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Abstract 

Pervasive behavioral and neural evidence for predictive 
processing has led to claims that language processing depends 
upon predictive coding. In some cases, this may reflect a 
conflation of terms, but predictive coding formally is a 
computational mechanism where only deviations from top-
down expectations are passed between levels of representation. 
We evaluate three models’ ability to simulate predictive 
processing and ask whether they exhibit the putative hallmark 
of formal predictive coding (reduced signal when input 
matches expectations). Of crucial interest, TRACE, an 
interactive activation model that does not explicitly implement 
prediction, exhibits both predictive processing and model-
internal signal reduction. This may indicate that interactive 
activation is functionally equivalent or approximant to 
predictive coding, or that caution is warranted in interpreting 
neural signal reduction as diagnostic of predictive coding. 

Keywords: prediction; predictive coding; language; 
computational modeling; neural networks 

Prediction in spoken language processing 
Listeners often predict upcoming information in spoken 
language. They anticipate upcoming phonemes based on 
lexical expectations (Grosjean, 1980; Allopenna, Magnuson, 
& Tanenhaus, 1998), and upcoming words based on lexical, 
syntactic, and/or discourse expectations (Altmann & Kamide, 
2007; Magnuson et al., 2008; Strand et al., 2018). There is 
also neural evidence consistent with prediction. Indeed, many 
ERP studies test the magnitude and timing of responses to 
expectation violations, including responses that precede 
complete bottom-up specification. Despite difficulties 
replicating one classic example (Delong, Urbach, & Kutas, 
2005 vs. Nieuewland et al., 2018), a large number of studies 
support varying degrees of prediction (for reviews, see 
Kuperberg & Jaeger, 2015; Hickock, 2012). 

Evidence for predictive processing (PP) is often considered 
evidence for predictive coding (PC), and there may be 
instances where these terms are conflated and treated 
synonymously. PC, however, is a computational formalism 
enaling efficient coding by comparing bottom-up inputs to 
predictions from a top-down model and passing forward (and 
backward) only deviance from prediction (Rao & Ballard, 
1999). This deviance is the novel information; sending 
bottom-up details would be redundant when predicted by 

higher-level expectations. Thus, formal PC predicts reduced 
feedforward and feedback signal when inputs conform to top-
down expectations. In light of several reports of neural signal 
reduction when word-level expectations are met (e.g., Blank 
& Davis, 2016; Gagnepain, Henson, & Davis, 2012), we next 
consider what evidence for PP and PC implies for models of 
spoken word recognition (SWR). 

Implications for models of spoken word recognition 
First, even without considering sentence-level contexts 
(beyond the scope of current models), models of SWR must 
be able to simulate attested word level PP. Intuitively, some 
models might do this readily (e.g., a simple recurrent network 
[SRN; Elman, 1990] trained to predict the next phoneme 
given the current phoneme), while others may not. For 
example, Gagnepain et al. (2012) suggest that the interactive 
activation model, TRACE (McClelland & Elman, 1986), may 
be inconsistent with PC because they describe its primary 
mode as competitive rather than predictive.  

Second, given growing neural evidence consistent with 
formal PC (reduced neural signal when expectations are 
confirmed vs. violated; e.g., Sohoglu & Davis, 2016) we can 
also ask whether a model of SWR exhibits this hallmark of 
PC: internal signal reduction when expectations are 
confirmed. This leads us to two questions for models of 
SWR. (1) Do models with explicit prediction (e.g., SRNs) 
and without explicit prediction (e.g., TRACE) simulate PP? 
(2) If so, do they show hallmarks of formal PC (model-
internal signal reduction when expectations are confirmed)? 
To address these questions, we will compare three models. 

Model comparisons 
Our simulations are based on human experiments by 
Gagenpain et al. (2012). In those experiments, there were 
three critical stimulus types: an Original word (e.g., 
formula), a Trained nonword (e.g., formubo), and an 
Untrained nonword (e.g., formuty). In the examples, we have 
underlined letters corresponding to the critical phonemes. 
Prior to training, both Trained and Untrained nonwords differ 
from expectations at 1-3 phonemes from offset; this position 
follows the deviation point. The critical question is how the 
system responds at the phoneme(s) following the deviation 
point before a training phase and after. In the training, 
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participants get extensive exposure to the trained nonwords. 
Prior to training, Gagnepain et al. (2012) found reduced 
neural activity in left superior temporal gyrus following the 
deviation point for Original items vs. both types of nonwords. 
Following training (and sleep), Trained items showed the 
same reduction relative to Untrained items as real (Original) 
words. In the following sections, we examine whether each 
of 3 models is able to simulate PP (sensitivity to expectations 
at the deviation point) in simulations of this paradigm, and 
whether they exhibit the hallmark of PC: signal reduction 
when top-down lexical expectations are met. 

Model 1: Predictive Cohort 
Gagnepain et al. (2012) used a simple mathematical model to 
generate predictions for their experiment. We call their model 
“predictive cohort” because it simply looks up the set (cohort) 
of words that remain consistent with the phoneme-by-
phoneme input for each item. For example, given formula, at 
position 1, all /f/-initial words are possible and the prediction 
for position 2 is the frequency-weighted probability 
distribution of each phoneme following /f/. As input 
progresses, probability distributions narrow. For formula 
(/formjul^/), by /u/ at position 6, very few possibilities remain 
(formula, formulaic, formulation) and all predict /l/. 
Gagnepain et al. (2012) derived positional prediction error for 
the three item types. Given a prediction of 1.0 for /l/ at 
position 7, formula would garner zero prediction error, while 
prediction error would be high for formubo and formuty.  

The logic is that a formal PC implementation would pass 
back a prediction of /l/ at position 7 given the input for 
positions 1-6, and therefore pass forward a very weak signal 
given formula, where the prediction error is low, compared 
to the nonword cases. Note that prediction error is not an 
internal signal in this model; it is a derived term meant to 
stand in for computations that would occur in formal PC. 

Methods 
Materials We implemented predictive cohort as described by 
Gagnepain et al. We selected 37.6k words ≤ 12 phonemes 
long from the English Lexicon Project (ELP; Balota et al., 
2007). Critical items were 54 Original-Trained-Untrained 
triples from Gagnepain et al. (mean length: 6.3 phonemes). 
Deviation points were 1-3 positions before offset. 

Procedure We conducted two suites of simulations with all 
54 x 3 = 162 items. In pretraining, the lexicon was restricted 
to 37.6k real words; thus, the Original items were words, and 
the Trained and Untrained items were nonwords. Post-
training, Trained items were simply added to the lexicon, 
changing the positional probability distributions embedded in 
the lexicon (as done by Gagnepain et al.). For each 
simulation, we computed predicted probability distributions 
at each position, and calculated implied prediction error.  

Results are presented in Fig. 1. Consistent with PP, the 
probability for Original items continues to increase beyond 
the deviation point at Pretraining, and probabilities also 
increase for Trained items Post-training. Because error is 
summed over all phonemes, the maximum is 2.0 (e.g., if 
predicted values for /l/ and /b/ were 0.8 and 0.0, but the input 
were 0.0 for /l/ and 1.0 for /b/, summed error would be 1.8). 
Error plots do not reflect model-internal information. Rather, 
error is meant to approximate what the forward signal would 
be if a formal PC model were implemented. Thus, while the 
predictive cohort model is able to exhibit PP, it does not 
inherently exhibit PC. Of course, a fully-implemented PC 
model would show such signal reduction. 

Model 2: Simple Recurrent Network  
The second model we tested was a Simple Recurrent Network 
(SRN; Elman, 1990). An SRN would seem likely to naturally 
produce PP, given that an SRN is typically trained to predict 

 
Figure 1: Predicted phoneme-by-phoneme probabilities (top) and derived errors (bottom), pre- (left) and post- (right) 

training for the Predictive Cohort model. The X-axis is position relative to the deviation point (allowing us to align results for 
all items). The dashed lines between positions 0 and 1 indicate the deviation point. 
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the next item in a series. We created an SRN with localist 
phonemic inputs (41 nodes, one for each phoneme) with 
forward connections to 200 hidden units with forward 
connections to 41 localist phonemic output nodes. The 
hidden nodes feed an exact copy of their states with a 1-cycle 
time delay to context nodes, which feedback to hidden nodes 
(providing a memory sensitive to multi-step contingencies).  

Methods 
Materials We used the same materials as for Model 1. 

Procedure The model was presented with a continuous series 
of phonemes constructed by randomizing the order of the 
37.6k words and presenting each phoneme-by-phoneme, 
without any break or indication of a word boundary. The 
network was trained using backpropagation of error to predict 
the next phoneme. At each time step, output activations were 
compared to the desired output pattern (1.0 for the following 
phoneme, 0.0 for all others). Backpropagation allows 
“blame” to be assigned to all connections in the network (i.e., 
to calculate how small changes to all weights could alter the 
network such that if the same input sequence were applied 
again, the network would come closer to the target pattern).  

After approximately 2000 epochs (each epoch is 1 pass 
through all 37.6k words in random order), error plateaued 
(aggregated over small batches of words). This does not mean 
error rate was uniform. Rather, output activations come to 
resemble the probability distributions calculated by the 
predictive cohort model (Model 1). Thus, error is relatively 
high near word onset and diminishes as the input progresses.  

For the pretraining test of the model, only the 37.6k words 
selected from the ELP for Model 1 were included. Because 
the SRN is a learning model, we were able to actually train 
the model on Trained items. The 54 Trained items were 
presented in novel random orders for 50 epochs. This number 
of instances was sufficient for the model to achieve Original-
level accuracy with Trained items without impairing the 
model’s ability to process items already in its lexicon. 

Results are in Fig. 2, and are similar to those from Model 1, 
but with output activations for relevant phonemes. Error 
indicates the summed error over all 41 output phoneme units. 
Like Model 1, the SRN exhibits PP pre- and post-training in 
that phonemes from trained items become more probable 
after training. Also like Model 1, though, note that error is not 
a model-internal value; it is calculated externally. Model-
internal signals (here, activations) do not exhibit the reduced-
signal hallmark of PC. Instead, activations are higher when 
expectations are met (when the input sequence corresponds 
to a word in the lexicon). Thus, even the most intuitively 
predictive model of SWR one might propose (short of a 
formal PC model) – an SRN – does not inherently exhibit PC.  

Some might disagree with this analysis, since SRNs are 
trained using backpropagation of error, and these error terms 
could be considered to be passed back through the model, 
even if error is typically not passed during tests and is not 
necessary for a trained SRN to function. We might counter 
that backpropogation is model-external (the procedure is not 
part of the network dynamics of an SRN; adjustments to 
weights are imposed on the network, rather than an emergent 
property. One might contrast this with Hebbian learning, 
where weight changes occur through biologically-inspired 
interactions among nodes. On the other hand, while 
backpropogation may not have a direct analog in biology, 
functionally-equivalent, neurally-plausible mechanisms are 
not far-fetched (Lillicrap & Santoro, 2019). It may be 
sensible, then, to consider the error signal in an SRN as a 
feedback signal, in which case SRNs show the PC hallmark 
of relative signal reduction when inputs match expectations. 

Model 3: TRACE 
TRACE (McClelland & Elman, 1986) is an interactive 
activation model: a neurally-inspired, parallel-distributed 
processing model with feedforward connections from inferior 
to superior levels (featuresàphonemesàwords) and lateral 
inhibition within levels. It also has feedback from words to 
constituent phonemes. As mentioned earlier, TRACE may 

 
Figure 2: Phoneme-by-phoneme SRN output activations indicating how strongly the model predicted each upcoming phoneme (top) and those 

activations converted to error scores over time (bottom). 
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not seem to be a predictive model (e.g., Gagnepain et al. 
[2012] describe TRACE as having a primarily competitive 
mode of processing, dominated by lateral inhibition). 
However, wordàphoneme feedback in TRACE provides a 
generative model (McClelland, 2013; Magnuson et al., 
2018): as features and phonemes consistent with a specific 
word are presented, the lexical node for that word form sends 
increasingly strong feedback to all its constituent phonemes, 
including those that have not yet occurred. This allows 
graded pre-activation of phonemes (as a function of how 
strongly expected they are due to feedback from one or more 
words). But is there any possibility that TRACE exhibits the 
hallmark of PC – reduced signal when expectations are 
confirmed vs. violated?  

Methods 
Materials We used the original 212-word TRACE lexicon, 
wherein we identified 15 six-phoneme words on which to 
base item sets. From each set, we created 2 nonwords by 
changing the final two phonemes. For example, from the 
Original /art^st/ (artist) we created /art^da/ and /art^pi/.  

Procedure Simulations were conducted with all 15 (set) x 3 
(item type) items. We tracked activations of phonemes and 
words over time as well as the total amount of activation (and 
inhibition) flow between and within levels during each 
simulation. For pre-training, the lexicon consisted only of the 
TRACE lexicon, including the 15 Original items. For post-
training, the 15 Trained items were added to the lexicon.  

Results We begin by comparing lexical activations for each 
item type (Original, Trained, Untrained) pre- and post-
training (Fig. 3). Pre-training, we see significantly weaker 
Original activation when input ends with final phonemes of 
Trained or Untrained items. Post-training, we see a decrease 
in Original activation given Untrained input, and a massive 
decrease given Trained input. This is because Trained items 
are now words in the lexicon; with clear input, Trained items 
strongly activate and inhibit their Original counterparts. The 
post-training panel in Fig. 3 includes a red line marked with 
an open red square; this indicates activation of Trained items 
given corresponding input. This line is directly on top of the 
Original line; since both items are words in the lexicon, clear 
corresponding input drives both similarly. 

Next, consider the phoneme level (Fig. 4). Activations of 

phonemes one position beyond the deviation point are plotted 
for the Original word, as well as replaced phonemes in the 
case of the Trained and Untrained nonwords. In Fig. 4, we 
can see differences in the lines with open symbols that 
achieve high activation. These correspond to activations of 
replaced phonemes (/d/ in /art^da/ or the /p/ in /art^pi/). Pre-
training, the highest activation is achieved for the phoneme 
in penultimate position in the Original word, thanks to 
support from both bottom-up input and top-down lexical 
feedback. There is only a slight disadvantage for the replaced 
phonemes; given clear bottom-up input, phonemes will be 
strongly activated, even in the absence of lexical support. 
Post-training, with Trained items added to the lexicon, the 
‘replaced’ phoneme in a Trained item achieves nearly 
identical activation as a phoneme in an Original item, since 
both receive lexical support. 

To address PP, Fig. 5 zooms in on the regions delineated 
with dashed squares in Fig. 4. Pre-training, the activation of 
the Original phoneme is higher than that for replaced 
phonemes beginning ~12 cycles prior to the deviation point. 
Phoneme activations from cycles ~18 to ~33 (just past the 
deviation point, indicated by the dashed vertical line) are 
driven nearly exclusively by top-down feedback. Bottom-up 
input begins to override feedback just after the deviation 
point. At this point, when the input has a replaced phoneme 
(one of the nonworeds), the activation of the Original 
phoneme drops, while activation of the replaced phonemes 
when they are actually the input (dashed lines, open symbols) 
jumps dramatically. Post-training, we see a lexical advantage 
for phonemes after the deviation point for both Original and 
Trained items (for Trained items, activations after the 
deviation point is slightly less due to a small trend for those 
items to have lower transitional probability in the lexicon, 
even when they have been added to the lexicon). In summary, 
training elicits clear PP: increased activation of critical 
phonemes prior to the deviation point. 

Next, let's consider PC, which could manifest as reduced 
feedforward or feedback signal when expectations are 
confirmed; to be fully consistent with PC, both the 
feedforward and feedback signal would have to be reduced 
when expectations are met. However, the standard in many 
cognitive neuroscience studies is that any evidence of signal 
reduction is taken as evidence for PC. We therefore tracked 
the total amount of activation flowing between levels 

 
Figure 3: Lexical activations in TRACE before and after ‘training’. Note that ‘Trained | Trained’ is only valid post-training. 
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(forward and backward) and within levels (lateral inhibition), 
looking for any signal reduction.  

Two activation indices were reduced when expectations 
were met: wordàphoneme feedback (Fig. 6) and lateral 
inhibition (absolute value). The latter shows virtually the 
same pattern as Fig. 6, but we omit it due to length constraints 
and challenges in interpreting a reduction in a signal with 
negative valence. In Fig. 6, total lexical feedback is lowest 
when expectations are met (for Original words pre- or post-
training, as well as for Trained items post-training). This is 
because when an unexpected phoneme occurs, Original items 
already have strong support and continue to send substantial 
feedback. Additional feedback comes from words partially 
activated by replaced phonemes (any word unit containing 
the unexpected phoneme aligned with the unexpected 
phoneme[s] would get activated; e.g., a word unit for piano 
aligned at position 5 overlaps with the /pi/ of /art^pi/]). This 

follows from the total amount of feedback actually being less 
when one word can strongly dominate and inhibit other 
words; there can actually be more total feedback when many 
words are weakly activated.  Thus, only TRACE, the model 
one might have predicted to be least likely to exhibit PC, 
shows a model-internal signal reduction often considered 
diagnostic of PC in cognitive neuroscience. 

Discussion 
All three models tested – predictive cohort, an SRN, and 
TRACE – exhibit PP. The first two showed model-internal 
signal increases when expectations were met. While these 
increases can be converted to predicted error, this takes place 
outside the current instantiation of these models (though see 
our earlier discussion of backpropagated error in SRNs). 
TRACE shows model-internal signal reduction when 
expectations are confirmed, in the form of lesser top-down 

 
Figure 4: Activations of critical phoneme (following deviation point) in TRACE. 

 
Figure 5: Zoomed view of critical time period from Figure 4.  

 
Figure 6: Total lexical feedback over time in TRACE, showing robust signal reduction when expectations are met.  
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lexicalàphoneme feedback. 
This raises the possibility that interactive activation (as 

implemented in TRACE) may provide a generative model 
that is functionally equivalent (or functionally approximant) 
to a Bayesian generative model (McClelland, 2013) or even 
PC. Addressing this question will require the development of 
explicit, formal PC models of SWR based on formalisms like 
those introduced by Rao and Ballard (1999). This is a tall 
order; such a model must work on over-time inputs (if not 
real speech), must be validated with a moderately large 
lexicon (at least hundreds of words), and must be 
comprehensively compared to other models, such as TRACE.  

There are promising starts in this direction. For example, 
Yildiz et al. (2013) have reported a PC model of SWR that 
operates on real speech. However, this model was limited to 
a 10-word vocabulary (names for the digits 0 to 9). Another 
promising example comes from Blank and Davis (2016), who 
implemented simple network models of SWR with 
lexicalàphoneme feedback that was either multiplicative (as 
in TRACE) or subtractive (one possible interpretation of PC). 
Both models correctly simulated one experiment, but their 
subtractive feedback model correctly predicted neural signal 
reduction in a second experiment where the multiplicative 
model predicted signal increase (but with radical parameter 
changes required to fit the two experiments; in one, they ran 
models for more than 300 cycles, while for the second, they 
ran models for only 1 cycle). This sort of work, along with 
comprehensive tests of models on at least moderately large 
vocabularies (to verify that the models are consistent with 
known facts about SWR), are needed to advance 
understanding of the potential role for PC in SWR. 

In the absence formal PC models, we must exercise caution 
when interpreting neural signal reduction. Though our results 
indicate that TRACE exhibits model-internal signal 
reduction, it remains an open question whether interactive 
activation is indeed functionally equivalent or approximant 
to PC. Similarly, it may be premature to consider evidence of 
a reduction in neural signal when expectations are met as 
diagnostic of PC. 
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