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Abstract

Vascular cells self-organize into unique structures guided by cell proliferation, migration, and/or 

differentiation from neighboring cells, mechanical factors, and/or soluble signals. However, the 

relative contribution of each of these factors remains unclear. Our objective was to develop a 

computational model to explore the different factors affecting the emerging micropatterns in 2D. 

This was accomplished by developing a stochastic on-lattice population-based model starting 

with vascular progenitor cells with the potential to proliferate, migrate, and/or differentiate into 

either endothelial cells or smooth muscle cells. The simulation results yielded patterns that were 

qualitatively and quantitatively consistent with experimental observations. Our results suggested 

that post-differentiation cell migration and proliferation when balanced could generate between 

30–70% of each cell type enabling the formation of vascular patterns. Moreover, the cell-to-

cell sensing could enhance the robustness of this patterning. These findings computationally 

supported that 2D patterning is mechanistically similar to current microfluidic platforms that 

take advantage of the migration-directed self-assembly of mature endothelial and mural cells to 

generate perfusable 3D vasculature in permissible hydrogel environments and suggest that stem 

or progenitor cells may not be fully necessary components in many tissue formations like those 

formed by vasculogenesis.
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1. Introduction

A major obstacle in the development of tissue engineered products for clinical applications 

is the challenge of generating perfusable vasculature, in vitro. This issue is amplified 

in both importance and scale when building larger or highly complex organs. While 

the decellularization of adult organs such as heart [1,2], lung [3–5], kidney [6,7], and 

liver [8,9] retains the highly branched vascular architecture, methods for cell seeding 

preformed matrix at physiologically-required cellular densities remains a challenge. Another 

promising approach to generating perfusable vasculature is seeds mature vascular cells into 

3D hydrogels. Several groups have developed microfluidic platforms that permit the self-

assembly of endothelial cells into perfusable vasculature [10–12] and direct anastomosis of 

that vasculature within the platforms microstructures. In these studies, co-cultures of human 

umbilical vein endothelial cells (HUVECs) and normal human lung fibroblasts (NHLFs) or 

pericytes (PCs) are seeded as single cells into fibrin or collagen gels [13–15]. Over 4–7 days, 

the migration and self-assembly of these cells leads to the formation of perfusable vessels. 

A third approach to generating perfusable vasculature uses developmental or differentiation 

methods enabling endothelial cell (EC) [16,17] and smooth muscle cell (SMC) [18–20] fate 

within organoid-like structures supplemented with growth factors, specialized cell culture 

mediums, and/or mechanical signaling [21] to guide the formation and development of 

perfusable vessels [22].

Our laboratory’s chemically-defined differentiation protocols have proven highly effective in 

deriving mouse embryonic stem cells (ESCs) and human ESCs and induced pluripotent stem 

cells (iPSCs) [23–26] into vascular progenitor cells (VPC), ECs, and SMCs (Figure 1A). 

While obtaining purified differentiated vascular cells is an important first step, the ultimate 

goal is to simultaneously direct the emergence of vascular structures from differentiating 

cells as seen during normal development. Indeed, VPC outgrowths have been observed to 

self-organize into micropatterns (Figure 1B) with EC clusters loosely surrounded by SMCs 

[27]. However, in order to direct vascular patterning in 3D, one must understand and control 

the interplay of various processes involved in cell organization: Proliferation, migration, 

and differentiation. While the details of such strategies are highly system-dependent given 

the complexity and inter-connectedness of the processes, we sought to first understand 

the relative importance of these processes in patterning. For example, do cell patterns 

emerge from directed differentiation from neighbor cells or the migration and rearrangement 

of post-differentiated cells (Figure 1C)? Here, we examine the relative importance of 

physiologically relevant range of parameters using a computational model motivated and 

calibrated by our experimental cultures of mouse ESCs in 2D [27].

Several computational models exist for simulating the self-organization of multicellular 

tissues [28], including on-lattice and off-lattice models that account for cell adhesion, 

proliferation, and short or long range signaling. Depending on the specific question, 

different models exhibit distinct advantages. For example, vertex models are excellent 

for exploring adhesion, proliferation, cellular forces, and cellular geometries, but become 

computationally expensive with more cells [28]. Likewise, finite element models (FIE) 

have been used in modeling environments where cell geometries and cellular forces are 

important [29,30]. Many other models have explored cell differentiation [31,32], migration 
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[33], proliferation [34], and combinations of these parameters [35–41]. Here, we chose 

an on-lattice, stochastic, population-based model that uses ordinary differential equations 

(ODE) to represent the spatial-temporal dynamics of cell densities (# of cells per lattice 

site) evolving through cell proliferation, migration, death, differentiation, and cell-to-cell 

signaling. Such an approach allows effective parametrization of the important processes, 

while also monitoring the spatial structure of the cellular populations over time. A coarse-

grained approach also avoids replicating dynamics at the single cell level increasing 

computational efficiency in simulating the large cell numbers (104–105) observed in our 

experimental cell cultures.

Here, we simulated the time evolution of the system for a wide range of physiologically 

plausible parameters and output reporting the fractions and spatial distributions of the 

emerging vascular cells (ECs or SMCs). By analyzing simulations within physiologically 

relevant domains calibrated with experimental data, we extract practical information from 

each of the simulated parameter sweeps. The results suggest that the vascular-like spatial 

patterns (defined as EC clusters surrounded by SMCs) emerge when the fraction of 

differentiated ECs lies within a “zone of co-emergence” with well-balanced numbers of 

both cell types. Moreover, for physiologically relevant ranges of proliferation and migration, 

the distribution of simulated EC cluster diameters was consistent with experimental 

observations. For the parameter ranges relevant to our system, we found that the spatial 

distributions of different cells are more sensitive to differences in proliferation and migration 

rates between cell types compared with differences in intrinsic or induced differentiation 

rates. Consequently, it is the proliferation and migration rates that appear to be most 

responsible for the establishment of the observed micropatterns within our differentiating 

co-cultures. These results support the current self-assembly vasculogenesis observed in 

mature post-differentiation cell co-cultures when seeded withing hydrogels [10–12] and may 

aid the rational design of co-developing vasculature within 3D tissues.

2. Materials and methods

2.1. Embryonic stem cell culture

The mouse embryonic stem cell (mESC) lines used for these studies included mESC-R1 

(ATCC). The mESC-R1 were cultured on 0.5% gelatin in serum-free medium containing 

Knockout Dulbecco’s Modified Eagle Medium (KO-DMEM; Invitrogen), 15% Knockout 

Serum Replacer (KSR; Invitrogen), 50 units/mL and 50 ug/mL of Penicillin-Streptomycin 

(Invitrogen), 1Χ Nonessential Amino Acids (Invitrogen), 2 mM L-glutamine (Invitrogen), 

0.1 mM 2-mercaptoethanol (Calbiochem), 2000 Units/ml of leukemia inhibitory factor 

(LIF-ESGRO; Chemicon), and 10 ng/ml of bone morphogenetic protein-4 (BMP-4; R&D 

Systems). Full media changes occurred every other day and cells were passaged every four 

to five days and reseeded at a density of 104 cell/cm2.

2.2. Embryonic stem cell differentiation

Mouse ESC-R1 (ATCC) were differentiated into EC and SMC using our laboratories two 

staged serum-free induction protocols [25]. Briefly, mESC were induced on 50 μg/mL 

fibronectin (Corning) coated plates (BD Biosciences) under our stage 1 induction medium 
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containing alpha-MEM (Cellgro), 20% knockout serum replacement (ThermoFisher), 50 

units/mL and 50 ug/mL of penicillin-streptomycin (ThermoFisher), 1Χ nonessential amino 

acids (ThermoFisher), 2 mM L-glutamine (ThermoFisher), 0.05 mM 2-mercaptoethanol 

(Calbiochem), 5 ng/mL BMP-4 (Peprotech), and 30 ng/mL of VEGF (Peprotech). After 

2 days in culture, vascular progenitor cells (VPCs) were live stained for Flk-1 expression 

(1: 200, Biolegend) for 30 minutes, washed, and sorted by Fluorescence-activated cell 

sorting (BD FACS Aria III). Positive cells were replated on 50 μg/mL fibronectin 

for an additional 4 days under stage 2 specific differentiation medium consisting of 

70% alpha-MEM (Mediatech), 30% DMEM (Invitrogen), 2Χ Nutridoma CS (Roche), 50 

units/mL and 50 ug/mL of penicillin-streptomycin (Invitrogen), 1Χ nonessential amino acids 

(Invitrogen), 2 mM L-glutamine (Invitrogen), 0.05 mM 2-mercaptoethanol (Calbiochem), 

and supplemented with 50 ng/mL of basic fibroblast growth factor (bFGF) as previously 

optimized for mESC-R1 induction into ECs [25].

2.3. Immunofluorescent staining

Visualization of the cell micropatterning was conducted by immunofluorescent staining of 

VPCs outgrowths on day 4 post purification (Figure 1B). Briefly, cells were fixed with 4% 

paraformaldehyde (Tousimis) and permeabilized with 0.5% Triton X-100 (MP Biomedicals). 

Nonspecific binding was prevented using 1% bovine serum albumin (Sigma). Conjugated 

CD31 PE, EC stain (BD Biosciences) and primary antibody CNN1 (SMC stain, Sigma) were 

added and allowed to stain overnight at 4°C. Cells were rinsed before addition of secondary 

antibody, Alexa Flour 488 (Thermofisher), and DAPI. Cells were incubated for an additional 

hour before final rinse and imaging via fluorescence microscopy (Nikon TE2000-U). For 

F-actin staining we used an Alex Fluor 488 phalloidin stain (Invitrogen).

2.4. EC cluster diameter distribution

The diameters of EC clusters were calculated by a custom MATLAB script. Briefly, 

imported images, either experimentally obtained images of DAPI stained cells or 

computationally simulated clusters, were smoothed via medfilt2 function, and then turned 

into binary (imbinarize) images via Otsu (graythresh) thresholding. An outline of the 

clusters was then reconstructed via subtraction of the dilated and eroded binary images. 

The regionprops function was then used to record the Filled Area of the clusters (Figure 

S1). Comparison between experimental and simulated clusters, was done by calculating an 

effective cluster diameter, D = 2*(Filled Area /π)0.5, for both conditions.

2.5. Modeling stem cell dynamics

Our computational model considers the spatial and temporal distributions of three different 

cell types within a simulated square lattice. We denote by XA, XB, and XC the normalized 

cell density (e.g. XA = NA/Nmax, where NA is the number of A cells and Nmax is the minimum 

number of cells of all types put together allowed at each lattice site leading to X belonging 

to the interval [0, 1]) of VPCs, ECs and SMCs, respectively. Their dynamics are governed 

by the cell’s migration, their rates of proliferation, differentiation, and cell death (Figure 

2A–C). In our model, each cell can migrate between neighboring lattice sites at a preset 

migration value, Jθ (here θ represents either A, B or C corresponding to cell identities 
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of VPC, EC, and SMC, accordingly). Each cell type can also proliferate (double), and 

die at a specific rate, δθ and μθ, respectively. Additionally, VPCs can differentiate into 

either ECs or SMCs at rates of αB and αC, respectively. The cellular dynamics are then a 

combination of a cell’s migration, these rates, and stochastic noise, Sθ, leading to a set of 

three ordinary differential equations (ODEs), Eqs (1)–(3), one for each of the three changing 

cell populations (XA, XB, and XC).

ẊA = δA + S (1 − ∑θ ∈ A, B, C Xθ
i ) − μA XA − αB + αC XA + FA

(1)

XB˙ = δB + S (1 −
θ ∈ A, B, C

Xθ
i ) − μB XB + αBXA + FB

(2)

ẊC = δC + S (1 −
θ ∈ A, B, C

Xθ
i ) − μC XC + αCXA + FC

(3)

here, noise is captured by a stochastic addition to the combined rates of proliferation and 

death. The stochastic noise, Sθ, is drawn from a normal distribution and is assumed, for 

simplicity, to be the same for all cell types. The factor of (1 − ∑θ ∈ A, B, C Xθ
i ) modulates 

the growth rate relative to available space and accounts for the carrying capacity of each 

lattice site i.e., the sum of the normalized cell densities cannot exceed 1 and the growth 

rate vanishes as the total density approaches 1. The last term in each equation accounts for 

the flux of cells, Fθ, into a lattice site which depends on the cell’s migration rate, Jθ. In 

the absence of any biases or interactions, these fluxes are proportional to the cell density 

gradient for a specific cell type, summed over all nearest neighbor sites, with a constant of 

proportionality reflecting the migration of the cell type Eq (4).

Fθ
i = ∑j ∈ n . n of i Jθ Xθ

j − Xθ
i

(4)

The range of physiologically relevant migration, proliferation, and differentiation rates we 

used were derived from various literature sources. For example, prior studies have reported 

that ECs and SMCs can have a maximum displacement distance of 18 and 44 μm over 

the course of an hour, respectively [33,42]. Additionally, proliferation rates for mouse ECs 

have been reported to have a minimum doubling time of 19 hrs [43], while 22 hrs has been 

reported for rat aortic vascular SMCs [44]. Last, the rate of differentiation can be considered 

as the length of time for specific EC or SMC marker expression. Some studies have reported 

initial EC marker expression at as early as 24 hrs post induction [45] and 36 hrs for SMC 

marker expression [46], while most studies do not see differentiation makers emerging 
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before 5–7 days [23] from mouse stem cells and 10 to 20 days from human stem cells [47]. 

Using these physiologically relevant values for our parameters (see Table 1; Supplementary 

video V1), our simulations were evolved in time using the Euler (first order Runge-Kutta) 

method implemented in Python [48]. Each cell’s population density, at each lattice site, is 

tracked over time (recorded every 1hr in time) and can be reconstructed to create a 2D 

spatial representation of the evolving cell populations using MATLAB [49] (Supplementary 

video V2 and Figure S2A–C).

2.6. Contact inhibition and paracrine signaling

Under the simplest assumption, the various rates (in Table 1) for specific cell types are 

fixed. However, these rates can also be modulated by different types of external cell 

interactions, such as contact inhibition and paracrine signaling [25,50]. To explore how 

these external processes affect patterning, we accounted for their promotion or suppression 

of the corresponding rate constants for migration, proliferation, and differentiation.

To model the effects of contact inhibition, we assumed that a cell’s migration rate would 

simply decrease linearly with the number of cells in its immediate neighborhood (summed 

over the site and all nearest neighbor sites) [51]. Within this scheme, we examined two 

distinct possibilities, specific and nonspecific cell adhesions, as possible regulators (Figure 

2D). For specific homotypic cell adhesions, we assumed that cells can only sense and 

interact with other cells of the same cell identity, leading to a modified migration rate,

Jθ = Jθ
o 1 − xθ

i + j ∈ n . n of i Xθ
j

z

(5)

where i, j are site indices and z is the coordination number of nearest neighbor lattice 

sites plus the current site (z = 9). The migration rate thus decreases from a maximum for 

isolated cells to zero when the cell density of the same type is maximal. For nonspecific cell 

adhesions, we assume cells can sense all other cells in their local neighborhood (leading to 

Eq (6)).

Jθ = Jθ
o 1 − Σθ ∈ A, B, C[Xθ

i + j ∈ n . n of i Xθ
j]

z

(6)

here, the migration rate decreases from a maximum for isolated cells to zero when 

the overall cell density for all cells is maximal. Combinations with different cell types 

employing different sensing mechanisms were also explored. For example, ECs could 

be modeled to nonspecifically sense their neighboring cells, leading to greater contact 

inhibition, while SMCs could be assigned to specifically sense other SMCs (consistent with 

homotypic sensing). It is to be noted that patterning arising from variations in adhesion 

is consistent with the differential adhesion hypothesis [52], which states that cells with 

strong attractions will cluster closely together while those with weaker attractions will 

surround them. Here we account for the migration of cells being differentially affected 
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by differences in cell adhesion dynamics mediated by specific vs nonspecific sensing. An 

example of a strong (homotypic) cell-cell adhesion would be vascular endothelial cadherins 

(VE-cadherins) that hold ECs together [53] with a binding force between 35–55 pN [54], 

while E-cadherin which can binds ECs to SMCs is an example of a nonspecific cell adhesion 

[55] with a binding force between 32–48 pN [56].

A similar approach was implemented for modifying the proliferation rates based on 

homotypic and nonspecific cell adhesion. We assumed that proliferation would linearly 

decrease as the number of neighboring cells increased, in accordance with evidence 

demonstrating that the mitotic rate may be arrested when a critical cell confluency 

is achieved. This type of contact inhibition emerges from an increase in mechanical 

interactions resulting from the loss of available space, thus constraining cellular dynamics 

including cell division [41]. It is also possible for arrest to occur in a specific manner such as 

being mediated by the EC specific Notch signaling pathway that inhibits tip-EC proliferation 

during angiogenesis [57]. Therefore, we modified the proliferation rates appropriately to 

account for two different sensing mechanisms: 1) Specific, homotypic, cell sensing:

δθ = δθ
o 1 − xθ

i + ∑j ∈ n . n of i Xθ
j

z

(7)

and 2) nonspecific cell sensing:

δθ = δθ
o 1 − Σθ ∈ A, B, C[Xθ

i + ∑j ∈ n . n of i Xθ
j]

z

(8)

These proliferation rate dependencies are analogous to Eqs (5) and (6) for the migration 

rates, with a coordination number (z) equal to 9.

For differentiation, we examined how chemical signals and growth factors produced by 

the cells influence VPC fate decisions, modeling vascular paracrine signaling [58]. Such 

signaling is observed in EC and SMC recruitment during early vascular development, with 

ECs secreting platelet-derived growth factor-b when recruiting SMCs [53]. We explored 

two possible mechanisms for guiding VPC differentiation into ECs and SMCs. The first 

mechanism, designated same cell-directed differentiation, involves a committed cell, EC or 

SMC, inducing a neighboring uncommitted VPC to differentiate into a cell of the same 

identity. The second mechanism, designated alternate cell-directed differentiation, assumes a 

committed cell, such as an EC, influencing a neighboring VPC to instead differentiate into 

the alternative cell type, in this example inducing it into a SMC (Figure 2E). For simplicity 

we assumed an isotropic distribution of paracrine signals for both cell types, where the 

diffusion range is equivalent to one lattice unit. Given that our lattice size is 79 μm (see 

next section), this is a reasonable upper bound for diffusive signal propagation. The modified 

differentiation rate is then given by
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αθ = αθ
o 1 ± β Xθ′

i + ∑j ∈ n . n of i Xθ′
j

z

(9)

where the choice of EC or SMC, for θ and θ’, determines the type of cell-directed 

differentiation mechanism (Figure S3) and β represents the strength of the signaling from 

cells in neighboring lattice sites.

2.7. Simulations

At time 0 (t = 0), a fraction of our 50×50 lattice is randomly seeded with VPC population 

densities, XA, with values taken from a normal distribution between [0, 1]. Here each 

unique lattice site supports up to 10 cells and has a lattice unit size of 79 μm (Figure 

S2A). This choice of lattice size was motivated by the average cell size of our VPCs, 

measured to be 25 ± 7 μm across (Supplementary video S1, Figure S2D–E), whereby each 

lattice site is significantly larger than 1 cell diameter, so that our population-based approach 

remains valid, and yet small enough to visualize the population driven micropattern features 

consisting of mature cell clusters with effective diameters of 340 ± 110 μm (Figure S1G). 

The fraction of sites seeded was chosen such that the seeded density for the array was 

consistent with experimental cell seeding densities of VPCs (of 104 cells/cm2) [25]. A 

migration constant value was derived from the average distance traveled by randomly 

migrating human umbilical vein ECs, of about 14 μm over an hour [33]. Taking it to 

be a random walk process, we can compute an effective diffusion constant, D, from 

mean-squared displacement (<r2>~(14 μm)2) and the time taken (t), as <r2>/4t = D. Non-

dimensionalizing D using the lattice site dimensions (79 μm) as the unit of length and 1hr 

as the unit of time, we obtained a corresponding dimensionless migration constant of Jθ 
= 0.0079. Additionally, we chose to fix the baseline (unmodified) values for proliferation 

and differentiation rates within physiological ranges (Table 1). These rates were calculated 

from the typical times associated with the given processes. We set the rate of proliferation 

for all cells to 40 hrs [43,44,59], corresponding to a dimensionless simulation value of δθ 
= 0.025. The differentiation rate was set to 62.5 hrs [27] thus falling between days 2–3 

of post stage 2 differentiation, corresponding to a simulation value of αθ = 0.016. Once 

the simulation is initialized, the three first order ODEs, Eqs (1)–(3), are evolved in time 

using the Runge-Kutta method, and Xθ values are recorded at every lattice site at 1-hr 

intervals for the duration of the simulation (Figure S2B,C). At t = 96 hrs, corresponding 

to experimental data at day 4, the recorded information is quantified and analyzed. We 

recorded the populations size for each cell type, their spatial distribution, and the fraction 

of ECs and SMCs at t = 96 hrs, under each specific condition. Supplementary video V2, 

shows a simulation evolving in time, for a particular set of parameter values. We conducted 

parameter sweeps over regions of parameter space that include experimentally relevant and 

physiologically plausible (see Table 1) values for each set of parameters. Simulations were 

run a total of 10 times for each set of parameters for statistical analysis.
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3. Results

Using our stochastic on-lattice population-based model, we will explore the role that 

migration, proliferation, and differentiation rates have on the type of patterns that emerge 

from VPC (A cells) as they differentiate into ECs (B cells) and SMCs (C cells). We will also 

explore the cluster dynamics of a single EC cluster under various migration rates, and end by 

simulating different types of cell-to-cell signaling such as contact-inhibition and paracrine 

signaling.

3.1. Role of cell migration

We first explored the role that cell migration, for EC (B cells) and SMC (C cells), has on the 

emerging micropattern. Our parameter sweep explored physiologically relevant migration 

values, between 0–18 μm2/hr for ECs and 0–44 μm2/hr for SMCs [33,42] corresponding to 

in-silico values of JB = 0–0.013 and JC = 0–0.078, respectively. We varied the ECs’ (JB) and 

SMCs’ (JC) migration rates while holding the VPC’s (A cells) migration (0.0079) constant 

and setting all other parameters, such as differentiation (0.016), proliferation (0.025), and 

noise (0.01) to be the same for all three cell types (see Table 1). The fractions of ECs 

at t = 96 hrs were then plotted over this parameter space (Figure 3A). We verified that 

roughly equal migration values for JB and JC, generated relatively equal population densities 

of ECs and SMCs (EC fraction~0.5). The spatial distribution of cells in this regime also 

revealed micropatterning, defined as spatially separated regions dominated by one cell type 

or the other (Figure 3B i–iv). We observed that the micropatterning persists but becomes 

less distinct as the overall migration rates increased (compare Figure 3B i to iv). Moreover, 

micropatterning was observed over a broad range of EC fractions, roughly between 0.3 to 

0.7, demarcating a “zone of co-emergence” (Figure 3A).

This zone of co-emergence can be quantified by cell type asymmetry (Figure S4A), where 

asymmetry is defined as (BT − CT)2/(BT + CT)2 where BT and CT are the total number 

of ECs and SMCs in the simulated space at t = 96 hrs. Here values of asymmetry close 

to 0 indicate similar population densities of ECs to SMC, while values closer to 1 denote 

the dominance of one cell type. The corresponding zone of co-emergence can be distinctly 

observed at asymmetry values up to 0.3 (Figure S4A). Interestingly, in our laboratory’s 

experimental studies on these same differentiating co-cultures of VPCs [27], we reported 

EC fractions to be 0.30 at day 3 and 0.25 at day 7 with distinct patterns being observed at 

day 7. The standard deviations from the stochastic effects introduced are averaged over 10 

simulations and were observed to be insensitive to repeated runs, with any variance localized 

within the zone of co-emergence (Figure S4B). Next, we looked at the cases where one cell 

type migrated an order of magnitude faster than the other cell type. Not surprisingly, we saw 

that the faster cell type dominates and outcompetes the slower cell type for space (Figure 

3B, v and vi). However, even a more modest difference of about 50% in the migration 

rates allowed the faster cell type to dominate (Figure 3B vii and viii). In fact, upon further 

investigation, the zone of co-emergence, is highly sensitive to differences in migration rates 

and with differences as small as roughly half a cell size per hour (~4.5 μm/hr), we observe a 

significant dominance of the faster cells (Figure S5).
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The region of parameter space within the zone of co-emergence where micropatterning 

occurs was next explored. To do this, we quantified the spatial separation between the cell 

types, by measuring EC density variance, Avg[(XB-XAvg(B))2], where XB is the density 

of ECs at a given lattice site and XAvg(B) is the average density of ECs taken over the 

entire simulated space at t = 96 hr (Figure 3C). Here, values close to 0 suggest no distinct 

separation of the ECs from the SMCs, while positive values indicate varying degrees of 

separation. As expected, we see a faint positive streak whose position mirrors the zone of 

co-emergence from the EC fraction plots (Figure 3A). This positive streak approaches 0 

with increasing migration values for both ECs and SMCs and aligns with the simulated 

micropattern mixing observed under high migration values (Figure 3B.iv). Interestingly, 

micropatterns at lower migration rates, and where cell type mixing is less, were observed to 

have greater cell-type separation and therefore were more distinct (Figure 3C).

Finally, to quantitatively compare the simulated micropattern predictions with 

experimentally observed micropatterns, we measured the distributions of EC cluster 

diameters (see Methods). We found that the majority of the simulated EC cluster diameters, 

within the physiological range of migration, had effective diameters between 300–800 μm 

(Figures 3D and S4D). Here, the boundary for the physiological range, JB = 0–0.013 and JC 

= 0–0.078, outlined by white dashed lines, is set by the maximum reported migration values 

for ECs [33] and SMCs [42] (Figure 3D). The experimentally observed EC cluster diameters 

were found to be between 340 ± 110 μm (Figure S1) indicating that our simulations do 

account for the experimentally observed patterning within the explored physiological range. 

Last, the simulated EC cluster distribution diameters within the corresponding zone of 

co-emergence increased as migration increased for both cell types. At very high migration 

rates, well outside the experimental range, clusters with effective diameters exceeding 800 

μm emerged (Figures 3D and S4D), though patterning became less distinct (as seen in 

Figure 3Biv).

3.2. Role of cell proliferation

Next, we performed a parameter sweep of proliferation rates in the absence of any sensing 

mechanisms (Figure 4A). Proliferation rates were varied for ECs (B cells, δB) and SMCs 

(C cells, δC), while the proliferation rate for VPCs (A cells, δA) and differentiation 

and migration rates for all cells were fixed at their experimentally relevant values (see 

Table 1). Reported doubling times include 19 hrs for mouse ECs [43] and 22 hrs for rat 

vascular SMCs [44]. The parameter sweeps therefore explored physiologically reasonable 

proliferation rates ranging from no cell division (δθ = 0) to divisions occurring as fast as 

every 10 hrs (δθ = 0.1). This region in parameter space is demarcated by white dashed 

lines in Figure 4A. Similar to the phase behavior with varying cell migration, the parameter 

sweeps here revealed that roughly equal rates of proliferation for ECs, δB, and SMCs, δC, 

lead to the formation of a zone of co-emergence within which micropatterning develops 

(Figure 4B i–iii). At the center of the zone, where δB and δC are both 0.05, we found highly 

distinct micropatterning emerge (Figure 3B ii). As expected, co-culture patterning largely 

developed for proliferation rates within the confines of the zone of co-emergence while 

parameter values outside the zone led to the faster growing cell dominating (Figures 4B 

iv–vi and S4E).
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We then looked at the EC density variance plots which shows regions where distinct 

micropatterns of ECs emerged as a function of proliferation rates (Figure 4C). It was 

observed that varying the proliferation rates allowed for a larger span of conditions where 

cell-type separation, defined as having a finite EC cluster density, and thus micropatterning 

would emerge. Similar to the case with migration, we observe enhanced separation within 

the zone of co-emergence (Figure 4B i–iii). Interestingly, we observed that some separation 

persisted beyond the zone of co-emergence, where conditions favored EC proliferation rates 

over SMC rates (Figure 4C). In these instances, it was observed that the emerging EC 

clusters were predominately islands of various sizes, and while SMCs were present, they 

did not in fact surround EC clusters. Additionally, a region of high phase separation was 

observed at low SMC proliferation rates, δC, and EC proliferation rates of 33 hr, δB = 0.03. 

This region, which again is outside the zone of co-emergence, consisted largely of only ECs 

clusters (Figure 4B vi, Figure 4C yellow region).

Last, we measured the distribution of EC cluster diameters and found that they consisted 

of clusters whose effective diameters were roughly between 500–800 μm, within the 

physiological range (white dotted lines, Figure 4D), with a broad distribution with standard 

deviation of 300–800 μm (Figure S4H). Finally, as proliferation rates increased for both ECs 

and SMCs, a narrow region of parameter space, with EC clusters between 500 and 800 μm, 

emerged and mirrored the position of the zone of co-emergence (Figure 4D).

3.3. Role of differentiation

Next, we explored the role that differentiation plays in the emergence of micropatterns in 

the absence of any sensing or signaling. The parameter sweeps were conducted by varying 

the differentiation rates for both ECs (B cells, αB) and SMCs (C cells, αC) ranging between 

no differentiation (αθ = 0) and a differentiation time of 10hrs (αθ = 0.1), while holding the 

migration and proliferation rates constant and at experimentally relevant values (See Table 1, 

Figure 5A). Narrowing down the physiologically relevant parameter space for differentiation 

proved to be a difficult task given the variance under different conditions (e.g., chemical, 

mechanical, and/or contact mediated). Therefore, we define the physiologically relevant 

differentiation rate range as that between the first/early marker expression to the time point 

where the given marker expression peaks, indicating a mature phenotype. For mouse ECs 

it has been reported that VE-cadherin, a known EC marker, expression can be observed as 

early as 24 hrs post induction [45], corresponding an upper limit of αB = 0.042. Additionally 

in one of our previous study, we showed that VE-cadherin peaks in differentiating mouse 

cells around day 14 post induction [25], corresponding a lower limit of αB = 0.003. For 

mouse smooth muscle cells, early marker expression of α−smooth muscle actin (α-SMA) 

has been reported at 36 hrs post induction [46], thus establishing an upper limit of 

αC = 0.028. Furthermore, peak α-SMA expression is reported to arise on day 15 [60], 

corresponding to a lower limit of αC = 0.0028.

Upon analysis of the EC fraction parameter sweep, we noticed the absence of a sharply 

defined zone of co-emergence (Figure 5A), defined as EC fractions roughly between 0.3 

to 0.7, and instead saw a large fanned out area of parameter space exhibiting micropattern 

formation (Figure 5B i–iii). As expected, when both differentiation rates, αB and αC, are 
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zero only VPC (A cells) are present (Figure 5B iv). Additionally, a loss of patterning only 

occurred when the differentiation rate of one cell type exceeded the other cell type by more 

than a factor of 2–3 (Figure 5B v–vi). This is also reflected in the asymmetry plots (Figure 

S4I) and in the EC density variance plots (Figure 5C), where an increasing gradient of EC 

density variance values is observed rather than the localized regions of cell-type separation 

observed in the migration and proliferation EC density plots. This gradient highlights the 

lack of impact that differentiation rates ultimately have on pattern formation as long as the 

differentiation rates of EC/SMC cell types are within a factor of 2–3 of each other. Last, 

the EC cluster diameter distribution was also observed to be fairly constant with cluster 

diameters ranging from 350 to 800 μm for the total explored parameter space (Figure 5D). A 

similarly broad range was recorded for the standard deviation, 10 to 500 μm (Figure S4L). 

To further explore the lower limits of the differentiation rates we repeated our simulations 

focusing on these longer differentiation periods. Here the range of interest was between 

0.001 to 0.01, corresponding to differentiation rates of 1000 hrs [~42 days] to 100 hrs [~4 

day]. Unsurprisingly, we did not see any defining differences at these lower bounds (Figure 

5E–G).

3.4. Dynamics of cell clusters

So far, the results suggest that it is the post-differentiation migration and well-balanced 

proliferation of the cells that lead to cell patterning. A defining feature of this 

micropatterning that emerges within the zone of co-emergence is the size of the EC clusters. 

To understand the effect that migration and proliferation have on a cluster’s growth and size, 

we focused on the growth dynamics of a single EC cluster. We initialized the simulation 

with 10 cells at the center of the simulation site. As the ECs migrate and proliferate into 

neighboring lattice sites, the extent of their spreading can be calculated and visualized over 

time. To do this, we constructed a one-dimensional visualization of the EC spread over 

time by plotting the EC population along the x-axis as a function of time (Figure 6A). For 

physiological rates, i.e., when JB = 0.0079 and δB = 0.025, we observed a rapid exodus from 

the center lattice site into the vacant neighboring lattice sites over time. Additionally, we 

observed two different regions emerge in the growing EC cluster. First, a leading diffusive 

front consisting of fractional EC densities, characterized by densities between 0.1 and 1 cells 

per lattice site. Second, a growing/expanding inner core region in the center, characterized 

by the presence of 2 or more ECs per lattice site (Figure 6B inset).

To quantify the size of the cluster, we then calculated the radius of gyration of the 

cluster in the x-direction, defined as σ2 = ∑ xi
2*PEC xi  where xi is the lattice position 

and PEC(xi) is the normalized EC population density along the x-axis such that PEC(xi) is 

equal to XB xi / ∑ XB xi . The radius of gyration was then plotted over time (Figure 6B–

E) followed by a linear and/or quadratic fit, representing diffusive and ballistic regimes 

respectively, with corresponding R2 values Tables S1–S4). Here, we considered four 

different cases (i) physiological migration and proliferation rates (where JB = 0.0079 and 

dB = 0.025), (ii) high migration (JB = 0.079) with a physiological proliferation rate (dB = 

0.025), (iii) physiological migration (JB = 0.0079) with a high proliferation rate (dB = 0.1), 

and finally (iv) high migration (JB = 0.1) with a high proliferation rate (dB = 0.1).
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For case (i), with both physiological rates, a linear fit was sufficient to describe the time 

dependence of the radius of gyration (Figure 6B; R2 value of 0.997, Tables S1 and S2). 

Using the slope of the linear fit, we were able to determine the diffusive rate of the spreading 

EC cluster to be 281 μm2/hr. Taking the diameter of the cluster to be approximated by 4 σ 
(which contains 95% of the cells for a Gaussian distribution) allows for direct comparisons 

with cluster diameters from simulations and experiments that were obtained by binarizing 

and thresholding images. In this case, we obtain a cluster with diameter 633 μm after 96 hrs. 

It is to be noted that this diameter is for a single cluster, in the absence of other competing 

cell types, is much larger than the measured values from experiments and simulations of 

about 350 μm. This suggests that the leading diffusive front region of the cluster with low 

cell densities is potentially outcompeted by the surrounding cell type with only the inner 

core region surviving as a cluster in the competitive environment. Indeed, the inner core 

region for these physiological parameter values is roughly half the diameter of the full 

cluster (Figure 6B) yielding a radius of about 320 μm, consistent with measured cluster 

diameters in the experiment.

For high (10 times greater) migration rates and physiological proliferation rate, we find that 

a linear fit can explain the radius of gyration time dependence (R2 = 1). As expected, the 

diffusive constant is roughly 10 times greater than the physiological conditions’ at 2931 

μm2/hr. The measured cluster diameter at 96 hrs is also much larger at 2108 μm (Figure 

6C). Moreover, we observed that the growing cluster does not retain its dense EC inner core, 

but rather the whole cluster is completely composed of fractional cell densities (lattice sites 

containing less than one EC). Consequently, while the increase in migration does ultimately 

produces a larger cluster, the lack of the core as visualized in the cluster by the absence of 

a bright red area (Figure 6C inset) indicates there may not be any distinct clusters in the 

competitive environment with multiple cell types. This is consistent with the lack of distinct 

patterning reported at high migration rates in our simulations (Figure 3B).

Next, we explored physiologically typical migration rates with high (4 times greater) 

proliferation rates. Here we noticed that the radius of gyration time dependence (Figure 

6D) could not be fit by linear function and was better fit by a quadradic (R2 = 0.999) 

(Tables S3 and S4). From this quadratic fit we could extract the ballistic growth speed of the 

cluster, which we found to be 15.3 μm/hr. The ballistically growing cluster was observed to 

display both a smaller leading edge composed of fractional ECs and a larger growing inner 

core composed of saturated EC lattice sites (bright red area within the cluster consisting 

of 10 ECs per lattice site Figure 6D inset). This cluster was calculated to have a diameter 

of 1339 μm (compare to diameter of 633 μm in the physiological case) demonstrating 

that proliferation alone can drive the growth of the cluster significantly. The presence of a 

dominant inner core region suggests that high proliferation can also lead to clusters that are 

distinct in situations where both cell types are present.

Last, for both high migration and high proliferation rates, both linear and quadradic regimes 

(Figure 6E) were observed, indicating that a transition occurs in the growth dynamics of 

the cluster, specifically from linear diffusive spread to ballistic growth. We estimated the 

transition time point as the time at which the R2 value of the linear fit falls below 0.99, 

which in this case was at 49 hrs (Table S5). A quadratic fit on the remainder of the radius of 
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gyration curve resulted in an R2 value of 0.9996 (Tables S3 and S4). This suggests that high 

proliferation rates can act as an additional driving force leading to an increasing in cluster 

size, while migration can synergistically enhance the ballistic growth phase. This is apparent 

when comparing the cluster size at various time points. At 49 hrs, just after the diffusive 

growth state, the cluster size is 1647 μm, while at 96 hrs the cluster is at 3862 μm.

3.5. Contact-inhibited cell migration

In typical cell culture systems, cells sense and often adhere to their neighboring cells via 

integrin and cadherin binding proteins. These types of cellular interactions have been shown 

to regulate the cell’s migration through contact-mediated inhibition [50]. Therefore, we 

incorporated these effects into our model by appropriately modifying the migration rates 

for ECs (B cells) and SMCs (C cells) to allow for specific (Sp) and nonspecific (Nsp) 

cell adhesions (Eqs (5) and (6)). We examined the three possible distinct combinations 

of these dependencies: BSp-CSp, BNsp-CSp (same as its inverse), and BNsp-CNsp (Figure 

2D). The results show that when both ECs and SMCs display specific adhesions (such 

as BSp-CSp) the zone of co-emergence, defined as EC fractions between 0.3 and 0.7, is 

blurred and broadened (Figure 7A) compared to the control case with no contact-inhibition 

(Figure 3A). At higher migration rates, the contour lines exhibit a slight concave curve 

due to these cells’ migration being significantly slowed by their cell-to-cell adhesions 

(Figure 7A). Indeed, when one cell type displays specific adhesions and the other displays 

nonspecific adhesions (BNsp-CSp), the line of co-emergence curves towards the nonspecific 

adhering cell type (Figure 7B), indicating that the non-specifically adhering cells are more 

constrained. Last, when both cell types display nonspecific cell adhesions (BNsp-CNsp) they 

are similarly slowed indicated by the resulting linear contour lines (Figure 7C). These 

trends are also seen in the corresponding asymmetry plots (Figure S6A–C). The EC density 

variance (Figure S6G–I) shows fairly distinct micropatterning is present within the zone 

of co-emergence in all cases except when both cell types have high migration values. The 

patterning is dramatically more distinct in the zone of co-emergence when one cell type 

displays specific adhesions and the other displays nonspecific adhesions (Figure S6H). Thus, 

certain combinations of sensing mechanisms can actually increase the robustness of the 

patterning.

3.6. Cell density dependent proliferation

It is well-known that highly confluent monolayers of many cell types will stop proliferating 

due to contact inhibition, and a corresponding increase in mechanical constraints [41]. We 

implement contact-inhibited cell growth in our model by modifying the cell proliferation 

rates based on the local cell density with either specific or nonspecific sensing, Eqs (7) and 

(8). The behavior of the EC (B cell) fraction over the explored proliferation rate parameter 

space was examined for three distinct combinations of specific and nonspecific conditions, 

BSp-CSp, BNsp-CSp, and BNsp-CNsp (Figure 7D–F), just as explored in cell migration. 

Adding specific and non-specific sensing to varying proliferation rates was qualitatively 

similar to those obtained from varying migration, although with stronger affects. When both 

cells display specific sensing, the zone of co-emergence, defined as the area between 0.3 to 

0.7 EC fraction, is again blurred and broadened (Figure 7D) compared to the unconstrained 

control (Figure 4A). Additionally, when one cell type displays nonspecific sensing and the 
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other displays specific sensing, the line of co-emergence curves towards the nonspecific 

sensing cell type (Figure 7E). Last, when both cell types display nonspecific sensing and 

proliferation is similarly slowed down, the contour lines straighten (Figure 7F). These 

trends can also be seen in the cell asymmetry plots (Figure S6D–F). Like the case with 

migration, the EC density variance (Figure S6J–L) again shows distinct micropatterning is 

present within the zone of co-emergence in all cases (except when both cell types have high 

proliferation values), and particularly so when one cell type displays specific adhesions and 

the other displays nonspecific adhesions (Figure S6K).

3.7. Cell differentiation with adjacent cell signaling

Moreover, we looked at how the patterning depends on cell differentiation rates, α, that 

are affected by the signaling from neighboring cells, i.e., paracrine signaling. Our model 

incorporates both same cell-directed differentiation and alternate cell-directed differentiation 

(see Eq (9) and Figure 2E). This sensing combination and the degree of amplification or 

suppression is controlled by the magnitude and sign of β (Figure S3). We explored different 

combinations of paracrine signaling dependence and found that, regardless of the sign and 

magnitude of β, the EC fraction, over the explored differentiation rate parameter space, was 

largely unaffected with no significant difference in the formation of micropatterning (Figure 

7G–J). This is consistent with the lack of impact that differentiation rates ultimately have on 

pattern formation as long as the differentiation rates of EC/SMC cell types are similar. For 

full results see Supplementary Figure S7 and corresponding asymmetry and variance plots 

(Figure S8)

3.8. Relative sensitivity to different parameters

To compare the relative influence of migration, proliferation, and differentiation on 

micropattern formation, we explored the EC (B cell) fraction as a function of physiologically 

relevant ratios of these rates between the different cell types (Figure 7K–M). We first 

explored the EC fraction as a function of the relative migration rates, JB/JC, and relative 

differentiation rates, αB/αC (Figure 7K). For physiologically relevant scenarios with ratios 

between 0.5 to 2, the EC fraction contours run approximately parallel to the αB/αC axis, 

thus indicating that the emergence of micropatterns is much more sensitive to the ratios 

of migration rates. Similar results are obtained when examining the proliferation rate 

ratio, δB/δC, versus the differentiation rate ratio αB/αC (Figure 7L), with the EC fractions 

dependent on the proliferation more significantly than differentiation. Then, looking at 

the relative effects of ratios of migration and ratios of proliferation rates for ECs and 

SMCs (Figure 7M) reveals comparable sensitivity to relative changes in both migration 

and proliferation rates (Figure S9). The slopes of the EC fraction contour lines are just 

around ~0.5 indicating a slightly higher sensitivity to the migration rates as compared to the 

proliferation rates.

4. Discussion and conclusions

Here, we presented an on-lattice stochastic population-based model that qualitatively 

and quantitatively reproduces the observed 2D micropatterns that emerge during the co-

differentiation of ECs and SMCs from VPCs. Our model enables the spatial visualization 
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of this dynamic system over time and examines the effects that various biological processes 

on cellular micropattern development. Specifically, our computational model explored the 

roles that cell migration, proliferation, and differentiation, as well as contact inhibition and 

adjacent cell paracrine signaling have on pattern formation.

Our main finding is that cell migration and proliferation are the key factors driving 2D 

micropattern formation. While VPC differentiation into ECs and SMCs is required, it is 

not a predominant driving force in pattern formation. This finding supports an assembly 

mechanism for the emergence of micropatterns consistent with literature demonstrating 

that migration [61] and proliferation [38] can similarly drive pattern formation. These two 

biological processes are also the two main driving forces behind wound healing [35,62], 

during which, proper organization and patterning of multi-cellular tissues must be executed 

flawlessly. Furthermore, while some stem cell populations are present within the skin’s stem 

cell niche [63], their role is mainly to supply differentiated cells that will migrate into the 

wound and proliferate.

The emergence of distinct micropatterns is achieved over a broad area of parameter space, 

termed the “zone of co-emergence”, where EC fractions are roughly between 0.30–0.70. 

Coupled with our finding that the inclusion of neighbor cell sensing mechanisms impacts the 

shape of the zone of co-emergence, this proved to be a strong predictor for the development 

of micropatterns that may be application to other biological systems with implications in 

directing in-vitro 3D organ morphogenesis.

While cell proliferation and migration rates are the primary driving forces that enable 

micropatterning, the specific rates and the presence of contact inhibition predict the degree 

of micropattern development and the length scales of the patterns. Our work on single 

cluster growth dynamics suggests that the cluster sizes are set by how far the inner 

core regions, containing high cell densities, can expand and occupy space before being 

outcompeted by the other cell type. While contact inhibition mitigation of migration and 

proliferation rates can become important, fewer differences are observed between homotypic 

and nonspecific sensing mechanisms at low migration and proliferation rates. As rates 

increase, we see a broad and symmetrical expansion of conditions enabling micropattern 

development. This is true when ECs and SMCs are both sensing homotypically and 

nonspecifically. However, when one cell type is sensing homotypically and the other 

is sensing nonspecifically, there is a reduction in the range of conditions that enable 

micropattern development accompanied by a significant increase in the distinctness of 

patterning. This suggests that sensing can help increase the robustness of patterning.

A limitation of our model is the lack of single cell specificity, such as cell shape 

and polarity, which are important when modeling directional propulsion and cell-to-cell 

adhesions [64,65]. This level of single cell modeling, at high resolutions, would be excessive 

for our population-based questions. However, our modeling framework does allow for 

the modification of our lattice site dimensions, which serves to increase or decrease the 

overall resolution of our system, within reason, by directly affecting the number of cells 

that can inhabit a single lattice site. Our modeling framework could also be applicable 

to study the development of other cells or tissues like the emergence of keratinocytes 
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during differentiation, wound healing, and normal skin repair [66] or the precise staggered 

patterning of R8 photoreceptor precursors with accessory cells in the neural epithelium of 

Drosophila eyes [67].

We have explored a range of migration, proliferation, and differentiation values to assess 

the impact each has on the emergence of multicellular micropatterns within developing 

vascular tissue and found that patterning is dominated by migration and proliferation 

under physiologically relevant conditions for VPCs. Our work strongly suggests that, even 

in the absence of any specific mechanisms that drive segregation, like chemotaxis, 2D 

micropatterning can emerge as long as cellular fractions are maintained within 0.30–0.70, 

with cluster sizes being set by the growth rate of single cluster inner cores. Our results 

suggest that even though micropatterning can occur in the absence of sensing, the presence 

of such mechanisms greatly increases the robustness of patterning, which could be critical to 

fidelity in tissue development in the naturally noisy and heterogeneous in vivo setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental observations. A) Schematic of the differentiation process. Briefly, ESCs 

are differentiated into VPCs via stage specific induction medium. VPCs are then further 

differentiated into co-cultures of ECs and SMCs via stage 2 specific induction medium. 

B) Immunofluorescent images of VPC outgrowths at day 4 post-secondary induction, 

stained for CD31 (red) indicate cells committed to an EC fate, while CNN1+ cells 

(green) indicate SMC fate commitment. Magnified is an EC cluster (red) surrounded by 

SMCs (green). Scale bar is 300 μm. C) Schematic of possible mechanisms explaining 

emergence of micropatterns, either through directed differentiation where differentiation is 

spatially varying or via pattern assembly where post differentiation mechanisms, specifically 

migration and proliferation, are driving pattern formation.
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Figure 2. 
Modeled processes. A) cell migration is governed by the flux, Fθ, of cells moving between 

lattice sites due to cell density gradients. The schematic illustrates how there is a net 

movement of VPCs into lattice sites that contain fewer VPCs. B) Cell proliferation, δθ, 

is assumed to be symmetric where one cell type will always produce more of the same 

cell type at a specified rate. C) Cell differentiation, αθ, is assumed to be a nonreversible 

fate decision made by VPCs (A cells) being driven towards one of two possible mature 

cell types: ECs (B cells) and SMCs (C cells) at rates αB and αC, respectably. D) We 

assume contact inhibition to regulate the proliferation and migration of the cells. One such 

mechanism would be mediated by specific adhesions, where cells only sense cells of the 

same identity. Alternatively, they can be mediated by nonspecific adhesions, where cells 

indiscriminately sense other cells. E) Paracrine signaling is similarly dependent on the local 

cellular microenvironment via biochemical cues that nudge VPCs towards a specific fate 

identity, EC or SMC, respectively. Here two possible mechanisms arise, same cell-directed 

differentiation where committed cells, ECs or SMCs, direct the differentiation of VPCs 

into the same cell identity, or alternate cell-directed differentiation where committed cells 

influence the differentiation of VPCs into the opposite cell type.
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Figure 3. 
Effect migration has on micropatterning. A) Parameter sweep for migration (in the absence 

of sensing) was explored by varying JB and JC values while holding differentiation and 

proliferation rates constant. Shown here are the EC (B cell) fraction. Note: The presence of 

the zone of co-emergence, a region of parameter space where micropatterning is observed 

(defined by the area between 0.3~0.7 of EC fraction). B) Examining different combinations 

of JB and JC reveals the type of micropattern that develops after 96 hrs. Shown here, are 

the resulting pattern from within the zone of co-emergence (i, ii, iii, and iv), and from 

outside the zone of co-emergence where the faster cell type dominates (v, vi, vii, and viii). 
C) EC density variance plots show where distinct EC clusters emerge as migration is varied. 

D) Parameter sweeps of mean effective EC cluster diameter distributions: With contours 

300 μm-cyan, 500 μm-magenta, and 800 μm-white. White squares in A) and D) denote the 

physiologically relevant region of the parameter space. Defined, for migration, as being the 

maximum speed that a single EC and SMC can migrate/move over a given amount of time. 

For migration those bound are between 0–0.013 for JB and 0–0.078 for JC corresponding to 

an upper limit representing the maximum reported single cell velocity, 18 μm/hr for ECs and 

44 μm/hr for SMCs.
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Figure 4. 
Effect proliferation has on micropatterning. A) EC (B cell) fraction parameter sweep for 

varying proliferation rates, in the absence of sensing, while holding differentiation and 

migration constant. B) Different combinations of δB and δC reveal the types of micropattern 

that develops after a 96 hr simulation. Shown here are micropatterns that emerge along 

the zone of co-emergence i-iii) and those outside the zone iv-vi). C) EC Density variance 

plots for distinct EC clusters as a function of varying proliferation rates. Positive values 

indicate varying degrees of EC cluster separation as defined by a greater EC density than 

the total averaged EC density per condition. D) Parameter sweeps of mean effective EC 

cluster diameter distributions. Contours here denote the relative cluster diameters that result 

as the rates are varied: Counters denote 300 μm-cyan, 500 μm-magenta, and 800 μm-white. 

Outlined in white in A) and D) is the physiological region defined, for proliferation, as 

the area bound between 0–0.055 for δB and 0–0.045 for δC. The upper limit of which 

correspond to a cell’s minimum doubling time, here 18 hrs for ECs and 22 hrs for SMCs.
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Figure 5. 
Effect differentiation has on micropatterning. A) EC (B cell) fraction parameter sweep for 

varying differentiation rates, in the absence of cell signaling, while holding proliferation 

and migration rates constant. B) Different combinations of αB and αC reveal the types 

of micropattern that develops after a 96 hr simulation. Shown here are micropatterns 

that emerge within what we consider the region of co-emergence i-iv) and those outside 

the region v-vi). C) EC Density variance plots for distinct EC clusters as a function of 

varying differentiation rates. D) Parameter sweeps of mean effective EC cluster diameter 

distributions. Contours here denote the relative cluster diameters that result as the rates 

are varied: Contours denote 350 μm-cyan, 500 μm-magenta. Further exploration of the 

lower bounds for differentiation are shown in E–G) corresponding to E) EC Fraction, F) 

EC density variance, and G) EC cluster diameter distribution. Here the white boundaries 

indicate the physiologically relevant domain for differentiation. The bounds are between 

0.003–0.042 for ECs and 0.0028–0.028 for SMC corresponding to a differentiation rate of 

24 hrs to 14 days for ECs and 36 hrs to 15 days for SMCs.
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Figure 6. 
Single EC cluster growth dynamics. A) Plot of EC cluster growth over time along the x axis. 

Here the spread is defined as 2 s where s is the directional growth and diffusion along one of 

the x axis directions viewed from the center of the growing EC cluster. MSD plots over time 

for B) physiological conditions, C) under high migration rates, D) under high proliferation 

rates, and E) under both high migration and high proliferation rates. Inset here are the 

different EC cluster morphologies that emerge as a result from these rates with diameter 

size. Inset scalebar goes from 0 to 10.
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Figure 7. 
Cell migration, proliferation, and differentiation modified by cell-cell interactions. A–

C) Parameter sweeps of migration rates modified under different types of interactions 

[specific adhesions (Sp), and nonspecific adhesions (Nsp)]. Here migration rates are varied 

while proliferation and differentiation rates are held constant under three EC and SMC 

sensing combinations: A) Specific-Specific B) Nonspecific-Specific and C) Nonspecific-

Nonspecific, respectfully. D–F) Similar parameter sweeps were explored for proliferation 

rates under the same three sensing combinations: D) Specific-Specific, E) Nonpecific-

Specific, and F) Nonspecific-Nonspecific. G–J) Parameter sweeps of differentiation rates 

modified by different paracrine signaling (see supplementary Figure S3), while migration 

and proliferation rates were held constant. A total of 16 combinations were explored under 

four different β values (β = −0.05, −0.016, 0.016, and 0.05). Displayed here is the 1A 

combination (corresponding to the differentiation of ECs and SMCs influenced by the 

presence of the surrounding ECs) for all four β values G) β = −0.05, H) β = −0.016, I) 

β = 0.016, and J) β = 0.05. K) EC fractions for relative ratios of migration (JB/JC) and 

differentiation (αB/αC). Here the migration of SMCs (JC) is set to displacements of 14 

μm over a hr, while EC migration (JB) is varied between no motion and twice the SMC 

migration. For differentiation, SMC differentiation (αC) is set at one cell differentiating 

every 62.5 hrs and EC differentiation (αB) is varied between cells differentiating at twice 
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the rate to cells that never differentiate. L) Phase diagram for relative ratios of proliferation 

(δB/δC) and differentiation (αB/αC). Here SMC proliferation (δC) is set equal a cell dividing 

every 40 hrs, and ECs proliferation is varied between no cell divisions to twice the rate 

of SMCs. M) Phase diagram for ratios of migration and proliferation. Migration and 

proliferation ratios are the same as mentioned prior.
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Table 1.

Parameter values used in model. Variables are fixed at these experimentally obtained values for migration, 

proliferation, and/or differentiation while explicitly varying others. In-silico unit time step corresponds to 1 

hour and unit length corresponds to 79 μm (the lattice size).

Variable Denotation Experimentally obtained values Corresponding 
simulation value(s) Parameter sweep References

Diffusion constant Jθ 14 μm2/hr 0.0079 0–0.1;
0.001 step size

Supplemental 
video V1 (37–38)

Proliferation rate δθ ~40 hr 0.025 0–0.1;
0.001 step size (39–41)

Differentiation rate αθ ~62.5 hr 0.016
0–0.1;
0.001 step size (19,20)

Stochastic noise
Sθ

A loss or gain of up to 1 cell per 
lattice site is incorporated every 
10 hrs ± 0.01 N/A NA

Paracrine signal 
strength β amplification of differentiation 

rates by 0.5–1.5 ± 0.5, ± 0.016, 0 N/A NA
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