fig. 1.24a right and Fig. 1.24b,
top). Interestingly, and encouragingly, this distribution is qualitatively similar to Pcap (VWL)
(Fig. 1.20a). For an easier comparison between the two we have taken the resulting P (VWL)
and overlaid Pcap (VWL) (Fig. 1.25a).30 It is also interesting that the parameterization for the
encoding function, the sum of Gaussians, was chosen for its flexibility in function approxima-
tion, and not hand-designed to try and approach Pcap (VWL). Thus, the fact that algorithm
was able to learn a mapping that produced a distribution that approaches Pcap (VWL) is
support for the algorithm’s generality.

The encoded value then gets stochastically mapped through the channel. That is, each
sample voltage results in a draw from the conditional distribution given by P (R|VWL).

30It is difficult to make a quantitative comparison here as the capacity achieving source distribution is
over a finite number of elements whereas this distribution has compact support in different sections.
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Fig. 1.24. Optimal joint coding of a Gaussian source. (a) Samples, S, distributed according
to a Gaussian (blue distribution, top) are mapped through the learned encoding function (red
line). For reference, a linear mapping is shown with a dashed line. This encoding transforms
the Gaussian distribution into a highly non-Gaussian distribution over VWL (red distribu-
tion, right). Encouragingly, this distribution qualitatively matches the capacity achieving
source distribution, Pcap (VWL) (a quantitative comparison is difficult as the former has com-
pact support over different regions while the latter has finite support). (b) Samples, VWL,
distributed according to P (VWL) (red distribution, top), are then stochastically mapped
through the channel (heat map in center), resulting in a distribution over resistances, P(R)
(green distribution, right). (c) Samples passed through the channel, R, are then sent through
the decoder, G (green line), which transforms them into estimates of the original input, Ŝ
(again, a linear mapping is shown with a dashed line). This results in a distribution over

reconstructed samples, P
(
Ŝ
)

(blue distribution, right), which is very close to the original

Gaussian distribution (indicated with a dashed line). (d) Heatmap demonstrating how sam-
ples of S are transformed through the whole pipeline, resulting in reconstructions Shat. Note
that as the majority of the mass for S is between [-1,1], this is where the encoding/decoding
functions learn to do the best.

For example, VWL(S=0.0) results in a draw from P (R|VWL = 0.9). The distribution of
resistances that results from this mapping is again highly non-Gaussian (green distribution
Fig. 6b, right and Fig. 1.24c, top) 31 Finally, the read-out resistance is passed through the
learned decoding function, G (green line, Fig. 1.24c). The resulting distribution for Ŝ is very
close to the original Gaussian (with the target distribution for S given by the dashed line).
For an easier comparison between these distributions we have also taken the original P(S)
and overlaid P(Ŝ) (Fig. 1.25b).

To quantitatively assess the performance of this approach, we can draw many samples

from P(S) and check what the corresponding Ŝ is. This creates an ‘effective channel’, P
(
Ŝ|S

)
31Note that the encoder learns to map a large amount of mass in the region of the channel where input-

output pairs are easiest to distinguish (red portion of histogram, where the noise is smallest) and none in
the “indistinguishable” region of the channel (region with positive slope, approximately 1.2 – 1.6 V).
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Fig. 1.25. Distributions from learned mapping. (a) Reproduction from Fig. 1.20a of the
capacity achieving source distribution, rainbow, overlaid on the distribution produced by the
learned encoder (the same distribution as shown in Fig. 1.24a, red, and Fig. 1.24b, red).
Notice how the learned mapping captures most of the features of the capacity achieving
distribution: largest concentration of mass around the minimum value of VWL, with a taper
until a spike around 1.3, followed by zero mass until one final spike at the maximum value
of VWL. (b) Reproduction from Fig. 1.24c of the mapped output distribution, blue, overlaid
on the source distribution, red. Notice again how the learned mapping does the best job of
reconstructing the input in the region [-1,-1], where the majority of the mass is.

(Fig. 1.24d). This analysis shows that samples from P(S) are mapped through the channel
and recovered by Ŝ with a small amount of scatter around the straight dashed line (corre-
sponding to Ŝ = S), yielding an SNR of 9.4 dB. Note how the region between [-1,1], where
the majority of S’s mass is, is where the encoder and decoder learn to do the best job of
transmitting the signal over the channel. This is a consequence of the MSE distortion metric:
the encoder and decoder are penalized the most in this region and thus devote their resources
to performing good reconstructions here.

As another point of comparison, we can look at a quantity from the analog coding litera-
ture: the Optimal Performance Theoretically Attainable (OPTA). This quantity is obtained
by equating the channel capacity to the rate distortion function of the source considered, and
then solving for the resulting minimum achievable distortion (usually in decibels). Thus, for
the Gaussian source and the channel being considered we have:

1

2
log2

(
σ2
S

D

)
= 2.08 bits (1.15)
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This implies that the OPTA is 12.5 dB (3.1 dB from our method). While this is a
useful quantity to consider as it provides an upper bound to the performance, we prefer
instead to think about the effective number of bits transmitted across the device (obtainable
via a similar manipulation as above, but solving for rate instead of distortion). From this
perspective, we think that the most surprising and important result of this work is that even
with this very simple encoding/decoding scheme (amounting to a single dimensional lookup
table), joint coding with these devices achieves a similar SNR to separate coding schemes of
high complexity. Specifically, this joint method performs as well as a separate system that
first compresses strings of samples from the Gaussian to 1.56 bits per sample (e.g. through
vector quantization) and then uses a hypothetical channel coder capable of getting 1.56
bits of errorless communication across the device. Said channel coder is “hypothetical” in
that there does not currently exist a channel coder capable of achieving 1.56 bits across the
device. In reality, the design of channel coders for specific channels is a challenging task.
For example, though the capacity of the standard AWGN was worked out by Shannon over
70 years ago [102], it wasn’t until the 1990s that a class of codes was created that could
approach the capacity of these channels [77].

Though a channel coder for the separate coding scheme does not exist for these channels,
we can assume one does for the purposes of a comparison. We can then further quantify
the benefits of our approach by comparing the energy and latency required to perform the
above storage task with separate vs. joint coding schemes. For the comparison, an ‘8KB’
PCM array is used, with both separate and joint coding schemes implemented in Samsung
28nm technology. As discussed above, the separate approach requires the use of digital error-
correcting codes. These codes require large blocklengths for even modest code rates (e.g.,
0.5). The current state of the art – both in terms of performance and efficiency – are LDPC
codes. Thus, we use these as the hypothetical channel coder for the comparison. An LDPC
code with good decoding performance typically requires a blocklength of 2000 at a code
rate of 0.5 (with significantly longer blocklengths for higher rates) [75]. The decoding step
alone for this requires 44 pJ/sample. For this storage task, the total energy expenditure
for a separate scheme with an LDPC code is 128 pJ/sample. Furthermore, the LDPC
decoder requires 10 (or more) iterations to converge. By comparison, a joint coding scheme,
achieving the same SNR (i.e. at the same distance from the OPTA, described previously),
implemented using a simple lookup table requires only 40 pJ/sample and a single iteration.
The decrease in required energy and latency come mainly from (i) the elimination of the
LDPC coder – requiring long blocklengths – and (ii) the reduction in PCM write operations
– 2 writes/sample → 1 write/sample – due to the higher coding rate achievable with joint
coding in the small blocklength regime (via the intrinsic error-correction provided by the
learned encoding/decoding functions).

While we have only examined the case of single dimensional encodings here, the design
landscape for analog encoders/decoders is rich for higher dimensional signals and other
compression ratios, making it a promising area for the development of coding circuitry that
is low in energy and latency. Lastly, we should emphasize that because the joint framework
we proposed is adaptive, it can learn to store different types of analog data on different types
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of channels, as diagramed in Fig. 1.2 (e.g., RRAM, MRAM, or other PCM devices).

1.4 Discussion

The results presented here represent only a single model applied to a single type of signal
and device. While we only looked at one type of signal and device for illustrative purposes,
the methods we used here are very general and can be applied to a wide range of devices
and signals. The future design space to explore in this field is extremely rich.

From the experimental perspective, other devices (RRAM, CBRAM, and MLC-Flash)
can exhibit dramatically different behavior. Furthermore, various pulsing schemes can pro-
duce different types of statistics. For example, iterative pulsing introduces rich conditional
dependencies through time that are not currently exploited by multi-bit memory systems
and present an interesting opportunity from the perspective of modeling. Cell-to-cell de-
pendencies within the array are also a fact of life that must usually be avoided through
hand-engineered systems. Measuring these statistical dependencies can enable codes to be
adaptive to the flaws and statistics of individual chips, both at the factory during test time
and over the lifetime of use, improving the reliability and uniformity of performance.

From an algorithmic perspective, many powerful analog-valued high-dimensional models
such as artificial neural networks exist, leaving a rich space to explore for learning high-
dimensional parameterized encodings and compression. Since such models have been able to
successfully utilize the statistics of natural media such as images [71] and sound [54], they
would seem well-suited for encoding such media in analog-valued devices. While these neural
network methods have been successfully applied to the problem of source coding [111], [7],
there has still yet to be a thorough treatment of the problem for doing both source and
channel coding with emerging memory devices, and we think this is an exciting open area
for research. Our own initial work in this direction (see subsequent chapter) has shown that
a joint approach with neural networks can outperform traditional separate approaches when
storing images on an array of emerging memory devices. In a related work, [12] have looked at
the problem of using neural networks for source and channel coding with standard channels,
such as the Gaussian and Rayleigh channels. As mentioned above, many of the concepts we
have discussed here are regularly applied to analog coding problems in the communications
literature, typically in the context of communicating over standard channels. Our focus in
this work has been on bringing these ideas into the problem of storage with emerging memory
devices.
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Chapter 2

Image storage with neural networks;
simulating multi-variable case

I can’t keep fighting alien
technology with a six foot staff.

Donatello

Let’s scale up to natural data with structure and utilize a collection of devices. As dis-
cussed above, images are interesting to us for two reasons (i) They’re the most abundant
data in the world and (ii) Our lab, and the field more broadly that our lab is embedded
in, have made progress on capturing natural image structure. And, as part of the goal of
storage is compression (and as compression involves the removal of structure), we’d like to
utilize our knowledge of the structure of natural images to remove said structure. Based on
the discussion in Chapter 1, we seek a mapping from images to a set of emerging memory
devices. One way of thinking about an N ×N pixel image is as a point in RN×N 32. So, to
heavy-handidly put: we’re looking for highly expressive, learnable mapping from points in
RN×N to points in RM .

2.1 Background

The report of my death was an exaggeration
Despite the “unreasonable effectiveness of data”[49], that is, despite what some might have
you believe in the era of Big Data and new “electricities”, “human ingenuity”, “engineering”,
or “theory” is more important than ever. The great “success” of machine learning models
that crank through terabytes (and kilowatts) to train has left many with the impression that

32This is the way we’ll think about images here, but it’s likely that a better way to think about images is
as functions defined on R2 (see [17] for a great discussion of this and to see some of what it allows you to do).
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bigger models with more data are all we need to reach the moon [136].
With that in mind, we’ll be using a neural network to parameterize the mapping. BUT,

we’ll be “engineering” some structure into the network based off of what we know about the
structure of natural images (a la spatial-invariance and convolutional neural networks). The
general setup looks something like Fig. 2.1).

Fig. 2.1. Our joint coder will need many stages of processing to removing the redundancies
present in the data while retaining (or replacing) some of this with redundancy for being
robust to noise introduced by the channel. With regard to natural images, we know that the
first step likely involves some sort of filtering (edge detection) followed by some nonlinear,
group normalization of the activity of these edge-detectors (divisive normalization). But
after that, it’s unclear. So let’s try and learn the rest.

As discussed below, the first part of processing is likely some sort of “edge detection”
(with filters) followed by a normalization of filter outputs. I.e. we know that images can be
described to a decent approximation as a sparse linear combination of “edges” [85]. Where
the Gabor filter is given by

g (x, y;λ, θ, ψ, σ, γ) = e

(
− (x cos (θ)+y sin (θ))2+γ2(−x sin (θ)+y cos (θ))2

2σ2

)
e(i(2π

x cos (θ)+y sin (θ)
λ

+ψ)) (2.1)

Now, Let’s take two wavelets and look at their activity when convolved over an image.
Looking at Fig. 2.3 – Left: natural image, right: two similar but non-overlapping Gabors and
respective activity maps that result from their convolution over the image. When looking
at joint statistics, we find that the variance of a filter’s activity depends, nonlinearly, on the
value of another. This is just another way of restating the well known result that coefficients
in wavelet sub-bands have nonlinear dependencies. We can model this dependence by saying
that the variance of filter activity i goes as the square of filter activity j. If we then divide
the activity of each filter by a linear combination of squared neighboring filter activities, we
find that the pairwise dependency between each filter removed. Namely, if we now look at
the conditional distribution of activity for a filter, we find that its variance remains constant
as the activity of other filters changes. This process is called divisive normalization (see Fig.
2.3)[100].
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Fig. 2.2. Example of filters learned via sparse coding [85]. Similar “Gabor-wavelet-like”
filters are typically learned in convolutional neural networks whose task is to perform image
classification. Reproduced with permission. c© 1998 Nature.

Beyond this we don’t have a great way of parameterizing higher-order structure in images.
There has of course been a lot of work on this (see [98], [107], [137], and [57] for some great
overviews), but given that (i) it seemed like a neural-network-based approach was good to
use here and (ii) the majority of the above “joint” box would have to be learned, we wanted
to put some structure in that could easily be introduced into the network (without requiring
significant changes in optimization techniques).

33There is certainly a lot more going on in the early stages of animal visual systems than simple filtering
and divisive normalization [86] (e.g. recurrent computations likely play a hugely important role). I.e. there’s
a lot more structure that the visual system is capturing. All we’re doing here is taking some things that seem
to be the case and using them to our advantage for this storage problem. Since we’re dipping in to the topic
of neuroscience here, it should also be noted that animals aren’t cameras. They don’t store “photographs”
but rather representations I that are useful for some downstream actionII

IThe photoreceptors of the eye receive 36 Gb/sec of raw data. The retina does 1000:1 compression
and this gets processed down to 20 Mb/s! [105]

IIFor animals (especially humans) are meant to act in the world. There’s a ton of great literature on
the “perception-action”/“sensory-motor” loop . But I apologize. I didn’t have time to write a short list of
references, so I wrote a long one instead: [8], [83], [62], [118], [89], [67], [66], [110], [117], [45], [39], [14], [96],
[40], [109], [43], [26], [27], [88], and [6].
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Fig. 2.3. Removing feature dependencies. Example of feature maps from two similar Gabor
wavelets (from the same sub-band) convolved over our tamed (mustachioed) metaphysicist.
Conditional dependencies exist between one feature’s activity and the distribution of the
other feature’s activity. Specifically, the variance of the later goes like the square of the
value of the former (see equation). With this knowledge, we can divide out this increased
activity, effectivley removing this dependence (i.e. removing the “bowtie” dependence seen
in the example figure).

So, with that, we decided to follow the work of [7] and implement this divisive normal-
ization as the nonlinearity used in the network (explained in more detail below).33

2.2 Setup

Now, we’ll combine these ideas into a framework that can use them to learn a mapping from
images to a set of PCM devices, and then from those PCM back to a reconstruction of the
image. We’ll be using a neural network to learn this mapping (for the reasons stated above).
This type of neural network, mapping from input X to some constrained “latent space”, and
then back to X̂, is called an autoencoder. Below I’ll briefly discuss the general framework
for neural networks, how they are trained, and how we are specifically parameterizing ours
to accomplish our task.

2.2.1 Standard Neural Network

At this point I get the sense that even my grandmother, incapable of operating an iphone
as she is, knows what a neural network is. But for the sake of completeness (and to step
outside of my own biased bubble), I’ll quickly describe the idea here:
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Fig. 2.4. General setup for our framework: image data, X, is transformed by an encoding
function, F (here a neural network), into a set of voltages. These voltages are then applied
to a set of PCM devices. The resistance of these devices is then read and passed to the
decoder, G (also, surprise!, a neural network), which attempts to make a reconsruction of
the original image, X̂.

At a high level of abstraction, neural networks are a particularly interesting subset of
graphs that loosely model biological neural networks. A graph is a collection of lines and
points. In the case of neural networks, the lines or “edges” are called “weights”. They
are directed and connect the points or “neurons”. Each edge has a number assigned to
it indicating how strongly the neurons are connected. Each neuron computes some sort of
function of the edges leading in to it and then passes the output of this function along another
edge. The output of each neuron is multiplied by the weight of the edge that connects it to
the next neuron. That’s it (see Fig. 2.5 for a simple, but common, example). Depending
on the particular network, the function that the neuron computes may be different (e.g.
point-wise linear, point-wise nonlinear, population non-linear, stochastic, reccurent). And
depending on the desired overall computation the network will be arranged in certain ways
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with various connectivity structures and neuron functions.

Fig. 2.5. Example of a typical feedforward network used in a classification task. Reproduced
with permission. Original source: [106]

In the past decade there’s been an (overwhelming) explosion of research in this area with
a variety of different kinds of network architectures proposed34. A couple of folks over at
the Asimov Institute have put together a great summary chart for the broad types of neural
networks. I highly recommend anyone interested in learning more about the subject (or a
specific kind of network) to check out their webpage. As the networks I’ll be discussing are
either outlined there or are composed of combination of networks there, I’ll include their
chart here.35

2.2.2 Backpropagation

But what about the “learning”, you might be asking? People talk about training these things
and getting them to learn. Where’s that in this picture? Good question! Essentially, people

34While many of these are new designs, it’s safe to assume that some form or another of the design you
propose was made by Jürgen Schmidhuber in the 90s.I

35Plus it’s just an awesome chart that synthesizes a ton of work and should be presented as much as
possible.

IAnd by David Zipser in the 80s [80].i

iThank you Dr. Paiton for this great find (and scholarly observation.)
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use a clever application of calculus: the chain rule for derivatives. The idea is pretty clear
when we think of a neural network in a slightly different way: as a computational graph.

Computational graphs are a slick way of reformulating mathematical operations as a
specific kind of graph. Here, edges are simply what takes results of one computation to
another, and nodes are either the inputs to a computation or a computation themselves. For
example, if we wanted to represent the equation a = b+ c, we have two nodes, b and c that
then go into a third node, a, that sums them up. We could repeat this process by adding
more nodes and edges to our graph. Eventually, we could even reproduce Fig. 2.5 with this
strategy (just add extra nodes to represent the weights and biases).

Now, when we build a neural network, we want to know what value of weights (and
biases) are needed to give a good output (given by some evaluation metric). This amounts
to asking how changes in these parameters affect the output. As the direction we care about
is: how all parameters connected to a specific output affect that output, we can think about
changing that output a little and then seeing how that change propagates backward to all
the nodes connected to it. And there you have it! “Changing the output a little” is just the
derivative, so what we’re really doing is adding together all the paths with derivatives on
them. An efficient algorithm for doing this via factoring the paths is called “reverse-mode
differentiation” (and this is what backpropagation is doing). For a much better summary of
this (with great illustrations), check out Chris Olah’s blogpost: [84]36.

2.2.3 Autoencoder

An autoencoder is represented in the third row of Fig. 2.6, first column. The idea is:
Let’s take an input, map it to some constrained space, and then try to reconstruct the
original input from that constrained space. E.g. in the case of the diagram, going from a
4-dimensional input to a 2-dimensional “latent space”, and then back to a 4- dimensional
reconstruction. There are many reasons one might want to do this, but one common one is
that we want to learn something about the “latent factors of variation” in our data. I.e. if
we can figure out how to reduce our data to a much smaller representation and still do a
decent job of reproducing it, then, one would hope, this representation has captured some
of the structure in the data (as compression is the removal of structure).

2.2.4 Convolutional Autoencoder

Referencing Fig. 2.6 again, a convectional autoencoder can be thought of either as a “deep
convolutional network” plus a “deconvolutional network” (without the orange output cells
from the convolutional piece or the yellow input cells from the deconvolutional piece) or as
the “deep convolutional graphics network” with simple hidden units instead of probabilisitc
hidden units. It’s really just an autoencoder with convolutional units. Convolution in neural

36I would highly recommend checking out any of the articles on Chris’s blog. They provide some of the
best explanations I’ve found for many concepts in/related to the field.
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networks, despite the fancy name, is a very simple concept37: though it’s jumping the gun
a bit, let’s use Fig. 2.9 for a reference. For convolution in a neural network, we start off
with some input (usually an image of some dimensions length×width×channel38). We then
have “kernal” which also has length×width×channel, but the first two are smaller than the
length and width of the image. What the kernel is doing is “looking” for a particular feature
in the image. It simply takes the inner-product of itself with the input at a certain spatial
location. This produces a large number if the two are similar and a small one if they are
dissimilar. We then save this number in the output tensor39 and slide the kernel over by one
(or more) units (pixels if we’re at the first layer) and do the same thing at this new spatial
location. After we’ve done this over the whole input (going both up and down) we’ll have a
new set of numbers representing how much the particular feature the kernel was looking for
is present at different locations in the input. But this itself can be thought of as a sort of
“image” (but only has dimensions of length×width, as the inner product summed over the
channel dimension). The channel dimension for this output tensor (which is just the input
to the next layer) is just the number of filters that you had looking over the image (e.g. if
you had 10 different filters, you would get 10 different “channels” or feature maps, one for
each filter).

As an example, Fig. 2.9 starts of with an 64 × 64 × 1 pixel image with one channel
dimension. This is convolved with 128 different kernels, each of shape 9 × 9 × 1, moving
with a stride of 4 (they are moved over 4 pixels each time). This produces a 16× 16× 128
output tensor (one channel dimension for each filter). This tensor is now the input for the
next layer, which takes 128 kernels of size 5 × 5 × 128 and convolves them over the tensor.
After a few more convolutional layers, the final output tensor has dimensions 4× 4× 28.

2.2.5 Variational Autoencoder

The motivation for the variational autoencoder [65] is to construct a generative model of
some data. The idea here is that we want to be able to sample from an easily sample-
able distribution (let’s get weird and say a Gaussian) and use these samples to generate
samples from the highly non-easily-sample-able data distribution (e.g. natural images). So
we’d like something that takes samples from the easy distribution and transforms them into
samples from the hard distribution of interest. The variaional autoencoder (third row of
Fig. 2.6) accomplishes this by taking the input data and mapping it to a set of parameters.

37I’ll explain the ideas specifically with reference to our problem but, unsurprisingly, Chris Olah has a
nice blog post on convolutions that’s worth checking out for a more general discussion.

38Where channel refers to the “depth” of the input. The term comes from color images where there
are 3 channels: reg, green, and blue. This corresponds to three different images, all with very similar but
slightly different information. But it doesn’t have to stop at 3. For example, hyper-spectral cameras can
have hundreds of channels, each looking at a narrow frequency band. In general, the channel simply is a
feature at a specific spatial location.

39OK, yes, for those mathematically in the know, this isn’t really a tensor. It’s technically a holor. But
no one knows what the hell that is (and tensor sounds cooler and gets the general idea across), so we’ll stick
with that.
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These parameters are actually the means and variances that parameterize the aforementioned
simple distributions – means and variances in the case of a set of Gaussian distributions (one
for each latent variable). Then, we sample from distributions with these parameters. We
then take these samples and pass them through a decoder that tries to reconstruct the
original image. Finally then, once this whole framework is trained, we can throw away
the encoder and just draw samples from the Gaussians and, in theory, use the decoder to
transform these into realistic looking samples from the interest distribution. But how do we
learn the weights of this encoder/decoder when we have these stochastic units in the middle
(e.g. the Gaussians)? The idea is that we can actually just reparameterize the distribution
so that we separate it into pieces which are stochastic and pieces which are deterministic (the
parameters we care about)40. We are then able to take derivatives of variables with respect
to the parameters of the distribution (as these parameters are deterministic). See Fig. 2.7
and Fig. 2.8 for some illustrations of the idea and [4], [79], and [95] for great discussions of
the details.

2.2.6 Putting it All Together

We combine these ideas to construct a convolutional autoencoder with divisive normalization
nonlinearities, with stochastic latent units given by the models of the devices that we’ve
been discussing. The main difference between the latent space for our case and that of the
variational autoencoder is that we’re not trying to learn a generative model of the data.
Instead, we have conditional distributions with fixed parameters that need to be dealt with
(not learned).

The objective to be minimized in our case is a combination of reconstruction error and
a regularization penalty on the activations of the latent space:

C =

〈∥∥∥X − X̂∥∥∥2

2
+ λ [max (0, v − Vmax) + max (0, V min − v)]

〉
(2.2)

Here, max (.) puts a constraint on the latent space activity (for going outside Vmax or Vmin),
λ establishes the relative importance of keeping the write voltages within the range of the
device, and v (voltages) are the activation values of the final encoding layer (i.e. outputs of
f (.)). The full network was trained using ADAM [64] on this cost function.

The nonlinearities in standard neural networks are typically pointwise ReLU, i.e. a′i =
max (0, ai), where ai =

∑
j xj·wij, with x indicating the layer’s input and w indicating the

weights. In contrast, divisive normalization is a population nonlinearity, whose functional
form is given by:

a′i =
ai√

β2
i +

∑
k γika

2
k

(2.3)

40Not all distributions can be reparameterized this way, but luckily most of the ones we’re good friends
with can be.
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where β and γ are learned parameters. Divisive normalization implements a local form of
gain control that can reduce nonlinear dependencies [100] (mentioned previously).

The architecture we used was similar to that described in [7]. To adjust the compression
rate of the network, we varied the number of units in the last layer of the encoder/first layer
of the decoder (128 for the low compression, 30 for the high compression), while keeping the
number of units in all other layers and the number of layers the same as in [7]. The output
of the encoder is passed through a set of model PCM devices and their outputs are passed
through the decoder. Thus, in contrast to [7], we are asking the network to perform both
source and channel coding.

2.3 Results

As this model is performing joint SC coding , we need comparisons against models with both a
source and channel coder. As it is the most commonly used for natural images, we used JPEG
for the source coder. For the channel coder, we used two different hypothetical schemes. 1st:
(red) binary scheme: i.e. one able to get 1 bit information across the channel. To assess
performance on images of natural scenes, we used 24 gray-scale images from the Kodak
dataset. We measured two compression levels using our proposed autoencoder framework.
The higher capacity network (with 30 filters in the last encoding layer) used 7,680 model
PCM devices to store each image, while the lower capacity network (with 12 filters in the last
encoding layer) used 3,072 PCM devices. Results from this test are illustrated in Fig. 2.10.
We found that the convolutional autoencoder was able to outperform the JPEG + binary
channel coder method for both rates. Using the k-nearest neighbors algorithm introduced
in [70], we estimated the achieved marginal information transmission rate across a subset of
the PCM channels was −1.5 bits/channel. This indicates that it would take more than 1.5
times as many PCM devices to store an image if the binary channel coder were used (as is
the case in commercially deployed 3D-Xpoint [48]).

2.4 Discussion

The questions we address are how to optimally store image data an on analog medium,
and, more generally, how to optimally perform compression and error correction in this
setting. The noise characteristics of PCMs and other analog storage devices are significantly
different than traditional devices. Additionally, to optimally utilize PCM devices at their full
capacity, it is necessary to develop an analog channel coding scheme (see previous chapter).
Instead of hand-designing analog channel coders for storing images on these devices – often
an arduous task – we propose an adaptive autoencoder framework that accomplishes joint
source-channel coding. We find that our proposed joint source-channel coding scheme is
able to achieve a rate-distortion performance that is superior to that achieved by JPEG
combined with a binary channel coder. We simulated the input-output behavior of PCM
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using measured data from the devices. From this, our proposed network learned about the
characteristics of PCMs and adapted the encoder and decoder to effectively use these devices
for storing image data. Thus, in principle, our method can adapt to the statistics of a broad
range of data types and memory devices, potentially even adapting to changes in device
properties over time. Additional challenges will arise when attempting to code images onto
a physical PCM array. Specifically, the PCM devices in a fabricated array will likely not be
completely independent, as cross-talk in the read/write process can modify their statistics.
We simulated a set of uniformly behaving devices, while in reality each storage device would
have somewhat different input-output characteristics. Finally, resistance drift will slowly
change the properties of the PCM devices over time. We start to address some of these
issues in the following chapters.
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Fig. 2.6. Summary chart of main neural network architectures. Reproduced with permis-
sion. Original source: [116]
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Fig. 2.7. Example of a variational autoencoder trained to generate MNIST digits with
latent variables parameterized as Gaussians with means µ and variances σ. Reproduced
with permission. Original source: [5].

Fig. 2.8. Illustration of reparameterization trick for a Gaussian distribution. Reproduced
with permission. Original source: [5].
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Fig. 2.9. Architecture of the encoding neural network (decoder is just inverse of these
steps). A convolutional kernal is taken and slid over the image, taking the inner product
at each location and storing this scalar in a tensor (gray rectangular boxes). Because the
strides for the convolution are greater than one pixel, the spatial dimension of the maps is
reduced each layer. The depth of the tensor is equal to the number of filters used (i.e. one
feature map for each filter). Divisive normalization is applied across feature maps at each
spatial location (indicated by 1× 1× n black boxes in the figure).
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Fig. 2.10. Rate-distortion curve for three different storage methods: In red and purple
are results for the JPEG codec combined with two hypothetical channel coders that achieve
transmission rates of (respectively) 1 bit and 2.68 bits across each PCM device. The proposed
joint coder is shown in yellow. Dots indicate an average MSE achieved for 24 gray-scale
images from the Kodak dataset.
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Fig. 2.11. Example storing 256 x 256 pixel natural images onto 7,680 PCM devices. Original
images (left) and their reconstructions (right).
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Chapter 3

Image storage with neural networks;
experimental realization with device
non-idealities

Like Master Splinter said, it’s
not the weapon that’s
important, it’s the Ninja
wielding it.

Leonardo

Let’s realize this experimentally where we now have two new issues: device-device vari-
ability and drift.

3.1 Background

3.1.1 Device-Device Variation

Within an array, different devices can have slightly to significantly different response prop-
erties. A simple case of this was shown in Chapter 1. In the specific array we’re dealing
with for this current study, a different kind of variability is present: each device will behave,
statistically, the same as any other device with the exception of some percentage of devices.
This random subset will be “error cells”, in that the device will be stuck at some random
value around the minimum programable value (more on this below). In general then, de-
veloping ways to deal with this variability is an important step towards reliably using these
arrays at large scales.
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3.1.2 Impermanence (Drift)

Device drift is also a major practical problem in emerging memory devices . The specific
physical reasons for why this happens (and the dynamics) depend on the device but essen-
tially thermal fluctuations in the material cause their structures to change over time (and
as their resistance is a property of this physical structure, the resistance changes along with
it). In the case of RRAM, eventually the filamental bridge breaks, and the two sides are
no longer connected . Thus, for example, a device programmed with R0 = 5.5 might drift
R100 = 5.3, R1000 = 5.36, and R10000 = 5.25. And, because of the physical mechanism for
this drift, the same device starting at the same R0 might make a different drift trajectory on
another run. Modeling this drift and correcting for it is a challenge that we’ll tackle later,
but for the time being our goal is to see if our scheme can be robust to it.

3.2 Setup

Fig. 3.1. General setup: similar to before, but now instead of an array of simulated devices
we have an actual experimental array consisting of 1024 RRAM devices.

3.2.1 RRAM

3.2.2 Modeling P (R|V )

Again, from our perspective, we’re after the conditional distribution that describes channel
dynamics. For our case, we have two sources of noise that we’ll be modeling (we’ll see the
effects of drift later but won’t explicitly model it): stochasticity in target values (same idea
as we’ve seen up until this point) and “error cells”.
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Fig. 3.2. Illustration of RRAM device: similar to PCM in that we have a material sand-
whiched between two electrodes and the property of this material determines the devices
resistance. Here though, a filament grows between the two electrodes. The larger this fil-
ament, the lower the resistance. Similar to PCM devices, these devices generally have the
ability to reach values along a continuum (right). Reproduced with permission. c© 2018
IEEE, c© 2014 IEEE. Original sources: [2], [134].

The first comes from the write process. The second comes from the fact that the full dy-
namic range of resistances for an individual device can differ (i.e. this may vary from device-
device). For most instances, this is not an issue, and programming proceeds as planned.
However, some small fraction of devices (dispersed randomly throughout the array) have
dynamic ranges that are outside the target value. This results in an RM which is around
the minimum value.

So we have this familiar picture, Fig. 3.7, with the same cost function as before (now
just a different channel model).

3.3 Results

3.3.1 JPEG Comparison

Again, it’s hard to construct a true comparison point without a channel coder for the separate
scheme. Additionally, JPEG can’t compress down to the level we’re at. I.e. we can’t extend
JPEG curve as low as us but even for it’s lowest point we’re still beating it.
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Fig. 3.3. Left: SEM image of the 1K 1T1R analog-valued RRAM array used. Right:
Cross-section schematic of the RRAM stack.

3.3.2 Robust to Device Failure (Device-Device Variability

Encouragingly, we trained at one error and found both (i) a graceful degradation as error
rate increased and (ii) improved performance as error rate decreased. I.e. we found that the
network generalizes across failure rates. Importantly, as mentioned previously, this was one
of the major problems with the traditional discrete approach: “catastrophic” performance
as error rates go beyond that which the code was designed for and performance “saturation”
for error rates lower than that which the code was designed for.

Various error rates (0.5%, 1%, 2%, 5%, and 10%) were dialed in by randomly selecting a
set of cells and SETTING them to LRS (Fig. 3.6). Fig. 3.10 shows reconstructions (top) for
the original image and corresponding MSE (bottom) for the different error rates (all images
are scaled to have pixel values of mean = 0, variance = 1)

3.3.3 Robust to Drift

Again, we see a graceful degradation as drift increases. See Fig. 3.12.
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Fig. 3.4. Similar setup as before but now with RRAM devices instead of PCM. In the case
of the perfect RRAM channel, RT = RM , and the input-output relationship would just be
a strait line. For our case though, we have noise introduced by the measurement process
(shown between the blue and red lines) as well as noise induced by “device failures” (dots
at the bottom, outside these lines).

3.4 Discussion

Our method empirically showed error-resilience against device non-idealities such as error
cells, cycle-to-cycle and device-to-device variations, and resistance relaxation. This experi-
mental demonstration was very encouraging for us, motivating us to try and directly tackle
device-device variation and drift. See the next Chapter.
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Fig. 3.5. Pulsing scheme to store a value in a device: Example writing with DD-ISPP
showing the over-programming can be fixed by programming in the opposite direction, and
starting from minimal voltage when changing the direction can minimize programming across
the range and thus save energy. Main figure: measured resistance as a function of pulse
number. Inset: write pulse train waveform.

Fig. 3.6. Modeling the different sources of noise in the channels.
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Fig. 3.7. Same setup as in the PCM simulation case, but now using RRAM devices described
above.

Fig. 3.8. Comparison between our method storing a test image and a set of hypothetical
schemes using JPEG source coding followed by a hypothetical channel coder. Note: JPEG
is unable to compress down to the level that we are, and even at the level they can compress
down to, the images are perceptually much worse.
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Fig. 3.9. Error cells: looking specifically at cells that were stuck at the low resistance state.

Fig. 3.10. Reconstructions (top) for the original image and their corresponding relative
mean squared error (MSE) (bottom) to the MSE of 0.2% error rate (Fig. 12 (b)) for various
error rates (0.2%, 0.5%, 1%, 2%, 5%, 10%) of devices. The network is trained with 2%
noise. The network shows the ability to generalize across noise values – taking advantage
of the lower noise to perform better reconstructions while tolerating errors up to 5% before
suffering serious reconstruction degradation.



73

Fig. 3.11. Drift example: value starts off in range but over time drifts outside of expected
(modeled) range.

Fig. 3.12. Left: drift of values as time progresses. Right: corresponding reconstruction
from drifted values. Note that the reconstruction is robust to a significant portion of values
drifting outside of the expected region, even at this high level of compression.
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Chapter 4

Image storage with neural networks;
future work – explicitly tackling
device-device variability and drift.

I always thought the future of
ninjutsu would be taller.

Raphael

Let’s scale up and attempt to tackle non-stationarity (in space and time (i.e. device-device
variability and drift)). Specifically, let’s collect more data from the devices and explicitly
try and tackle device-device variation and drift. I.e. would like to get enough data to model
drift and, potentially, variation across array. This variation comes form interaction between
the devices and how they are laid out and addressed on the array, so it’s possible there’s a
way to model this variation (we just didn’t have enough data before). Here, we’re using a
commercial fabrication facility at TSMC which has 1 Million device arrays.

4.1 Getting Better Device-Device Variation Data:

Now, instead of just one instance, we can store the same image 44 times and look at the raw
values and reconstructed samples. See Fig. 4.1 and Fig. 4.2.

4.2 Getting Better Drift Data

Additionally, we can collect drift data for the large collection of devices to more systemati-
cally see how drift affects storage. See Fig. 4.3.
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Fig. 4.1. Illustration of multiple-instance storage: here, the image of the pear is put through
the encoding neural network, resulting in 448 values. These values are then taken and put
on the 1M array in 44 different location (so 44 x 448 values are stored on the array in total).
We can then reconstruct these 44 different instances and look at the distribution of MSE
values that results around the array.

4.3 Results

4.3.1 Modeling Drift Data

With this new data, we can use Bayesian estimation to infer initial values. It turns out that
you can model the distribution of Rt as conditionally Gaussian! (surprise!).

Model: Rt|R0, t ∼ N
(
R0 + µt, σ2t2

)
, f (Rt|R0, t) =

1

σt
√

2π
e−(Rt−R0−µt)2/(2σ2t2) (4.1)

Bayes is bae: f (R0|Rt, t) =
f (Rt|R0, t) f (R0|t)∫ b

a
f (Rt|R0, t) f (R0|t)dR0

(4.2)

Flat prior: f (R0|t) = f (R0) =
1

b− a
, f (R0|Rt, t) =

f (Rt|R0, t) f (R0|t)∫ b
a
f (Rt|R0, t)dR0

(4.3)
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Fig. 4.2. We can look at these 44 different locations and see how values vary inter-location.
Here’s an example of six different values that were stored in the 44 different locations. The
six different values are from three “groups”: two are supposed to be around 0.8, two are
supposed to be around -0.2, and two are supposed to be around -0.8. We can see that as we
look across the locations, the values change with some regularity that we might be able to
model and correct for.

Here we use a simple flat prior so we don’t have to know the distribution of R for each
device (that would be absurd/would require another set of parameters for each memory
element).

4.3.2 Modeling Device-Device Variation

Finally, tying back to modeling device-device variation, we can further look at how drift
changes with regions and potentially learn transformations around the array (but data on
this is very preliminary so this is still work in progress). See Fig. 4.5.
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Fig. 4.3. Using these 44 x 448 values, we can see how the values (and thus the reconstruc-
tions) drift with time. Shown here are those same 44 instances mentioned previously, but
now measured and reconstructed at different times.
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Fig. 4.4. Using the data and model described previously, we can correct for the effect
of drift and adjust the values to what we expect they would have been. This results in a
significant improvement over the un-corrected case and essentially an elimination of the drift
effect (on the timescale measured).
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Fig. 4.5. We can repeat the above process but now at two completely separate regions on
the array. I.e. take an image, encode it into the 448 values, store 44 instances of these values
in one area of the array and then another 44 in another. This can then give us a sense of
how drift and device-device effects might interact as we move around the array.
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Chapter 5

Conclusion

We have explored a new approach for storing analog-valued media in emerging analog-valued
devices showing that analog coding strategies have the potential to create robust storage with
relatively low complexity. Designing systems to match the statistics of the source, channel,
and task-at-hand provides unique opportunities not captured by systems that try to enforce
determinism. However, there is no free lunch, and what such systems gain in efficiency they
likely lose in generality.

Universal memory design has been a great boon to the development of digital technol-
ogy and designing memory systems for specific tasks has many unexplored risks in terms
of backward compatibility. That said, with the rise of machine learning applications, the
nature of computation is changing, and many of the data-centric applications of the present
and future do not require perfect data retrieval. With the data deluge faced by internet
companies, it is often not the storage of data that is important, but the storage of infor-
mation which performs well when retrieved for human or statistical machine inference (e.g.,
perception of audio and video). While losing some generality, representations that reduce
the redundancy of signals to match the statistics of storage media and applications can be
more efficient than universal representations.

Efficient integrated circuit implementations of such circuits are also an active area of
investigation [81], lending further weight to the idea of analog-valued ECCs that can learn
on-chip dependencies and adapt to nonstationary statistics as devices age. Another active
area of research is in using analog-valued variable resistors as synaptic elements in such
neural circuits [72], [90], [15], leading to the possibility that storage and error-correction
could someday be integrated within a single memory substrate.

As briefly mentioned previously, it is interesting to note that from the perspective of
neuroscience, neural systems are faced with a very similar task. Given the statistical redun-
dancy of natural stimuli and the stochasticity of perception and signal transmission, efficient
coding strategies must be devised to transmit compressed representations of stimuli that are
intrinsically robust to neural noise and resource-efficient [61], [115].

For those who have better things to do with their time and have scrolled to the very end,
I’ll finish with some more general points:
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• Analog computation is hard because we have to simultaneously optimize many things...so
let’s learn it.

• For the particular case of storage, we’ve looked at how anolog methods can outperform
digital ones and have proposed a joint autoencoder framework that learns a mapping
between data and devices.

• The framework is able to adapt to many types of devices, but the approach we’ve
presented here is just the starting point.

• End of Moore’s Law =⇒ need to move away from the discrete, deterministic com-
puting paradigm

• Computing should match physical primitives with desired computation (just as nature
does). To try and capture Feynman’s spirit: We might be in a situation where the
shortest description of the phenomena we’re interested in are the phenomena them-
selves. 41 Thus, coming up with ways to develop effective computational abstractions
and implementations for things like economic, ecological, and biological systems will
be challenging. 42 That’s all to say: By golly it’s a wonderful problem, because it
doesn’t look so easy!43

41Feynman specifically referred to quantum processes, but we’re finding out that many physical systems
are in a similar situation.

42But this might actually be futile. See Steven Wolfram’s idea of “computational irreducibility” [123] for
an interesting perspective that I find appealing.I

43Hito no yume wa...owara nē!

IThough I also take seriously “the long-lingering proposition that thermodynamics drives the self-
organization and evolution of natural systems and, similarly, that thermodynamics might drive the self-
organization and evolution of future computing” [22]. So there might be hope.
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