UC Berkeley
SEMM Reports Series

Title
Finite Deformation Inverse Design Modeling with Temperature Changes, Axis-Symmetry, and Anisotropy

Permalink
bttgs:ggescholarshiQ.orgéucgitem41304g3gg
Author

Govindjee, Sanjay

Publication Date
1999

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/1304p3pk
https://escholarship.org
http://www.cdlib.org/

REPORT NO.
UCB/SEMM-1999/01

STRUCTURAL ENGINEERING
MECHANICS AND MATERIALS

FINITE DEFORMATION INVERSE DESIGN
MODELING WITH TEMPERATURE CHANGES,
AXIS-SYMMETRY, AND ANISOTROPY

BY

SANJAY GOVINDJEE

JANUARY 1999

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA



Finite Deformation Inverse Design
Modeling with Temperature Changes,
Axis-Symmetry and Anisotropy

Sanjay Govindjee ™!

dStructural Engineering, Mechanics, and Materials
Department of Civil and Environmental Engineering
University of California, Berkeley
Berkeley, CA 94720-1710

Abstract

In the manufacture and use of elastomeric components inverse design methods
are gaining popularity. These methods allow for the computation of the to-be-
manufactured shape of an elastomeric component when geometric and load con-
straints are specified on a deformed in-use part. Formulations are presently avail-
able for the basic cases of 2-D plane and 3-D isothermal hyperelasticity. This re-
port extends the inverse design methodology of Govindjee & Mihalic (1996) and
Govindjee & Mihalic (1998) to include the possibility of differing temperatures in
the to-be-manufactured configuration and the use configuration, the possibility of
axis-symmetric geometries, and the possibility of transverse isotropy. Orthotropic
material behavior is also considered.
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1 Introduction

A problem encountered in the design of finitely deformed elastomeric parts
is one in which the initial undeformed shape of a body is unknown and the
final deformed shape, applied Cauchy tractions, and displacement boundary
conditions are known. The problem being to compute the undeformed shape.
Problems of this type were first examined by Euler (1744) for a cantilevered
elastica. Recently Govindjee & Mihalic (1996) and Govindjee & Mihalic (1998)
have developed computational methods for solving such problems in continua.
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These works provide for methods appropriate to 2-D plane and 3-D hyperelas-
tic compressible and quasi-incompressible materials. In practical applications,
the manufacturing processes occur at different temperatures from those where
the components will be used. Thus it is important to extend these methods to
account for temperature changes. Further, elastomeric components are often
layered with anisotropic materials for stiffening. Thus these methods should
also be extended to incorporate anisotropic effects. It is also noted that for
economy of computation it is desirable to treat axis-symmetric cases separate
from 3-D continua. These three extensions of the inverse design method are

described in the following sections.

2 Thermoelasticity

The point of departure for hyperelastic thermoelasticity is the seminal work
of Chadwick (1974). If one assumes for simplicity a constant heat capacity,
then the Helmholtz free energy function can be expressed as

U(F,T) = —;1\110(1?) + (1 - %—) eo(F) + ¢ (T T, —Th T£> EY

(&)

where F' is the deformation gradient, T is the current absolute temperature,
T, is a reference absolute temperature, ¥, is the free energy at T,, e, is the
internal energy at T,, and ¢ is the heat capacity. Note that in what follows
the heat capacity does not play a role and thus assuming it to be constant
provides no restrictions on the presented theory.

In the special case where one has a separable free energy function for volu-
metric and deviatoric behavior then Eq. (1) is specialized to

T T T |
WP, T) = =W, (F) + 7 U,(J) + (1 _ ,_7:) eo(J) (2)
+E(T—TO—T111%~> ,

where J = det[F] is the Jacobian determinant, F = J~'/3F is the volume
preserving part of the deformation gradient, W, is the deviatoric free energy
at T,, and U, is the volumetric free energy at T,.



3 Isotropic Thermoelasticity

As a particular example of the general setting outlined in Section 2, consider
the case of a regularized neo-Hookean material. Appropriate choices for the
functions in Eq. (2) are

W,(F) = g-(jr L F - 3) (3)
Ua(J) = 5(J* = 2In(J) = 1) (4)
eo(J)=3raT,In(J), (5)

where p is the shear modulus, « is the bulk modulus, and « is the coefficient
of thermal expansion. Note that the above choices properly reduce to their
small strain counterparts when the model is linearized about the reference
configuration. The corresponding Cauchy stress tensor is given as

T p - Tk 1 1 .
o= ijde'\ b] + [EE (J - “j) + (T, - T)S*”a"j} T, (6)

where dev[] = (-) = 3(1: (-))1, and b = FF" . If we express Bq. (6) in terms
of the inverse motion then one has

T Tk
o = —pjdevie™!] + [—ﬁ

1 . , ) .
7 TOZ(—'~ )Jr(T(,—T)S/@a]Jl, (7)

J

where j = 1/J, ¢ = f'f, and f = F~'. For convenience split the stress as
o = s+ pl so that the deviatoric stress

T
s = ﬁujdev[é‘]] (8)
and the pressure
Tk (1
p=p(j)=—=|~-—7 T, —T)3kay . 9
p=pj) T 5 (] ]) +( )3rajg (9)

3.1 Inverse Three Field Finite Element Formulation

The three field formulation of Simo & Taylor (1991) is used in conjunction
with the above model. Following from the appendix of Govindjee & Mihalic
(1998), the Jacobian of the inverse motion and the pressure are introduced



as second and third field variables in the weak form. If the deformed body is
denoted as S with boundary 9§ = 05, U 95, such that S, N dS, = § and
points in this configuration are denoted by x, then the strong form equations
for the three field inverse (penalized) incompressible problem are given by: for

all »» = ©
CLll ke T &

j=10 (10)
p = p(0), (11)
and

divifs+pl]+b=0 and o=o"; (12)

for all @ € 9§,
on =1 (13)

forall z € 4S5,
p=p, (14)

~

with b,  and @ as given data.

The corresponding weak form equations are given by

Ciolip. 0 3) :/[jmé]/i’:() (15)
)
G,(0,p;0) = / [H(8) — p]la =0, (16)
S
and
Golopim) = [ [s - grad(m) + p div(m)] + Geas = 0 (17)
5

where the first variations are such that n : & — R® and n = 0 on 98,
4:8 —R a:8 — R, and G, contains the contribution of the tractions

t and body forces b.



For the Q1/P0 approximation one assumes constant approximations per el-
ement for J, a, 0, and p. This results in explicit expressions on the element
level for the mixed inverse Jacobian and pressure as:

a7 AY 1 /

Oulp) = — | (18)
and

pelp) = p(d.), (19)

where S, refers to an individual element domain and v, is the “spatial element
volume.” We can then substitute (19) back into (17) to arrive at a single weak

form expression,

Glein) = Gole,pelp)in) = 0. (20)

Equation (20) represents a set of non-linear equations which can be solved for
the inverse motion ¢.

The Newton-Raphson method can be applied to (20) to solve for the unknown
motion. The needed tangent operator for using this technique in terms of an
admissible second variation v : B — R® (v = 0 on 9S,,) is given by

D, G'(so;n){V}:/Sym[grad(nﬂ : [ZS—Z] - sym[f7 grad(v)] (21)

Se
+ /Hdiv(n) dmp<i)/d9 /DIV(V)

For the model at hand we have that

dp T k 1 _
And
5, T .75 1 ‘ ‘
-52 = uij”‘s [gdevé"l et —Tp + —51 e ? (23)

_ T 1/ el a1
where = f f, f = ;713 f and 1o )i = sEde + el



The implementation of the model at this stage follows directly along the lines
outlined in Govindjee & Mihalic (1998) for 2-D plane and 3-D continua.

4 Anisotropic Thermoelasticity

The general finite deformation model for orthotropic materials is given by
Spencer (1984) in terms of two orthogonal material director vectors P and
Q. In order to satisfy the requirement of objectivity the free energy density
1s given with respect to the Green-Lagrange strain tensor, E. For orthotropy
the iree energy should be an isotropic function with respect to these three
variables. Thus one can write

U, =W, (I, Iy, I3, 14, 15, Ig. I+) (24)

where the invarients can be defined as

I, = tr[E] (25)
L=FE:E (26)
I; = tr[E?] (27)
I,=P-E-P (28)
Is=P-FE. P (29)
le=Q E-Q (30)
LH=Q FE Q. (31)

(32)

Note that P-@Q = 0. In the special case of transverse isotropy the free energy
function only depends on the first 5 invarients. In the case of modest strains
but large displacements a practical version of the above model is one where
one restricts attention to functions that are of most second order polynomials
in the strain measure. This leads to the well known family of Saint-Venant
Kirchhoff models.

4.1 Saint-Venant Kirchhoff Orthotropy

The basic expression for the Saint-Venant Kirchhoff model of orthotropy is

given by

lIIO == %‘)\]12 + /1,]2 + ((l’] ]4 + Q’Q]@)[l + 2/1,1[5 + 2/12]7 (33)

F3OIE 4 1805 + Pl



The inclusion of thermal effects requires the specification of the internal en-
ergy. To allow for orthotropic thermal expansion there must be three coeffi-
cients of thermal expansion in the three orthotropic directions. An appropriate
expression for the internal energy is given by

o= 0T (a1 + By + 20 + 4y ) s + (0 + F3) L6 + (X + o) 1] (34)
+ G'QTO [(&2 -+ 62 + 2/1 -+ 4/1'2)[6 -+ (()’1 + /63)]4 -+ (/\ —+ Q'Q)]]J
-+ (};*710 [()\ + 2/,1)]1 -+ (Ocl - 2[[)]4 -+ (f)cz - le)lb}

The above constants are related to the entries in the 6 x 6 conventional stiffness
matrix as follows when the P and @Q directions line up with the 1- and 2-
coordinate directions

[ A+201481 Ata N 1
+‘2M4i4#11 +02—‘:}33 At 0 0 0
A+209 430 )
ot Aay 0 0 0
C A+210 0 0 (35)
p— k" O
S 0
+pz
pApiz 0
L M

This leads to the Cauchy stress being expressible as

. : l 6\ _ o
o= [(M —ay =~ 02:9) ¢! (36)
14 (3
. 14 . 26\ 1 i . i 14\ 1
+ (G’l?l — =~ /33:") —pOpt o — o —[a— | —qOq
14 g/ 14 lg 14/ 1g

1 1
+2uc e+ 2 — (pOep+ep@p) + 22— (q @ eq+eqq)
14 23
, ) L
+ (To . T) {Q'p(a] + ﬁl + 2/1 + 4)“’1) + aq(O‘l + /63> + ()'*(C‘Lj - 2/1)} 7p @l Yy
4
, |
+ (T, = T) {aglas + B + 200+ 4ps) + aplas + F3) + aulay — 2p)} —q © g
Pe

6

+ (T, = T){ap(A + 1) + ag(A + @) + au(A + 2p)} 7]

where

iy = tr[e] (38)
w=(pop) e is=(g0q) e (39)



iWw=(p@p) c b=(q2q) : c (40)
e=1(c! 1) e=3i(c—1) (41)
_ fa_ _ fa {

=17l =754 )

4.2 Saint-Venant Kirchhoff Transverse Isotropy

The case of transverse isotropy can be recovered as a sub-case of orthotropy. If
the transverse direction is associated with P then we can set ay = jy = o =
B3 = 0 and a, = o, in the previous section to recover a model appropriate for
transverse isotropy. No other changes are required.

4.8  Tangent Operator

The inverse tangent operator is determined for this model within the context of
the displacement formulation of Govindjee & Mihalic (1996). Thus one needs
to determine the derivatives do /de. Thus it is useful to note that

" 1,-2
e =1C (43)
g /1 pOp
e\ )= 44
0 i4 1 P Y D ~
de ( fz) 23 (45)
g (1 qoq
By ) U 46
e (@3) i (46)
J 18 190 q ~
gel\75 )= 4
Oe ( §6> ié ( 1)
dc™!
5o~ il (48)
dc? S
= —sy , 49
ey sym(c™, ¢™°) (49)
S}"IH(A, B)UM = % [Aikle + A'ilBjk -+ BikA]‘] -+ Bil/lij ('3())
3] } )
e (p@ep+ep@p)=—isym(p,Ic,p) (51)
sym(a, B, )i = a:Bmuamn + 0B an (52)

With these expressions it is possible to construct the tangent for the Saint-
Venant Kirchhoff models presented above as:



00‘"
e

t\;b—*

T P P
o ‘]+jT{ (/\71"&12"“"‘“&2?‘9“‘[1)]16—1

14 lg

(/\ ”*“ op+ Zqoq)
Y

6

: 1
- (04171 - 517 - /337') SPYpOpPpOPp
24 16 [

1 4
- ””“”‘P Opw (a‘lc“'2 + %p & p+ %;q @ q)
4 6

. lg w1
- (04221 — o= — /631“> 59990 q9g

3
1 1 i )
- %—:-—q &g (azc”Q + %q ©q+ %Ep @ p)
(&5 ( 1

— psym(e™t ¢7?)
2/

4

lpoeprepaplopop (53)

1

—p—sym(p, I, p)
Z!

21to

72 lgoeqg+eq@qglegog
6
1
- /lfzfi"“SyIH(q I, q)}
L6
- (T, - T){

(aplay + Bi + 2 + 41) + ag(ay + Bs) + an(og — 2u)) =P Gpopop
1
1

+ (Qq(a’g + By + 2+ 4;1,2) -+ pr(ag + /33) + Q’*((lg — 2/1)) ;;gq Dqgoqog
6

+ 5 (ap(A + a1) + ag(A + a2) + au (N + 2p)) ]Ic_l}
(90' oq
dq de
In the above, it is assumed that the mapped orthotropic direction p is part

of the given data. Note that the last term arises because once p has been
specified g is given in terms of the unknown motion as

_ f'Tfp \
“F Tl (54)



where

0-10
T—1100 (55)

To compute the remaining derivatives one needs to note the polar decompos-
tion f = ru and that

of Jf OJu -
e = e (56)
dc  Ou Oc '
The necessary information is completed by noticing that
5, f) ,
™ = ralliije (57)
(é)u Aijk
and
ou 1
— = —— 2 G0 T & T D T 58
dc Zl: 2/\2 N ) ( ) )
1
*‘%Z“—“‘“AWL/\‘(”" Gn,On,On;+n,On; On; Hn,),
iy M J

where A; and n; are the eigenvalues and eigenvectors of w.

5 Axis-Symmetry

The implementation of the above models for axis-symmetry requires several
modifications to a plane inverse element. The following steps are involved in
the conversion.

First, regard the 1- and 2-directions as 7 and z respectively. Let the 3-direction
be the angular coordinate 8. While this results in a left-handed coordinate
system, it poses no real issues of note for the purposes at hand. With this

10



ordering the deformation gradient

"er fRz 0
R

S

0 0

where the components are computed in the usual manner (e.g. fz, = dpz/dz,).
Lower case letters refer to the spatial configuration and upper case letters re-
ter to the reference configuration. At the Gauss Point level the stresses are
computed using f as shown above with the usual Cartesian component for-
mulas. This results in the reporting of the mixed covariant-contravariant stress
components. These are the “standard” components and permit one to avoid
explicitly considering the non-constant metric tensor that appears when using
curvilinear coordinates. The ordering of the tangent matrix is conveniently
taken as

ﬂDrrrr Drrzz DrrGO Drrrz “
ch:: Dzz99 Dz:r:
D — . (60)
D()HGG D(%)rz
| sym. Dmr”

At the element level several changes are needed in order to account for the fact
that radial displacements produce hoop strains; i.e., that [grad(u)]s = u, /7.
This is most easily effected by inserting an extra row in the usual strain-
displacement matrix. Thus,

(61)

The right-hand-side may then be computed as B” o, where the stress is taken

11



in vector form as

and B = [B],B‘Zﬁ, ,,7Bnmz]

When computing the divergence terms for the mixed contributions to the
tangent one should note that

]\[A
div(n) = an (N2 + __) + N (63)

DIV(v Z va( NA + vy «VA (64)

H)

Note that the spatial integration volume is taken as v dr1dz;1.e. a one radian
sector is assumed for the angular integration. The reference integration volume

18 given by jrdrldz.

For inverse elements one must also account for the f7 modification to the
symmetric gradient to the second variation ». This is most easily effected by
using BY DB for the integrand in the first integral of Eq. (21), where

]Vf r jvff;r
Py ]\/?? fr: /V/? z
B = | = 2 (65)
NA
== fo0 0
jv,?fT‘T + jv;'?ff‘z Néfzr + j\;yffzzj

nen

and B = [f}l, Ez, ...,B"""]. Note that this modification eliminates the need
for the block diagonal matrix of f7’s that appears in the original papers by
Govindjee & Mihalic (1996) and Govindjee & Mihalic (1998). By combining
this block diagonal matrix with the strain-displacement operator one can more
easily preserve the traditional structure of the element stiffness construction.

12



Table 1
Cook’s plane strain panel with temperature change. Global residual norms.

Tteration | Residual Norm | Relative Residual Norm
1} 2.4606275E+00 1.0000000E+00
2 | 7.2575605E405 2.9494756E4-05
3 | 5.4541417TE+01 2.2165654E+-01
4 | 1.0909316E-02 4.4335506E-03
51 2.3363872E-06 9.4950870E-07

6 Examples

To document the behavior of the outlined formulation several simple examples
are considered in the next few sections.

6.1 Cook’s Plane Strain Panel with Temperature Change

As a first example consider a neo-Hookean Cook’s Panel where x = 10°
and g = 80.1938. The temperature in the deformed configuration is taken
as T = 270 and the temperature in the “to-be-manufactured” configuration
is T, = 300. The coefficient of thermal expansion is 107°. Fig. 1 shows the
initial deformed and cooled shape with the loads upon it. Also shown is the
computed heated inverse motion. The correct answer corresponds to the skew
geometry of Cook’s panel which is straight sided. As can be seen from the
figure a straight sided panel has been recovered. The tip displacment matches
a forward computation on the same problem to all digits. The undeformed
reference geometry is that shown in Govindjee & Mihalic (1998).

The problem was solved using 10 inverse load steps each of which took 5
global newton iterations. The convergence of the global residual norm was
assymptotically quadratic as is shown in Table 1 for a typical load step. The
residual reduction shown corresponds to relative reduction in the energy norm

of 21 orders of magnitude.
6.2  Axis-Symmetric cap

In this example we consider an axis-symmetric cap (with a pin-hole on the
central axis). The cap is neo-hookean; x = 10* and p = 10% In the deformed
state the cap is under an internal pressure of 2. The inner radius of the cap is
2.25 and the outer radius is 3.0. The top wall ranges from 2 =1 to 2 = 1.5.

13
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Fig. 1. Cook’s plane strain panel with temperature change. Initial geometry
(light-line) and computed inverse geometry (heavy-line).

The lower edge of the sidewall is set on roller. The unloaded configuration is to
be computed. Shown in Fig. 2 is the initial deformed state and the computed
undeformed state. The computation was checked by performing a forward
computation on the predicted undeformed state and was found to be accurate
to all digits.

The problem was solved using 2 inverse load steps each of which took 5 global
newton iterations. The convergence of the global residual norm was assymp-
totically quadratic as is shown in Table 2 for the first load step.

6.5  Ams-Symmetric Transverse Isotropy with Temperature Change

In this example we consider the axis-symmetric geometry show in Fig. 3. The
system is composed of an isotropic neo-hookean inner band with x = 104,
7 80, and o = 2 x 107°% The ribs are transverse 1sotropic with C;; =

14



Fig. 2. Axis-Symmetric cap with pin-hole. Initial geometry (light-line) with load
and computed inverse geometry (heavy-line).

Table 2
Axis-Symmetric cap with pin-hole: Global residual norms.
Tteration | Residual Norm | Relative Residual Norm
1| 8.0525617E-01 1.0000000E+00
2 1 2.1691048E+02 2.6936829E+02
3| 7.2898256E-01 9.0528032E-01
4 1 1.6396355E-05 2.0361663E-05
5| 7.8812905FE-12 9.7873084E-12

12110, Cyy = 10200, C;, = 10100, Cy3 = 10000, C44 = 500, 0, = 1 x 107° and
@, = a, = 1.5 x 107°% The angle of the spatial director p for the plane of
transverse isotropy is taken as 0.0 rad with respect to the radial (horizontal)
direction for the bottom rib and as 1.5 rad for the top rib.

In the deformed state, the temperature is 7' = 270 and the inner surface is
subject to an inflation pressure of 25. The undeformed configuration is at
a temperature of T, = 350. Fig. 3 shows the computed undeformed (hot)
geometry. For the specification of the geometry used see Appendix C.

The computation was executed in a single time step with 7 iterations. The
convergence was quadratic as shown in Table 3. The answer (as checked against
a forward solution) was correct to all significant digits.
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Fig. 3. Axis-Symmetric Bi-Material Band. Initial geometry (light-line) with load
and computed inverse geometry (heavy-line).

Table 3
Axis-Symmetric Bi-Material Band: Energy norms.

Iteration Energy Norm Relative Energy Norm
1] -3.217522165840916E+01 | 1.000000000000000E+00
2| -7.665454629867564E+01 | 2.382409268613122E-+00
3| -5.116391766639881E-01 | 1.590165196360873E-02
4 | -3.053214350661301E-03 | 9.489334317805166E-05
5 | -1.283754804282023E-07 | 3.989886434695338E-09
6 | -8.387627255489300E-15 | 2.606859198838542E-16
71 -9.529547438470103E-21 2.961765901612525F-22

6.4 Ams-Symmetric Orthotropy with Temperature Change

In this example we consider the same problem as in the previous example
however the ribs are now taken as orthotropic. Their properties are taken
as Cn = 12110, CQQ = 10200,C33 = 10300,(:12 _ 10100C23 == 10000(:13 =

16



Table 4
Axis-Symmetric Bi-Material Band Orthotropic Case: Residual norms.

Iteration | Residual Norm | Relative Residual Norm
11 2.3114523E+01 1.0000000E+00
2 | 1.0464814E+03 4.5273761E+401
31 1.7596354E+01 7.6126833E-01
4 1 1.0889067E+01 4.7109202E-01
51 8.3921940E-02 3.6307018E-03
6 | 1.0668298E-02 4.6154090F-04
7] 1.9096628E-03 8.2617443E-05
81 3.4370858E-04 1.4869811E-05
91 6.2657260E-05 2.7107313E-06

10 | 1.1516999K-05 4.9825812E-07
11 1 2.1304459E-06 9.2169149E-08
12 | 3.9595014E-07 1.7129929E-08

10500, C44 = 500, C55 = 300, Ces = 400, 0, = 1 x 107, = 1.5 x 107% and
@, = 2 x 107% The angle of the spatial director p for the first orthotropic
direction is taken as 0.0 rad with respect to the radial (horizontal) direction
for the bottom 1ib and as 1.5 rad for the top rib. In the deformed state, the
temperature 18 7' = 270 and the inner surface is again subject to an inflation
pressure of 25. The undeformed configuration is at a temperature of 7, = 350.
The input deck is shown in Appendix D.

The computation was executed in a single time step with 12 iterations. The
tangent expression used does not include the last term in Eq. (53) and thus
leads to linear convergence of the problem. The convergence of the residual
norm is shown in Table 4. Even though the tangent is not complete this large
deformation problem converges in a single load step with only a few more
iterations than were required in the previous example. The answer (as checked
against a forward solution) was correct to all significant digits.
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A  Input file for Example 6.1

feap * Cook Membrane Problem

0,0,0,2,2,%

COORdinates

[
T OB DU b W e

S
FNRERTEN

o

. GOCO000NE+00

0018015E400
0061883E+00
0228606E+00
2067409E+01
5135184E+01
§216885E+401
1288545E+01

.4331741E+01
-7322385E+01
. 0248091E+01

3083391E401
5852993E+01

-B515264E+01

1078796E+01
3517106E+01
5828810E+01
0000000E+00
0011375E400
0116143E+00
0466112E+00
2106110E+01
5183864E+01
825B8945E+01
1316134E+01
4329386E+01
7289021E+01

.0178504E+401

2991764E+01
§718946E+01
B354449E+01
0889431E+01
3304447E+01
5610738E+01
0000000E+00
0032641E+00
0245453E+00
0711360E+00
2141924E+01
$218087E+01
8284468E+01
1318028E+01

-4305679E+01

7231519E+01

.0089211E+01

2869822E404
5568558E+01
8178431E+01
0688719E+01
3086005E+01
§399087E+01
0000000E+00
0078792E+00
G371188E+00
0951942E+00
2167383E+01
5240090E+01
B289298E+01
1300962E+01

-4257704E+01

T153034E+01
9977919E+01

. 2729608E+01

5400854E+01
798TB55E+01
0475318E+01
286736BE+01
51877185E+01
00000C0E+00
O109769E+00
0504394E+00

.1116963E+00

2184738E+01
5244840E+01
8276785E+01
1260422E+01
4188506E401
7050964E+01

. 9B46934E+01
. 2569446E+01
.5217789E+01

7781254E+01
0255091E+01

o

5.
2.7500000E+00

3
3

- 0000000E+00
2.9692679E+00
5.

8.8624084E+00

9232720E+00

1.1787020E+01
1.4750480E+01
1.7748294E+01
2.
2
2
3

0808989E+01

- 3944699E40]1
.7158373E+01
. 0449451E401
3.3813163E+01
3.

4.0742T14E+01

7246368E+01

4.4208812E+01
4.

TBYBAETEFC]
1504078E+01

5.6066311E+00
8.

1.
1.4096866E+01
1.8941324E+01
1.9831263E+01
2.2786052E+01
2.
2
3

A491504E+00
1274670E+01

5814689E+01

.8321108E+01
-2102398E+01
.5358056E+01
.B6TES5TIE+01
4.2061412E+01
4.
4

5

5502057E+01

-8987183E+01
< 2490630E+01
§.5000000E+00
8.

1.0969059E+01
1.3675018E+01
1.6384255E+01
1.9119682E+01
2.1905602E+01
2.4756425E+01
2.7681438E+01
3.0681204E+01
3.3754594E+01
3.6B97645E+01
4.0107052E+01
4.3379838E+01
4.6706817E+01
5.0086888E+01
§.34B7646E+01
8.2500000E+00
1.08789T0E+01
1.3478314E+01
1.6065239E+01
1.8660513E+01
2.1290698E+01
2.3973822E+01
2.6724081E+01
2.
3
3
3
4
4
4
5
&
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4

2447498E+00

9545989E+01

. 2440691E+01
.5406083E+01
.B43B955E+01
»1538176E+01
.4697949E+01
L 7916906E+01
L1192729E+01
.4491304E+01
.1000000E+01
. 35046375401
. 59791BIE+01
.B445038E+01
.0930733E+01
.3456457E+01
.6040449E401
.BBIOSTIE+0L
-1410661E+01
42003328401
L TO57363E+01
-9981302E+01
.2968863E+01
.8018923E+01
L 9131041E+01

19

100

T OO 00 00D

>

4.
0.0000000E+00

0
3

2.
2.9326546E+01

2846398E+01

4.4976267E+01
0.0000000E+00
3.
&
g
1
1

0154242E+00

.0582465E+00
.1238877E+00
L 2188273E+01

5235735E+01

1.8242443E+01
2.
2.4094608E+01
2.8928126E+01
2.9683570E+01
3.2392327E+01
3.
3
4
4

1199487E+01

S016614E+401

.T563309E+01
.0027166E+01
-2424836E+01

4769644E+01

3.0163472E+00
8.
9.1254875E+00

0651899E+00

1.2182038E+01
1.5207171E+01
1.8189565E+01
2.
2
2
2

1113386E+01

-397926BE+01
.8780T4TE+01
.9521445E+01
3.2194906E+01
3.4801346E+01
3.
3

4

7332469E+01

.8795305E+01
L 2197701E+01
4.
-0000000E+00
.0191028E+00
6.0646827E+00
.

1.2159328E+01
1.5162959E+01
1.
2
2

4539694E+01

1218497E+00

8111764E+01

.1005703E+01
.3837387E+01

6612017E+01

3.1981269E+01
3.
3.7093374E+01

4569195E+01

3.9555211E+01
4.1967084E+01
4.4311131E+01
0. 0000000E+00
3.0172126E+00
6.0634789E+00
9.1051764E+00
1.2124940E+01
1.5094857E+01
1.8012938E+01
2.0869571E+01
2.3673539E+01
2.6419649E+01
2.9113377E+01
3.1747562E+01
3.4324939E401
3.6842075E401
3.9309753E+01
4.1727167E+01
4.4076971E401
0.
3
6
9
1
i
1
2
2
2
2
3
3
3
3
4
4
o
3
]
9
1

Q00000C0E+00

.0180BEBE+0Q0
.0527854E+00
.0B18661E+00
»2068629E+01
.5007227E+01
. 7883723E+01
.0709994E+01
-34B81313E+01
.6205989E+01
. B87T231E+01
. 1498509E+01
.4064527E+01
.6582090E+01
.B053121E+01
.1480624E+01
.3831691E+01
. 0000000E+00
.0126707E+00
. 0411135E+00
.0396504E+00
. 1995684E+01

woN

w W
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oo d
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.2303792E+01
-5497873E+01
.3750000E+01

6124711E+01
8470223E+01
0B19774E+01
3186313E+01

LBE822018E+01

B107381E+01

.0858680E+01
.32787T3E+01

5860513E+01
8710088E+01
1523525E+01
4401541E+01
7341819E+01
0349984E+01

. 3415854E+01

6508221E+01
6500000E+01
B737111E+01
08957260E+01
3189986E+01
5462950E+01

L TT89345E4+01

017B01BE+01
2630104E+01
5144949E+01
7723072E+01
0363208E+01
3087907E+01
5834736E+01

.8668878E+01

1569420E+01
4529990E+01
751B665E+01
9250000E+01
1347518E+01

- 3439681E+01

5562146E+01
T73243BE+01
9962904E+01
2254463E+01
4605961E+01
7017183E+01
9486914E+01

. 2019221E+01

4612325E+01
T271546E+01
9996022E+01
2790TBIE+Q1
5641655E+01

5.8531639E+01
2.2000000E+01
2.3953907E+01
2.5924618E+01
2.7937434E+01
3.0010545E+01
3.2145074E+01
3.4338608E+01
3.8588399E+01
3.8892202E+01
4.1254948E+0]
4.3675447E401
4.6180465E+01
4.8707918E+01
5.1325733E+01
5.4008714E+01
5.6753543E+01
§.9542197E+01
2.4750000E401
2.
2
3
3
3
3
3
4
4
4
4
5
5
8
5
8
2
2
3
3
3

8563014E+01

.8411850E+01
.0323081E+01
L 2299970E+01
L4339057E+01
.6432041E401
.BST6073E+01
.O7T73458E+01
-3023836E+01
.53362T70E+01
.TTO7805E+01
.01476824E+01
L2652121E+01
LB5226271E+0L
. 7860251E+01
.0553965E+01
. T500000E+01
.91724B1E+01
.0909B0BE+01
LR7T21TTIE+01
. 4605928E+01



176
177
178
179
180
181
182
183

185
188
187
188
189
180

192
193
194

196
187
198
199
200
201
202
203
204
205
206
207
208
208
210

212
213
214
215
216
217
218
219
220
221

223
224
228
226
227
228
229

231
232
233
234
238
236

238
239

241
242
243
244
245
2486
247
248
248
250

252
252
254
255
256
257
258
259
260
261
262
283
264
265
266
267
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i.
1
2.
2.
2.
2.
3.
3.
3.
3.
4.
4.
o.
3.
6.
8.
1.
1.
1.
2.
2.
2
2.
3.
3.
3
3.
4
4
0.
2
5.
8
1
1
1
2
2.
2
2
3
3
3.
3
4.
4
0.
2.
5
8.
1
1
1.
1
2
2.
2
3.
3

3
3.

4
4
0
2
5
8
1
1
1
1
2
2
2
2
3
3.
3
4
4
[}
2
5
8
1
1
1
1
2
2
2.
2

4887236E+401

LTT29591E401

0518531E+401
3266421E+01
5966440E+01
8822767E+01
1229869E+01
3791614E+01
6308134E+01
B8787637E+01
1221630E+01
357835TE+01
O0000Q0E+00
0110370E+00
0145067E+00
9B57363E+00
188B523E+01
4740822E+01
7538804E+01
0301789E+01
3022566E+01

.B705485E+01

8345771E+01
0944860E+01
3501733E+01

.6022184E+01

BE50756TE+0L

- 0952434E+01
-3311712E+01

00000Q0E+00

. 9990984E+00

9836B54E+00

-8964730E+00
L1753717E+01
. 4550406E+01
.7T319355E+01
.0052728E+01

27T53785E+01

-5419533E+01
.8048448E+01
.064013TE+01
.3196165E+01

5§719502E+01

.8213923E+01

0667834E401

. 3033486E+01

0000000E+00
8915370E400

-9186413E+00

77997 26E+00

.1562214E+01
.4326193E+01

TOB3956E+01

-9774309E+01
. 2458059E+01

5§108940E+01

LT7T29122E+01

0315569E+01

. 2871853E+01
-5400091E+01

7902109E+01

.0368180E+01
< 2738939E+01
-00000Q0E+00
. 9567373E+00
-8323502E+00
.5827242E+00
. 1327629E+01
,4062651E+401
-8773104E+401
- 9467944E+01
L213276TE+01
-4774686E+01
.T73B5372E+01
-9970186E+01
. 2527399E+01

5061334E+01

. 7871250E+01
.0048422E+01
. 2426901E+01
. 0000000E+00
- 9188950E+00
.6167159E400
- 3229004E+400
< 1053039E+01
.3754662E+01
.6455257E+01
-9126235E+01
-1783140E+01
<4411012E+01

7T018846E+01

- 9600484E401

wow W

[ L R R R RN G S

w W

BB B B L

[

[

LLO OO DU B W W W WO ;TR s b EAR A

£548063E+01
B8535940E+01
0572941E+01
2656555E401
4T799088E+01
£996267E+01
9259558E+01
1584343E+01

. 3879126E+01

64373B3E+01
BYE5308E+01
1661333E+01
0250000E+01
1790482E+01

-3420042E+01

5141589E+01
6933032E+01
B770624E+01
0652456E+01

L28727T0E+01

4548738E+01
B573616E+01
B662334E+01
0OB08630E+01
3023334E+01

-5300137E+01

7846213E+01
0062666E+01
2567786E+01
3000000E+01
4415606E+401
5953968E+01
7589404E+01
9280851E+01
1013020E+01
2772638E+01
4585719E+01
6440417E+01
B356730E+01
0326085E+01
2361928E+01
4457 383E+01
8620295E+01

. BB46B29E+01

1155497E+401
3567571E+01
5750000E+01
T060676E+01
B520680E+01
0068967E+01
1668614E+01
325B08TE+01
4911617E+01
B6597984E+01
B8344086E401
013B08BE+01
1996385E+01
3911483E+01

.5892630E+01
5.7933854E+01
£§.0043572E+01
6.2237992E+01
6.4562657E+01
3.8500000E+01
3.8T327TE3E+01
4.1136027E+01
4.2596898E+01
4.4033162E+01
4.5529632E+01
4.7048807E+01
4.8626584E+01
§.0246910E+01
5.1828785E+01
5.3664476E+01
5.5464401E+01
5
5
6
6
8
4
4
4
4
4
4
4
5
5
5
5
s

7323107E+01

.9246021E+01
.1232767E+01
. 3311894E+01
.5546831E+01
-1250000E+01
L2471128E+01
. 3838785E+01
-5102606E+01
.6444114E+01
LTT96451E+401
.920719TE+0L
0B55849E+01
.2162282E+01
. 3719635E+01
.5338194E+01
. T014810E+01

268
269
270
271
272
273
274
275
278
277
278
279
280
281

283

289
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2182089E+01
4T02218E+01
T218B69E+01

L9T04733E+01

2091494E+01
0000CGO0E+00
8533442E+00
2936393E+00
0354679E+00

L0719725E+01

3425061E+01
6095240E+01
B761213E+01
1398917E+01
4022953E+01
6623025E+01
9207814E+01
1773039E+01
4322798E+01
£846315E+01

- 9328544E+401

1722626E+01

wor e

0~ oo

58 59 78
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B753864E+01
0553707E+01
2419551E+01
4373716E+01
6516792E+01
4000000E+01
5400071E+01
6455241E+01
T7663546E+01
BB40361E+01
0091418E+01
1367053E+01
2702107E+401
4080855E+01
5519321E+01
7012123E+01
B567220E+01
0182361E+01
1860000E+01
3805878E+01
5429376E401
T458020E+01



COOU0LOC OO

73
74
75

91
92
93
94
88
96
97
98
99
100
101
102
104
105
106
107
108
109
110
ED B
112
113
114

116
117
118

121
122
123
124
125
128

128
129

131
132
133
134
135
136

139
140
141
142

144
145

147
148
149
150
151
152
153
158
156
157
158
159
160
161
162
163
164
165
168
167

189
170

173
174
178
178
177
178
179
180
181
182
183
184
188
186
187

100

103

161
162
163
164
165
166
187
188
169
170
71
172

174
175
176
177
178

180
181
i82

184
185

i87
188
18%
190
181
192
193
194
i85
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

212
213
214
215
218
217
218
218
220
221
222
223

228
226
227
228
229
230
231

233
234

236
237
238
23
240
241
242
243
244
245
246
247
248

250
251
252

COVCDOIDOOOTOLOOO0O

171

172
173
174

176
177
178
179
180
181
182

184
185
188
187
i8¢

191

203

207
208

210
211
212
213
214
216
216
217

219
220
221

224
225
228

228
229
230
231
232
233

235
238
237
238
240
241

243
244
245

247

250

259

189
190
191
192
192

195
196
197
i98
199
200
201
202
203

206
207
208
209
210
211
212

214
218
216
217

188

208
206

219

2685

267

269
27¢

273
274
275

277



253
254
255
256

DO Do

1 268 269 286 285
1 269 270 287 286
1 270 271 288 287
1271 272 289 288

BOUNdary conditions

1
18
35
52
&9
86

103
120
137
154
171
188
205
222
238
258
273

DOODOVOODBOODOETOOO

e T T T S O

FORCe conditions
. 0000000E+00

para
k=1.e8
u=80.0

mate, 1
user, 16

17

34

51

58

85
102
119
138
153
170
187
204
221
238
258
272
289

CODDOOoCOOOOO0ODD0 O

[=3

Ll

0. 0000000E+00
0. 0000000E+00
0.0000000E+00
0.0000000E+00
0. 0000000E+00
0. 0000000E+00
0.0000000E+00
G.
0
[+)
0
0
[}
0
0
[

G000000E+00

- Q00DOOOE+00
- 00G0000E+00
.0000000E+00
- 00000C0OE+00
. 0000000E+00
- 0000000E+00
. 0000000E+00
- DOD000OE+00

neoh material k u
pressnrs option 2

mixed threefield

temp current 270.0

temp reference 300.0
thermal isotropic 1.d-6

end

batch
dt,, .t
prop
isop,,t
time

loop,

utan

next
next
and

inte

B Input file for Example 6.2

4

218
251

feap * Azis-symmetric Cap

0,0,1,2,2,4

3
&
6.
6
&

&
8
6
€
8
6.
&
6
8
6
6
3

< 1250000E+00
» 2500000E+00
2500000E+00
. 2500000E+00
. 2500000E+00
- 2500000E+00
< 2500000E+00
- 2500000E+00
. 2500000E+00C
- 2500000E+00
2500000E+00
. 2500000E+00
- 2500000E+00
- 2500000E+00
. 2500000E+00
- 2500000E+00
. 1250000E+00

csurf

linear

12.25 1 ~100
2 2.25 ¢ ~100
linear

10 1 -100
2 2.25 1 -100

! k = bulk modulus
t » = ghear modulus

para
k=1.e4
u=1.e2

mate
aser, 16
neoh constitution k u
pressure option 2
mixed threefield
axis symmetric

batch

nepr
plot,wipe
plot,mesh
plot,defo,,1
dt,, .01
prop

end

0

batch
loop, .2
time
loop,,10
utan,,1
next
plot,mesh
next

end

inte

atop

C Input file for Example 6.3

feap * Inflation of a bi-material band
©,0,0,2,2,4

bloc

cart 4 16 0 0 1
130

2350



2
3
4 3.5
8

3.6312

eboun
200

osur

1

quadratic
~285
-25
33.31-28

132

230

orthotropic

elem
elem
alem
elem
alem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elam
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem

mate

85

1

user, 16
neoh comstitution k u
pressure option 2.d40

mized threefield
temperature current 270.0
temperature reference 350.0
thermal isotropic 2.d-6
2X18 symmetric

mate

2

user,16
transverse isotropic 12100 10200 10100 10000 5060 0.0
temperature curreat 270.0

temperature reference 350.0

thermal transverse 1,d-8 1.5d4-6

axis symmetric

STRND NNV OO0ODODOD0ODOm 6D

e

[

o

o

n oo o

.78

element angles !over-rides default on material card

tie

batch

loop,,10

utan,
next

inte

stop

1

D Input file for Example 6.4

feap * Inflation of a bi-material band orthotropic
0,0,0,2,2,4

bloc

cart 4 18 0 0 1

13

@b W
W oW w

2
2
4 3.5
8

3.6312

sboun
200

csur

0O
o
2

B

1

quadratic

132
230

25
25

33.31-28

orthotropic

elem
elem
alem
elem
elem
elem
alem
alem
alem
elem
elem
elem
elen
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem

85

R e e e e e e R R0 000000000 T oo
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@ oo

75

element angles 'over-rides default on material card



elem 95 1.5
elem 96 1.5

para
k=1.e4
2=80.0
mate 1
user, 16
neoh constitution k u
pressure option 2.d0
mixed threefield
temperature current 270.0
temperature reference 350.0
thermal isotropic 2.d-6
axis symmetric

mate 2
uger,16
orthotropic stvk 12100 10200 1030C 10100 10000 10500 500 300 400 0.0
temperature current 270.0C
temperaturs reference 350.0
thermal orthotropic 1.4-6 1.5d-6 2.4-6
axis symmetric

inte
stop

24



E Element 16 Input Options
E. 1 Material Selection

Neo-Hookean

To use a neo-hookean solid one enters the following card

neohookean isotropic kappa mu

where kappa and mu are the numerical values of the bulk modulus k and the
shear modulus .

Transverse Isotropy

To use a transverse isotropic Saint-Venant Kirchhoff solid one enters the fol-
lowing card

transverse isotropy C11 C22 C12 C23 C44 theta

where C11, €22, C12, €23, and C44 are the corresponding stiffness entries in
the C stiffness matrix. The remaining entries are automatically computed. The
I-direction corresponds to the normal to the plane of transverse isotropy in the
reference configuration P. The angle that the mapped vector p make with the
horizontal is taken as theta. If the orthotropic angles card in the MESH
has been set then theta is ignored and the values from the orthotropic
angles MESH card are used.

Orthotropy

To use an orthotropic Saint-Venant Kirchhoff solid one enters the following

card
orthotropic stvk Cl11 C22 C33 C12 C23 C13 C44 CE5 (C66 theta

where C11, C22, €33, C12, C23, C13, C44, C55, and C66 are the corre-
sponding stiffness entries in the C stiffness matrix. The 1-direction corresponds
to the orthotropic axis defined by the reference configuration vector P. The
angle that the mapped vector p make with the horizontal is taken as theta.
If the orthotropic angles card in the MESH has been set then theta is
ignored and the values from the orthotropic angles MESH card are used.



E. 2 Mized Options

For the neo-hookean material one has the option of choosing a two-field or
three-field formulation. Note that the two-field formulation is only available
with a quadratic pressure term and does not include thermal effects. The
choice is made by including the card:

mixed twofield
or

mixed threefield

E.3  Pressure Function

The pressure function for the neo-hookean model can be the simple quadratic
model or the one described in this report. Note that the pressure model in
this report does not function with the two field formulation. Also note that
the quadratic model does not function with temperature changes. The models
are selected by using the following cards:

pressure option 1
and
pressure option 2

Pressure option 1 corresponds to the quadratic model and pressure option 2
corresponds to the quadratic-log model described in this report.

For greatest flexibility the neo-hookean model should be used with the three field
formulation and pressure option 2. The other options are mainly included for
historical purposes.

E.4  Thermal Options

The thermal options are available for the anisotropic models and isotropic
model when using a three field formulation with pressure option 2. The thermal
expansion coeflicients are set using the following cards depending upon the
material model:

thermal isotropic alpha
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thermal transverse alpha-p alpha-plane

or
thermal orthotropic alpha-p alpha-q alpha-*

alpha is the numerical value of the isotropic coefficient of thermal expansion.
For transversely isotropic materials alpha-p is the thermal expansion coef-
ficient in the material direction P and alpha-plane is the thermal expan-
sion coefficient in the “isotropic” plane. For orthotropic materials alpha-p is
the thermal expansion coefficient in the material direction P, alpha-q is the
thermal expansion coefficient in the material direction @, and alpha-* is the
thermal expansion coeflicient in the third orthotropic direction.

The reference temperature is specified using the following card:

temperature reference To

where To 1s the numerical value of the reference temperature 7,. The current
temperature is specified using the following card:

temperature current T

where T is the numerical value of the current temperature 7.

E.5 Mass properties

The dynamical options are not available with this element. However the mass
matrix is available for generalized eigenvalue analysis. Options are specified
on the following cards

density material rho

where rho is the mass density of the material p. The mass may be lumped or
choosen to be consistent by specifying one of the following two cards:

mass lumped
or

mass consistent

B
~3



E.6  Anisotropic Angles

The inclination of the vector p in the transverse isotropy and orthotropy
models can be specified as a single value for all elements of a particular material
set or can be over-ridden using the following card in the MESH input.

orthotropic angles

elem elem-# angle

elem elem-# angle

elem elem-# angle

<blank line to terminate input>

elem-# is the numerical number of the element for which the angle is to be
specified. angle is the angle to be assigned to the given element number. Every
element for which an angle is to be specified must be included. A blank line
terminates the entries.
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