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Abstract

On Bayesian Methods in Network Regression

by

Sharmistha Guha

There has been a growing interest during recent years in connectomics, which is the study of
interconnections or networks within the human brain. This interest has been spurred by the
development of new imaging technologies, which allow researchers to peer non-invasively into
the human brain and obtain data on connections. Motivated by these datasets, this dissertation
develops a novel class of Bayesian regression models which study the relationships between
neuro-scientific phenotypes and brain connectome networks of individuals.

First, we introduce a novel approach that develops a regression framework of the brain
network (represented in the form of a symmetric matrix) on a continuous phenotypic response.
We propose a novel network shrinkage prior on the network predictor coefficient matrix. The
proposed framework is able to identify nodes or functional regions in the brain network and
interconnections between different regions, significantly related to the phenotypic response.
To the best of our knowledge, our framework is the first principled Bayesian framework that
enables identification of network nodes and edges significantly related to the response. The
performance of the proposed model is evaluated with respect to a wide range of existing com-
petitors available in the high dimensional frequentist and Bayesian literature using a variety of
simulation studies. The proposed model identifies important brain regions and interconnections

significantly associated with creativity for a group of subjects.
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Next, we extend our model to build network classifiers when a brain connectome net-
work along with a binary response is provided for a group of individuals. Here we develop
a broader class of global-local network shrinkage priors which includes the novel prior distri-
bution specified earlier as a special case. We specifically consider two different global-local
network shrinkage priors from this class of priors and investigate them using simulation stud-
ies. In particular, we assess their performance in terms of network classification and identifying
influential network nodes and edges for the purpose of classification. We also demonstrate su-
perior performance of our proposed network classifiers over state-of-the-art high dimensional
classification techniques. Another major contribution remains developing theoretical conditions
to guarantee asymptotically consistent classification for the proposed framework. In particular,
we derive conditions on the number of network nodes, sparsity in the network coefficient ma-
trix as a function of the sample size to achieve asymptotically optimal classification. While
theoretical results on high dimensional binary regression with ordinary shrinkage priors have
emerged recently, developing theory for our network classifier model involves several addi-
tional challenges due to the complex nature of the global local shrinkage prior developed here.
The framework is used to classify individuals into high and low IQ groups based on their brain
connectomes.

Notably, the work discussed in the last two paragraphs tacitly assumes that all nodes
and edges have similar impact on a phenotype for every individual. In our next project, we
study a brain connectome data where this assumption is violated. In fact, there is a relatively less
developed literature in neuroscience that argues for different groups of individuals having shared

relationships between brain networks and phenotypes, though this literature lacks a principled

Xix



Bayesian approach that takes into account different relationships of nodes and edges with the
response for different groups of individuals and facilitates clustering of individuals. Motivated
by this problem and our dataset, we have developed a Bayesian network mixture regression
model. Simulation studies and analysis of the brain connectome dataset demonstrate superior
performance of the proposed approach over the approach described earlier. Simulation studies
are also used to evaluate the performance of the proposed approach by varying the true and
fitted number of clusters, size of the network and sample size.

For these projects, computationally efficient Bayesian sampling algorithms are de-
veloped to enable computations even for reasonably large networks in presence of moderately

large sample size.
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Chapter 1

Introduction

1.1 Terminology and Network Properties

Interconnections among independent (or otherwise) components of a system can yield
valuable information and may be of scientific interest in several scenarios. The intercommunica-
tion between these components (or actors) along with the structure formed by them is generally
known as a network or a graph. One may find several applications of networks in fields such
as the bio-sciences (eg. genetic interactions, protein networks), epidemiology (transmission of
infectious diseases), the social sciences (social relationships and interactions), political science
(international relations), finance (interactions between multinational corporations, economic
interactions between various economies) and engineering (communication networks, networks
across the internet) to name a few.

Network data is challenging to analyze, not only because it requires dimensionality

reduction procedures to effectively deal with the large number of pairwise relationships, but



also because flexible formulations are needed to account for the topological structure of the
network. In addition to creating models that can efficiently explain the network structure, it is
also of scientific interest to make predictions about missing and/or future relationships between
network nodes and edges. An advantage of creating effective statistical models to explain and
make predictions regarding networks is that they come with measures of uncertainty around the
estimates and predictions.

The simplest form of network is a binary network in which the edges simply denote
connection or lack of the same amongst any pair of nodes, thus being dichotomous in nature.
Examples of this type of network could include ones providing information on whether a pair
of actors are friends or not, or whether they are involved in a conflict or not, and so on. A
network might also be one in which the edges are weighted. The weights may denote counts,
e.g., distance or the number of transactions of a specific kind between a pair of nodes. Such a
network is commonly known as a valued or a weighted network.

Networks may also be classified as directed or undirected. A directed (or asymmetric)
relationship between a pair of actors would consist of two values, each value representing the
stance of one actor towards the other. On the other hand, an undirected (or symmetric) relation-
ship would consist only of a single value representing the stance of each pair of members. A
simple example of an undirected network would be a brain imaging network where the relation-
ship between a pair of regions of interest in the brain is captured by a single value. On the other
hand, an example of a directed network could be a social influence network in which there is an
influencer whose opinions or actions influence several followers but not the other way round.

Network data can usually be encoded using a so-called adjacency matrix. For a net-



work with V nodes, the adjacency matrix is a V x V matrix, with the cell entries being dichoto-
mous or continuous depending on whether the network is binary or weighted, respectively.
The matrix would be symmetric or asymmetric depending upon the nature of the relationships
between pairs of nodes, i.e. whether they are undirected or directed. Also, if there are no self-
relationships, diagonal elements are not modeled. Notationally, A = ((akJ))Z ;. Will be used to
denote the V x V adjacency matrix corresponding to a network, where ay ; corresponds to the
weighted or unweighted relationship between nodes k and /. Again, a network is often asso-
ciated with edge specific covariates. Let X = [x;,] be a covariate array of predictor variables
xx,; corresponding to dyad (k,/). Sometimes covariates are available corresponding to every
node, referred to as node specific attributes. Mathematically, we denote the attribute vector
corresponding to the kth node by /.

There are various approaches in the literature in order to visualize and characterize
networks, several of them being graph-theoretic in nature. Of course, the most appropriate way
to visualize a network in a given context depends on the scientific question at hand. A review
of network properties and measure summaries can be found in [140]; [104] and [103].

There are certain measures which are often used in the literature to summarize a
network. A very important measure in the characterization of a network is the degree of its
nodes. The degree of a node is the number of edges connected to that node. This is a measure of
the extent of “connectedness” of each of the nodes in a network. Another measure is the vertex
centrality which gauges the relative importance of a node in a network and is usually based
on the geodesic distance or shortest distance between two nodes [140]; [86]. The connectivity

of nodes within a network is represented by the cohesion of the system. Connection between



nodes of a network based on their corresponding attributes is known as homophily or assortative
mixing and is often encountered in social networks. Acute cases of homophily in which the
network exhibits strong community structure, or in other words, a situation in which subsets of
nodes or actors display cohesive patterns as a result of the underlying relational framework, also

constitute an active field of research.

1.2 Statistical models for networks

Some of the pioneering work in the statistical modeling of networks dates back to the
late 1950s and early 1960s. Prevailing literature in this field deals mainly with single network
observations, with or without accompanying information on nodal attributes. By and large,
the relationship between network and nodal attributes has been studied using two separate ap-
proaches. One of these approaches focuses on modeling the structure of the network conditional
of the nodal attributes. The goal in this case is to understand how social relationships are formed
based on attributes of individuals, a process known as “selection”. The other approach consists
of models of the nodal attributes and their association conditional on the network structure.
These models are employed to understand how relationships affect attributes of the individuals
in a network, a process referred to as “influence” or “contagion.” Additional scenarios include
the one in which the network and nodal attributes are jointly modeled. Another scenario of in-
terest is when a response (continuous, binary or categorical) is regressed on a network, leading
to a network regression problem, which is extensively studied in this proposal. We proceed to

discuss each scenario in more detail below.



1.2.1 Models for Selection

Some of the pioneering work in the statistical modeling of networks dates back to the
late 1950s and early 1960s. Prevailing literature in this field deals mainly with single network
observations, with or without accompanying information on nodal attributes. More specifically,
in most of the existing literature, a single network is subjected to an unsupervised analysis using
random graph models [39]; [56], exponential random graph models [49], social space models
[72]; [67], stochastic block models [106], bilinear mixed models [67] or eigenmodels [68]. We
offer brief descriptions on these classes of models below.

The random graph model [39]; [56] is one of the foremost network models in the lit-
erature and is constructed in such a way that the edge between any pair of nodes is incorporated
into the graph independently and with a fixed probability. In most real-world scenarios, the
distribution of the degree of a network turns out to be positively skewed, since only a few nodes
are expected to be very highly connected. This is a drawback for the random graph models since
they imply a lighter tailed distribution of the degree. They are also more inclined to be dense,
have small diameter and low clustering, which make them unrealistic for practical purposes.

More realistic situations in network data are accommodated by the exponentially pa-
rameterized random graph models (ERGM), also known as the p* models [49]; [141]. ERGMs
are expressed in exponential form and usually involve some summary statistics of the network.

Specifically, the probability mass function for an ERGM is given by

exp {¥h_; 0:Sk(4,X)}

plAIX.8) = )

where each S;(A,X) is a network statistic, @ = (81, ...,0x)” is a K-dimensional unknown pa-



rameter vector and k() is a normalizing constant. Recall that examples of network statistics
include degree, vertex centrality, cohesion and homophily, as described in section 1.1. ERGMs,
though having some desirable features, have some shortcomings. They can be computationally
challenging and can have the issue of model degeneracy (i.e. putting inordinate importance to
a few network configurations). A detailed treatment of ERGMs can be found in [115] and [96].

A broad class of network models can be included under the umbrella of social space
models. In the realm of social space models, the use of random effects in the context of probit or
logistic regression to model binary networks has also become popular in recent times. Consider
a probit model (the logistic model is analogous and has been used by [72] and [67] in which the

ay,’s are conditionally independent with probability of interaction

O1s = plars = 1B Yer,xks) = PO B+Yes): kl=1,...Vik<lI

where ® denotes the cumulative distribution function of a standard normal random variable, 3
is an unknown vector of fixed effects and 7y ; is an unobserved dyad (k, [)-specific random effect
unrelated to the predictor variable.

If the matrix of random effects I" = [y, ] is jointly exchangeable, there exists a sym-
metric function o(-,-) such that i ; = ot(ug,u;) where ug, k € {1,...,V} [4]. The form of the
function a(-,-) is directly associated with the important structural characteristics of the net-
work. There have been a number of alternatives to select the latent factors which give rise to
different classes of social space models. For example, stochastic block models [106] assume

that each node k is associated with an unobserved latent class and there is a probability distri-



bution characterizing the relationship between each pair of nodes. Here the latent effects are
specified as ou(ug,u;) = my, ,,, where ug,u; € {1,2,3,...,R}, R is the number of latent classes,
and also m,; € R and m,; = m,,. Latent distance models [72], on the other hand, assume
that ou(ug,u;) = —|ug — uy|, where | - | denotes the euclidean norm. The underlying assumption
here is that the probability of an edge between two nodes increases as the latent characteristics
of these nodes come closer in terms of their euclidean distance. Bilinear models [67] assume
that the probability of an edge between two nodes is a symmetric multiplicative effect. The
multiplicative interaction for a dyad (k,!) is expressed in terms of a bilinear effect, i.e. the inner
product of the unobserved latent vectors u; and #;. Hence, the latent effects are specified as
o(ug,up) = u[ul, where u,ful is the bilinear effect. The rationale behind this type of models is
that the probability of an edge between two nodes increases as the angle formed by the corre-
sponding latent positions becomes wider, i.e. nodes k and / would be prone to having a tie if the
angle between them is acute (u,{ul > 0), neutral to a tie if the angle is a right angle (u,{ul =0)
and averse to having a tie if the angle between them is obtuse (u,{ul < 0). Bilinear models can
generalize distance models, but not latent class models, since the eigenvalues of latent class
models may be negative [68]. Eigenmodels [68] are a generalization of the latent class and la-
tent distance models due to the fact that they can be used to represent the same network features
but not the other way round. These models are based on the principles of eigen-analysis and
render the relationship between two nodes as the inner-product of node-specific latent vectors,

ie. o(ug,uy) = u,{Aul, where A is a R X R diagonal matrix.



1.2.2 Models of Contagion

Models of contagion are usually constructed by regressing a nodal attribute on the
attributes of other nodes in the social network (e.g., see [24]; [47]; [124] and references therein),
with common methodological approaches including simultaneous autoregressive (SAR) models
[94] and threshold models [142]. For instance, node specific responses {y; : k € {1,...,V}} are
regressed on the node specific attributes using the simultaneous autoregressive models (SAR)

that respect the network structure.

1.2.3 Joint Modeling of Network and Attributes

It is usually a complicated problem to ascertain the direction of a causal relationship
between network structure and link or nodal attributes, i.e. whether it pertains to selection or
contagion [33]. Hence, a section of the literature focusses on jointly modeling the co-evolution
of network and nodal attributes through shared latent variables. In recent years, joint models
of network and attributes have been receiving increased attention. [46] have recently proposed
an extension of the bilinear model of [67] in a static setting where the nodal attributes and la-
tent factors used to describe transitivity (the extent to which the relation between two nodes
in a network that are connected by an edge is transitive) in the network are jointly modeled
using a multivariate normal distribution. [36], on the other hand, propose joint modeling of
a binary/categorical response and a network using latent variable tensor factorization of the
joint probability model. [30] have proposed time varying joint models for network and at-

tributes when the attributes are binary or categorical in a dynamic setting, while [105] extend



the framework to accommodate continuous nodal attributes. [61] propose a Bayesian approach
to inference, testing and prediction for co-evolving networks and nodal attributes by accommo-
dating both discrete and continuous attributes and considering the more general case of time
series data. They use a common set of latent factors to explain network transitivity and covari-
ation among attributes and network structure, and provide a fully Bayesian test of association
in order to study individual nodal attributes. When the nodal attributes are assumed to fol-
low conditional Gaussian distribution, their model can be interpreted as a dynamic version of
the model presented in [46], with a structured and more parsimonious prior on the covariance

matrix between the latent traits and the nodal attributes.

1.2.4 Models for Network Regression

Previous models focus on the analysis of a single network. There are situations in
which a network is collected for each observational unit. This is especially pertinent to bio-
logical and physiological problems wherein, for example, each node corresponds to a certain
fixed location in the human brain or a particular genetic unit in a gene network. Furthermore,
the data might contain a continuous or categorical outcome corresponding to each individual
in the sample, possibly associated with the network. Examples of such datasets include brain
connectome applications for multiple individuals which we discuss in detail in Chapters 2, 3
and 4. The nodes in the network correspond to the brain regions of interest (ROI) shared by all
individuals in the sample and are registered by mapping every brain to a common brain atlas.
Additionally, data on a phenotype is available for every individual. For example, the phenotype

can be continuous such as a measure of creativity for each individual called the Composite Cre-



ativity Index (CCI). Sometimes the outcome can be binary representing whether a subject has
‘high’ or ‘low’ IQ.

In relating the response to the undirected network, a common approach would be to
vectorize the network predictor (originally obtained in the form of a symmetric matrix) and treat
it as a collection of a large number of edge weights [114]; [27]. Subsequently, the response
would be regressed on the high dimensional collection of edge weights. This idea can take
advantage of the recent developments in high dimensional regression, consisting of both penal-
ized optimization [133] and Bayesian shrinkage [109],[17],[5] perspectives. Additionally, these
models are computationally convenient and are generally accompanied by theoretical guaran-
tee. While the predictive performance of these methods turns out to be satisfactory, their in-
terpretability is limited to individual edge selection, which is scientifically less interesting than
identifying nodes impacting the response. Furthermore, they ignore the network structure, i.e.
the relevant wiring mechanism in the brain architecture for brain connectome analysis, which
may contain a plethora of scientific information.

While there are existing approaches for network classification, most of them fail to in-
corporate the full network information in the process of classification and rather use a few sum-
mary measures from the network, for e.g. see [11] and references therein. [113] have recently
proposed a penalized optimization scheme that not only enables classification of networks, but
also identifies important nodes and edges. Although their framework is demonstrated for classi-
fication purposes, it can be adapted to facilitate regression settings (as described in Chapter 2).
One key shortcoming of this approach is that it is unable to provide any measure of predictive

uncertainty. The need for valid measures of uncertainty on parameter (predictive) estimates is
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crucial, especially in settings with low or moderate sample sizes with complex predictor depen-
dence, which naturally motivates our Bayesian approach.

There are recent Bayesian approaches which propose joint modeling of response and
predictors, see e.g. [36]. However, these methods are somewhat restrictive for multiple reasons.
First, their approach is heavily dependent on the assumption that the network is binary and does
not find easy extension when the network is weighted. Secondly, their modeling perspective
focuses on the classification of a population of networks into two groups and does not assume
easy extension to regression settings. In a separate approach, [137] regress a network response

on a scalar predictor, which is a different problem from the one we are interested in.

1.3 Thesis Outline

In Chapter 2 we develop a novel framework to answer some important questions aris-
ing from datasets of these types. Primarily, in Chapter 2, our inferential focus lies in developing
a high-dimensional regression model of a continuous response on the network predictors that
employs all edge weights, but aims at identifying influential nodes and edges to yield scien-
tifically meaningful results. To this end, we construct a novel Bayesian network shrinkage
prior that incorporates network information in the coefficients corresponding to the network
predictors through a social space model [72] with latent variables embedded within a Bayesian
shrinkage prior [109], [17], [5]. We index these latent variables by nodes in the network and
incorporate a spike-and-slab variable selection prior to choose the relevant node specific latent

variables explaining variation in the response. The proposed framework is simple enough to
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allow computation through a data-augmented Gibbs sampler. We make the practical benefit of
the proposed approach in terms of inference and prediction amply clear by comparing it to other
existing methods in various simulation studies. Further, we provide detection of influential brain
regions and influential interconnections between different regions responsible for creativity of
individuals in a principled Bayesian way which was hitherto not present in the literature. The
model provides additional inferences which can be found in Chapter 2.

Chapter 3 focuses on a network classification problem where a binary response along
with a network is available from every subject. The aim lies in developing a classification of
subjects, along with identifying network nodes and edges influential for the purpose of classifi-
cation. We broadens the formulation of Bayesian network shrinkage prior developed in Chapter
2 and propose a new class of Bayesian network global-local shrinkage prior that includes the
network shrinkage prior formulated in Chapter 2 as a special case. Simulation studies show
superior performance of the proposed formulation over the existing network classification mod-
els. We employ the framework to analyze a dataset that aims at classifying subjects into a ‘low’
or ‘high’ 1Q group based on her/his brain connectome network. One important contribution
of Chapter 3 remains theoretical study of asymptotic properties of the posterior distribution for
binary network regression model. In particular, we offer theoretical conditions to ensure asymp-
totically optimal classification from the binary network regression model proposed in Chapter 3.
The proofs of the theoretical results in Chapter 3 can be easily adapted to show the consistency
of the posterior distribution for the model proposed in Chapter 2.

Chapter 4 presents a brain connectome dataset with a phenotype and brain connec-

tome network corresponding to multiple subjects. Analysis of the data with the Bayesian net-
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work regression model proposed in Chapter 2 seems inadequate. Indeed, there is a literature
in neuroscience arguing differential relationships between brain networks and human creativ-
ity for different groups of individuals. In particular, they argue that the relationship may be
very different from people with high IQ compared to people with low 1Q. To address this issue,
Chapter 4 proposes a Bayesian network mixture regression model, allowing for different net-
work regression models for different groups of subjects. Finally, Chapter 7 presents appendices

with details of model implementations and proofs of theorems.
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Chapter 2

Bayesian Regression with Undirected
Network Predictors with an

Application to Brain Connectome Data

2.1 Introduction

In recent years, network data has become ubiquitous in disciplines as diverse as neuro-
science, genetics, finance and economics. Nonetheless, statistical models that involve network
data are particularly challenging, not only because they require dimensionality reduction pro-
cedures to effectively deal with the large number of pairwise relationships, but also because
flexible formulations are needed to account for the topological structure of the network.

The literature has paid heavy attention to models that aim to understand the rela-
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tionship between node-level covariates and the structure of the network. A number of classic
models treat the dyadic observations as the response variable, examples include exponential
random graph models [49], social space models [72, 67, 68] and stochastic block models [106].
The goal of these models is often either to predict unobserved links or to investigate homophily,
i.e., the process of formation of social ties due to matching individual traits. Alternatively, mod-
els that investigate influence or contagion attempt to explain the node-specific covariates as a
function of the network structure (e.g., see [24]; [47]; [124] and references therein). Common
methodological approaches in this context include simultaneous autoregressive (SAR) models
[94] and threshold models [142]. However, ascertaining the direction of a causal relationship
between network structure and link or nodal attributes, i.e., whether homophily or contagion
are in play, is difficult (e.g., see [33] and [120] and references therein). Hence, there has been a
growing interest in joint models for the coevolution of the network structure and nodal attributes
[46, 36, 30, 105, 61].

In this chapter we investigate Bayesian models for network regression. Unlike the
problems discussed above, in network regression we are interested in the relationship between
the structure of the network and one or more global attributes of the experimental unit on which
the network data is collected. As a motivating example, we consider the problem of predicting
the composite creativity index of individuals on the basis of neuroimaging data measuring the
connectivity of different brain regions. The goal of these studies is twofold. First, neurosci-
entists are interested in identifying regions of the brain that are involved in creative thinking.
Secondly, it is important to determine how the strength of connection among these influential

regions affects the level of creativity of the individual. To address these challenges we construct
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a novel Bayesian network shrinkage prior that combines ideas from spectral decomposition
methods and spike-and-slab priors to generate a model that takes into account the structure of
the predictors. The model produces accurate predictions, allows us to identify both nodes and
links that have influence on the response, and yields well-calibrated interval estimates for the
model parameters.

A common approach to network regression is to use a few summary measures from
the network in the context of a flexible regression or classification approach (e.g., see [11] and
references therein). Clearly, the success of this approach is highly dependent on selecting the
right summaries to include. Furthermore, this kind of approach cannot identify the impact of
specific nodes on the response, which is of clear interest in our setting. Alternatively, a number
of authors have proceeded to vectorize the network predictor (originally obtained in the form of
a symmetric matrix). Subsequently, the continuous response would be regressed on the high di-
mensional collection of edge weights [114, 27]. This approach can take advantage of the recent
developments in high dimensional regression, consisting of both penalized optimization [133]
and Bayesian shrinkage [109, 17, 5]. However, this approach treats the links of the network as
if they were fully exchangeable, ignoring the fact that coefficients that involve common nodes
can be expected to be correlated a priori. Ignoring this correlation is known to lead to poor
predictive performance and to potentially impact model selection.

Recently, [113] proposed a penalized optimization scheme that not only enables clas-
sification using network predictors, but also identifies important nodes and edges. Although
this model seems to perform well for prediction problems, uncertainty quantification is diffi-

cult because standard bootstrap methods are not consistent for Lasso-type methods [89, 21].
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Modifications of the bootstrap that produce well-calibrated confidence intervals in the context
of standard Lasso regression have been proposed [22], but it is not clear whether they extend to
the kind of group Lasso penalties discussed in [113]. Recent developments on tensor regression
[147, 62] are also relevant to our work. However, these approaches tend to focus mainly on
prediction and identification of important edges, but are not designed to detect important nodes
impacting the response.

The rest of the chapter evolves as follows. Section 3.2 proposes the novel network
shrinkage prior and discusses posterior computation for the proposed model. Empirical investi-
gations with various simulation studies are presented in Section 2.3, while Section 2.4 analyzes
the brain connectome dataset. We provide results on region of interest (ROI) and edge selec-
tion and find them to be scientifically consistent with previous studies. Finally, Section 2.5

concludes the chapter with an eye towards future work.

2.2 Model Formulation

2.2.1 Definitions and Notations

Let y; and A; € RV*V represent the observed scalar response and the corresponding
weighted undirected network for the i-th sample, i = 1,...,n, respectively. Depending on the
problem y; is continuous or binary. For example, y; € R is continuous in Chapters 2 and 4,
and y; € {0, 1} is binary in Chapter 3. All graphs share the same labels on their nodes. In all
our applications, A; encodes the strength of the network connections between different regions

of the brain for the i-th individual. Mathematically, this amounts to A; being a V x V matrix,
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with the (k,/)-th entry of A; denoted by a;x; € R. We focus on networks that contain no self
relationship, i.e., a; x x = 0, and are undirected (a; x; = a; ). The brain connectome application
considered here naturally justifies these assumptions. Although we present our models specific
to these settings, it will be evident that the proposed model can be easily extended to directed
networks with self-relations. Throughout all chapters, we denote the Frobenius inner product
between two V x V matrices A and B by (A,B)r = Trace(B'A). Frobenius inner product is
the natural inner product on the space of matrices and is a generalization of the dot product
from vector to matrix spaces. Frobenius norm of a matrix A is defined as ||A||r = v/(A,A)F.
Additionally, for any vector a = (ay, ...,ap)’, define the Ly, L, and Lo, norms by ||a||; = Y/_; |ai,
llalla = /X, a? and ||a|]. = max |a;| respectively. ||-||o denotes the Ly-norm, i.e. the number
of non-zero entries for vectors. The || ||;, ||-|]2 and || - || norms of a matrix are defined
analogously. All vectors and matrices are denoted by lowercase bold letters and uppercase bold

letters respectively.

2.2.2 Bayesian Network Regression Model

We propose the high dimensional regression model of the response y; for the i-th

individual on the undirected network predictor A; = ((aix;))} ,—; as

iid

yi =u-+{A;,B)p +¢&, &~ N(0,7%), 2.1

where B is the symmetric network coefficient matrix of dimension V x V whose (k,)-th element
is given by Y ;/2 and (A;,B)p = Trace(B'A;) denotes the Frobenius inner product between A;

and B. The Frobenius inner product is the natural inner product in the space of matrices and is a
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generalization of the dot product from vector to matrix spaces. Note that, similar to the network
predictor, the network coefficient matrix B is assumed to be symmetric with zero diagonal
entries. The parameter ©° is the variance of the observational error.

Since self relationship is absent and both A; and B are symmetric,

(Ai,B)r = Y @Y, and (2.1) can be rewritten as
1<k<I<V
Vi=pt ), @ikt g~ N(0,7%). (2.2)
1<k<I<V

Equation (2.2) connects the network regression model with the linear regression framework
with a; i ;’s as predictors and Yy ;’s as the corresponding coefficients. However, while in ordinary
linear regression the predictor coefficients are indexed by the natural numbers A, Model (2.2)
indexes the predictor coefficients by their positions in the matrix B. This is done in order to

keep tabs not only on the edge itself but also on the nodes connecting the edges.

2.2.3 Developing the Network Shrinkage Prior

Vector Shrinkage Prior

High dimensional regression with vector predictors has recently been of interest in
Bayesian statistics. Continuous shrinkage priors, which strongly shrink coefficients correspond-
ing to unimportant variables to zero while minimizing the shrinkage of coefficients correspond-
ing to influential variables, have become particularly popular. Many of these priors can be ex-
pressed as a scale mixture of normal distributions, commonly referred to as global-local scale

mixtures [110], that enable fast computation employing simple conjugate Gibbs sampling. More
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precisely, in the context of model (2.2), a global-local scale mixture prior would take the form
Vs ~ N(0,51,7°), Sk~ &1, T~ g, 1<k<I<V.

Note that 51 5,...,sy_1,v are local scale parameters controlling the shrinkage of the coefficients,
while 72 is the global scale parameter. Different choices of g; and g, lead to different classes of
Bayesian shrinkage priors. For example, the Bayesian Lasso [109] prior takes g; as exponential
and g, as the Jeffreys prior, the Horseshoe prior [17] takes both g; and g; as half-Cauchy
distributions, and the Generalized Double Pareto Shrinkage prior [5] takes g; as exponential
and g, as the Gamma distribution.

The direct application of this global-local prior in the context of (2.2) is unappealing.
In practice, we expect the matrix of coefficients B (which itself can be regarded as describing a
weighted network) to exhibit transitivity effects, i.e., we expect that if the interactions between
regions i and j and between regions i and k both influence the response, the interaction between
regions j and k will also be influential [93]. Ordinary global-local shrinkage priors do not

necessarily conform to such an important restriction.

Network Shrinkage Prior

We propose a shrinkage prior on the coefficients Y, ; and refer to it as the Bayesian
Network Shrinkage prior (BNSP). The prior borrows ideas from low-order spectral representa-
tions of matrices, and aims to capture transitivity effects in the matrix of regression coefficients.
Let uj,...,uy € RE be a collection of R-dimensional latent variables, one for each node, such

that u; corresponds to node k. We draw each v, ; conditionally independent from a density that
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can be represented as a location and scale mixture of normals. More precisely,
Vi, [Sk.1s e, Ui T~ N(M;CAul,’czskal), sk~ Exp(8/2), 0 ~ Gamma(C,1), (2.3)

where sy ; is the scale parameter corresponding to each yx ;, and A = diag(Ay,...,Ag) isan R X R
diagonal matrix with A, € {0,1}. Conditional on the latent variables uy, u; and A, if sp; =0
then (4.5) implies a reduced rank-decomposition I' = 2B = U’ AU, where U is an R X V matrix
whose k-th column corresponds to u; and I' = (<Yk,l))x,1:1~ Drawing intuition from [67], we
can interpret the latent vectors uy,...,uy as the positions of the nodes in a latent “social” space,
with the strength of the edge effect being controlled by the angular distance between the vectors.
In this interpretation, Z’le A =R, rr < R, represents the effective dimensionality of the latent
space. The effect of the interaction between the k-th and /-th nodes has a positive, negative or
neutral impact on the response depending on whether the node specific latent variables u; and
u; are in the same direction, opposite direction or orthogonal to each other respectively. In other
words, whether the angle between u; and u; is acute, obtuse or right, i.e., u;Aul >0, u}cAuz <0
or u; Auy = 0 respectively. This kind of bilinear structure is commonly used to model social and
biological networks because of its ability to capture the kind of transitive effects we discussed
before [67, 66].

In order to learn which components of u; are informative for (4.5), we assign a hier-

archical prior
A, ~ Ber(m,), T, ~ Beta(1,r"), n>1.

The choice of hyper-parameters of the beta distribution is crucial. In particular, note

that E[A,] = 1/(1+7") — 0 as r — oo and that Y var(A,) =YX, W < ooas R — oo,

21



The first property provides (weak) identifiability of the different latent dimensions, while the
second ensures that limg_,. var(ug) < oo as long as the prior for the u;’s has a finite second
moment. In fact, we can think of our model as a level-R truncation of an infinite dimensional
model, similar in spirit to the stick-breaking construction of the Indian Buffet process [132].
Therefore, as long as R is chosen to be “large enough”, the inferences will be roughly invariant
to this choice. In our illustrations, we perform sensitivity analyses to determine an optimal value
of R that maintains computational efficiency, and at the same time ensures the robustness of the
results.

In order to determine which nodes are most influential in explaining the response, we

assign a spike-and-slab mixture prior [76] to the latent factor uy,

NO,M), if& =1,
Uy ~ Er ~ Ber(A), 2.4)

8,  if&=0,
where 9y is the Dirac-delta function at 0 and M is a covariance matrix of order R x R. The
parameter A corresponds to the probability of the nonzero mixture component. Note that if the
k-th node of the network predictor is not influential in predicting the response then, a-posteriori,
&« should provide high probability to 0. Thus, based on the posterior probability of &, it will
be possible to identify unimportant nodes, which we loosely refer to as “uninfluential nodes”,

in the network regression.

The rest of the hierarchy is accomplished by assigning prior distributions on A and M

as follows:

M~ IW(v,]), A ~ Beta(an,bp),
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where IW (v,I) denotes an Inverse-Wishart distribution with identity scale matrix I and degrees

1

of freedom v. Finally, we choose a non-informative prior on (u,t?) such that p(u,1?) o< =

Appendix A shows the propriety of the posterior distribution under this prior.

The previous discussion assumes that we have conditioned on the latent positions
ui,...,uy and the local scale parameters (sx;). Now that we have described the full hierarchical
structure of the model, it is instructive to briefly discuss the structure of the marginal prior distri-
bution obtained after integrating these latent variables. In this regard, note first that integrating
over the s ;’s alone leads to double exponential priors that are reminiscent of the Lasso. On
the other hand, while no closed form expression exists for the marginal prior after integrating
u,...,uy, it is easy to see that, marginally, the edge coefficients have mean zero and are not
independent. Hence, from this point of view, the latent positions uy,...,uy simply provide a

mechanism to sparsely model the prior dependence among coefficients.

2.2.4 Posterior Computation

Although summaries of the posterior distribution cannot be computed in closed form,
full conditional distributions for all the parameters are available and correspond, in most cases,
to standard families. Thus, posterior computation can proceed through a Markov chain Monte
Carlo algorithm. We note, however, that a naive implementation of such algorithm to update I"
would have complexity O(q?), where g = V(V — 1) /2. The resulting algorithm would therefore
be computationally too expensive for situations such as our real data application, where V = 68
and g = 2278. To address this issue, we follow [8], who propose the use of the Woodbury matrix

identity to instead compute the inverse of an n X n matrix. Since in the type of applications

23



with which this chapter is concerned # is typically much smaller than g, this approach leads
to substantial computational savings that make real-life applications feasible. Details of all the
Markov chain Monte Carlo algorithm are presented in Appendix B.

While inferences on the latent positions uy,...,uy is not our main focus, being able
to visualize these positions can be helpful in terms of interpreting the model results. However,
note that vectors uj,...,uy are not identifiable because the model is invariant to rotations of
the latent space. Hence, before we can use the posterior samples generated by our algorithm to
conduct inferences on these latent positions we must first rotate them to a common orientation.
This is done using a “Procrustean” transformation [125, 72, 67]. For each posterior sample U (0)

()

we find the rotation U that has the smallest sum of squared deviations from an arbitrary fixed

_]/ZU(Z).

reference matrix Ug. This rotation is given by U(é) =Uy (U(Z))/ {U(Z)Uon (U((Z))/}
In our analysis, we use the first iterate after burn-in, U (1), as the reference matrix Uy.

In order to identify whether the k-th node is important in terms of predicting the
response, we rely on the post burn-in L samples é,(cl),....,E_,,({L) of &. Node k is said to be
influential if %):lel &,(Cl) > 0.5. To identify influential edges we utilize a modification of the
algorithm proposed in [92] that allows us to estimate the false discovery rate of the procedure
as a function of the number of discoveries. Details are provided in Appendix C. Finally, an
estimate of P(R.;s = r|Data) is given by 1 Y1 I(¥X_, A = r), where I(A) for an event A
is 1 if the event A happens and O otherwise, and 7\.5,11 ), .. ,kﬁnL ) are the L post burn-in MCMC

samples of A,,.
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2.3 Simulation Studies

This section comprehensively contrasts both the inferential and predictive perfor-
mances of our proposed approach with a number of competitors in various simulation settings.
As competitors, we consider both penalized likelihood methods as well as Bayesian shrinkage
priors for high-dimensional regression.

Our first set of competitors use generic variable selection and shrinkage methods that
treat edges between nodes as “bags of predictors” and rely on high dimensional regression,
thereby ignoring the relational nature of the predictor. More specifically, we use Lasso [133],
which is a popular penalized optimization scheme, and the Bayesian Lasso [109] and Horseshoe
priors [17], which are popular Bayesian shrinkage regression methods. The Horseshoe in par-
ticular is considered to be a state-of-the-art Bayesian shrinkage prior and is known to perform
well, both in sparse and not-so-sparse regression settings. We use the glmnet package in R [50]
to implement Lasso regression, and the monomvn package in R [59] to implement the Bayesian
Lasso (BLasso for short) and the Horseshoe (BHS for short).

A thorough comparison with these methods will indicate the relative advantage of
exploiting the structure of the network predictor.

Additionally, we compare our method to a frequentist approach that develops network
regression in the presence of a network predictor and scalar response [113]. To be precise, we

adapt [113] to a continuous response context and propose to estimate the network regression
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coefficient matrix B by solving
(vi—u— (A, B)r)*+

¢
2|\B||%+g(

where ||B||r = /(B,B)r denotes the Frobenius norm,

-

I
—_

A 1

B=arg min {
BER.B=B'diag(B)=0 | I |

14

Y 1IBwll2+plIBll1 | ¢ (2.5)

k=1

B||; is the sum of the absolute values
of all the elements of matrix B, || - || is the /; norm of a vector, B is the k-th row of B and
0, p, ¢ are tuning parameters. The best possible choice of the tuning parameter triplet (¢, p,¢c)
is made using cross validation over a grid of possible values. [113] argue that the penalty in
(2.5) incorporates the network information of the predictor, thereby yielding superior inference
to any ordinary penalized optimization scheme. Hence comparison with (2.5) will highlight
the advantages of a carefully structured Bayesian network shrinkage prior over the penalized
optimization scheme incorporating network information. In the absence of open source code,
we implemented the algorithm in [113] ourselves. All Bayesian competitors are allowed to draw
50,000 MCMC samples, out of which the first 30,000 are discarded as burn-ins. All posterior
inference is carried out based on the rest 20,000 MCMC samples after suitably thinning the
post burn-in chain. Convergence is assessed by comparing different simulated sequences of

representative parameters started at different initial values [52].

2.3.1 Predictor and Response Data Generation

In all simulation studies, the response y; is generated according to the network regres-

sion model

Yi = o+ (Ai, Bo)F + &, g ~ N(0,75), (2.6)
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with ’C(Z) as the true noise variance. In all of our simulations, we use V = 20 nodes and n = 70

samples.

Simulation 1

In this group of simulations, the (k,/)-th entry of By is given by @, where the

vectors wi, ..., wy, each of dimension Rg,,, are generated from a mixture
2
Wi ~ TRy, (Winean, Wyg) + (1 — T) S0, ke{l,...,V}, 2.7)

where 9y is the Dirac-delta function and &, is the probability of any wy being nonzero. (1 —m,,)
is the probability of a node not being influential, it is referred to as the node sparsity parameter.
This data generation mechanism is quite similar (although not identical) to our hierarchical
prior. Hence, the goal of this first simulation is to evaluate the ability of the model to recover
the true data-generation mechanism and, in particular, its ability to identify the true dimension
of the latent space, as well as the sensitivity of the results to the choice of the maximum latent
dimension R.

For a comprehensive picture of Simulation 1, we consider 11 different cases as sum-
marized in Table 3.1. In each of these cases, the network predictor coefficient and the response
are generated by changing the sparsity 7,, and the true dimension R,,, of the latent variables
wy’s. The table also presents the maximum dimension R used to fit the model of the latent vari-
ables uy for the network regression model (2.2). Note that we include various cases of model
mis-specification in which R > R,,,. For all simulations, w, and wfd are set as 0.5 X 1rgen

and IR,,, xR, respectively, and the variance 1(2) is fixed at 1. In Cases 1-9, the entries of the

gen’®
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network predictor A; for the i-th sample are simulated from a standard normal distribution. In
Cases 10 and 11 the network predictor A; for the i-th sample follows a stochastic blockmodel.
In Case 10, we assume that each brain network has 3 local clusters with high within-cluster and
low between-cluster connectivity. More specifically, the matrices A;’s consist of 3 symmetric
block diagonal matrices of dimensions 6 x 6, 7 x 7 and 7 x 7 respectively. Elements in these
matrices have been drawn from N(j, j2) where j € {1,2,3}, for the j-th block diagonal. The
off-diagonal blocks are highly sparse with very few randomly chosen non-sparse elements de-
noting connections between nodes in different clusters randomly chosen from N (0, 1). In Case
11, the adjacency matrices A;’s also consists of 3 block diagonal matrices, in this case of dimen-
sions 5 x5, 8 x 8 and 7 x 7. As before, the elements in these matrices have been drawn from
N(j, j?) where j € {1,2,3}, for the j-th block diagonal. However, in this case the elements in

the off-diagonal matrices have been drawn from N(4,1), N(5,1) and N(6,1).

Simulation 2

In this case, the matrix of coefficients By is constructed by first generating V binary
indicators &7, ..., &) independently from a Ber(ms,,), one for each node in the network. If both
&2 =1and §? = 1, the edge coefficient connecting the k-th and the /-th nodes (k < [) is simulated
from N(0.8,1). Otherwise, we set the (k,[)-th edge coefficient to be 0. Similar to Simulation
1, we refer to 1 — 7, ,, as the node sparsity parameter. While this simulation scenario has some
similarities to our proposed model, the mean effect for active nodes is constant. Therefore, the
goal of this simulation is to evaluate the performance of the model in situations where there are

weak network effects in the matrix of coefficients. The network predictor A; for the i-th sample
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is simulated by drawing a;; independently from a N(0,1) distribution for k < [ and setting
aix; = aix and a;xx = 0 for all k,/ € {1,...,V}. Finally, the variance T3 is fixed at 1 as in
Simulation 1. Table 2.2 presents the two cases we consider for Simulation 2, which are obtained

by varying the node sparsity parameter.

Simulation 3

In this case, we draw V indicator variables &, ..., from a Ber(m,,,) corresponding
to the V nodes of the network. If both E,g =1 and E.,? = 1, then the edge coefficient connecting

the k-th and the /-th nodes (k < /) is simulated from a mixture distribution given by

T ~ Ng.,, (0.8,1) + (1 —73,,)50, kile{l,... .V} (2.8)

gen

Otherwise, if &2 = 0 for any k, we set (k,l)-th edge coefficient to be O for all /. Contrary to
Simulation 2, Simulation 3 allows the possibility of an edge between the k-th and the /-th nodes
having no impact on the response even when both &2 and &? are nonzero. In the context of
Simulation 3, (1 —7,,,) and (1 —73,,) are referred to as the node sparsity and the edge sparsity
parameters, respectively. Hence, the goal of this simulation is to evaluate the impact of edge
sparsity and its interaction with node sparsity on model performance. Network predictors are
randomly generated using the same mechanism as in Simulation 2 and the true variance ’C% is
again fixed at 1 for all cases. Table 2.3 presents the four cases we consider in this evaluation,

which are generated by changing the node sparsity and edge sparsity.
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Cases Rgen R Sparsity
Case - 1 2 2 0.5
Case - 2 2 3 0.6
Case - 3 2 5 0.3
Case - 4 2 4 04
Case - 5 2 5 0.5
Case - 6 4 5 0.4
Case - 7 3 4 0.5
Case - 8 2 4 0.7
Case -9 3 5 0.7
Case - 10 3 5 0.5
Case - 11 2 5 0.6

Table 2.1: Table presents different cases for Simulation 1. The true dimension Ry, is the
dimension of vector object wy using which data has been generated. The maximum dimension
R is the dimension of vector object u; using which the model has been fit. Sparsity refers to the
fraction of generated wy =0, i.e., (1 —m,,).

Cases R Sparsity

Case-1 5 0.7
Case-2 5 0.2

Table 2.2: Table presents different cases for Simulation 2. The maximum dimension R is the
dimension of vector object u; using which the model has been fit. Simulation 2 only has one
sparsity parameter T ,,.

2.3.2 Results

In all simulation results shown in this section, our BNSP model is fitted with the choices of the
hyper-parameters given by v =10, an = 1, ba = 1, { =1 and 1 = 1. Our extensive simulation

studies reveal that both inference and prediction are robust to various choices of the hyper-
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Cases R Node Sparsity Edge Sparsity

Case-1 5 0.7 0.5
Case-2 5 0.2 0.5
Case-3 5 0.7 0.3
Case-4 5 0.2 0.7

Table 2.3: Table presents different cases for Simulation 3. The maximum dimension R is the
dimension of vector object u; using which the model has been fit. While Simulation 2 only
has a sparsity parameter, Simulation 3 has a node sparsity (7> ,,) and an edge sparsity (73 ,,)
parameter respectively.

parameters.

Identification of Influential Nodes

Figures 2.1 and 2.2 show the posterior probability of the k-th node being detected as
influential, i.e., P(§ = 1|Data), for each node and each case within Simulation 1, Simulation
2 and Simulation 3. In the case of Simulation 1, the model is able to accurately identify nodes
influencing the response for any reasonable cutoff threshold. Indeed, the receiver operating
characteristic (ROC) curves associated with all these simulations have areas under the curve
(AUC) very close to 1. For Simulation 2, the model performs very well in Case 1, which
corresponds to relatively high node sparsity. However, when the node sparsity is relatively low
(Case 2), using our default threshold of 0.5 leads to all nodes being identified as influential.
While this is a somewhat disappointing result, we note that the model does tend to assign lower
posterior probabilities to truly non-influential nodes. Hence, the associated AUC for Case 2

is nonetheless quite high (0.98). A similar pattern can be observed in Simulation 3, with the
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model performing very well when the node sparsity is high, and somewhat poorly when the
node sparsity is low. Furthermore, it is interesting to observe that the level of edge sparsity
has very little effect on the results when the node sparsity is high (Cases 1 and 3), but does
impact the results when node sparsity is low (Cases 2 and 4). In particular, when node sparsity
is low but edge sparsity is high, the model yields a very high number of false negatives for our
default 0.5 detection threshold, while the reverse seems to be true when both node and edge
sparsity are low. Digging a bit deeper, when both node and edge sparsity are low, the model
assigns lower posterior probabilities to the non-influential nodes, resulting in a relatively high
AUC (0.88), which is consistent with our Simulation 2 results. On the other hand, when we
have low node sparsity but high edge sparsity (the most unfavorable conditions for our model),
the model struggles to even get the ranking of the nodes correctly, resulting in a relatively poor
AUC (0.66). Among the competitor models, the only one that allows for the identification of
influential nodes is the method of [113]. When this approach is applied to these simulations, it

selects all nodes as significant in every case.

Parameter estimation

Tables 2.4, 2.5, 2.6 present the mean squared error (MSE) of all the competitors in
Simulations 1, 2 and 3 respectively. Given that both the fitted network regression coefficient B
and the true coefficient By are symmetric, the MSE is calculated as ﬁ Yot (Yes — ykjl’o)z,
where Y ; is the point estimate of Y ;. For Bayesian models (including our proposed model),
k.1 1s taken to be the posterior mean of Yy ;.

Table 2.4 shows that BNSP outperforms all its competitors in all cases of Simulation
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Figure 2.1: Posterior probability that a node is influential, P(§; = 1|Data), for each node and
each of the 11 cases associated with Simulation 1. Dark cells correspond to the truly influential
nodes.

1. In Cases 1-7, where the sparsity parameter is low to moderate, we perform overwhelmingly
better than all the competitors. When the sparsity parameter in Simulation 1 is high (Cases 8-9),
our simulation scheme sets a very large proportion of Y ;0’s to zero. As a result, BNSP only
slightly outperforms Horseshoe and BLasso. BNSP also shows superior performance when the
network predictor has modular structure (Cases 10-11). While BNSP is expected to perform
much better than BLasso, Horseshoe and Lasso due to incorporation of network information, it
is important to note that the carefully chosen global-local shrinkage prior with a well formulated
hierarchical mean structure seems also to outperform [113], which is explicitly designed to

account for the network structure.
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Figure 2.2: Posterior probability that a node is influential, P(§; = 1|Data), for each node and
all cases associated with Simulation 2 and Simulation 3. Dark cells correspond to the truly
influential nodes.

For Simulations 2 and 3, Tables 2.5 and 2.6 demonstrate that, when node or edge spar-
sity are high, BNSP performs very similarly to Horseshoe. This might be due to the fact that
a high degree of sparsity in the edge coefficients in the truth favors ordinary high dimensional
regression. As node sparsity decreases, so that more edge coefficients are nonzero in the truth
and the network structure in the predictors dominates, BNSP tends to show increasing advan-

tage in terms of estimating the network coefficient B.
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MSE
Cases BNSP Lasso Relién(2017) BLasso Horseshoe
Case-1 | 0.008 0.438 0.524 0.472 0.395
Case-2 | 0.007 0.660 0.929 0.863 0.012
Case-3 | 0.006 1.295 1.117 1.060 1.070
Case-4 | 0.008 0.455 0.552 0.465 0.393
Case-5 | 0.006 0.371 0.493 0.699 0.299
Case-6 | 0.008 1.986 1.892 2.138 2.043
Case-7 | 0.009 1.344 1.629 1.638 1.381
Case-8 | 0.004 0.010 0.069 0.008 0.004
Case-9 | 0.004 0.029 0.071 0.019 0.007
Case- 10 | 0.091 2.231 2.207 0.751 0.706
Case-11 | 0.003 0.025 0.047 0.018 0.012

Table 2.4: Performance of BNSP vis-a-vis competitors for cases in Simulation 1. Parametric
inference in terms of point estimation of edge coefficients has been captured through the Mean
Squared Error (MSE). The minimum MSE among competitors for any case is made bold.

MSE

Cases | BNSP Lasso Relion(2017) BLasso Horseshoe

Case-1| 0.015 0.012 0.036 0.008 0.006
Case-2 | 0.629 0.843 0.859 0.836 0.948

Table 2.5: Performance of BNSP vis-a-vis competitors for cases in Simulation 2. Parametric
inference in terms of point estimation of edge coefficients has been captured through the Mean
Squared Error (MSE). The minimum MSE among competitors for any case is made bold.

Identifying influential edges

Tables 2.7 and 2.8 show the true positive rates (TPR) and false positive rates (FPR)

associated with the detection of important edges for Simulation I and Simulation 3 using BNSP,
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MSE

Cases | BNSP Lasso Relién(2017) BLasso Horseshoe

Case-1 | 0.005 0.006 0.017 0.004 0.002
Case-2 | 0457 0.636 0.617 0.669 0.629
Case-3 | 0.008 0.004 0.036 0.005 0.004
Case-4 | 0.131 0.178 0.145 0.182 0.145

Table 2.6: Performance of BNSP vis-a-vis competitors for cases in Simulation 3. Parametric
inference in terms of point estimation of edge coefficients has been captured through the Mean
Squared Error (MSE). The minimum MSE among competitors for any case is made bold.

Lasso and [113]. The results for our method are based on controlling the FDR at 0.05 using

the algorithm described in Appendix C. In Simulation 1, BNSP outperforms Lasso and [113],

BNSP Lasso Relién (2017)

Cases TPR FPR | TPR FPR | TPR FPR

Case-1 | 069 0 | 0.60 0.29
Case - 2 1 0.02 | 0.86 0.25
Case-3 | 096 0 | 0.14 0.05
Case - 4 1 0.08 | 0.53 0.23
Case-5 | 0.80 0.08 | 047 0.27
Case-6 [ 092 0 | 059 0.29
Case-7 | 097 0.04 | 0.60 0.27
Case-8 | 0.86 0.01 | 0.73 0.22
Case-9 | 0.70 0.02 | 0.87 0.29
Case-10| 0.84 0 | 058 0.18
Case-11 | 0.85 0.04 | 0.61 0.17

G G G G G G G GO O GO O G G G
S G G G G Gy

Table 2.7: True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases in
Simulation 1.
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although when node sparsity becomes high, Lasso becomes competitive with BNSP. Lasso is
also competitive with BNSP in Simulation 3, although in this case all models tend to perform
poorly when node sparsity is low but edge sparsity is relatively high. [113] appears to have a
very poor performance, as it identifies all edges as important in all the simulation scenarios,

resulting in high FPRs.

BNSP Lasso Relion(2017)

Cases | TPR FPR | TPR FPR | TPR FPR

Case-1 | 0.71 0 0.86 0.20
Case-2 | 035 0.12 | 036 0.21
Case - 3 1 0.02 | 091 0.15
Case-4 | 091 0.86 | 0.23 0.07

—_ = =
—_— = =

Table 2.8: True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases in
Simulation 3.

Inference on the effective dimensionality

Figures 2.3 and 2.4 present posterior probabilities of effective dimensionality in all
11 cases in Simulation 1, which is the only setting in which the true dimension of the latent
space is known. In all 11 cases the posterior mode corresponds to the true dimension of the

latent space.

Predictive Inference

We compare the out-of-sample predictive ability of the different models based on

the point prediction and characterization of predictive uncertainties using test samples of size
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nprea = 30. To assess point prediction, we employ the mean squared prediction error (MSPE).
As measures of predictive uncertainty, we provide coverage and length of 95% predictive in-
tervals. For frequentist competitors, 95% predictive intervals are obtained by using predictive
point estimates plus and minus 1.96 times standard errors.

Tables 2.9, 2.10, 2.11 and 2.12 show results for Simulation I, Simulation 2 and
Simulation 3. For Simulation 1, BNSP clearly outperforms other competitors in terms of point
prediction. Horseshoe becomes competitive in cases with a higher degree of sparsity (Cases
2, 8 and 9). Lasso and BLasso are competitive only in Case 8, while our approach seems to
dominate the method of [113] in all cases. In terms of prediction uncertainty, BNSP tends to
generate by far the shortest intervals, but also to exhibit a slight under-coverage, particularly in
Cases 5 and 11. As in the case of point prediction, Horseshoe seems to yield results that are
very similar to those of our model in Cases 2, 8 and 9.

In the case of Simulations 2 and 3, BNSP seems to outperform all other methods in
situations where the node sparsity is low. Note that this is the opposite of what we found when
investigating the performance of the model to identify influential nodes. Similar observations
can be made with respect to the coverage and length of the intervals. BNSP seems to have the
shortest intervals and about nominal coverage in Case 2 of Simulation I and in Cases 2 and 4
of Simulation 3, making it the obvious top performer. For the remaining cases in Simulations 2

and 3, Horseshoe seems to be at least competitive with our method.
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MSPE
Cases BNSP Lasso Relién(2017) BLasso Horseshoe
Case-1 | 0.012 0.324 0.537 0.405 0.421
Case-2 | 0.008 0.707 0.574 0.638 0.013
Case-3 | 0.007 0.442 0.498 0.487 0.409
Case-4 | 0.012 0.494 0.571 0.426 0.317
Case-5 | 0.014 0412 0.517 0.759 0.238
Case-6 | 0.005 0.447 0.539 0.821 0.745
Case-7 | 0.007 0.533 0.605 0.572 0.563
Case-8 | 0.039 0.075 0.365 0.060 0.046
Case-9 | 0.044 0.236 0.486 0.151 0.067
Case - 10 | 0.029 0.830 0.816 0.381 0.385
Case-11 | 0.062 1.000 0.446 0.230 0.153

Table 2.9: MSPE under the BNSP vis-a-vis competitors for cases in Simulation 1. Lowest
MSPE for any case is made bold.

Sensitivity to the choice of R

In order to examine the behavior of the model with increasing R, we rerun our model
for each simulation scenario with R = 10, 15 and 20 (in addition to our original choice of R). For
the sake of brevity, we only provide results for the data corresponding to Case 9 in Simulation
1 (see Table 2.14). The behavior of all metrics is quite stable. The only summary that seems to
be slightly affected are the posterior means of R, ¢ and the length of the 95% credible intervals,

which increase by about 16% and 11% respectively when we go from R =5 to R = 20.
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Coverage of 95% PI

Case-1 | 0867 0967 0567 0967 0.967
Case-2 | 0933 0967 0.867 1.000 1.000
Case-3 | 0933 0900 0.767 1.000 1.000
Case-4 | 0900 0900 0567 0967 0.967
Case-5 | 0.800 1.000 0.700 0.933 0.933
Case-6 | 1.000 0967 0667 0900 0.967
Case-7 | 0933 0967 0633 1.000 0.967
Case-8 | 0933 1.000 0900 1.000 0.967
Case-9 | 0967 1.000 0.733 0933 0.933
Case-10 | 1.000 0.933 0.900 1.000 1.000
Case-11 | 0.833 0333 0.867 1.000 0.900

Length of 95% PI

Case-1 | 5.093 41.528 16.789 39.656 32.868
Case-2 | 5.040 49.254 27983 58.449 9.366
Case-3 | 5900 38.259 30.126 67.251 61.534
Case-4 | 5321 37.814 21.848 39.728 33.529
Case-5 | 4461 41251 22115 43.027 30.132
Case-6 | 11.053 67.922 36.434 75322 76.089
Case-7 | 5.214 70.655 31.746 83.132 68.103
Case-8 | 4.753 23964 12.122 8578 5.846
Case-9 | 4780 14397 8227 8783 5.868
Case - 10 | 21.571 75.309 61.221 55.603 69.886
Case-11 | 3.874 13.216 10419 11485 6.618

Table 2.10: Coverage and length of 95% predictive intervals (PIs) under the BNSP vis-a-vis
competitors for cases in Simulation 1.

Scalability and Computation Time

Computation times for competing methods are provided in Table 2.15. It is to be

noted that computation times for frequentist methods and BNSP are not directly comparable as
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MSPE
Cases BNSP Lasso Reliéon(2017) BLasso Horseshoe
Case-1| 0213 0.144 0.335 0.131 0.122
Case-2 | 0.426 0.532 0.621 0.568 0.626
Coverage of 95% PI
Case-1 | 0.900 1.000 0.900 0.933 0.900
Case-2 | 0.933 0.800 0.600 0.967 0.933
Length of 95% PI
Case-1 | 8.323 15.940 9.544 7.957 6.079
Case-2 | 43.834 34413 24.117 45.959 43.219

Table 2.11: MSPE, coverage and length of 95% predictive intervals (PIs) under the BNSP vis-
a-vis competitors for cases in Simulation 2. Lowest MSPE for any case is made bold.

BNSP is based on 50,000 MCMC iterations while the former methods yield results just after
a few of iterations. For the Bayesian method BNSP, the table records run time (in seconds)
per equivalent effective posterior sample, to account for the fact that posterior samples are
correlated. In absence of any open source code, we have implemented [113] by ourselves with
the run time provided in the table. Perhaps a more efficient implementation of [113] could
reduce its run time. As expected, the computation time of BNSP grows approximately linearly

with V and n°.
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MSPE
Cases BNSP Lasso Reliéon(2017) BLasso Horseshoe
Case-1 | 0.108 0.183 0.452 0.138 0.101
Case-2 | 0.677 0.959 0.817 0.869 0.888
Case-3 | 0.066 0.049 0.354 0.050 0.047
Case-4 | 0.604 0.877 0.732 0.781 0.720
Coverage of 95% PI
Case-1 | 1.000 1.000 0.900 0.933 0.967
Case-2 | 0.967 0.700 0.533 1.000 1.000
Case-3 | 0.900 1.000 0.900 1.000 0.833
Case-4 | 0.967 0.400 0.533 0.967 0.967
Length of 95% PI
Case-1 | 6.371 13.080 7.877 6.508 5.268
Case-2 | 41492 26.028 18.387 51.459 48.694
Case-3 | 5.069 22774 11.760 5.980 4.005
Case -4 | 18.704 7.397 8.547 22.049 20.227

Table 2.12: MSPE, coverage and length of 95% predictive intervals (PIs) under the BNSP vis-
a-vis competitors for cases in Simulation 3. Lowest MSPE for any case is made bold.

2.4 Application to Human Brain Network Data

Human creativity has been at the crux of the evolution of the human civilization, and
has been the topic of research in several disciplines, including neuroscience. Though creativity
can be defined in numerous ways, one could envision a creative idea as one that is unusual as
well as effective in a given social context [44]. Neuroscientists generally concur that a coa-

lescence of several cognitive processes determines the creative process, which often involves
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Cases Ry R Sparsity BNSP Lasso Relion(2017) BLasso Horseshoe

Case-1 2 2 0.5 0.009 0.438 0.524 0.472 0.395
Case-2 2 3 0.6 0.007  0.660 0.929 0.863 0.012
Case-3 2 5 0.3 0.006 1.295 1.117 1.060 1.070
Case-4 2 5 04 0.006 0.371 0.493 0.699 0.298
Case-5 3 5 0.5 0.009 1.344 1.629 1.638 1.381
Case-6 4 5 0.4 0.006 3.054 2.601 2.680 3.284
Case-7 2 4 0.5 0.009 0.438 0.524 0.472 0.395

Table 2.13: Performance of Bayesian Network Regression vis-a-vis competitors. Predictive
point estimation has been captured through the Mean Squared Prediction Error (MSPE).

R | MSE MSPE Coverage Lengthof 95% PI Posterior Mean of R, sf

5 10.0044 0.044 0.967 4.780 2.83
10 | 0.0038 0.0437 0.967 4.996 2.95
15 | 0.0039 0.0438 0.967 5.362 3.23
20 | 0.0041 0.0433 0.967 5.341 3.31

Table 2.14: Model behavior in terms of model performance metrics with changing values of R
for data corresponding to Simulation 1, Case 9. We report MSE, MSPE, length and coverage of
95% predictive intervals and the posterior mean of effective dimensionality R, zs.

a divergence of ideas to conceivable solutions for a given problem. To measure the creativity
of an individual, [80] propose the CCI, which is formulated by linking measures of divergent
thinking and creative achievement to cortical thickness of young (23.7 4 4.2 years), healthy
subjects. Three independent judges grade the creative products of a subject from which the
“composite creativity index” (CCI) is derived.

Along with CCI measurements, brain network information for n =79 subjects is gath-

ered using diffusion weighted magnetic resonance imaging (DWI). DWI is an imaging tech-

45



% n BNSP Lasso | Relion(2017)

20 | 70 0.1392 || 0.3606 2.3954
20 | 100 || 0.1594 || 0.6693 3.1306
20 | 150 || 0.2069 || 0.4900 3.3002

40 | 70 0.6435 || 0.5150 30.0046
40 | 100 | 0.8296 || 0.4829 39.9697
40 | 150 || 1.1467 | 0.8013 54.5337

60 | 70 27874 || 1.0954 150.9617
60 | 100 || 3.7153 || 0.7423 200.4439
60 | 150 || 5.3052 || 0.8603 285.5792

80 | 70 8.1378 || 1.7925 435.5506
80 | 100 || 11.6997 || 1.3206 645.1986
80 | 150 || 17.2309 || 2.0388 995.7408

100 | 70 || 20.1989 || 0.8699 1165.969
100 | 100 || 26.5559 || 1.3059 1467.85
100 | 150 || 31.4653 || 1.5472 2031.46

Table 2.15: Computation time of competing methods for different values of sample size (n) and
number of nodes (V). For the Bayesian method BNSP, the table records run time (in seconds)
per equivalent effective posterior sample for BNSP, to account for the fact that posterior samples
are correlated. The last two columns record total run time for frequentist methods.

nique that enables measurement of the restricted diffusion of water in tissue in order to produce
neural tract images. The brain imaging data we use has been pre-processed using the NDMG
pre-processing pipeline [82, 81, 83]. In the context of DWI, the human brain is divided accord-
ing to the Desikan atlas [32] that identifies 34 cortical regions of interest (ROIs) in each of the
left and right hemispheres of the human brain, implying 68 cortical ROIs in all. A ‘brain net-

work’ for each subject is represented by a symmetric adjacency matrix whose rows and columns
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correspond to different ROIs and entries correspond to estimates of the number of ‘fibers’ con-
necting pairs of brain regions. A “lobe” in a human brain is composed of a number of ROIs.
According to Desikan atlas, brain consists of 12 lobes, 6 on right and left hemisphere each.
Figure 2.5 shows maps of the brain network for two representative individuals in the sample.
In this Section we are interested in predicting the CCI of a subject from his/her brain
network, and to identify brain regions (nodes in the brain network) that are involved with cre-
ativity, as well as influential connections between different brain regions. Before carrying out
our analysis, each cell of the adjacency matrix is standardized by subtracting the mean and di-
viding by the standard deviation with respect to all n = 79 samples. CCI is also standardized
in a similar fashion. The MCMC chain for our model is run for 50,000 iterations, with the first
40,000 iterations discarded as burn-in. Convergence is assessed by comparing different simu-
lated sequences of representative parameters started at different initial values [52]. We monitor
the auto-correlation plots and effective sample sizes. Prior distributions for all the parameters

are chosen as in the simulation studies.

2.4.1 Findings from BNSP

For the purpose of this data analysis, BNSP was fitted with R = 5. Later, we show
that the results are robust to moderate increases in the value of R. A posteriori, the mean of the
effective dimension R, s was 3. Figure 2.6 shows the posterior means of the latent positions
uy,...,uy for the two highest-variance components of the latent space. The clump of nodes
located at the origin all correspond to ROIs that our method deems to be non-influential on the

response (see discussion below).
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Recall that the k-th node is identified as influential if P(E; = 1|Data) exceeds 0.5.
In this dataset, this criteria identifies 41 ROIs out of 68 as influential. Of the influential ROIs,
19 belong to the left hemisphere and 22 belong to the right hemisphere (see Table 2.17). This
coincides with results that have been previously presented in the literature. A large number of
the 41 influential nodes detected by our method are part of the frontal (16) and temporal (7)
cortices in both hemispheres. The frontal cortex has been scientifically associated with diver-
gent thinking and problem solving ability, in addition to motor function, spontaneity, memory,
language, initiation, judgement, impulse control and social behavior [131]. Some of the other
functions directly related to the frontal cortex seem to be behavioral spontaneity, interpreting
environmental feedback and risk taking [112, 99, 87]. Similarly, [43] report de novo artistic ex-
pression to be associated with the frontal and temporal regions. Our method also finds a strong
relationship between creativity and the right parahippocampal gyrus and right inferior parietal
lobule, regions found to be involved with creativity by a few earlier scientific studies, see e.g.,
[23].

Our results also show substantial overlap with those of [80], in which a regression
model is used to understand the relationship between CCI and ROI-specific measures to ac-
count for the relationship between creativity and different brain regions. In particular, both
approaches identify the middle frontal gyrus, the left cingulate cortex, the left orbitofrontal re-
gion, the left lingual region, the left fusiform, the right cuneus, the right superior parietal lobule,
the superior parietal lobules and the right singulate regions as influencing CCIL. However, al-
though there is significant intersection between the findings of [80] and our method, there are

a few regions that we detect as influential and they do not, and vice versa. For example, our
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model detects the right precuneus and the supramarginal regions in both the hemispheres to
be significantly related to CCI, while [80] do not. On the other hand, they identify the right
angular region to be significant while we do not. Applying the method of [113] to our dataset
leads to the identification of 65 out of 68 ROIs as influential. The three regions that are found
to be uninfluential are the frontalpole, temporalpole and the transversetemporal regions in the
right hemisphere.

Along with influential ROIs, we are interested in identifying the statistically signifi-
cant edges or connections between the 68 ROIs. Figure 2.7 plots the 523 interconnections that
appear to be influential (out of a total of 2,016), controlling for a 0.05 FPR.

Our interest turns now to the predictive ability of the Bayesian network regression
model. Table 2.16 reports the mean squared prediction error (MSPE), length and coverage of
95% predictive intervals for a ten-fold cross-validation exercise. As reference, we also present
MSPE, length and coverage values for Lasso, BLasso and [113].

BNSP clearly outperforms all other methods in terms of point prediction. In terms of
prediction intervals, all methods perform similarly. However, note that, while the coverage of
BNSP is slightly under our target, the coverage all of the other methods is slightly above target.

Finally, we assess the sensitivity of the model to the choice of R. Table 2.18 shows
nearly identical results by choosing R = 5,6,7 and 10, suggesting that our original choice of R

is sufficiently large for this application.
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BNSP Lasso Relion(2017) BLasso Horseshoe

MSPE 0.77 098 0.98 1.84 1.78
Coverage of 95% PI  0.92 0.97 0.97 0.97 0.93
Length of 95% PI 3.73 3.88 3.89 3.40 4.99

Table 2.16: Predictive performance of competitors in terms of mean squared prediction error
(MSPE), coverage and length of 95% predictive intervals, obtained through 10-Fold Cross Val-
idation in the context of real data. Note that since the response has been standardized, an MSPE
value greater than or around 1 will denote an inconsequential analysis.

2.5 Conclusion

This chapter proposes a novel Bayesian framework to address a regression problem
with a continuous response and network-valued predictors. Our contribution lies in carefully
constructing a novel class of network shrinkage priors that account for the correlation in the
regression coefficients that is expected from the relational nature of the predictor. Empirical
results from simulation studies show that our method is superior to popular alternatives in sit-
uations where the level of node sparsity is at least moderate, and mostly competitive in other
circumstances. In our analysis of the Composite Creativity Index, the results generated by our

model largely agree with those previously reported in the literature.
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Figure 2.7: Significant inter-connections detected among influential brain regions of interest
(ROIs) in the Desikan atlas. White cells show significant nodal associations among ROIs. Prefix
‘lh-’ and ‘rh-’ in the ROI names denote their positions in the left and right hemispheres of the
brain respectively.
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Left Hemisphere Lobes

Temporal Cingulate Frontal Occipital Parietal Insula
fusiform rostral-anteriorcingulate ~ caudal-middlefrontal cuneus postcentral
inferiortemporal caudal-anteriorcingulate lateral-orbitofrontal lingual supramarginal
transversetemporal isthmus-cingulate pars-opercularis pericalcarine
pars-triangularis
rostral-middlefrontal
superior-frontal gyrus
frontalpole
medial-orbitofrontal
Right Hemisphere Lobes
Temporal Cingulate Frontal Occipital Parietal Insula
middle-temporal caudal-anteriorcingulate ~ caudal-middlefrontal cuneus precuneus insula

superior-temporal isthmus-cingulate lateral-orbitofrontal lateral-occipital superior-parietal

entorhinal medial-orbitofrontal pericalcarine supramarginal-gyrus

fusiform pars-orbitalis lingual
precentral
rostral-middlefrontal

superior-frontal

pars-triangularis

Table 2.17: Brain regions (ROIs) detected as influential for the composite creativity index by
BNSP.

BNSP (R=5) BNSP(R=6) BNSP(R=7) BNSP(R=10)

MSPE 0.77 0.87 0.83 0.85
Coverage of 95% PI 0.92 0.92 0.92 0.91
Length of 95% PI 3.73 3.78 3.81 3.84
Posterior Mean of R, r¢ 2.41 2.69 2.46 2.57

Table 2.18: Predictive performance of BNSP with R = 5,6,7,10 to assess the sensitivity of
predictive inference with the choice of R.
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Chapter 3

High Dimensional Bayesian Network
Classification with Network

Global-Local Shrinkage Priors

3.1 Introduction

Chapter 2 discusses the network regression problem with a continuous response and
an undirected network predictor. However, there are pertinent biological and physiological
studies where a network along with a binary response is obtained for each subject. The goal
of these studies is usually to classify the networks according to the binary response and predict
the associated binary response from a network. We refer to this problem as the network or

graph classification problem. Additionally, Chapter 2 focuses on a specific network shrinkage
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prior, whereas this chapter generalizes the inference to a class of network global-local shrinkage
priors, which includes the prior specification in Chapter 2 as a special case.

Earlier literature on network or graph classification has been substantially motivated
by the problem of classification of chemical compounds [129], [65], where a graph represents a
compound’s molecular structure. In such analyses, certain discriminative patterns in a graph are
identified and used as features for training a standard classification method [31], [42]. Another
type of method is based on graph kernels [135], which defines a similarity measure between
two networks. Both of these approaches are computationally feasible only for small networks,
do not account for uncertainty, and do not facilitate influential network node identification.
When the number of network nodes is moderately large, a common approach to network clas-
sification is to use a few summary measures (average degree, clustering coefficient, or average
path length) from the network and then apply statistical procedures in the context of standard
classification methods (see, for e.g., [11] and references therein). These procedures have been
recently employed in exploring the relationship between the brain network and neuropsychi-
atric diseases, such as Parkinson’s [107] and Alzheimer’s [29], but the analyses are sensitive to
the chosen network topological measures, with substantially different results obtained for dif-
ferent types of summary statistics. Indeed, global summary statistics collapse all local network
information, which can affect the accuracy of classification. Furthermore, identification of the
impact of specific nodes on the response, which is of clear interest in our setting, is not feasible.
As with network regression problems, an alternate approach proceeds to vectorize the network
predictor and treat edge weights together as a long vector followed by developing a high di-

mensional regression model with this long vector of edge weights as predictors [114]; [27];
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[146]. This approach can take advantage of the recent developments in high dimensional binary
regression, consisting of both penalized optimization [133] and Bayesian shrinkage [109]; [17];
[5] perspectives. However, as mentioned in Chapter 2, this treats the links of the network as
exchangeable, ignoring the fact that coefficients involving common nodes can be expected to
be correlated a priori. In a related work, [136] propose to look for a minimal set of nodes which
best explains the difference between two groups of networks. This requires solving a combina-
torial problem. Again, [35] propose a high dimensional Bayesian tensor factorization model for
a population of networks that allows to test for local edge differences between two groups of
subjects. Both of these approaches tend to focus mainly on classification and are not designed
to detect important nodes and edges impacting the response.

Our goal in this chapter is to develop a high-dimensional Bayesian network classi-
fier that additionally infers on influential nodes and edges impacting classification. To achieve
this goal, we formulate a high dimensional logistic network regression model with the binary
response regressed on the network predictor corresponding to each subject. The network pre-
dictor coefficient is assigned a prior from the class of Bayesian network global-local shrinkage
priors discussed in this chapter. The proposed prior imparts low-rank and near sparse struc-
tures a priori on the network predictor coefficient. The low-rank structure of the coefficient is
designed to address the transitivity effect on the network predictor coefficient and captures the
effect of network edge coefficients on classification due to the interaction between nodes. On
the other hand, the near sparse structure accounts for the residual effect due to edges.

One important contribution of this chapter is a careful study of the asymptotic prop-

erties of the proposed binary network classification (BNC) framework. In particular, we focus

57



on consistency properties for the posterior distribution of the BNC framework using a specific
network global-local shrinkage prior, namely the Bayesian Network Lasso prior. Theory of
posterior contraction for high dimensional regression models has gained traction lately, though
the literature is less developed in shrinkage priors compared to point-mass priors. For ex-
ample, [19] and [7] have established posterior concentration and variable selection properties
for certain point-mass priors in the normal-means models. The latter chapter also establishes
asymptotically nominal coverage of Bayesian credible sets. Results on posterior concentration
and variable selection in high dimensional linear models are also established by [18] and [98]
for certain point-mass priors. In contrast, literature on posterior contraction properties for high
dimensional Bayesian shrinkage priors is relatively limited. To this end, [6] were the first to
show posterior consistency in the ordinary linear regression model with shrinkage priors for
low-dimensional settings under the assumption that the number of covariates does not exceed
the number of observations. Using direct calculations, [134] show that the posterior based on
the ordinary horseshoe prior concentrates at the optimal rate for normal-mean problems. Re-
cently, [128] considers a general class of continuous shrinkage priors and obtains posterior
contraction rates in ordinary high dimensional linear regression models. In the same vein, [143]
offers analysis of posterior concentration for logistic regression models with shrinkage priors
on coefficients. While [143] are the first to delineate a theoretical approach for ordinary high di-
mensional binary classification models with shrinkage priors, the study of posterior contraction
properties for more structured binary network classification problems in the Bayesian paradigm
has not appeared in the literature. In fact, developing the theory for Bayesian network clas-

sification with the Bayesian Network Lasso prior proposed in this chapter is faced with two
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major challenges. First, the novel Bayesian Network Lasso prior imparts a more complex prior
structure (incorporating a low-rank structure in the prior mean of edge coefficients, as described
in Chapter 2) than that in [143], introducing additional theoretical challenges. Second, we aim
at proving a challenging but practically desirable result of asymptotically optimal classification
when the number of edges in the network predictor grows at a super-linear rate as a function of
the sample size. Both of these present obstacles which we overcome in this work. The theoreti-
cal results provide insights on how the number of nodes in the network predictor, or the sparsity
in the true network predictor coefficients should vary with sample size n to achieve asymptoti-
cally optimal classification. We must mention that developing a similar theory for the Bayesian
Network Horseshoe prior proposed in this chapter faces more challenges due to complex prior
structure in parameters. We plan to tackle that problem as part of future work.

Section 3.2 develops the model and the prior distributions. Section 3.3 discusses
theoretical developments justifying the asymptotically desirable prediction from the proposed
model. Section 3.4 details posterior computation. Results from various simulation experiments
and a brain connectome data analysis have been presented in Sections 3.5 and 3.6 respectively.

Finally, Section 3.7 concludes the chapter with a brief discussion of the proposed methodology.

3.2 Model Formulation

In the context of network classification, we propose the high dimensional logistic

regression model of the binary response y; € {0, 1} on the undirected network predictor A; as

exp(¥i)

1+exp(\vl):| ) Wi :y+<Ai7F>F7 (31)

yi ~ Ber [
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where I' is a V x V symmetric network coefficient matrix whose (k,/)th element is given by
Yei/2, with Y =0, forallk =1,...,V.

Model (3.1) can be expressed in the form of a generalized linear model. To be more
specific, (A;,I)r = ¥ aixYks, sothat W =u+ Y @Yk, and the probability mass

1<k<I<V 1<k<I<V

function of y; can be written as

exp (Vi)
V= YU 3.2
PO = T explw) G2
Note that, if x; = (a;1 2, ...,a,-y(v,l)y)’ e RV(V-1/2 i5 the collection of all upper triangular ele-

ments of A;, and Y= (Y12, --'7Y(V—1),V)/ e RV(V-1/2 is the vector of corresponding upper trian-

gular elements of 2I, then (3.1) can be written as

i~ Ber (f"{(xi)) 9 f’Y(xi) = (1 j_xfx(;l(:j_[’i)/y)) . (33)

Although the binary network regression model is proposed for the logit link, it assumes natural
extension for any other link function. The next section describes a class of network global-local

shrinkage priors on network coefficients.
3.2.1 Bayesian network global-local shrinkage prior on the network predictor
coefficient
In this chapter, we propose the network global-local shrinkage prior given by,
'Yk,l|sk,la62 ~ N(M;CAMZ,GZS]%J), O~ H1(~), Skl ™~ Hz() (34)

Note that this framework a priori centers y;; at a low-rank decomposition and controls the

spread of the prior distribution of y,; using a global-local shrinkage prior. The formulation
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includes a wide variety of network shrinkage priors by choosing different functions H;(-) and
H,(-). For example, Chapter 2 has investigated a particular class of such prior distributions,
obtained by choosing H;(6) = 8;(G), where 8, (o) is the Dirac-delta function that is defined as
d1(0) =1if 6 =1, and 0 otherwise; and Hz(s,%,l) as an exponential density, referred to as the
Network Lasso prior. To show the generality of (3.4), we additionally investigate performance
of (3.4) in binary regression with s;; ~ C*(0,1) and 6 ~ C*(0,1). The resulting prior is re-
ferred to as the Network Horseshoe prior. The rest of the hierarchy on A,’s, u;’s follows as in

Chapter 2.

3.3 Posterior Contraction of the Binary Network Classification Model

This section establishes convergence results for (3.1) with ¥, ;’s following the Bayesian
Network Lasso shrinkage prior. From the hierarchical specification given in (3.4), the Bayesian
Network Lasso shrinkage prior is given by Yi|si; ~ N (uAuy, s,il)7 sél ~ Exp(0,/2). For the
theoretical study, a common practice is to fix 0, as a function of n [S]. Our theoretical inves-
tigations will also fix 0, (the exact expression is given in Condition (F) in the next subsection)
with the fixed values specified later.

Here we consider an asymptotic setting in which the number of nodes in the network
predictor, V,,, grows with the sample size n. This paradigm attempts to capture the fact that
the number of elements in A;, given by V. can be substantially larger than sample size. Since
model (3.1) is equivalent to model (3.3), the size of the coefficient ¥ in (3.3) is also a function

V,(Va—1)

of n, given by g, = #=—5—. This creates theoretical challenges, related to (but distinct from)
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those faced in showing posterior consistency for high dimensional continuous [5] and binary
regressions [143].
Lety, = (y1,.--,yn)". Using the superscript (0) to indicate true parameters, the true

data generating model is given by

exp(y'”)

©) _ 4. 7O
LV = (AL T ). (3.5)
1 +exp(y}”)

y; ~ Bernoulli

where I'©) is the true network coefficient. Let 79 be the vectorized upper triangular part of
', We assume, y,(c?l) = u,(co)/Aul(O) —i—yg?,il, where u,(co) is a Ry dimensional vector, k =1,...,V.

Ygo) is the vector of all 'yg_),z ;» k <, and we denote the number of nonzero elements of 'yéo) by

. 0
0 e [0 =53,

s
n
For any € > 0, define 4, = {y: LY [ fx) — Jyo ()] < 8} as a neighborhood around
i=1
the true density. Further suppose ,(-) and IT,(-) are the prior and posterior densities of y with

n observations, so that

~Jae ()T (Y)

) = )

)

where py(y,) denotes the likelihood of the ndimensional response vector y,.

3.3.1 Main Results

To show the posterior contraction results, we follow [143] and [5], with substantial
modifications required due to the nature of our proposed network lasso prior distribution. In
proving the results, we make a couple of simplifications. It is assumed that the dimension R of

(0)

uy, is fixed and is the same as Ry, the dimension of u, ’. Consequently, effective dimensionality

is not required to be estimated, and hence A = I is a non-random matrix. Additionally, we
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assume M to be non-random and M = I. We emphasize that both these assumptions are not es-
sential for the posterior contraction rate result to be true, and are only introduced for simplifying
calculations.

For two sequences {C , }n>1 and {C2 » }n>1, C1 n = 0(Ca ) if C1 1 /Cap — 0, a8 1 — 00
To begin with, we state the following assumptions under which posterior contraction will be

shown.

0
@A) sup )] <o
r=1,..,R:k=1,...,V, ’

B) Vn= 0(10;(”) );

(C) ||A;|| is bounded for alli = 1,..,, w.l.o.g assume ||A;|| < 1.

(D) s2,108(¢a) = o(n)
E) || < o3

(F) 6, = for some C > 0 and some p € (1,2).n

¢
gnnP/2log(n)

Remark: Conditions (A), (C) and (E) are technical conditions ensuring that each of
the entries in the true network coefficient and the network predictor are bounded. Condition (B)
puts an upper bound on the growth of the number of network nodes with sample size to achieve
asymptotically optimal classification. Similarly, (D) puts a restriction on the number of nonzero

(0)

elements of 720 with respect to n.
The following theorem shows contraction of the posterior asymptotically under mild

sufficient conditions on V,, sg‘n. The proof of the theorem is provided in Appendix F.

63



Theorem 3.3.1 Under assumptions (A)-(F) for the Bayesian Network Lasso prior on, I1,(4,) —

0in Py(o) as n — oo, for any € > 0.

3.4 Posterior Computation

We have implemented both the Bayesian Network Lasso and Network Horseshoe
shrinkage priors on Y. Using the result in [111], the data augmented representation of the distri-

bution of y; given in (3.2) follows as below
p(yilo) =27 exp(kiyi) exp(—o; /2), @; ~ PG(1,0), (3.6)

, )
where k; = y; — 1/2. Let x; = (i ,12,0i.13,--,0i.1,V,8i23,8i2.4, -, 4i2 V..., diy—1v) be of di-

V(V—1)
2

mension g X 1, where ¢ = . Assume X = (x; : ---: x,)" is an n X ¢ matrix. Then the

conditional likelihood of y = (y1,...,y,)’ given ® = (®y,...,®,)" and Y is given by

pO|X,v,0) o< [ [ (il i, v, @i, ...
i=1

1

o ﬁexp{m—o.sxuﬂ;v) ot )2}
n ) o 2
: Hexp{—";’ O ey }

In matrix notation, the likelihood may be written as
PO X, v,...) o< N(t [ul +X7,Q7")

where 1 = ((y; —0.5)/®1,...,(yn — 0.5)/®,) = (k1 /o1,....,k,/®,) and Q = diag(®y,...,®,).
While the full posterior distributions for the parameters are not in closed forms, they mostly

belong to the standard families. Hence drawing posterior samples using MCMC can be readily
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implemented. Appendix D and Appendix E describe full conditional distributions of parameters
for Bayesian Network Lasso and Network Horseshoe priors on 7, respectively.
Let Q(l), e o yeees 'Y and ,u(l), ...,,u(L) be the L post burn-in MCMC samples

for Q, I' and u respectively after suitable thinning. To classify a newly observed network M, as

exp(u!) (M, T >>)
]

0 = *
a member of one of the two groups, we compute S Tt exp(0 1 (4, T

forl=1,....L. M,
is classified as a member of group ‘low’ or ‘high’ if %Zf:] S0 is less than or greater than 0.5,
respectively. To judge sensitivity to the choice of the cut-off, the simulation section presents
Area under Curve (AUC) of ROC curves with True Positive Rates (TPR) and False Positive
Rates (FPR) of classification corresponding to a range of cut-off values.

Node £ is recognized to be influential in the classification process if %Zlel ?’;,((l) > 0.5,
where &,({1), ...,&,EL) are the L post burn-in MCMC samples of ;. Again, one of the goals of the
proposed framework is to identify influential network edges impacting the response. We employ
the algorithm described in Appendix C to identify influential edges. The algorithm takes care
of multiplicity correction by controlling the false discovery rate (FDR) at 5% level. Finally, we
present an estimate of P(R, s = r|Data) computed by + ¥ I(¥X_, A = r), where I(A) for

(1)

an event A is 1 if the event A happens and O otherwise, and A, ..., k,(nL ) are the L post burn-in

MCMC samples of A,,.

3.5 Simulation Studies

This section evaluates the inferential and classification ability of our proposed Bayesian

network classification (BNC) framework, along with a number of competitors, using synthetic
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networks generated under various simulation settings. Our proposed network classification ap-
proach with the Bayesian Network Lasso prior and the Bayesian Network Horseshoe prior are
referred to as the Bayesian Network Lasso classifier (BNLC) and Bayesian Network Horseshoe
classifier (BNHC), respectively. In each simulation, we assess the ability of the BNLC and
BNHC approaches to correctly identify influential nodes and edges, to accurately estimate pre-
dictive edge coefficients and to classify a network with precise characterization of uncertainties.
Classification performance of both methods are assessed using the area under the Receiving Op-
erating Characteristics (ROC) curve (AUC).

To study all competitors under various data generation schemes, we simulate the re-

sponse from (3.1) given by

yiner( exp(to + (Ai- To)r) >, (3.7

1 +exp(uo + (Ai,To)r)
where I'( is a symmetric matrix with zero diagonal entries. The intercept uo is fixed at 2 in all

simulation scenarios. We consider two different schemes of generating the network A;, referred

to as Simulation I and Simulation 2, respectively.

Simulation 1. In Simulation 1, the network edges (i.e., the elements of the matrix A;) are sim-
ulated from N(0, 1). Thus, Simulation 1 assumes that the network predictor follows an Erdos-
Renyi graph.

Simulation 2. In Simulation 2, the network predictor A; corresponding to the ith sample is
generated from a stochastic blockmodel. Here nodes in a simulated network are organized into

communities so that nodes in the same community tend to have stronger connections than nodes
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belonging to different communities. This simulation scenario simulates networks which closely
mimic brain connectome networks [11]. To simulate networks with such community structures,
we assign each node a community label, f; € {1,2,...,3},k=1,...,V. The node assignments are
the same for all networks in the population. Given the community labels, the (k,k’)th element of
A is simulated from N (my, 7,,03), where my; = 0.5 when k = [. When k # [, i.e., the concerned
edges connect nodes belonging to different clusters, we sample a fixed number of edge locations
randomly and simulate the values from N(0, 1), assigning the values at the remaining locations
to be 0. We set 6(2) =1 and the three clusters with 8, 9 and 8 nodes respectively, in the three
communities. We note that the network predictors are simulated from a stochastic blockmodel
in Simulation 2 which also ensures transitivity in the network predictor.

Simulating the network predictor coefficient I'g. In both Simulations 1 and 2, the network pre-

dictor coefficient I'g is constructed as the sum of two matrices I'p | and I'o>. We provide the
details of constructing the two matrices as below.
In both Simulations 1 and 2, we draw V latent variables uy o, each of dimension R,,

from a mixture distribution given by
U0 ~ TR, (g, 1ty o) + (1 —T)80; k € {1,...,V}, (3.8)

where 9y is the Dirac-delta function and 7 is the probability of any u o being nonzero. Define

a symmetric matrix I ; whose (k,/)th element is given by u"’OZMI'O, k<land =0if k =1. Note

that if uy  is zero, then the kth node has no contribution to the mean function in (4.8), i.e., the
kth node becomes non-influential in predicting the response. Since (1 — ) is the probability of

a node being inactive, it is referred to as the node sparsity parameter in the context of the data
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generation mechanism under Simulations 1 and 2. All elements of u,, ¢ are taken to be 0.5 and
ug ¢ 18 taken to be 1.

We also construct another symmetric sparse matrix I'g > to add additional edge effects
corresponding to edges connecting a few randomly selected nodes. Let 7, be the proportion of
nonzero elements of I'y 5, set randomly at either 0.05 or 0.1. We randomly choose 7, proportion
of locations from the set of all (k,/). The nonzero entries are drawn using one of the three
following strategies:

Strategy 1: Nonzero entries are simulated from N(1,0.1).
Strategy 2: Nonzero entries are simulated from N(0.5,0.1).
Strategy 3: All nonzero entries are fixed at 0.5.

The quantity (1 — ) is referred to as the residual edge sparsity.

Note that the specification of true edge coefficients largely preserves the transitivity
property in I'y. To see this, note that I'y > is highly sparse, so that Yo 1 x; = Yo, for most pairs
(k,1), k < 1. For those pairs, Yo ; 7 0 and ¥, # 0 imply that u; o # 0, u; 0 # 0 and uy o # 0.
Thus it follows that Yoy = %0 £ 0.

For a comprehensive picture of Simulation 1 and Simulation 2, we consider 4 different
cases each in both simulations as summarized in Table 3.1 and 3.2 respectively. In each of these
cases, the network predictor coefficient and the response are generated by changing the node
sparsity (1 —m), the residual edge sparsity (1 —m,) and the true dimension R, of the latent
variables u; o’s. The table also presents the maximum fitted dimension R of the latent variables
uy for the logistic regression model (3.2). Note that the various cases also allow model mis-

specification with unequal choices of R and R,.
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Cases R, R Node Residual Edge Strategy
Sparsity (1 —m) Sparsity (1 —x,)

Case-1 2 2 0.5 0.95 Strategy 1
Case-2 3 5 0.6 0.95 Strategy 1
Case-3 2 5 0.5 0.90 Strategy 2
Case-4 2 5 0.4 0.90 Strategy 3

Table 3.1: Table presents different cases for Simulation 1. The true dimension R, is the di-
mension of vector object uy o using which data has been generated. The maximum dimension R
is the dimension of vector object u; using which the model has been fitted. Node sparsity and
residual edge sparsity are described in the text.

Cases R, R Node Residual Edge Strategy
Sparsity (1 —m) Sparsity (1 —m,)

Case-1 2 2 0.5 0.95 Strategy 1
Case-2 2 4 0.5 0.95 Strategy 1
Case-3 2 3 0.7 0.95 Strategy 1
Case-4 2 5 0.4 0.90 Strategy 3

Table 3.2: Table presents different cases for Simulation 2. The true dimension R, is the di-
mension of vector object uy o using which data has been generated. The maximum dimension R
is the dimension of vector object u; using which the model has been fitted. Node sparsity and
residual edge sparsity are described in the text.

As competitors, we use generic variable selection and shrinkage methods that treat edges be-
tween nodes together as a long predictor vector to run high dimensional regression, thereby
ignoring the relational nature of the predictor. More specifically, we use Lasso [133], which is
a popular penalized optimization scheme, and the Bayesian Lasso (BLasso for short)[109] and
Bayesian Horseshoe (BHS for short) priors [17], which are popular Bayesian shrinkage regres-

sion methods, all three under the logistic regression framework. We use the glmnet package
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in R [50] to implement the frequentist Lasso, while we write our own codes for BLasso and
BHS. A comparison with these methods will indicate any relative advantage of exploiting the
structure of the network predictor. Additionally, we compare our methods to a frequentist ap-
proach that develops network classification in the presence of a network predictor and a binary
response [113]. We refer to this approach as Relion.

All Bayesian competitors are allowed to draw 50,000 MCMC samples, out of which
the first 30,000 are discarded as burn-ins. Convergence is assessed by comparing different
simulated sequences of representative parameters starting at different initial values [53]. All
posterior inference is carried out based on the rest 20,000 MCMC samples after suitably thin-
ning the post burn-in chain. We monitor the auto-correlation plots and effective sample sizes of
the iterates, and they are found to be satisfactorily uncorrelated. In all of our simulations, we
set V =25 nodes and n = 250 samples.

We present analysis for v = 20, an = bp = 1. For BNLC, there are two additional
hyper-parameters 1 and {, both of which are set to 1. Note that the choice of ay = by = 1
ensures that the prior on models is such that we have a uniform distribution on the number
of active nodes, and conditional on the size of the model, a uniform distribution on all possible
models of that size. The choice of v = 20 ensures that the prior distribution of M is concentrated
around a scaled identity matrix. Since model is invariant to rotations of the latent positions, so
we want the prior on u;’s to also be invariant under rotation. That requires that we center M
around a matrix that is proportional to the identity. Our choice of 1 and { set the prior mean
of s;; at 0.5 which is the suggested prior mean for the local parameters proposed in [109].

Sensitivity to the choice of hyper-parameters is discussed later, both for simulation studies and
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for the real data analysis.

3.5.1 Identification of Influential Nodes

Figures 3.1 and 3.2 show the posterior probability of the k-th node being detected
as influential, i.e., P(& = 1|Data), by BNLC and BNHC for each node and each case within
Simulations 1 and 2, respectively. Some interesting observations emerge from the results. We
find that both methods work well with lower node sparsity and higher residual edge sparsity.
Decreasing the residual edge sparsity and increasing the node sparsity have adverse effects on
the performance. In general, BNLC shows relatively better performance than BNHC in cases
with higher node sparsity and/or lower residual edge sparsity. We provide a brief discussion
below to support these observations.

For BNHC, case 2 exhibits a few false positives, and the separation of posterior prob-
abilities for truly active and truly inactive nodes is much more stark in case 1 than in case 2.
BNLC does a better job of node identification than BNHC in case 2. Residual edge effect does
have an impact on the probabilities, which is evident by comparing cases 1 and 3. For BNHC,
case 3 (Simulation 1) displays poor performance with a higher number of both false positives
and false negatives. Performance of BNLC appears to be better than BNHC in case 3. Fixing
the residual edge sparsity and increasing the node sparsity has a negative impact on node identi-
fication, as seen by comparing performances in cases 3 and 4 (Simulation 1). For Simulation 2,
both competitors perform quite well in cases 1 a nd 2. Again, case 3 (Simulation 2) represents a
higher node sparsity, so that both BNHC and BNLC do not perform well in this case. Similar to

Simulation 1, BNHC shows inferior performance to BNLC in case 3. While BNHC offers a few
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false positives and false negatives in case 4 (Simulation 2), the performance appears to be much
better than in case 3. Notice that case 3 has both higher node sparsity and residual edge sparsity
than case 4. While they have opposing effects, it appears that higher node sparsity demonstrates
more of an adverse effect here compared to a small perturbation in the residual edge sparsity.
Recall that [113] is the only other competitor which is designed to detect influential nodes. It

detects all nodes to be influential in all simulation cases.
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Figure 3.1: Simulation 1: clear background denotes uninfluential and dark background denotes
influential nodes in the truth for BNLC and BNHC models. Note that there are 25 rows (cor-
responding to 25 nodes) and 4 columns corresponding to 4 different cases in Simulation 1.
The model-detected posterior probability of being influential has been super-imposed onto the
corresponding node.
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Figure 3.2: Simulation 2: clear background denotes uninfluential and dark background denotes
influential nodes in the truth for BNLC and BNHC models. Note that there are 25 rows (cor-
responding to 25 nodes) and 4 columns corresponding to 4 different cases in Simulation 2.
The model-detected posterior probability of being influential has been super-imposed onto the
corresponding node.

3.5.2 Identification of Influential Edges

We apply the algorithm with a mixture of skewed t-distributions described in Ap-
pendix C to detect influential edges from the post burn-in MCMC samples of the edge coeffi-
cients using a threshold of = 0.05. The proposed approach controls FDR below a threshold
of 0.05 to account for multiplicity correction. Tables 3.3 and 3.4 provide the true positive rates
(TPR) and false positive rates (FPR) in detecting important edges for Simulations 1 and 2 for
the competitors, respectively. It is observed that when node sparsity is moderate and residual
edge sparsity is high (cases 1 and 2), both BNLC and BNHC offer moderate performance in

terms of identifying true positives, and include very few false positives. In these cases, BNHC
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generally exhibits a little higher FPR than BNLC. In the case of high node sparsity (e.g., case
3, Simulation 2) both these methods unfortunately show much lower true positive rates. Again,
lower edge sparsity (case 3, Simulation 1) has almost no effect on FPR of BNLC, but decreases
TPR substantially. For BNHC, both TPR and FPR increase when residual edge sparsity is re-
duced. Nevertheless, both of them perform significantly better than Lasso in almost all cases.
The competitor in [113] appears to have suboptimal performance, as it identifies all edges as

important in all the simulation scenarios, resulting in high FPRs.

BNLC BNHC Lasso Relién (2017)

Cases | TPR FPR | TPR FPR | TPR FPR | TPR FPR

Case-1| 065 0.01 | 0.72 0.12 | 0.50 0.22
Case-2 | 0.64 0.00 | 0.63 0.02 | 040 0.14
Case-3 | 045 0.00 | 0.86 0.40 | 042 0.22
Case-4 | 072 0.09 | 0.70 0.12 | 0.54 0.16

—_ = =
—_ = =

Table 3.3: True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases in
Simulation 1.

BNLC BNHC Lasso Relion(2017)

Cases | TPR FPR | TPR FPR | TPR FPR | TPR FPR

Case-1| 063 0.00 | 0.84 0.08 | 0.44 0.20
Case-2 | 056 0.00 | 0.63 0.12 | 0.53 0.22
Case-3 | 046 0.02 | 0.59 0.08 | 031 0.16
Case-4 | 0.68 0.03 | 0.75 0.06 | 0.34 0.12

—_
—_ e

Table 3.4: True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases in
Simulation 2.
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The results in Tables 3.3 and 3.4 indicate higher number of edges identified as influ-
ential by BNHC than BNLC in all simulations. Digging a bit deeper, we report the ratio of the
number of edges in the intersection of both methods to the number of total edges identified by
each method independently in Table 3.5. In all simulation cases, almost all edges identified as
influential by BNLC are also identified as influential by BNHC. In cases 2 and 4 (Simulation
1), the fractions corresponding to BNLC and BNHC are very similar, indicating similar edge
identification by both of them. However, this fraction appears to be lower in BNHC for cases
1 and 3 (Simulation 1). This again shows that the edges identified by BNLC are also identified
by BNHC, with BNHC identifying more edges. The discrepancy turns out to be more in case
3 (Simulation 1) where BNHC has identified many more edges. Simulation 2 shows a similar
trend. We further track the top 10, 20 and 30 edges identified from BNLC and record how many
of these edges belong to the top 10, 20 and 30 edges identified from BNHC. Table 3.5 shows a
high level of intersection among the top edges identified by these two methods.

A number of interesting observations emerge from the analysis. First of all, as men-
tioned earlier, the edges identified by BNLC are generally also identified by BNHC. BNHC
tends to identify more edges, leading to higher TPR and FPR. Broadly, in presence of higher
node sparsity, the discrepancy is greater, with BNHC having much higher TPR and FPR. In-
terestingly, the absolute values of the edge coefficients follow very similar rankings for BNHC
and BNLC, which leads to high intersections among the top edges selected by these methods.
Perhaps the difference in shrinkage mechanism imposed by BNHC and BNLC is responsible

for their difference in tail behavior, leading to differences in edge selection.
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Simulation 1 Simulation 2
Ngr. Ngr, NpL, N,
Cases f\,;f” ]'f,LB [’j” Top f;,LB f” If,; I‘j” Top

10 20 30 10 20 30
1 0.94 0.61 9 19 27| 1.00 0.58 7 17 26
2 0.85 0.83 8 14 21| 1.00 0.46 8 17 26
3 1.00 0.25 9 13 24| 0.97 070 9 18 28
4 0.91 0.87 8 18 27| 091 0.75 8 17 27

Table 3.5: Np; pn represents the number of edges identified by both BNLC and BNHC. Simi-
larly, Np;, and Npy represent the number of edges identified by BNLC and BNHC, respectively.
Top 10 represents the number of edges common among the top ten edges identified by BNLC
and BNHC. Top 20 and Top30 are defined analogously.

3.5.3 Estimation of Edge Coefficients and Classification Accuracy

The mean squared errors (MSE) associated with the point estimation of edge coef-
ficients for different competitors are presented in Tables 3.6 and 3.7, corresponding to Sim-
ulations 1 and 2, respectively. For the Bayesian competitors, point estimates are computed
using the posterior means of the edge coefficients. In all cases, BNLC and BNHC consistently
outperform all other competitors, with the binary Bayesian Lasso exhibiting the next best per-
formance. In all simulation cases, BNLC comprehensively outperforms BNHC in terms of
estimating edge coefficients. Consistent with earlier observations, both competitors tend to be
less accurate when node sparsity increases. Figure 3.3 records AUC for all competitors in Sim-
ulations 1 and 2. In almost all cases, AUC for BNHC and BNLC turn out to be higher than
other competitors. On the other hand, [113] appears to have close to random classification of

samples with AUC around 0.5.
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Figure 3.3: Figure shows classification performance in the form of Area under Curve (AUC) of
ROC for all cases in Simulations 1 and 2.

MSE

Cases | BNLC BNHC Lasso Relién(2017) Binary Binary
BL Horseshoe

Case-1| 0.164 0.683 1.197 1.387 0.980 1.160
Case-2 | 2.349 3.568 3.943 4.368 3.502 3.993
Case-3 | 0.106 0.467 0.906 1.056 0.695 0.856
Case-4 | 0.166 0.200 0.485 0.617 0.329 0.415

Table 3.6: Performance of BNLC and BNHC vis-a-vis competitors for cases in Simulation 1.
Parametric inference in terms of point estimation of edge coefficients has been captured through
the Mean Squared Error (MSE). The minimum MSE among competitors for any case is made
bold.
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Figure 3.4: Plots showing posterior probability distribution of effective dimensionality for
BNLC and BNHC models in all 4 cases in Simulation 1. Filled bullets indicate the true value
of effective dimensionality.
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Figure 3.5: Plots showing posterior probability distribution of effective dimensionality for
BNLC and BNHC models in all 4 cases in Simulation 2. Filled bullets indicate the true value

of effective dimensionality.
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3.5.4 Estimation of Effective Dimensionality

Figures 3.4 and 3.5 present posterior probabilities of effective dimensionality of the
latent positions uy, . ..,uy for BNLC and BNHC in Simulations 1 and 2, respectively. Note that
the true dimension of the latent space is known and recorded for all simulations in Tables 3.1
and 3.2. In all 8 cases, the posterior mode corresponds to the true dimension of the latent space
for both BNLC and BNHC. Compared to BNLC, the posterior distribution of R,y in BNHC

concentrates more sharply around R, in all cases.

MSE

Cases | BNLC BNHC Lasso Relién(2017) Binary Binary
BL Horseshoe

Case-1| 0279 0418 0.807 0.939 0.712 0.739
Case-2 | 0.180 0.388 0.514 0.665 0.423 0.548
Case-3 | 0.134 0.549 0.906 1.097 0.748 0.883
Case-4 | 0.066 0.106 0.167 0.221 0.137 0.141

Table 3.7: Performance of BNLC and BNHC vis-a-vis competitors for cases in Simulation 2.
Parametric inference in terms of point estimation of edge coefficients has been captured through
the Mean Squared Error (MSE). The minimum MSE among competitors for any case is made
bold.

3.5.5 Sensitivity to the choice of Hyperparameters

To assess how sensitive the inferences from BNLC and BNHC are, we analyze BNLC
and BNHC with different combinations of hyperparameters. Specifically for BNLC, we use the

five different combinations given by, (i) an = 1,bp = 9; (i) v =20,6 = 5 (iii)) v = 50,0 = 5
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(iv) v=20,6 = 0.2 (v) v= 50,8 = 0.2. Combination (i) ensures small prior mean for &;’s,
while combinations (ii)-(v) allow a range of prior means for 8 and M. On the other hand, the
three different combinations we employ for BNHC are, (i)’ a =1, b =9 (ii)’ v = 10 (iii)’
v = 50. With these hyperparameter combinations for BNLC and BNHC, we analyze the data
simulated in case 4, Simulation 1 (case chosen randomly), report performances on influential
node and edge identification and the MSE values for estimating the network coefficient matrix.
All these inferences with different choices of hyperparameters are compared among themselves
and compared with the inferences reported earlier on case 4, Simulation 1.

Table 3.8 records the MSE values for estimating the network coefficient under all
these combinations. The MSE values for BNLC range between 0.10 and 0.30 (please see ta-
ble 3.6). MSE values for BNHC are found to range between 0.19 and 0.28 with different choices
of hyperparameters, as shown in able 3.6. Figure 3.6 shows the posterior probabilities of a node
being identified as influential under all these hyperparameter combinations. It shows probabili-
ties being only little affected by the change of hyper-parameters. In fact, under hyper-parameter
combinations (i),(ii) and (iv), BNLC identifies the same set of nodes as influential which have
been identified as influential by the original BNLC prior. Under combination (iii), BNLC does
not identify node 9 as influential which has been identified as influential by the original BNLC
prior. Under combination (iv) BNLC identifies one additional node (node 21) as influential over
the set of nodes identified by the original prior. Under hyperparameter combination (i)’, BNHC
identifies the same set of nodes with the original BNHC prior except nodes 4,9,18,25 which
are identified as influential by the original prior, but not by the combination (i)’. Combinations

(i1)’ and (iii)’ also identify the same set of nodes with the original BNHC prior except for nodes
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9,18,25. Finally, Table 3.9 offers TPR and FPR values corresponding to the identification of
influential edges for BNLC and BNHC under various combinations of hyper-parameters. The
TPR for BNHC under combination (iii)’ turns out to be a little higher than the rest, but overall
numbers do not show a lot of variation. We emphasize that the results turn out to be better than

our competitors under all combinations.

BNLC BNHC

Combinations | (i) @) @) 3Gv) () 1) iy @Gy

MSE 0.14 030 022 0.10 022|019 028 0.28

Table 3.8: Mean Squared Error (MSE) of estimating the network coefficient in BNLC and
BNHC for different combinations of hyper-parameters.

1 0.082 0.255 0 0.260 0.411 ] 0.000 0. 0.001

o~ 1.000 1.000 0 1.000 1.0 N 1.000 1.000
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Figure 3.6: Figure shows P(&; = 1|Data) for BNLC and BNHC under different hyper-parameter
combinations in the simulated data for case 4 (Simulation 1).
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BNLC BNHC

Combinations | (i) G @i @Gv)y  (v) | G Gy @Gy’

TPR 0.80 0.76 0.82 0.83 0.78 | 0.64 0.88 0.82

FPR 0.16 0.21 0.17 0.21 0.18 | 0.19 0.24 0.18

Table 3.9: True Positive Rates (TPR) and False Positive Rates (FPR) of identifying influential
edges in BNLC and BNHC for different combinations of hyper-parameters.

3.6 Brain Connectome Application

In this section, we present the inferential and classification ability of BNLC and
BNHC in the context of a weighted diffusion tension imaging (DTI) dataset. Our dataset con-
tains information on the full scale intelligence quotient (FSIQ) for multiple individuals. Full
scale intelligence quotient (FSIQ) is a measure of an individual’s complete cognitive capacity.
It is derived from administration of selected sub-tests from the Wechsler Intelligence Scales
(WIS), designed to provide a measure of an individual’s overall level of general cognitive and
intellectual functioning, and is a summary score derived from an individual’s performance on
a variety of tasks that measure acquired knowledge, verbal reasoning, attention to verbal ma-
terials, fluid reasoning, spatial processing, attentiveness to details, and visual-motor integration
[15]. A substantial body of literature has suggested that there is an IQ threshold (usually de-
scribed as an IQ of approximately 120 points) that may be characterized as superior reasoning
ability [10, 16]. Following this literature, we have converted the FSIQ scores into a binary re-
sponse variable y, which takes value 0 if FSIQ is less or equal to 120, and takes value 1 if FSIQ

is greater than 120. Thus, we classify the subjects in our study as belonging to the low IQ group
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if y =0, and the high IQ group if y = 1.

Along with FSIQ measurements, brain connectome information for n = 114 subjects
is gathered using weighted diffusion tensor imaging (DTI). DTI is a brain imaging technique
that enables measurement of the restricted diffusion of water in tissue in order to produce neural
tract images. The brain imaging data we use has been pre-processed using the NDMG pre-
processing pipeline [82]; [81]; [83]. In the context of DTI, the human brain is divided according
to the Desikan atlas [32], which identifies 34 cortical regions of interest (ROIs) both in the left
and right hemispheres of the human brain, implying 68 cortical ROIs in all. Similar to Chapter
2, this results in a brain network of a 68 x 68 matrix for each individual. Our scientific goals
in this setting include identification of brain regions or network nodes significantly related to
FSIQ and classification of a subject into the low IQ or high IQ group based on his/her brain
connectome information.

Identical prior distributions for all the parameters as in the simulation studies have
been used. BNLC and BNHC are both fitted with R = 4, which is found to be sufficient for
this study. Further, Chapter 2 shows robust inference as long as the chosen R is bigger than the
effective dimensionality of the latent variables. Similar to Chapter 2, we also do a sensitivity
study to check the impact of R on predictive inference. The choice of hyperparameters for
BNLC and BNHC are made similar to the simulation studies. A brief explanation for such
choices of hyper parameters is provided in the simulation section. The MCMC chain is run
for 50,000 iterations, with the first 30,000 iterations discarded as burn-in. Convergence is
assessed by comparing different simulated sequences of representative parameters started at

different initial values [52]. All inference is based on the remaining 20,000 post burn-in iterates
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appropriately thinned.

3.6.1 Findings from the Brain Connectome Application

As in simulation studies, we put our emphasis on identifying influential brain regions
of interest (ROIs) associated with FSIQ. The BNLC model estimates posterior probabilities
over 0.5 (hence detecting as influential) for 38 ROIs, out of which 20 regions are in the left
hemisphere and 18 regions are in the right hemisphere. Among the regions detected in both
the hemispheres, a large number belong to the frontal, temporal and cingulate lobes. Using the
same principle, the BNHC model identifies 48 nodes to be influential. Out of the 48 influential
nodes, 26 are detected in the left hemisphere and the rest in the right hemisphere. The ROIs
are mainly detected in the temporal, frontal, parietal and cingulate lobes in both hemispheres.
Figure 3.8 plots the estimated posterior probability of an ROI being detected as influential by
the BNLC and BNHC models. Notably, there are 29 ROIs identified by both BNLC and BNHC,
given in Table 3.10.

A large number of the 29 influential nodes detected by both BNLC and BNHC are part
of the frontal lobes in both the hemispheres. Numerous studies have linked the frontal region
to an individual’s intelligence and cognitive functions [145, 131, 112, 99, 87]. Our method
also finds a significant association between FSIQ and the left inferior parietal lobule, the left
precuneus and the supramarginal gyri in both the hemispheres, in the parietal lobe, regions also
found to be significantly related to FSIQ by [145].

We additionally look into ROIs which are detected by only of the two methods (lets

say, BNLC), and report the posterior probabilities of these ROIs being active under the other
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method (i.e., BNHC). Figure 3.7 shows the posterior probabilities of nodes being active under
the ‘other’ method as discussed above. It is observed that the nodes selected by BNHC but not
by BNLC have probabilities not very far from 0.5 under BNLC, which says that BNLC is not
enough confident to exclude these nodes from the set of influential nodes. However, most of the
nodes selected by BNLC but not by BNHC show smaller probabilities of being influential under
BNHC. Perhaps, BNLC is more conservative in including nodes in the set of influential nodes,
which is responsible for the discrepancy between the number of identified nodes by BNHC and
BNLC.

As described earlier, we identify influential edges connecting pairs of influential
nodes using the algorithm described in Appendix C. Figure 3.9 presents the influential edges
(among all edges connecting pairs of influential nodes) identified by the BNLC and BNHC
models. Note that BNLC and BNHC identify 142 and 291 edges as being influential out of (328 )
and (428 ) possibilities, respectively. Since a different number of nodes are detected as influential
by BNHC and BNLC, to make a fair comparison, we consider the 29 nodes detected as influen-
tial by both methods, and use our algorithm to find the number of influential edges among these
(229 ) possibilities for both BNLC and BNHC. The numbers turn out to be 96 and 184, respec-
tively. We note that there are a few nodes which are identified as influential by either BNHC or
BNLC, but none of the edges connecting these nodes are found to be influential. As an example,
although the frontal pole and the temporal pole in the left hemisphere are identified as influen-
tial nodes by BNLC, none of the edges connecting these two nodes turn out to be influential.
This phenomenon may be due to the use of the FDR in the edge selection procedure, which

finds edges that are most likely to be active while controlling for false discoveries. Hence, not
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Figure 3.7: Figure shows the posterior probabilities of nodes selected as influential by one
method, but not by another, of being active.

identifying an edge does not necessarily mean that the edge is not active, it just means that there
are others that satisfy the criteria better.

Similar to simulation studies, we dig deeper to analyze the discrepancy in the num-
ber of influential edges identified by BNLC and BNHC. Specifically, we rank the (229) =406
edges connecting the nodes found to be influential by both BNLC and BNHC, according to the

absolute values of their posterior means. Table 3.11 shows between 23-74% intersections.
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Hemisphere Lobe

Node

Temporal  fusiform, middle temporal gyrus, parahippocampal, temporal pole, transverse temporal

Cingulate isthmus cingulate cortex

Frontal pars opercularis, pars orbitalis, pars triangularis, frontal pole
Left

Occipital  lingual

Parietal inferior parietal lobule, precuneus, supramarginal gyrus

Insula insula

Temporal  parahippocampal, superior temporal gyrus, temporal pole

Cingulate  caudal anterior cingulate, isthmus cingulate cortex

Frontal lateral orbitofrontal, medial orbitofrontal, pars opercularis, pars orbitalis,
Right rostral middle frontal gyrus, superior frontal gyrus

Occipital ~ pericalcarine

Parietal supramarginal gyrus

Insula insula

Table 3.10: Nodes identified as influential by both BNLC and BNHC.

To examine the predictive ability of the Bayesian network classification model, we

report the area under curve (AUC) of the ROC curve for BNLC and BNHC, along with all

competing methods. The AUCs are computed using a 10-fold cross validation approach. The

AUC estimates presented in Table 3.12 indicate better performance of both BNLC and BNHC,

with BNLC slightly outperforming. Frequentist Binary Lasso turns out to be the next best

performer, while BLasso and BHS perform very similar to a random classifier. Finally, the

effective dimensionality of the model is investigated for both BNLC and BNHC, and they turn

out to be 2.17 and 2, respectively.
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Figure 3.8: Lateral and medial views of the brain (left and right hemispheres) showing all 68
regions of interest (ROIs). The size and color of the ROIs vary according to the value of the
posterior probabilities of them being actively related to the binary response for both BNLC and
BNHC models.

89



Top 100 Top 200 Top 300

23 99 222

Table 3.11: Top 100 represents the number of edges common among the top 100 edges identified
by BNLC and BNHC. Top 200 and Top 300 are defined analogously.

Method | BNLC BNHC Lasso Relién(2017) Binary Binary
BL BHS

AUC 0.617 0.598 0.532 0.466 0.461 0.484

Table 3.12: Predictive performance of Bayesian Network Classification (BNC) vis-a-vis com-
petitors in terms of Area Under Curve (AUC) of the ROC. AUC has been calculated in each
case using 10-fold cross validation.

3.6.2 Sensitivity to the choice of hyperparameters

We have already discussed how the hyperparameters are chosen for the simulation
studies and data analysis. To assess how sensitive the inferences from BNLC and BNHC are,
we analyze BNLC and BNHC with different combinations of hyperparameters. Specifically for
BNLC, we use the five different combinations (i)-(v) given in Section 3.5.5, and three different
combinations (i)’-(iii)” for BNHC also mentioned in Section 3.5.5. We report performances
on the number of influential nodes identified. We also find the number of influential edges
connecting influential nodes.

Table 3.13 records the number of nodes identified as influential and the number of
intersections of influential nodes between different combinations and the original analysis. Re-

call that the original analysis of BNLC identifies 38 influential nodes. Since this is a high
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BNLC BNHC

Combinations (1 @G @) (4Av) (v) | @ @Gy @iy

# Nodes detected 35 39 34 40 37| 45 49 44

# Intersections with original analysis | 34 36 34 37 37 | 42 45 43

Table 3.13: Number of nodes identified as influential for all combinations are presented. The
table also presents the number of intersections of influential nodes between different combina-
tions and the original analysis.

BNLC BNHC
Combinations 1 3G G Gv)  (v) | Gy G 3y
# Edges detected 122 113 125 118 107 | 272 265 262

# Intersections with original analysis | 117 112 119 111 101 | 263 264 257

Table 3.14: Number of edges identified as influential for all combinations are presented. The
table also presents the number of intersections of influential nodes between different combina-
tions and the original analysis.

dimensional regression paradigm with number of parameters far exceeding the sample size, one
expects the prior hyper-parameters to have some effect on the inference. Indeed, there is some
variation in the number of identified nodes, though they largely agree with each other under
different hyperparameter settings. In fact, we find a large number of intersections among the
identified nodes in the original analysis with the nodes identified under different hyperparam-
eter combinations. A similar story emerges from BNHC. We also find 31 nodes identified by
all hyperparameter combinations in BNLC. Similarly, 40 nodes are identified by all hyperpa-

rameter combinations of BNHC. We calculate the number of influential edges among these (321)
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edges and (420) edges in BNLC and BNHC respectively, for all hyperparameter combinations.
Table 3.14 presents the number of edges detected as influential, as well as the number of inter-
secting edges with the original analysis. Again, due to the high dimensionality of the problem,
the variation in the number of identified edges with different choices of hyperparameters is
expected, though the variation turns out not to be very significant.

Finally, to check sensitivity to the choice of R on the performance of BNLC and
BNHC, we run the data analysis for BNHC and BNLC with R = 8 and R = 10, and report
the posterior mean of the effective dimensionality, along with AUC. Table 3.15 reports the
posterior mean of effective dimensionality, which shows very moderate increase with increasing

R. However, increasing R seems to have almost no effect on AUC.

BNLC BNHC

R=4 R=8 R=10|R=4 R=8 R=10

Posterior mean Eff. Dim. | 2.17 2.78 2.96 2.00 2.74 3.04

AUC 0.61 0.63 0.59 0.59  0.60 0.59

Table 3.15: AUC and posterior mean of effective dimensionality for BNLC and BNHC under
different choices of R.

3.7 Summary

We develop a binary Bayesian network regression model that enables classifying mul-
tiple networks with “labeled nodes” into two groups, identifies influential network nodes and

predicts the class in which a newly observed network belongs. Our contribution lies in carefully
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constructing a class of network global-local shrinkage priors on the network predictor coeffi-
cient while recognizing the latent network structure in the predictor variable. In particular, we
investigate two specific network shrinkage priors from this general class, leading to two network
classifiers BNLC and BNHC. Our extensive simulation study shows competitive performance
between BNLC and BNHC in terms of inference and classification with no clear winner, and
both of them are found to outperform other competitors. Another major contribution of the pro-
posed framework remains theoretically understanding the Bayesian network classifier model
with the Network Lasso shrinkage prior. Specifically, we develop theory guaranteeing accurate
classification as the sample size tends to infinity. The theoretical developments allow the num-
ber of possible interconnections in the network predictor to grow at a faster rate than the sample
size. We analyze a brain connectome dataset with brain connectivity networks between differ-
ent regions of interest for multiple individuals, and information on whether an individual is in
a low or a high 1Q category. BNC shows satisfactory out of sample classification and identifies

important brain regions actively influencing the FSIQ of an individual.

93



2
s
= E
3
£ £
] 5
° g of° ©
=} -1 o
b 5252282 2
E £3583c5528 ]
£ £ 2 s
3 588582 g
E SEES2 £
8 32288 2

Ih-caudaliddiefrontal
inal
i usttorm
Ih-inferi
I AN
medialorbitofronts
T mlddletempor
In-parshippocam
en r
Ih-pareoma
Ih-parsorbital
-pericalcarine
Ih- poslenorcmgulale
h-precentral
JURSs
h-superiortemporal
pramarginal

FPO00EEe

'u
2
]
=X
o

h-tem
Ih-transyersatemporal
rh-caidalanteriorcingulate

th-inferior
T lateraloccipial
hlateralorbitofronta
th- medlalorbllofmgnla
iddletempora

th-pAraBGIEIENS
rh-parstriangularis

entra
therostralantonorRsul
th-rostraimiddiefrontal
rh-superiorfrontal
rh-superiorparietal
rh-supériortemporal
rh-frontalpole
rh-temporalpole

(a) BNLC

setemporal

|- rh-iingual

|
ankssts
Th-< corpu?cal\osum 1 |

e forhinel

N
Ih- 1 muscHi |
Ih- \a‘lera‘orlﬁ% ""i] )

ingua
Ih-mjddietempora
I paracintra
In-parsBperliars
Ih- pargmangularlﬁ

Ih- r?ﬁtréj‘inlfmygfgﬁgl‘a‘le

el aereieerd
hicaudaimiad ﬂ

rh-inferiol empo

rh-lateraloccipital

= = Thilingual

rhrml?‘dlelem?‘?ra

rh'Darahl gcca al

i
e

i §recenlr

th-rostralantehidronguiate
PR rostramiddlen

e paroro o]

rh- sﬁmenonemvora

marginal

h-transverastorapora

(b) BNHC

Figure 3.9: Plot showing whether an edge connecting two influential nodes is influential or not.
Note that the map is a M x M symmetric matrix, where M denotes the number of influential
nodes, and each cell denotes an edge connecting the corresponding pair of nodes. The axis
labels are the abbreviated names of the influential ROIs in the left (starting with ‘lh -’) and the
right (starting with ‘rh -”) hemispheres of the brain. Full names of the ROIs can be obtained
from the widely available Desikan brain atlas. A white cell represents an influential edge, while
red cell represents a non-influential edge. 94



Chapter 4

High Dimensional Bayesian Network

Mixture Regression

4.1 Introduction

Chapters 2 and 3 introduce a Bayesian framework for regression with a continuous
or binary scalar response and a network predictor, and the models proposed therein directly
characterize the effect of influential network nodes and edges in explaining the response y;.
However, these models tacitly assume an identical relationship between the scalar response and
the network predictor for each subject, and that the same set of nodes and edges influence the
regression function in a similar manner for every individual. While this assumption may hold
true for some applications, it may appear to be restrictive in explaining the relationship between
y; and A; for a variety of neuro-scientific data.

The literature provides evidence of differences in the relationship between brain con-
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nectivity networks with phenotypic traits for different groups of individuals [26]. However,
flexible statistical methods for analyzing such differences have lagged behind the increasingly
routine collection of such data in neuroscience. Rather than addressing the general problem of
developing a flexible relationship between a response y; and the corresponding network predic-
tor A;, for i = 1,...,n, that accounts for changes in different groups of individuals, the literature
has largely focused on a more specific problem where response y; is categorized into a binary
response with two groups. The literature then proceeds to identify differences between these
groups and fit different models relating y; and A; in different groups [37].

While this literature is effective in identifying differences between brain networks in
two groups of individuals, it does not address a number of inferential questions of our concern.
First, these methods pre-identify the two groups having potentially different relationships be-
tween the response and the network predictor before doing the analysis. Second, none of these
methods focus on identifying different sets of network nodes influencing the response for differ-
ent groups of individuals. This chapter will develop a flexible, nonparametric mixture modeling
framework for a continuous response y; and a network predictor A;. The proposed framework
will allow model based clustering of subjects into groups having similar relationships between
y; and A;. In each group, the same set of network nodes will significantly influence the response.

To begin, we present a dataset in the next section that motivates our framework.

4.1.1 OCEAN Brain Connectome Dataset

The dataset that we use consists of information on the Big Five personality traits,

namely Openness, Conscientiousness, Extraversion, Agreeableness and Neuroticism, for every
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subject. The big five personality traits, also known as the OCEAN model, is a taxonomy for per-
sonality traits. Beneath each of the included global factors, lie a number of correlated and more
specific primary factors. For example, extraversion is said to include such related qualities as
gregariousness, assertiveness, excitement seeking, warmth, activity, and positive emotions. The
relationships of these personality traits with major life indicators such as subjective well-being
[123], career success [79], relationship attachments and outcomes [122] have been examined
and recognized by neuroscientists. A personality trait for each subject has been assigned a nu-
merical score between 0 and 100, 0 indicating mild level and 100 signifying severe level for
a specific personality trait. The five personality traits are correlated, and we focus on the first
principal component as our continuous response y; for the ith individual, which captures 45%
of the variability of these traits. The first principle component of the five traits in OCEAN data
has been constructed and used in other studies, see [28]. In the first principle component, agree-
ableness contributes overwhelmingly, while extraversion, openness and conscientiousness have
similar weights. The weights corresponding to neuroticism is close to zero.

Along with personality traits, we observe data on the brain connectome matrix for
each individual. In this case, the brain connectome matrix for each individual is of dimension
12 x 12, with the (k,/)th entry signifying the total number of neuron connections between the
kth and the /th brain lobes. The dataset contains information on y; and A; for n = 113 individuals.

To begin with, we fit a frequentist Lasso regression of y; on vectorized A; and analyze
the residuals. The density plot of the residuals in Figure 4.1 shows signs of multi-modality
in the distribution of the residuals, perhaps due to the difference in relationships between y;

and A; for different groups of subjects. The BNSP model introduced in Chapter 2 is unsuitable
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Figure 4.1: Error density and QQ-plot of residuals after fitting Lasso on 113 subjects of OCEAN
dataset.

for this data since it is based on the assumption that y; and A; share the same relationship for
all i =1,..,n. We have demonstrated this in sections 4.4.3 and 4.5.2. Additionally, the QQ
plot of the standardized residuals in Figure 4.1 reveals non-normal behavior of the residuals,
so that the normality of the error distribution of the BNSP model is not justified for this data.
We propose to employ a Bayesian mixture model in this chapter. Bayesian mixture models are
able to cluster subjects into different groups having different regression relationships between
personality traits and brain connectomes. Thus, our model would offer inference on influential
nodes and edges in different clusters, allowing for the scientific understanding of the relation-
ship between personality traits and the brain connectome with characterization of uncertainty in
different groups/clusters of subjects. As a byproduct, the proposed mixture model relaxes the

normality assumption on the errors, deemed appropriate for the dataset of interest.
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4.2 Model and Prior Specification

To develop a sufficiently flexible relationship between y; and A;, we propose to use a
mixture model to characterize the distribution of y;|A; flexibly. The conditional distribution of

yi|Ai, 7%, denoted by f(y;|A;,7%) is defined as

FOilART) = [ NOulu+ (A1.B),P)dAG(B,u), @.1)

which can be seen as a mixture of the network regression model proposed in Chapter 2 with the

mixing distribution given by G(+). G is a random probability measure given by

H
G =) ©adipyu;). (Binz) ~ Go, (4.2)
d=1

where Gy is the base measure and 8p: ) corresponds to the Dirac-delta function at (B, ).
Equation (4.2) contains a broad class of species sampling priors, including the Dirichlet process
prior through the popular stick breaking construction [119]. In this work, we jointly model
cluster inclusion probabilities with the following stick breaking construction

H-2

H—1
o =vi, m =v5(1—v}),.,0p-1 =vy_ [J(A—v)), 05 = [T —v)),
=1 =1

v/ ~ Beta(1—oy,00+10y), l=1,...H—1; a; € [0,1], ap > (—aty), 4.3)

where H is an upper bound on the number of clusters. As H — oo, this choice leads to the
classical Pitman-Yor process [75]. Choosing oi; = 0 in the representation leads to the classical
Dirichlet process prior. A useful method for selecting H is to choose a value that yields a
marginal density for y = (y1,...,y,)" close to its limit as H — e. Of course the adequacy of

this truncation will also depend upon o, 0, but even if they are unknown parameters, we can
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still monitor the marginal density by looking at the value for o, 0 in our MCMC iterations
(see [75] for more details). For implementation of our approach, we start our analysis with a
bigger value of H, so that a lot of clusters are unoccupied. Parameters o and o, are assigned
Beta(ag, ,by, ) and Gamma(ag, ,bq,) prior distributions, respectively.

Using (4.1) and (4.2), the conditional distribution of y; can be written as

H
fGilALT) = Y 0gN(yiluj + (Ai, By), ). (4.4)
=1

The model presented in (4.4) acknowledges more flexible distribution in modeling y;|A;, t%. In-
troducing a cluster index z; € {1,..,H} corresponding to the individual i, we obtain y;|A;,z;,T> ~
N(yiluz + (A, Bz),©%), with P(z; = d) = @, for d = 1,...,H. This conditional independence
structure, given the cluster indices of the individuals, facilitates computation, while still allow-
ing a flexible dependence structure between the different components marginally.

To develop prior distributions on u;, B); and 72, we adopt the network shrinkage prior
framework developed in Chapter 2. More precisely, let uj 4, ...,uy4 € R be a collection of R-
dimensional d-th mixture specific latent variables, one for each node, such that u; 4 corresponds
to node k in the d-th mixture component. Let the vectorized upper triangular part of B}; be
given by v,. Each vy, 4 is assumed to be conditionally independent with a density that can be

represented as a location and scale mixture of normals as described in Chapter 2,
2 2 2\ o2
'Yk,l.,d’sk,l,d,uk,daul,dat ~ N(u,’{’dAdul,d,‘t Sk,l,d), Skl d ™~ Exp(ed), ed ~ Gamma(C,L), (4.5)

where s ; 4 is the scale parameter corresponding to each y;; s and Ay = diag(A; 4,...,Ar ) is an

R x R diagonal matrix. In the same spirit as Chapters 2 and 3, we assign a spike and slab prior
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distribution [76] on the latent factor u; 4 as below

N(0,0,), if&a=1
Ukad ~ ) ék,d ~ Ber(Ad)a Qd NIW(Val)v Ad ~ Beta(a7b)' (46)
o, if&qa=0
Here Q, is a covariance matrix of order R X R. The parameter A; corresponds to the probabil-
ity of the nonzero mixture component. Importantly, & ; = 0 implies that u; 4 has no influence
in predicting the response. The location parameter u, is assigned a standard normal distri-
bution. We assign a hierarchical prior A,4 ~ Ber(%,.4), Tt.q ~ Beta(1,/),n > 1, and 7? is
assigned a flat prior. With the construction specified as above, the form of the base measure Gy

can be expressed as Go (B}, 15|12) = Go,1(Bjj|t*)Go 2 (1 T%), where Goo(u|t?) = N(0,1), and

Go,1(B}|t?) is expressed as follows:

\%4 R R |4
Go,1(By|T*) = / {HN (”;c,dAd”hdaTzshhd)P(skJ)} [TrGuad) [Trva) [TdNa [ Tdue ] T dsis-
k=1 r=1 r=1 k=1

k<l k<l

The model and prior specification allows clustering of individuals into a number of
classes less or equal to H. In each class, the response and network predictor is represented
by separate network regression structures. Recall that in Chapters 2 and 3, all subjects share
the same set of network nodes and edges actively related to the response. In the framework
introduced here, subjects belonging to different clusters may have different sets of nodes and
edges significantly related to the response. In the context of the brain connectome application in
Section 4.5, it boils down to assuming that the relationship between the response and network

predictors may vary from group to group [26].
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4.3 Posterior Computations

The full posterior of parameters is intractable, hence posterior inference is carried out
using MCMC. Similar to earlier chapters, all parameters except a; and o, have full conditional
posterior distributions lying in standard families of distributions, as described in Appendix G.
Hence Gibbs sampling with Metropolis can be readily implemented. All simulations and real
data analysis results are presented witha = 1,b =1,{ = 2,1 =2 and v = 20. Detailed justifica-
tion for this specific choices of a, b and v have already been provided in Chapter 3, Section 3.5.
The hyperparameters { and 1 imply a prior mean for the scale parameters sy ; 4’s that is not too
small or too large. Detailed sensitivity analyses with choices of a, b, C, 1, v for both simulation
studies and real data are presented subsequently. Finally, the hyperparameters ay, , by, , do, and
bq, are chosen so that the number of clusters a priori becomes close to the eyeball estimate of
the number of clusters from the plot of the response variable. We will offer more discussion on
the prior number of components implied by our choice of hyperparameters in each simulation
case and in the real data examples.

To assess inference of the proposed mixture model, we find the point estimate of
clustering denoted by Z (not reported), heat maps of the posterior probability of two samples be-
longing to the same cluster, P(z; = z;|y) (which provide a measure of the uncertainty associated
with the clustering), and a histogram of the posterior distribution of the number of identified

clusters. The point estimate Z is obtained by minimizing (using iterative componentwise opti-
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mization) the expected loss function discussed in [90],

%)
w1+ wp
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™
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=Zj) —P(zi=2zjly)| - 4.7

i=1 j=i+1

The ratio w; /w, controls the relative loss of incorrectly clustering or separating a pair of sam-
ples. In our illustrations we set w; = wy = 1.

The posterior inference is based on 5000 suitably thinned samples from the MCMC
sampler after a burn in of 20000 samples. The results are robust to small to moderate changes in
the prior specification, and the convergence of parameters has been checked using convergence

diagnostics available in the coda package in R.

4.4 Simulation Studies

This section considers synthetic datasets to assess the performance of our model,
referred to as the Nonparametric Bayesian network regression (NBNR) model, along with a

competitor.

4.4.1 Simulation Settings

To study all competitors under various data generation schemes, we simulate the re-

sponse y; depending on the network predictor A; from the finite mixture model given by

Hy

yilAi ~ Y 040N (ua0+ (Ai,Bao)r, ), (4.8)
=1

where By, d = 1,...,Hy are mixture specific symmetric network coefficient matrices, each
having zero diagonal entries. The network predictor matrices A; = ((ai,u/))y_,,zl are simulated
by drawing the edges a;; ; i.i.d from N(0,1), for / < l, ajjp=ap;and a;;; =0.
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To simulate the network coefficients, we draw V' latent variables ug4 4o, each of di-

mension R, from a mixture distribution given by
Ug J0 ~ EoNRg (ud7m,g, ui&g) + (1 — 71:0)60; ke {1, ...,V}, 4.9)

where 9y is the Dirac-delta function and 7 is the probability of any u, o being nonzero in the
truth, d = 1,..., Hy (fixed at 0.5 for all simulations). We then consider six different cases as
following:

Cases 1-5: In Cases 1-5, the (/,/’)th element of the network predictor coefficient By corre-
sponding to the d-th mixture component is constructed using a low-rank approach by, =
Uy 1 od.r 0/ 2, accounting for the interaction between nodes / and ', for all d = 1,..., Ho. The 5
different cases are obtained by varying the number of true mixture components (Hp), the number
of mixture components in the fitted model (H) and sample size (n) , as summarized in Table 4.1.
Case 6: In Case 6, we consider Hy =3, 019 = 09 = 030 = 1/3, and By o, B2 and B3 are
simulated in different ways as following:

Simulating By o: The (I ,I")th element of the network predictor coefficient B ¢ is constructed
using a low-rank approach by g = u’l ’170u171/70/2.

Simulating B> : B is simulated as a block diagonal matrix with three 5 x 5 symmetric di-
agonal blocks, each having 0 diagonal entries. The upper triangular entries of the three block
matrices are simulated from N(1,1), N(2,2) and N(3,3) distributions, respectively.

Simulating B3 : If both u3 0,u3 o # 0, b3, is simulated from N(0, 1), otherwise b3 is
set to 0. Model is fitted with H = 15 clusters for the data generated in Case 6. All cases fixes

the number of network nodes at V = 15, as summarized in Table 4.1.
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The intercept uq 0, d = 1,..., Hy in each mixture component is drawn from N (0.5,0.2),

while 3 is fixed at 0.1.

Cases Hy H V n

Case-1 2 15 15 400
Case-2 2 15 15 200
Case-3 3 15 15 400
Case-4 4 20 15 500
Case-5 1 20 15 200
Case-6 3 15 15 450

Table 4.1: Table presents different cases in the simulation study. The parameters Hy, H refer
to the true and fitted number of mixture components in the nonparametric Bayesian network
regression model. Different cases also present various combinations of the number of network
nodes V and sample size n.

Note that Cases 1-5 represent the true model being included in the class of fitted
models. On the other hand, Case 6 shows departure of the true model from the class of fitted
models. For each of the six cases, each component of the mean vector ug,, ¢ is randomly
generated to lie between (—2,2) and the standard deviation ug , , is generated between 0.3 and

2.

4.4.2 Competitors and Metrics of Evaluation

As a competitor of our model, we employ the Bayesian network shrinkage prior
(BNSP) regression model proposed in Chapter 2. BNSP assumes (a) the same set of influ-
ential nodes and edges affect a neurological response for every individual, and, (b) normality of

the error distribution. Hence, comparison with BNSP will help assess the inferential advantage
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of our proposed model over BNSP when the data supports different relationships between re-
sponse and network predictor for different groups of individuals and non-normality of the error
distribution.

The competitors are assessed based on their ability to estimate the true regression
function Eply;|A;] = 2511 04,0(ta,0+ (Ai,Bap)). In particular, we compute mean squared error
(MSE) of estimating the true regression function over all data points given by % Y (EolyilAi] —
EEE])2 where Em] denotes the posterior mean of the regression function from a compet-
ing method. While MSE offers an evaluation of point estimation by both competitors, the
uncertainty in estimating the true regression function is measured using the coverage and length
of 95% credible intervals obtained from the competing methods.

We also compare between BNSP and NBNR in terms of a popular model fitting statis-
tic, referred to as the posterior predictive loss criterion (PPLC) [51]. PPLC is described as the
sum of two quantities G and P, where G represents the quality of model fitting and P represents
the complexity of the model. The resulting quantity D = G+ P strikes a balance between model
fit and model complexity.

In addition to reporting the posterior distribution of the number of clusters and the
uncertainty associated with clustering through P(z; = z;|y) in the simulation studies, we also
evaluate the ability of the models to identify clusters using the Adjusted Rand Index (ARI) [73]
of the posterior cluster configurations with respect to the known cluster configuration. The ARI
evaluates the agreement in cluster assignment between two cluster configurations. For any two
partitions () and & of {1,...,n}, the Rand index calculates the ratio of agreement between (j

and G of {1,...,n}. Three quantities denoted as c;,c; and c3 are calculated: c¢; represents the
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number of pairs of objects that are placed in the same cluster in (] and the same cluster in (,
¢ are the pairs that are in different clusters in both partitions, and c3 is the total number of pairs
equaling (g) . The Rand index (RI) is RI= % The adjusted Rand index (ARI) is corrected for
chance. It ranges between —1 and 1, with larger values indicating agreement between cluster

configurations.

4.4.3 Simulation results

We note that our choice of hyperparameters ay, , by, , do, and by, ensures mean num-
ber of clusters to be approximately 3.97, 3.62, 3.97, 4.17, 3.62 and 3.02 respectively for the 6
simulation cases a priori. Figures 4.4, 4.2 and 4.3 provide insight into the estimates of the
cluster structure and associated uncertainty by displaying discrepancy between true and esti-
mated number of clusters and heat maps of posterior probabilities of pairs of subjects belonging
to the same cluster. To facilitate visualization, regions are ordered according to the true cluster
configuration in the heatmap. In cases 1-3, the model recovers the true cluster structure, with
little uncertainty associated with the estimator. In case 4, it appears that clusters 2 and 3 are
not well identifiable, and hence the estimation as well as the uncertainty characterization suffer.
Specifically, the two middle clusters (clusters 2 and 3) show much higher uncertainties. In case
5, the model identifies the true single cluster quite well. The most challenging case among all
is case 6, which corresponds to model mis-specification. With model mis-specification, estima-
tion of clusters becomes more challenging, with the posterior distribution of ARI concentrating
below the other cases. Further, in case 6, there appears to be higher uncertainty with elements

in the third cluster, where the model is a bit uncertain about whether to include some samples
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in the 2nd or the 3rd cluster.

The posterior distributions of the number of identified clusters are also presented in
the form of barplots in Figure 4.5. Consistent with the story presented so far, the posterior
distribution of the number of clusters appears to concentrate around the true number of clusters
Hp in cases 1-5. Cases 1, 2, 3 and 5 show clear modes at the true number of clusters. The
posterior distribution of the number of clusters in Case 4 also finds mode at the truth Hy = 4,
though posterior probability of the number of clusters equalling 5 turns out to be high. The most
difficult case is case 6, with model mis-specification, where the model mildly overestimates the
posterior probability of the number of clusters. Note that out of H assigned clusters, most are
not populated in each case. Hence the choice of H is sufficient in each case.

Table 4.2 presents mean squared errors (MSE) for the estimates of the regression
mean function under each of the competitors. Further, coverage and average length of 95%
credible intervals are provided to assess how well calibrated the estimates are. A few interesting
observations emerge from Table 4.2. Comparing cases 1 and 2, it turns out that NBNR offers
smaller MSE and narrower credible intervals when the sample size is smaller. Also, comparing
cases 3 and 4, it appears that increasing the true number of mixture components Hy results in a
considerable increase in MSE and the length of 95% credible interval. Except for case 5, NBNR
demonstrates coverage more than nominal in every other case.

Given that the data have been generated from a mixture of network regression distri-
butions except for case 5, BNSP is expected to perform inferior to NBNR. Indeed, Table 4.2
shows substantially inferior MSE and much wider credible intervals offered by BNSP compared

to NBNR in all other cases, except case 5. In case 5, when data has been generated from the
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Figure 4.2: Plots showing uncertainty in estimating the clusters in the simulation cases 1-4.
Boldfaced horizontal and vertical lines indicate the true clustering.
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Figure 4.3: Plots showing uncertainty in estimating the clusters in the simulation cases 5-6.
Boldfaced horizontal and vertical lines indicate the true clustering.

BNSP model (i.e., NBNR model with Hy = 1), BNSP is found to provide mildly better MSE
than NBNR. While the coverage of both competitors are close to nominal in case 5, BNSP
displays shorter credible interval than NBNR.

Similar to the MSE values, the G values representing fit of the two models (Table 4.3)
show superior performance of NBNR when the data are simulated from a mixture model with
more than one mixture component. In case 5, with the true data generating model being the
BNSP model, BNSP demonstrates better performance than NBNR. The P values increase when
the number of true mixture components grow. We also find a sharp increase in the P value for
case 4 which represents both higher Hy and H. Overall, the model fitting statistics reveal ad-

vantages of fitting NBNR over BNSP in presence of data generated from a mixture distribution.
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Figure 4.4: Posterior distribution of ARI in the 6 simulation cases.
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Figure 4.5: Bar plots showing the posterior distribution of the number of chosen clusters by the
model in the 6 simulation cases. The true number of clusters Hy is also mentioned in each case.
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Mean Squared Error (MSE)

Method Casel Case2 Case3 Case4 CaseS5 Caseb6

NBNR  0.02 0.07 0.65 2.62 0.36 0.07
BNSP 1874 1097 4838 37.96 0.34 16.77

Coverage of 95% Credible Interval (CI)

Method Casel Case2 Case3 Case4 CaseS5 Case6

NBNR  0.99 0.99 0.99 0.98 0.95 0.98
BNSP  0.94 0.93 0.94 0.94 0.93 0.93

Average Length of 95% Credible Interval (CI)

Method Casel Case2 Case3 Case4 Case5 Case6

NBNR 1.70 2.05 2.87 7.98 2.68 1.83
BNSP 1697 12.19 2552 2344  2.03 15.02

Table 4.2: Mean squared error (MSE), coverage and length of 95% credible intervals in esti-
mating the regression function for NBNR and BNSP are provided for all the cases.
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G

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NBNR 18.88 3.93 14.72 55.64 10.85 10.42
BNSP  29047.54 349895 69409.94 92226.81 9.49  30595.55

P

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NBNR 51.22 35.63 257.09 1343.33  21.01 98.67
BNSP  40099.77 6441.24 92223.09 1157299 18.72  39420.5

D

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NBNR 70.11 39.53 271.81 139895  31.87 109.09
BNSP  69147.30 9940.19 161633.03 207956.7 28.22 70016.05

Table 4.3: G, P, D values for BNSP and NBNR for all six cases.
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4.4.4 Sensitivity to the choice of hyperparameters in simulations

To check sensitivity of inference to the choice of hyper-parameters, we consider a
representative case (case 3) and re-analyze the same simulated data with different combinations
of hyper-parameters. In particular, we consider five different hyper-parameter settings for case
3 and compare the inference with the results on case 3 presented earlier. The five combinations
are given by, i) a =1,b=9,v = 20,% =L G)a=1b=1,v= 20,% =0.2; (ii)a=1,b=
1,v=20,2=5; () a=1,b=1,v=50,2=02; (v)a=1,b=1,v =50, = 5. Notice that
(i) presents a priori mean of 0.1 for each A;. Again, (ii), (iv) represent low prior means for 0,
while (iii) and (v) represent higher prior means for 6,;. The various combinations also present
variations of the hyperparameter v in the Inverse-Wishart distribution of Q.

Figure 4.6 shows the uncertainty quantification associated with clustering for the five
different settings and compares them with Figure 4.6(f) (the original setting). Of all the param-
eters, only variations in a and b seem to have an effect in the inferences, but this effect is found
to be very small. The posterior distributions of the number of clusters presented in Figure 4.7
for different settings also show mildly sensitive results with changes in hyper-parameters a and
b, though the distribution is generally much less affected by changes in other hyper-parameters.
The posterior mean of the number of clusters in five combinations are presented in Table 4.2.
The posterior mean of the number of clusters in the original case 3 is 3.52 and the corresponding
results from combinations (ii)-(v) are very close. Only combination (i) shows an overestimation

in the posterior mean number of clusters. A similar trend appears in the posterior distribution

of ARI, as presented in Figure 4.8. The MSE, coverage and length of 95% credible intervals
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MSE 0.70 0.55 0.50 0.66 0.82
Coverage 0.99 0.99 0.99 0.99 0.98
Length 3.29 2.90 2.98 2.90 2.92
M.C. 4.2 3.75 342 3.44 3.43

Table 4.4: Mean squared error (MSE), coverage and length of 95% credible intervals in es-
timating the regression function for NBNR under different hyper-parameter settings. The last
row of the table shows the posterior mean of the number of clusters (M.C. or mean number of
clusters) in the five different hyperparameter combinations.

for different hyper-parameter combinations are also presented in Table 4.4 and are compared
with corresponding results from case 3 in Table 4.2. The results appear to be of the same order
in different hyper-parameter settings with NBNR maintaining significant advantage in terms of
point estimation and uncertainty over BNSP under all these hyper-parameter settings.

In addition to investigating sensitivity of inference with the choice of hyperparame-
ters, we also check sensitivity with the choice of prior distribution on ®y,...,0y. As discussed
earlier, the Pitman-Yor process is derived using a stick breaking construction of ®y,...,005. We
also draw inference in case 3 using an alternative construction of the prior on (@, ..., ) that
specifies (®y,...,0y) ~ Dir(&/H,...,0/H), where & > 0 and & follows a Gamma distribution
with parameters implying a prior mean of the number of clusters ~ 3.32. The plots for prior
distribution of the number of clusters for the Pitman-Yor prior in case 3 and this truncated DP
prior are shown in Figure 4.9. As H — oo, this prior converges to the Dirichlet process prior.
The ARI, posterior distribution of the number of clusters and uncertainty in clustering are pre-

sented in Figure 4.10. The sensitivity of the results to this different prior choice on ®y,...,0y
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Figure 4.6: Plots showing uncertainty in estimating the clusters under various hyper-parameter
settings in Case 3.
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Figure 4.7: Bar plots showing the posterior distribution of the number of chosen clusters by the
model under various hyper-parameter settings in Case 3.
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Figure 4.8: Posterior distribution of ARI in various hyper-parameter combinations for sensitiv-
ity analysis in simulation.
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Figure 4.9: Prior distribution of the number of clusters for our choice of PY prior in case 3 and
the truncated Dirichlet process prior.

is very small. The posterior mean of the number of clusters is 3.34, which is close to the what
has been obtained in the original analysis of case 3. The MSE, coverage and length of 95% CI
for the posterior mean function turn out to be 0.61, 0.99 and 2.93 which are very close to the

numbers corresponding to case 3 in Table 4.2.

4.5 Brain Connectome Data Application

This section reports analysis of the OCEAN brain connectome dataset described in
Section 4.1.1. We fit NBNR for H = 20 to allow a sufficient number of clusters to be iden-
tified. Table 4.5 shows that the model fit corresponding to NBNR improves over BNSP by a
considerable margin, indicating the need for fitting the Bayesian mixture model to this data.

The left panel in the first row of Figure 4.11 shows the distribution of the number of
clusters implied by our choice of prior hyperparameters. The distribution is bimodal in 2 and

3 and there is a considerable mass at 4. The right panel in the first row shows the posterior
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Figure 4.10: Posterior distribution of ARI, the number of clusters and the uncertainty related to
clustering are presented for the choice (®y,...,0y) ~ Dir(a/H,...,0./H).
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Figure 4.11: OCEAN Data: 4.11(a) shows the distribution of the number of clusters implied by
our choice of prior hyperparameters. 4.11(c) shows the uncertainty in estimating the clusters.
4.11(b) shows a barplot for the posterior dist. of the estimated number of clusters. The inference
is presented for H = 20.
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Methods NBNR with H =20 BNSP

Comparison Metric G P D G P D

Values 1535 31.69 47.05 | 101.98 114.11 216.09

Table 4.5: Model fitting statistics for NBNR and BNSP for the OCEAN data.

distribution of the number of clusters (figure 4.11) has a clear mode at 2. Figure 4.11 in the
second row displays the heat map of posterior probabilities of any pair of individuals lying
in the same cluster. The model fit with H = 20 shows two prominent clusters a posteriori.
Importantly, there is no posterior probability of having more than 8 clusters, suggesting that

H =20 is sufficiently large and appropriate for this analysis.

Influential nodes for Group 1

Left Hemisphere Lobes | Temporal, Cingulate, Frontal, Occipital

Right Hemisphere Lobes Parietal, Insula

Influential nodes for Group 2

Left Hemisphere Lobes Temporal, Frontal, Parietal, Insula

Right Hemisphere Lobes Cingulate, Frontal, Occipital

Table 4.6: Brain regions (ROIs) detected as influential for the two detected clusters of individ-
uals in the OCEAN dataset.

We supply the model with the estimated cluster indicators and run it again to draw
further inference on the influential nodes and edges in the two clusters. Table 4.6 presents the

influential nodes identified in the two clusters. Note that 6 and 7 nodes (out of 12) are identified

123



Influential nodes

Left Hemisphere Lobes | Temporal, Frontal, Occipital, Parietal

Right Hemisphere Lobes | Frontal, Occipital, Parietal, Cingulate

Table 4.7: Brain regions (ROIs) detected as influential by BNSP in the OCEAN dataset.

for the two groups of individuals as influential, respectively. Both groups identify the temporal
and frontal lobes as influential in the left hemisphere, but only the second group identifies
frontal lobe as influential in the right hemisphere. We also identify 7 and 18 influential edges
connecting the influential nodes for the two groups of individuals. Among these, there are 2
common edges connected to the frontal lobe and 1 common edge connected to the temporal
lobe. We also fit BNSP to this dataset which identifies 4 lobes in each hemisphere as influential.
These 8 lobes include the temporal and frontal lobes in the left hemisphere, and the frontal lobe

in the right hemisphere. BNSP identifies 16 influential edges connecting the influential lobes.

4.5.1 Sensitivity to the choice of hyperparameters in the OCEAN data

Similar to simulation studies, we also present sensitivity of inference in the OCEAN
data analysis to different choices of the hyperparameters. We stick to the five combinations of
hyperparameters presented in Section 4.4.4. Additionally, we consider two more combinations.
In one of them, we set o; = 0, so that the Pitman-Yor prior becomes equivalent to a Dirichlet
process prior. In the other combination, we change the hyperparameters of the Pitman-Yor
process so that the prior distribution of the number of clusters is concentrated much higher

than what we have used in our analysis. In fact, the prior mean of the number of clusters
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is /= 10 with this choice of hyperparameters. The second column of Table 4.8 presents the
discrepancy between optimal clusters identified by each combination and the optimal clusters
identified by our original analysis. Except for combination a = 1,b =9, and for a; = 0, they
turn out to be perfect matches. Figure 4.12 presents heat maps of posterior probabilities of
pairs of individuals lying in the same cluster under all combinations. The uncertainty tends
to be similar under all combinations. Additionally, the posterior distribution of the number of
clusters displays mode at 2 for all combinations of hyperparameters (see Figure 4.13). With a
higher prior mean of the number of clusters, we might expect the inference to deteriorate, but
are pleasantly surprised to see the inference not being affected. Perhaps the larger sample size
is responsible for good inference under this setting. We also report model fitting statistics (G, P,
D) for all these combinations, which can be compared with the results presented in Table 4.5.
The model fitting turns out to be very similar under all the combinations, except for somewhat

inferior performance in terms of PPLC in (i) witha =1,b=9.

4.5.2 Analysis of a Brain Connectome Dataset with Composite Creativity Index

(CCI) as the Response

In this section, we analyze the brain connectome data described in Chapter 2 using
the NBNR model proposed in this chapter, with one exception. Recall that in Chapter 2, cor-
responding to every individual, we have a brain network predictor of dimension 68 x 68 with
68 nodes in the network representing 68 ROIs. However, working with ROI level data is com-
putationally challenging in the context of nonparametric mixture models. Also, from various

simulation studies we realize that the performance of the method deteriorates considerably when
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Figure 4.12: Plots showing uncertainty in estimating the clusters under various hyperparameter
settings in the OCEAN data.
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Figure 4.13: Barplots showing the posterior distribution of the number of chosen clusters by the
model under various hyperparameter settings in the OCEAN data.
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Methods NBNR with H =20

Comparison Metric | ARI G P D

a=1,b=9 096 19.54 5343 7297
% =0.2,v=20 1.00 16.13 31.45 47.59
% =5v=20 1.00 17.83 32.26 50.09
% =0.2,v=50 1.00 16.66 31.66 48.32
% =5,v=50 1.00 17.30 32.99 50.29
o =0 092 2034 41.07 61.41

PY: higher mean | 1.00 18.25 32.70 50.95

Table 4.8: Performance of NBNR under different hyperparameter choices for the OCEAN
data. The first column presents different combinations to check sensitivity. the second column
presents ARI between optimal clusters obtained from each combination and the optimal clusters
obtained by the original analysis of the OCEAN data.

the V /n ratio increases. Hence, we use lobe level network data for every individual rather than
the ROI level data. This means that the network predictor corresponding to every individual is
of dimension 12 x 12 in this analysis. As in Chapter 2, CCI is taken to be the response.

We start by fitting the NBNR model with H = 20 for this data. Figure 4.14 presents
the posterior distribution of the number of clusters, as well as the uncertainty in estimating two
subjects in the same cluster. Both Figures 4.14(a) and 4.14(b) indicate the existence of one
cluster in the data. The optimal clustering configuration Z estimated from (4.7) also includes all
subjects in the same cluster. Given that the NBNR places all posterior probability on a single

cluster, the model fitting statistics with the G, P and D values demonstrate marginally better
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Figure 4.14: CCI Data: The left plot shows uncertainty in estimating the clusters. The plot

on the right is a barplot for the posterior distribution of the estimated number of clusters. The
inference is presented for H = 20.

performance of BNSP over NBNR (see Table 4.9).

Our analysis identifies 9 lobes to be influential to predict CCI, out of which five are
in the left hemisphere and four in the right hemisphere (see table 4.10). These include the
temporal, frontal, cingulate and occipital lobes in both hemispheres. As discussed in Chapter 2,
there is considerable literature suggesting close association of creativity with the frontal and
temporal lobes. Findings from this analysis also suggest the same. We also find 7 influential

edges among all edges connecting between two influential nodes.

Methods NBNR with H =20 BNSP
Comparison Metric G P D G P D
Values 60.84 77.01 137.86 | 56.21 78.18 134.39

Table 4.9: Model fitting statistics for NBNR and BNSP for the brain connectome CCI data
application.

129



Left Hemisphere Lobes

Right Hemisphere Lobes

Temporal, Cingulate, Frontal, Occipital, Parietal

Temporal, Cingulate, Frontal, Occipital

Table 4.10: Brain regions (ROIs) detected as influential for the composite creativity index.

4.6 Summary

This chapter develops a Bayesian mixture model of network regressions. The pro-
posed model allows groups of subjects sharing similar relationships between the scalar response
and the network predictor. Unlike Chapter 2, the framework developed in this chapter is able to
incorporate the neuroscientific phenomenon that different sets of individuals may have different
relationships between brain lobes and a specific phenotype. Our proposed model also allows
clustering of individuals into groups showing similar relationships between the phenotype and

the brain connectome. Simulation studies and the brain connectome data analysis reveal supe-

rior performance of the proposed model over the BNSP model devised in Chapter 2.
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Chapter 5

Conclusion

This dissertation develops novel regression frameworks for scalar responses and net-
work predictors. Chapter 2 introduces a novel approach that develops a regression framework
of a continuous phenotypic response on a brain network (represented in the form of a symmet-
ric matrix). We propose a novel network shrinkage prior on the network predictor coefficient
matrix. The proposed framework is able to identify nodes or functional regions in the brain
network and interconnections between different regions, significantly related to the phenotypic
response. To the best of our knowledge, our framework is the first principled Bayesian frame-
work that enables identification of network nodes and edges significantly related to the response.
The performance of the proposed model is evaluated with respect to a wide range of existing
competitors available in the high dimensional frequentist and Bayesian literature using a variety
of simulation studies. The proposed model identifies important brain regions and interconnec-

tions significantly associated with creativity for a group of subjects.
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Next, in chapter 3 we extend our model to build network classifiers when a brain con-
nectome network along with a binary response is provided for a group of individuals. Here we
develop a broader class of global-local network shrinkage priors which includes the novel prior
distribution specified earlier as a special case. We specifically consider two different global-
local network shrinkage priors from this class of priors and investigate them using simulation
studies. In particular, we assess their performance in terms of network classification and identi-
fying influential network nodes and edges for the purpose of classification. We also demonstrate
superior performance of our proposed network classifiers over state-of-the-art high dimensional
classification techniques. Another major contribution remains developing theoretical conditions
to guarantee asymptotically consistent classification for the proposed framework. In particular,
we derive conditions on the number of network nodes, sparsity in the network coefficient ma-
trix as a function of the sample size to achieve asymptotically optimal classification. While
theoretical results on high dimensional binary regression with ordinary shrinkage priors have
emerged recently, developing theory for our network classifier model involves several addi-
tional challenges due to the complex nature of the global local shrinkage prior developed here.
The framework is used to classify individuals into high and low IQ groups based on their brain
connectomes.

In chapter 4, we have developed a Bayesian network mixture regression model. The
model allows the relationship between the scalar response and the network predictor to vary
between groups of subjects. Simulation studies and analysis of the brain connectome dataset
demonstrate superior performance of the proposed approach over the approach described in

Chapter 2. Simulation studies are also used to evaluate the performance of the proposed ap-
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proach by varying the true and fitted number of clusters, size of the network and sample size.
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Chapter 6

Future Work

A number of future directions emerge from this work. The present framework de-
velops network shrinkage priors to detect ineffective nodes and edges. Instead, one may cast
this problem as a model selection problem in high dimensional network regression and develop
non-local priors [78] for identifying influential nodes and edges. Another important direction
appears to be the development of Gaussian process regression with the network as an input and
the scalar response as the output. The problem is challenging since it requires developing a
covariance kernel on network predictors which are not in the standard Euclidean space. One
may also extend the current approaches to multivariate settings where, corresponding to each
network predictor, there are multiple responses. For example, one may jointly model the big
personality traits, such as agreeableness, conscientiousness, openness, extraversion and neu-
roticism, as a multivariate response and regress it on the brain network predictor for a subject.

To elaborate, let P; 1, P;>,P;3,P;4 and P; 5 be the five personality traits with the corresponding
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network predictor A;. One may consider employing a series of Bayesian network regression

models with the network coefficient for the jth regression as Bj,

Pi,j :,Llj+<Ainj>F +8i,ja = 1,...,11; ]: 1,2,3,4,5.

The errors are correlated €; = (€;1,...,€;5) ~ N(0,X) and By, B, B3, B4 and Bs are also modeled
jointly to borrow information across different responses. Borrowing information may improve
identification of influential nodes and edges.

Another important research direction we aim to pursue is to exploit the hierarchical
structure of lobes and ROIs and develop multi-scale network regression models. To elaborate,

we propose to develop a multi-scale network regression model

yi=u+(Ai,B1)r + (Ri,B2)F +¢, & ~F,

where F(-) is some symmetric error distribution, A; is the 68 x 68 network predictor matrix
representing the number of neuron connections between 68 ROIs, and R; is the 12 x 12 network
predictor matrix representing the number of neuron connections between 12 lobes. The matrices
B and B, are the network predictor coefficients corresponding to A; and R;, respectively. We
plan to develop network shrinkage priors on B; and B, in such a way that a-priori ensures
all ROIs to be uninfluential if the lobe containing the ROI is uninfluential. Finally, we also
propose to extend our theoretical results to general global-local shrinkage priors. Some of these

constitute our present work.
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Chapter 7

Appendix

7.1 Appendix A

This section shows the posterior propriety of the parameters in the BNR model. With-
out loss of generality, we set u = 0 while proving the posterior propriety. To begin with, we state

a number of useful lemmas.
Preliminary Results
Lemma 7.1.1 [fC is an h X h non-negative definite matrix, then |C+1| > 1.

Proof The eigenvalues of (C+1) are given by @; + 1,...,@,+ 1, where @, ..., @, are eigenvalues
of C. Since C is non-negative definite, ©; > 0,...,@, > 0. The result follows from the fact that

|C+1| =TT, (¢; + 1) is the product of eigenvalues.

Lemma 7.1.2 Let C be an h x h diagonal matrix with diagonal entries cy,...,cj, all greater
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than 0. Suppose A is an n x h matrix with the largest eigenvalue of AA" given by u,y. Then
ACA' +1< (,uAA/ Z;’:l c+ 1) I, where Hy < H, implies Hy — H is a positive definite matrix.

Proof Since cy,...,c;, > 0, ACA’ < (Zf’zl c/)AA’. Consider the spectral decomposition of the
matrix AA’. Let the eigen-decomposition of AA’ = AHA’, where A is the matrix of eigen-

vectors and H is a diagonal matrix with diagonal entries yy,...,u,. Since each p; < uyu,

AA’ < gy AN = pgyl. Thus, ACA’ < (¥)_ c;)upal. Hence ACA'+1 < (ugp XJ_ c1+1) 1.

Lemma 7.1.3 Suppose z is an h x 1 vector and A is an h X h symmetric positive definite matrix.

Let B be another h X h positive definite matrix such that A > B (where A > B implies A — B is
non-negative definite). Then 7A™'z < 7B~z

Proof A > Bimplies B~'/2AB~'/2 > I. Thus all eigenvalues of B-'/2AB~1/2=pB~1/2A1/241/2p~1/2
are greater than or equal to 1. Since commuting the product of two matrices does not change the
eigenvalues, A2B=1A1/2 has all eigenvalues greater than or equal to 1. Thus AV2BTIAY2 >

which implies A~' < B~!. Then 7A~ 'z < 7B~z

Main Result

Note that the posterior distribution of the parameters is given by

p(’Yszaulw'auV,&la "7§V7)\'1a "7)\'R7927A7{sk,l}k<17n17 -"7nR7M‘y7X)
1 |4
N(y|X,7°I) x N(y|W,©°D) x 2% [T &N (i |0, M) + (1 — &)3o]
k=1

X HExp(skvl 16%/2) x Gamma(6*|{,1) x IW (M |S,V) x Beta(A|ay,ba)
k<l

R v
x [ [ [Ber(A|m.) x Beta(m,| 1,r")] x [ | Ber(&| A).
r=1 =
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Integrating over &1, ...,&y

p(77125u17"7”V)}\'17"7}\'R7627A7{Sk,l}k<l)n17"‘7nR7M’y7X) o< N(y|XY7T21)X

1 \4
N(Y|W,T°D) x 5 x [ TIAN (| 0,M) + (1= 4)80] x T [ Exp(sicr[67/2) %
=t k<l
R
Gamma(6*|{,1) x IW (M |S,V) x Beta(A|ay,ba) % [1Ber(A|n,) x Beta(m,|1,M)].

r=1

Further integrating over Ty, ..., g yields,

p(’YvTZaulv"aMV77\‘17"7}\‘R7927A7 {Sk,l}k<l7M|y>X) o< N(y‘X%TZI) X N(’Y|W712D)X

— X H (g |0, M) 4 (1 — A)dp] X HExp(skJ 16%/2) x Gamma(6*|{,1) x
k<l

R _ ; ;
W (M 5.9) x Beta(A . by) < [ T 1)11:((:71 fzr);(r?)m D).

r=1
The prior specifications on A enable it to be bounded within a finite interval of (0,1).
Thus in showing the posterior propriety of parameters with unbounded range, it is enough to
treat A as constant. We treat it as fixed henceforth.
Note that each A, € {0, 1}, hence marginalizing out A, gives
POLAT ut,uy 0% {si i beas, M [y, X) o< Y [N(y!X%TZ]) x N(Y|W, D) x
A-€{0,1}
v
- X H (ug |0,M) + (1 — A)dp) X HExp(skJ 16%/2) x Gamma(6*|{,1) x

k=1 k<l

R T+ D1 =X +rMI(M+1)
wnisv) <1 C(M+2)0(M) J
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Integrating over 7y, we obtain,

1
2 n2
p(u17..7MV7T 79 ,{SkJ}k [,M|y7X)O< %
< x,.e%J} [(TZ)n/2+l |XDX/+I|1/2
— XW) (XDX'+1)~ (y— XW v
exp{_(y )'( = )" (y )}XH[AN(MHO,M)—F(]_A)SO}X
k=1

HExp(skJ 162 /2) x Gamma(0*|{,1) x IW (M| S, V) x
k<l

R T +1D)I(1 =\ +MT (rn—i—l)]

r=1 L(rM+2)I(r)
Next, we integrate w.r.t. 82 to obtain
plur,ouy, @ {sei ke, M |9, X) < Y { 1 / y
aemy L) ATXDX + 1112
exp{_ (y—XW)/(XD);;;—I)I(y_XW) } X ﬁ[AN(”k|O7M)+ (1—A)y] x
k=1
MISM)MxIW (M|S,V) ﬁl L +1) (rln:rlz)}r(r“)) (M+1) . o

k<l

(7.1) is a discrete sum of 2R terms with different combinations of A, ..., A,. The sum integrated
out over all the parameters is finite if the individual summands are finite when integrated out
w.r.t all parameters.

Denote a representative summand by p*(ur, ..,uy, %, {sk; }x<i,M|y,X), where

1
(’62)”/2+1|XDX’+1|1/2X
—XWY(XDX'+1)"'(y—XW 14
eXp{(y )( 2T2 ) (y )}XH[AN(MIC|07M)+(1A)80}X
k=1
! BT+ DI(1 =X+ MM +1)
T o o7 IW M|S,v .
L+ ¥ si0)7t6 % | l;I F(M T 2)T (M)

k<l

p*(uly"auV)’czv {Sk,l}k<laM|y7X) o<

Note the fact that D is a diagonal matrix with all positive diagonal entries. Thus X DX’
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is non-negative definite and by using Lemma 7.1.2

XDX'+1<XX"Y s +1< (,JXX/ Y s+ 1) I,
k<l k<l

where A < B implies A — B is a non-negative definite matrix and uyy is the largest eigenvalue

of XX’. Using Lemma 7.1.3, the above inequality implies

—XW||?
(y—XW) (XDX'+1)"'(y —XW) > [y [
Mxx' Xk<1 Sk + 1

Let

1
(TZ)n/Z—H ‘XDX/ _;'_[‘1/2 X

exp{_(y—XW)'(XDX’H)—l(y—XW)} y 14
k

Pur, ooy, T sk ther, M) =

N(uk\O,M)x
212 o

R T+ D1 =+ +1)

————— xXIW(M|S,v) x . 7.2
g st < MIs v x]] T(M +2)T(M) (7.2)
k<l
With little algebra it can be shown that
P, .oyuy, T {ski i, M |3, X)
= constant X Z Al<1—A)Vﬁ[ﬁ(l/tj],..,l/tjl,l/tjprl :0,..,1/!]",:O,Tz,{skvl}k<l,M).

1< j1njy SV0<ISV

Therefore, the integral of (7.1) w.r.t. all parameters is finite if and only if

/ﬁ(ul s ..,uv,’Cz, {Sk,l}k<l7M)du1 .. 'd”VdTZdeHskJ < oo,
k<l

Henceforth, we will proceed to show that this integral is finite.

With little algebra, we have that

V
1
W (M, S) [T N (i |0, M)dM o< .
/ (M}, ) | L N (e 0.M) 1S+ Y0 wad |72
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Hence,

1 1

~ 2
Ul,y..,uy,T°,18 < constant X X
p( 1y--5 4V, 7{ k,[}k<l) =~ ‘S+szluku;€‘(v+v)/2 (TZ)H/Q-H

[y —XxW|? 1 1
P\ T2 % +C ENTITR
T (xx’ X<t Skt + 1) (l+k21Sk’l)q IXDX' +1|
<

R+ DI =X +rMTM +1)
H C(M+2)0(mM) '

r=1

Define 4 = {(uy,...,uy) : ||y —XW|[* > 1}. Then

/ﬁ(ul s tty, T s bt )du -+ duydTd [ | sea
k<l

—/ Up,..,uy,T {Skl}k<1)du1 -duydTt dHSkH'
k<l

/P uip,. 7”V7T {Skl}k<1)dlxl] ~duydrt dHSkl-
k<l

Now,

duv

~ 2 2

pluy,..,uy T S dT dl IS du "'dMV <Constant/ X
/ ( 155 ) a{ k,l}k<l> o k,l 1 = ’S Zk | Uk k|v V)/Z

d’C d H N

1 1 k<l
IR O y .
/ (@) exp{ 272(.“XX/Zk<lskJ+1)} (0 + L s )7 C IXDX +1]172
k<l

R LA+ DI(1— Ay + T +1)
I T+ 2)T()

r=1

< constant 1---duy p X

!' SHYV wd, |v+v)/2d”

(txxr Lt Sk + 12 aTs XI@IFX s+ DO = A4+ MM+ 1)
= o rﬂ+2)r( n) '

r=1
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Note that

1 1
duy ---duy <
|

< duy - -duy
!Hl‘c/_l \S—i—uku;c\"/z"“/z

1/2
\4 / 1
S S—
U s

where the first inequality follows from the fact that |S+ Y} uxu},| > |S + wu | for all k. The

IN

second inequality is a direct application of the Cauchy-Schwarz inequality. By the ratio test

1
g 1)2-- (1 g )]

of integrals, this integral is finite if [ T wrdug 1s finite. Now use the fact that

1
1+Mk71)2-~~(]+uk,1g)2]

—_dx < oo for any ¢ > 0 to argue that duy, is finite.
¥+ y g [( 2v/V+1

Similarly,

(uyxr Yaer Sea+1)"? (g xr Tucr Sea+1)"2
) < il
{f IXDX' 112 (+ ¥ sg )9+ dlli<isir ¢ <4 S (Mxx/ i Mgy Sk +1)72 (14 ¥ 1)+ dTTk<iSer ¢ > where
k<l

k<l

MxX' min i the minimum eigenvalue of XX’. The last inequality follows from the fact that

B X7 i MiNg<7 57+ 12 (14 X 5301)97E
k<l

. ! - - ’1/2 . . .
XX' > pxxt min i<y Sl {f ( (b Yt it +1) dTi< sk_,l} is finite if and only

: (xxr Lier Ska+1)"? : : :
if {f oo o T e+ 2 (0 E 502} wd[lx<i Sk ¢ < oo, by ratio test of integrals. Since the latter
k<l k<l

integral is finite, [ p(u1,..,uy, T, {sks feet)dur - - duydt?d ] sg; < oo.
a k<l

Now consider the expression [ p(uy,..,uy, %, {sk1}tr<i)dv?d [1 skduy -+ -duy. It is
qc k<l
easy to see that A° = {(uy,...,uy) : ||y — XW||> < 1} is a bounded set, so that the bounded

function
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ly—xw|* } : : *
exXpi —s>5—>—=——— ¢ achieves the maximum value at W = W*. Thus,
p { 202 (uyxs Las Ska+1)

1
. 2
p(ulv"vuVaT a{sk,l}k<1)dul dl/lvdT d Skl < < constant
ﬂ[ kr<11 ’S‘f‘):k ANl
dT d I1 sk
expd — [y — XW*[]? ></ 1 k<l 1
2t (uxxr Yewr Skt + 1) (L X s )7t ()24 |XDX +1|1/2

k<l

constant 1
SR AT PATES vaTTAGE

duy---duy X

, s +1 n/2
(xx' i<t Sk, Hskl <o

IXDX' + 1112 (1 + Z Se)4tS T

where the last step follows from earlier discussions.

7.2 Appendix B

This section provides details of posterior computation for all the parameters in the
Bayesian network regression with a continuous response.
/ . .
Let x; = (@i12,0i1 35, Ai1 V@i 3,0i 2,45, i2 Vs -y aiy—1y) be of dimension g x

1, where g = Vx(gfl). Assume y = (y1,...,yn) € R" and X = (x1 : -+ : x,)' is an n X ¢ ma-

trix. Further, assume W = (u|Auy,...,u\Auy,....,u}, _Auy)’, D = diag(si2,...,sy—1,y) and

Y= (Y12,---,Yv—1v)". Thus, with n data points, the hierarchical model with the Bayesian Net-
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work Lasso prior can be written as

y ~ N(u+XY,7°1)
1
A N(W7T2D)7 (H?Tz) ~ TC(y,‘Cz) o< ?7 “k‘&k =1 NN(uk‘()?M)? Mk’&:k =0~ 607 H~ flat()
ses ~ Exp(8?/2), 6% ~ Gamma({,1), M ~ IW(S,V), A ~ Beta(aa,ba),& ~ Ber(A)

A ~ Ber(m,), m, ~ Beta(1,r),m > 1.

The hierarchical model specified above leads to straightforward Gibbs sampling with

full conditionals obtained as following:

,u|—~N(M ﬁ)

n ‘n

_1y—1 _
o Y=~ N(uy..Zy.), where g = (XX +D 1) (X'(y —p1) +D~'W)

and 2, =2 (X'X+D ")

o |- ~IG [(g Yoy, (y—yl—Xv)’(y—yl—XZY)HY—W)’D*‘(Y—W)}

—u), Auy)? . . .
e sii|—~ GIG [%, W,Gz}, where GIG denotes the generalized inverse Gaussian

distribution.

o 0%|— ~ Gamma [(C+ w> , (1+Zk<l&2j)}
o u|— ~ wy So(ur) + (1 —wy,) N(ug |my,, Xy, ), where Uj = (w1 @ -+t g1 @ Ugr -+
uy)' A, Hi = diag(si jes s Sk—1ks St 1 sk V )y Yo = (Y1ks oos Yem 1k Vit 15 --» Vi, ), and

’ -1 " ry—
L = (Ui H U2 M)y = S U H 2

(1 - AN (v, |0,7Hy)
(1= A)N(y,|0,7Hy) + AN(Y, |0,7Hy + UyMU})

Wuk ==
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Ek|— ~ Ber(1 —wy,)

e A|— ~ Beta [(aA—irZ,‘f:l&k), (bA+Z]‘</:1<1 _§k>)]

M| =~ IW[(S + Epy0 u Aty ), (v + {#k e 7 0})].

7. N(Y|W1,72D)

TN D)+ (L —m )N (7 [Wo D) - 11ere

M| — ~ Ber(py,), where p) =
/ / / / / / / !/
Wi = (W Auy, ...\ Auy, ... uy,_(Auy)', Wo = () Aouz, ..., u Aoy, ..., u5, _Aouy ),

A] :diag(kl,..,kr_],l,kr+1,..,kR), /\() :diag(kl,..,k,_l,o,k,H,..,lR), forr= 1,..,R.

.| — ~ Beta(A,+ 1,1 = A+ M), forr=1,.,R.

As noted in Section 2.3 of the main text, naively sampling from the full conditional of y above
faces substantial computational difficulties. We now state Lemma 7.2.1 that provides a com-
putational strategy to draw posterior samples of 7y efficiently. Proof of Lemma 7.2.1 is given

below.
Lemma 7.2.1 Let Yy, be a random variable such that
Y | = ~N[(D '+ XTX) X (y —ul —XW), (D' +X"X)71]. (7.3)
Then the following results hold.
(a) Y=ty +W
(b) Let, Ay ~N(0,7°D), Ay, ~N(0,I), Ay, =2%A; +Ay,

_ —ul -
Yo = Ay, + (PD)A(XDXT 1) [Lo 0 g ]

T

Remark: This algorithm ensures that samples from the posterior full conditionals of y can

be obtained by sampling from the posterior full conditionals of yy,. Lemma 7.2.1 shows that
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obtaining samples from the full conditional of Y, only requires inverting an n X n matrix. As-
suming n << g, which is typically encountered in the real data applications, the computational
complexity of the proposed approach is substantially mitigated.

Proof of Lemma 7.2.1

(a) Note that

E(Yy+W) =W+ D'+ X" X)X (y —ul = XW)
=W—DO'+x7X)"XTXW + (D +XTX) X (y— )
=W-D'+xXTX) ' D'+ X"X D "YW+ (D +XTX) X (y —ul)
=W—(I—(D"+X"X)"'D "YW+ (D '+ XTX)'XT (y—pul)
=D '+X'X)"'D'W+ (D +XTX) X (y—pul)
=D ' +XTX) (DWW X (y—pl)) = E(Y).

Also note that Var(yy, +W) = Var(y) trivially since W is a given in the Gibbs step.

(b) Note that
E(yy)=E (Ayl - (rzD)XTT(XDXT +07! [(y_“lT_XW) —AY3D
—0+(12D)X:(XDXT+I)_1 [(y_“lT_XW) —o]

= DXT(XDXT +1)" ' (y —ul —XW).

Using the Sherman-Morrison-Woodbury matrix identity, we have that (D~! +X7X)~! =

D—DXT(XDXT +1)~'XD.
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Hence

xT —ul —XW
E <Ayl + (D) (XDXT +1)”! (y”T) —AY3]>
=DXT(XDXT + 1)~ (y —ul —XW)
= (DXT —DXT + DXT(XDXT +1)"")(y —ul —XW)
= (D—-DXT(XDXT +1)"'XD)XT (y —ul —XW)

=D+ XTX) X (y —ul = XW)

= E(YW)v

where the last step follows from equation (5) in the main text under Lemma 2.1.

Using the fact that Var(Ay, ) =°D, Var(Ay,) =1, Var(Ay,) = (XDX” +1) and Cov(Ay,, Ay,) =

TXD, we have

xT —ul —XW
Var <Aq,1 + (IZD)T(XDXT +1)7! (y“r) — A%] )

= Var(Ay,) +tDX" (XDX" +1)"'Var(Ay,) (xDX" (XDX" + 1) )
+1DX" (XDX" +1)"'Cov(Ay,,Ay,)
= 2D +DXT(XDX” +1)"(XDXT +1)[DX" (xDX” +1)"]"
— 20’ DXT(XDXT +1)"!
= 2D +DXT(XDX” + 1) (XxDXT +1)[DX” (xDX” +1)7]"
—20*DXT(XDXT +1)7!
=1 [D-DX"(XDX" +1)7'XD] = (D" '+ X"X)"" = Var(yy),
where the last step follows from equation (5) in the main text under Lemma 2.1.
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7.3 Appendix C

In this section, we describe the procedure for edge selection in our model, taking into
account multiplicity correction. It is well acknowledged that the problem of selecting important
coefficients is a challenging task when 7 is assigned a continuous shrinkage prior, since none
of the coefficients is zero in any MCMC iteration. Recently, [92] proposed an approach that
aims to address the problem of identifying influential edge coefficients through a novel method
of post processing of posterior samples. The approach is based on first obtaining a posterior
distribution of the number of signals by clustering the signal and the noise coefficients and then
estimating the signals from the posterior median. While [92] addresses the problem of variable
selection from posterior samples of coefficients, the procedure does not necessarily address the
problem of multiple comparisons.

Here we propose a novel procedure that is inspired by [92] that explicitly allows to
generate accurate estimates of the false discovery rate (FDR) associated with the procedure.
Our approach also relies on fitting a mixture model to the logarithm of the absolute value of
the point estimates of the coefficients using an Expectation-Maximization algorithm, but one
more flexible than the one implicitly used in [92]. The probability that each coefficient is
generated by the mixture component with the lowest mean (which is a natural byproduct of
the EM algorithm) provides an estimate of the local FDR associated with that coefficient [101],
from which an estimate of the FDR curve can be easily generated. The details of the algorithm

are as follows:

1. Obtain posterior mean of all edge coefficients from post burn-in MCMC samples.
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2. Cluster the logarithm of absolute values of the posterior mean of coefficients into two
groups using a either a two-component mixture of Gaussian distributions or a two com-
ponent mixture of skewed t-distributions. We use the R library mclust for when we
use Gaussian mixture [48], and library EMMIXcskew while using mixture of skewed t-

distribution.

3. Using the probability that each coefficient is generated by the mixture component with
the lowest mean as an estimate of the local FDR, compute for every H the FDR associated
with the H largest coefficients, FDR(H), as the sum of their local FDR values divided by

H.

4. Given a value o of the FDR that we are aiming to control for (say, for example, 0.05),
pick as significant the H* largest coefficients, where H* is the largest value of H such that

FDR(H) < o

7.4 Appendix D

This section provides full conditionals for all the parameters in the Bayesian binary
network regression with network lasso shrinkage prior on y described in Chapter 3. Assume
W = (ujAuy, ..., u\Auy,....,u, _Auy)’, D= diag(siz, "'7S‘2/—1,V) andy= (Y12,...,Yv—1v)". Thus,

with n data points, the hierarchical model with the network lasso prior in the binary setting can
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be written as

t ~N(u+Xy,Q7")
Y~NW,D), ur|& = 1~ N(ux[0,0), u|E =0~ 8o, & ~ Ber(A), u~ flat()
s%’l ~ Exp(6%/2), 6%~ Gamma({1), Q~IW(v,I), A~ Beta(aa,by)

p(®;) ~ PG(1,0), A, ~ Ber(m,), &, ~ Beta(1,r),n > 1.

The full conditional distributions of the model parameters are given below.

11 _
o Y[— ~ N(uy.,Zy.), where p,. = (X'QX+D7 1) (X'Q(t —ul) + D 'W) and ;. =

(X'QX +D~1)"!

o s,%J | — ~ GIG [%, (Vi — uAu;)?,0?], where GIG denotes the generalized inverse Gaus-

sian distribution.

2
o 02 | — ~ Gamma |:(C+ LV{U) ) (I+Zk<l ?)}

o | — ~ wy Oo(ur) + (1 —wy, ) N(ug |my,, Ly, ), where Uy = (uy @ -+t g @ Ugqy -
I/tv),/\, Hk = diag(s%vk, "'7Sl%—1,k7si,k+17"‘7S%,V)7 Y = (Yl,k7 '-‘7'Yk717k7'Yk,k+17 -w'Yk,V), and

/ -1 /
Ly = (UiHD UG+ 7)) my =T U H 'y,

(1—A)N(y,|0,Hy)
(1—A)N(y,|0,Hy) + AN (Y, |0, Hy + U QUY)

Wy, =

o &i|— ~Ber(l—wy,)

o A|—~Beta[(ax+ Y} &), (ba+X{_ (1 -&))].
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Q= ~ IW[(v+{#k ux 7 0}), (I + K0 ur At )]

nrN(YIWltD)
Y[W1,D)+(1-m,)N(Y|Wo,D)

. Here

A.| — ~ Ber(p,,), where p = il
/ / / / / / / /
Wi = (W Auy, ..., u\Auy, ... ouy,_(Auy)', Wo = () Aouz, ..., u ) Aoy, ..., u5, _Aouy ),

A1 :diag(?q,..jkr,l, l,}\-r+17..,}\4R), A() :diag(ll,..,lrfl,o,kr+1, ..,7\,R), forr= 1,..,R.

7| — ~ Beta(A,+ 1,1 = A+ M), forr=1,.,R.

Using the relationship, PG(x|b,¢) o< exp(—%’c)PG(x\ 1,0) [111], we obtain

;| — ~ PG(l,u+xly),fori=1,..,n.

7.5 Appendix E

This section provides full conditionals for all the parameters in the Bayesian network
classifier model introduced in Chapter 3 with Bayesian network horseshoe prior. Assume W =
(W Auz, ..., Auy, ... ;uy,_Auy)',D = diag(czsiz, ey stxszl,v) andy= (Y1 2,...,Yv—1v)". Thus,
with n data points, the hierarchical model with the network horseshoe prior in the binary setting

can be written as

INN(‘U—l—X'Y,.Q_l)
Y~N(W,D), ug|& =1~ N(u|0,0), ur|& =0~ 8o, & ~ Ber(A), u~ flat()
skJNC“L(O,l), c~C"(0,1), Q~IW(v,I), A~ Beta(ap,bs)

p(®;) ~ PG(1,0), A, ~ Ber(m,), &, ~ Beta(1,r),n > 1.
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Note that, following [97],
sk ~C*(0,1), 6~C"(0,1)
can be written in an augmented form as

1 1 1 1 1 1
S]%J‘VkJNIG(z,\)l{[), Vk’[NIG<2,1>, 62‘02NIG<2702>7 02N1G<2,1)

With the model formulation described above, the full conditional distributions of the

model parameters are given by the following distributions:

U'Q(—Xy) _1
* '“|_NN< Gl 71'91)

11 _
o Y| — ~ N(uy.,Zy.), where . = (X'QX+D7") (X'Q(t —ul) + D'W) and £, =

(X'QX +D 1)

o = ~IG[1, (o + Dl

Vil 202
V(V—1 —u,Auy)?
¢ 02|”1G[(§+(4)>,(§2+Zk<zw>]
® Vii|—~1IG [17(”5%1)}

e 6| —~IG[1,(1+2%)]

o?
o | — ~ wy Oo(ur) + (1 —wy ) N(ug |my,, Ly, ), where Uy = (uy @ -+t g @ Ugqp -0
Ltv)//\, Hk = diag(sik, ‘”7813—1,k7si,k+17"‘7S%,V)7 Y = (Yl,k7 "‘7’Yk—17k7’yk,k+17 "'7Yk,V)’ and

! 71 !
Ly, = (UZH;1U2/62+Q_1) ) muk:ZMkUltlel’Yk/o-Z

(1—A)N(y,10,6°Hy)
(1 —A)N(Y,|0,62H) + AN (v, | 0,62Hy + U QUY)

Wy, =
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o &i|— ~Ber(l—wy,,)

Al ~ Beta[(an+ Y1 &), (ba+E{-1 (1 - &))].

Q | - IW[(V+ {#k DUk 7& 0})7 (I+Zk:uk;£0 ukAu;c)]'

N (Y|W1,03D)
TN (Y|W1,63D)+(1-7,)N(y|Wo,03D)

. Here

A.| — ~ Ber(p,,), where p =
/ / / / / / / /
W, = (ulAluz,...,ulAluV,....,uv_lAluV) s WO = (u]Aouz,...,uleuV,....,uv_]AouV) s

Aq :diag(M,..,kr_l, 1,7ur+1,..,7LR), A() :diag<7\,1,..,7ur_1,0,7»r+1, ..,7\,R), forr= 1,..,R.

7| — ~ Beta(A,+ 1,1 =\, + "), forr=1,..,R.

Using the relationship, PG(x|b,c) < exp(—%x)PG(x |b,0) [111], we obtain

;| — ~ PG(1,u+xly), fori=1,..,n.

7.6 Appendix F

Similar to the assumptions made by [143] in their proof of posterior consistency for
binary logistic regression, we prove our results assuming that the centering parameter u = 0 in
both the true and the data generating models. We note that the main structure of the proof will
remain unchanged with this assumption and the result proved in this chapter can be trivially
extended to the setting with nonzero .

We begin by defining some notations. In the proof, I(-) will be used to denote the
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generic probability notation. We define the notation of the log-likelihood function by

Wy (V) = i [(xiv)yi = 2(xy)], 2(xiy) = log(1 +exp(x7y)). (7.4)

i~

We also introduce the function Cy ,(-) to quantify the curvature of wy,(y,) around Y%,

Cyn,n(Y) = WY,n(yn) - Wy(o),n(yn) - wa(o),n(yn),(y_y(()))v (7.5)

where Vw0 ,(v,) is the derivative of wyo) ,(v,) W.r.t. v, evaluated at 19). Also the likelihood
Py(y,) can be written using the above notations as py(y,) = [Ti~; exp(wy,(yi)). The notations
Ey(-) and Eyo(-) have been reserved to denote expectation w.r.t the distribution of y,|y and
y, Y% respectively.

The proof of Theorem 3.3.1 relies in part on the existence of exponentially consistent

sequence of tests.

Definition An exponentially consistent sequence of test functions &, for testing Hy : Y = 7°

vs. Hy :y € Ay satisfies

Ep(®n) < diexp(—hin), sup Ey(1 —®,) < drexp(—hayn)
YeA;

for some dy,d>,hy,hy > 0.

Lemma 7.6.1 For some h > 0, there exists a sequence of test functions for testing Hy : y =

vs. Hy : Y € A5, which satisfy

Ep(®n) < exp(—hn), su;i Ey(1—®,) < exp(—hn). (7.6)
Ye;

Proof The construction of the test is provided in the proof of Theorem 2 and Lemma 4 in [55].
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We also state another result which will be subsequently used in the proof.

Lemma 7.6.2 Let uio) = (u,(c?l), oy u,(c(’)l)?)’for k=1,..,V,, and vy be the only positive root of the

equation
x| |+ 1)) =i =0, k< L. (1.7)
Assume © = miny ; V. Then, for W = (ujus, ...,u(,rluvn)’ and W0 = (ugo)/ugo), ...,ug:)_’lug,g))’
(|[W = WO <mp) > (g — V] <0, VE=1,..,V,). (7.8)
Proof fork <1,
e — 1 )| = | i Uk ULy — i )|
r=1 r=1
<1 o+ )
r=1 r=1

0 0 0
< g — o ler] 12 + g — 2] |2

0 0 0 0 0
< o= a2 [ = 12+ ™ o] + e = el
If ||uy — u,(c())Hg <wv, Vk=1,..,V,, the above inequality implies
ity — " ™ | <00+ [ ]2) + 0l ]2 <M1, VE <L

Hence TI(||W — WOl <m1) > TI(||ux — ul”|]a <0, Vk = 1,..,V,).

Proof of Theorem 3.3.1

Suppose E, = {y HIVwyo) , () [feo < 24 /nq,,}. Then the probability of the vector y, belonging

to the set ‘£, is given by,

n

n , 2
Pyo O € En) 2 1= Pyo (| max | ;()’i — Va (@ (y=v)xijl > 2y/nga) > 1-—,
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where the last step follows from the Hoeffding inequality. Note that as n — oo, g, — oo, hence
Pyo) (v, € E.) — 1. Hence, in the subsequent proof we can assume without loss of generality

that y, € E,. It can be observed that
p"{(yn)
Jayma) Jap 0, ™0)

e Onm(y) fpf(‘(’)gy(';i)nn(y)

¢ _ N N

where @, is the exponentially consistent sequence of tests given in Lemma 7.6.1. The above
equation is true as A, /D, < 1. This is in turn true as both are integrals of the same nonnegative
functions, D, is the integral of that function over the entire set of possible Y’s, while Aj; is the

integral over a subset 4:. In proving Theorem 3.3.1, we will proceed in three steps as following.
(a) Step 1 shows that ®,, — 0, as n — oo, almost surely.

(b) Step 2 shows that exp(hn/2)(1 — P,) N, — 0, as n — oo, almost surely.

(c) Finally, step 3 shows that exp(hn/2)D, — oo, as n — eo.

Here 4 is the one as defined in Lemma 7.6.1. By (7.9), (a)-(c) implies IT,(A4S) — 0. We will
now proceed proving (a)-(c).
(a) Step 1

An application of the Markov inequality and (7.6) in Lemma 7.6.1 yield,
Pyo) (Pn > exp(—nh/2)) < Eyo) (P,) exp(nh/2) < exp(—nh/2).

Therefore },"; Pyo) (Pn > exp(—nh/2)) < ce.
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Applying Borel-Cantelli lemma, Thus, Pyo) (P, > exp(—nh/2)happens infinitely often) =
0. This means that 3n9 and a set Q with Py (Q) =0, s.t. for all n > ng, ®,(0) < exp(—nh/2),
for all ® € Q°. Since exp(—nh/2) — 0, this means that ®, — 0 almost surely.

Thus,
b, -0 a.s. (7.10)

(b) Step 2

We have

Ep((1-2)96) = [(1-,) [ p’:}fi;%nn(v)pw 0n)

_ / g / (1= ) py(3,)Ta(Y)

= [ Ey(1=®,)m,(y)
A3

< sup Ey(1 —@,I1(A4y)
YEAS

< sup Ey(1 —®,) < exp(—nh) < exp(—nh/2).
YA,

Consider the set G, 52 = {(1 —®,) N, exp(nh/2) > exp(—nh/4)}. The above inequality implies
that Y"1 Pyo) (Gn.n2) < oo. Again since h is fixed, applying Borel-Cantelli lemma Pyo) (limsupp—seo Gnpo) =
0. Using the definition of limsup of the sets Gy, 2 [85], Pyo) (Gn,n2 happens infinitely often) = 0.
Thus, Pyo ((1 — Pn) Ny exp(nh/2) > exp(—nh/4) happens infinitely often) = 0. Let Q be the
set s.t. Pyo) () =0and (1 —®,(®))N;exp(nh/2) > exp(—nh/4)happens infinitely often for all
o € Q. This means that 3ng 7 s.t. forall n > ng 2, (1 —P,(®)) N, exp(nh/2) < exp(—nh/4), for

all ® € Q5. Since exp(—nh/4) — 0, this means that exp(nh/2)(1 — ®,) N, — 0 almost surely.
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exp(nh/2)(1— )N, =0 a.s.. (7.11)

(c) Step 3

V4 Y (y n )
Pyo) (Vn

fool
- ool

> [ e (~2v/gilly =2l §Ir—¥"1B) )

(1) Vo, () (1= ¥%) + Gy, () 71

n
~ 19wy ) 1l =Yz = 5 b =¥ B) =)

n n
ZGXP< 2\/”an/2—l> (HY 12 < p;2>

where p is the one defined in the statement of the theorem and the inequality in the second
line follows from the Taylor series expansion after taking into account that V2z(-) < 1/4 (z(*)

defined in (7.4)), which is true as f2 log (1 +e ) < 1/4. The inequality in the third

(1+ f
line follows from the fact that y, € E,.
First, observe that, given all the hierarchical parameters, the Bayesian network lasso

prior distribution on Y can be written as Yy = W +v,, where 7y, follows the ordinary Bayesian

lasso shrinkage prior. With this observation, one can see

Z,Tpl/z> (Iw —we ”2<2n/2)’

(1 =y"l < 255) =11 (1 -

where W and W(©) are as defined in Lemma 7.6.2. We will show sequentially

(i) —logH<||W WO, < o m) =o(n) and

(i) ~Tog {11 (Iv, = 4”12 < 333 ) } = ().

(1) Note that, with R (dimensions of the latent variables) and A (probability of a node being
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influential) as defined before we obtain,

N1
2nP/2

(W WOy < =00y > T(||ug— 1|2 < O, YE=1,..,V,)

>E [n(uuk —u¥([ <, V= 1,..,vn\A)}

V, 1 o
[T {ex (~ 5 ” ) lacl < lo)}

k=1

>E ) (7.12)

where the first inequality follows from Lemma 7.6.2 by replacing m; with 2:;/2 with a slight

abuse of notation, and v, is defined accordingly. The last inequality follows from the An-
derson’s Lemma. We will now make use of the fact that [ exp(—x?/2)dx > exp(—a?)2a to
conclude

R

R
(el < 0al) = TT0 (Juer| < 2418) = [ ((1 —A)+ \/Aﬁ

r=1 r=1

/R

()
2v, A 2v,1"
> T (- 80+ et/ 5 ) = [1-8)+ el v/md 22|

A 20, 18V
exp(—uﬁ/#)"}

V2n R
RV, Rvn_hl
% (RV, _ 2v,
_ [Z <h1 >(1—A)’“ARV" g (;’) exp (—(RV, — I v2/R?)
hi=1

RV,

RV,
> Y ( ">Beta(RVn—h1+1,h1+1)
hi=1 1

) 0 RV,—hy
< v > exp (—(RV, — hy Y02 /R?)

’% (RV,)!  hi!(RV, —hy)!
- h]!(RVn—hl)! (RVn—i-l)!

HH(HMkHz <wv,)>E [(1 —A)+

hi=1
M RV,—h;
( R”) exp (—(RV, — h1)v; /R?)
RV, [20,\%" )
> —V,02/R).
- RVn+1 < R ) exp( ﬂDn/ )
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Where the last inequality follows from Lemma 7.6.2 by considering the fact that,

(0) (0) (0) 0)y72 2
e I RR1” + w ||+ |u +2m /nP/
U”:nglln (e [+ 1] \/[sz [+ [11>+201/ < ﬂ4 Hence, 0 < 21),, < 1 for large n. It

now follows from (7.12) that

U, u V. 2 /M1
—logH(HW w |\z<2“p1/2) <yt fe g Ry, log <\[:/4>—|—10g(RV +1)
k=1

by the assumptions (A) and (B). This proves (i).
We will now prove (ii). Let §° = {j: yg?J). # 0}. Define s as the vector of upper
triangular part of the matrix with (k,/)th entry sy ;. It follows that

0 2
T]l ) nl . 0 2 (qn_SZ,n)nl

JgS°

(7.13)
We will lower bound two components of the product in (7.13) individually. By Chebyshev’s

inequality

(¢ —s3,)M7 E[Y jg50 [2.j1*14ganP
2 n JZS 3]
8! ( Z |'Y2]‘ < 4qnnp > - ’ 0 2

]€50 (ql’l 7S27n)n1

Y
_ (1 — 29nq2nn ) (7.14)
M

0 (0) 0
<|Y2j YZJ 2\/> p/2>] 5 ) |:H <|Y2,j_727j 2\/» p/Z’JES |550>:|
0 i
T 1 (s = )1 < 5 o)

jeso
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Using the fact that ff e 2dx > e_(“2+b2)/2(b —a), one obtains

[, + 1/ (4gun®)
Hn(\vz,j—vé?}r zfp/gsso)_n ——— exp( 2

jeso jeso A /2qnnpns§ S

J
Thus

0 n .
1 (|YZ7J_Y(21)| < 2\/q—1np/2a] e~S‘O>
2
+n7/(4g.nP
. n exp( 8,2+ /g >)

[1 2
jeso \ /2qnnpns§

4

> (\/men )sgﬂn/ L ex PR,/ Gann?) o] ds?

o 2qninC jeso Sj \/S>2 P s2_ 2 !
J

J
J
Use the change of variable Siz = z; and the normalizing constant from the inverse Gaussian
j

density to deduce

l

2 2
xp( 1,17 i/ (44un®) 9”s1>d2

S.
s? 2 J
j

-
N
[¢]

1
= [ § e (<, g - 3 )
zj 2
2n
/(&) (— o2 (18,415 () )
Therefore,
0
n . nive,\™
H(|Y2,jY(2(,)])'| < WJGS ) > (\/IW) exp( z;,o (IYS,IZHh/ 461nnp)>)
n n je

(7.15)
Combining results from (7.14) and (7.15)

0
0 ni m en "2
(| =%k < 5075 ) = (W m,) exp (—en y 2(yy;’7j12+n%/(4qnnp)>>

jeso
1— zenanp/z
o)
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Referring to Assumption (F),

_logn(”yz 7wl < znp/z> 9 . +1og(ga) + (3p/4) log(n) +log(log(n)) /2]
\/ 2(1?3,,-!2+n%/ (4qnnp)) )
* g2 og(n) —log (1 - nzlog(n)> =o(n), (7.16)

under assumptions (B)-(F).

Finally,

~log(,) < 2y W+ togTn [y < 1)

_ (ep2 M 1p 0)
= 2M/qun g logH(Hv 112 < p/z)

Using (7.16), the fact that (1 —p)/2 € (—1/2,0) and assumption (B), we obtain —log(D,) =

o(n). Thus (c) follows.

7.7 Appendix G

This section provides full conditionals for all the parameters in the Nonparametric
Bayesian network regression described in Chapter 4.
Let x; = (@i 12,@i1 3, i1 V,0i23:0i 245 --sAi 2V 5., div—1v) be of dimension g x 1, where
q= W Assume y = (y1,...,yn) € R"and X = (x; : -+ : x,)" is an n X ¢ matrix. Further, as-

! ! l :
sume Wd = (ul7dAd”27d7 ...,ulﬁd/Aduud, ""’M(V—1)7dAduV>d) s Dd == dlag(sl‘g’d, --',szl,V,d) and

Yo= V124 W-1va)
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With n data points, the hierarchical model is written as

vil(zi=d) ~ N(ug +Xy,;,w0);d=1,...H;i=1,...N
1
Yy ~N(W4,T°Dy), T(1?) o o Ma ~N(0,1), ugal&ra=1~N(ural0,04), uka|&ra =0~ o,
skt~ Exp(63/2), 07 ~ Gamma(C1), Qq ~ IW(S,V), Aq ~ Beta(a,b),

Eka ~ Ber(Ag), Arg ~ Ber(T.q), Tq ~ Beta(1,r"),n > 1, P(z;=d) =y

H-2 H-1
®; =V, 0 =vy(1—v]),..,05_1 =vy_,; H(l —v)), 0y = H(l —v),
=1 =1

vi ~ Beta(l —oy,0p +10),l=1,...H—1; 0, ~U(0,1), 0y ~ Gamma(ay,by,).
l ( ) 9 [ERS) sy L) )

The model computation proceeds using the popular Markov Chain Monte Carlo algorithm with

the full conditional distributions of parameters are given as following:

1g,’ —-X 2
(i

lEd/lEd ’ lEd,lEd

i1 _
® Yyl — ~ N(yy,|..Ey,|.), where p, |. = (XﬁngEl,-l-Ddl) (XE,(vg, — MalE,) +Dd1Wd)

1y L
and £, |. = (X} Xg,+ D)

_ 5 —Halg, —X 24 (Y =Wa)' Dy (v —W
« ?|—~IG [(1%/+V(V41)H)7221_1 |0k, —t1a £ Edvd>||2+<vd )P (v ~Wa)

N 2 . .
® si 14| —~GIG [é, W#, 94 , where GIG denotes the generalized inverse Gaus-

sian distribution.

o 631~ Gamma (& 1) (4 i 28

® Ukd | =~ Wiy g 80(uk,d) +(1— W“k‘d) N(”k,d ‘ muk‘d’z’uk‘d)’ where

. . . . . !
U;d = (ul,d ot Uk—1d - Uk1d - uV7d) Ad,
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bHy g = diag(s1 kds s Sk—1 k,d>Skk+1,ds s Sk,V,d)

Yea = (Vikd> s Vi1 kd> Yek+1.d5 -5 Ve v.d), and

-1
¥ pr—lyrx 2 —1 ' pr—1 2
iy = (U naliaUka/v +Qy ) s My = T U aHy Ve a/ T

v (1= A)N (Y 4|0,V Hy.a)
(1= AN (Y g0, T Hea) + AaN (4 4|0, Hica + Ui 4QaUs )

) ak,d|_ NBer(l — WMk,d)
o Ag|—~Beta[(a+ Y] &ka), D+YL_1(1—Ea))]

o Q| =~ IW[(S+ Lk 20 Ukahatty g), (V+ {#k 1w q # 0})].

T aN (¥ |W 14,7 Da)
T aN (Y [W1.a,%Da)+(1-1.4)N(Y; [Wo 4,7 Da

* xr,d | — ~ Ber (er,d), where p , = 7 Here

/ / / !

Wia= (U] gAraads sty g1 auy g, -ty g gA1auya)'s
W _ ! A / A / A !
0.d = (U} gNoata,ds s Uy gNoaydy sty 1 gNoautv.a)',

Aig=diag(h a,... M—1.4, 1, Mrv 1.4, -, AR ),

Aoa = diag(M gy, M\r—1,4,0,Ari 1,45, ra), for r=1,.,R.

b n’}d’_ NBeta(}Lnd—i_ 171_}\4r7d+rn), fOI‘r: 1’..,R.

o N U)dN(yi‘x;’Yderd,‘Cz) - x| o s
* P(Zl - d| ) - 251/:1COd/N(yi‘x;Yd/-‘er/,Tz)’ ford=1,.,H. Vi | Beta(l o +#{l Sl =

oo +log + X7 #{iczi=ss}), =1, .H—1,

W) = VT? w = V;(l _VT)VW(’)H—] = V}F-Iflnf-I:IZ(l _V?)v Wy = Hf-lqu(l _V}k)

e Parameters o; and o are updated using Metropolis Hastings algorithm.

164



Bibliography

[1] Felix Abramovich and Vadim Grinshtein. High-dimensional classification by sparse lo-

gistic regression. arXiv preprint arXiv:1706.08344, 2017.

[2] James H Albert and Siddhartha Chib. Bayesian analysis of binary and polychotomous

response data. Journal of the American Statistical Association, 88(422):669-679, 1993.

[3] David J Aldous. Representations for partially exchangeable arrays of random variables.

Journal of Multivariate Analysis, 11(4):581-598, 1981.

[4] David J Aldous. Exchangeability and related topics. In Ecole d’Eté de Probabilités de

Saint-Flour XIII 1983, pages 1-198. Springer, 1985.

[5] Artin Armagan, David B Dunson, and Jaeyong Lee. Generalized double Pareto shrink-

age. Statistica Sinica, 23(1):119-143, 2013.

[6] Artin Armagan, David B Dunson, Jaeyong Lee, Waheed U Bajwa, and Nate Strawn.
Posterior consistency in linear models under shrinkage priors. Biometrika, 100(4):1011-

1018, 2013.

165



(7]

(8]

(9]

[10]

[11]

[12]

[13]

Eduard Belitser and Nurzhan Nurushev. Needles and straw in a haystack: robust confi-

dence for possibly sparse sequences. arXiv preprint arXiv:1511.01803, 2015.

Anirban Bhattacharya, Antik Chakraborty, and Bani K Mallick. Fast sampling with
gaussian scale mixture priors in high-dimensional regression. Biometrika, pages 985—

991, 2016.

Monica Billio, Mila Getmansky, Andrew W Lo, and Loriana Pelizzon. Econometric mea-
sures of connectedness and systemic risk in the finance and insurance sectors. Journal of

financial economics, 104(3):535-559, 2012.

Thomas E Brown, Philipp C Reichel, and Donald M Quinlan. Executive function im-
pairments in high iq adults with adhd. Journal of Attention Disorders, 13(2):161-167,

2009.

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of

structural and functional systems. Nature Reviews. Neuroscience, 10(3):186-198, 2009.

Wray Buntine, Lan Du, and Petteri Nurmi. Bayesian networks on dirichlet distributed

vectors. On Probabilistic Graphical Models, page 33, 2010.

Gareth Butland, José Manuel Peregrin-Alvarez, Joyce Li, Wehong Yang, Xiaochun Yang,
Veronica Canadien, Andrei Starostine, Dawn Richards, Bryan Beattie, Nevan Krogan,
et al. Interaction network containing conserved and essential protein complexes in es-

cherichia coli. Nature, 433(7025):531-537, 2005.

166



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Emmanuel J Candes, Xiaodong Li, Yi Ma, and John Wright. Robust principal component

analysis. Journal of the ACM (JACM), 58(3):11, 2011.

Bruce Caplan, Jeffrey S Kreutzer, and John DeLuca. Encyclopedia of Clinical Neuropsy-

chology; With 199 Figures and 139 Tables. Springer, 2011.

Shelley H Carson, Jordan B Peterson, and Daniel M Higgins. Decreased latent inhibi-
tion is associated with increased creative achievement in high-functioning individuals.

Journal of personality and social psychology, 85(3):499, 2003.

Carlos M Carvalho, Nicholas G Polson, and James G Scott. The horseshoe estimator for

sparse signals. Biometrika, 97(2):465-480, 2010.

Ismaél Castillo, Judith Rousseau, et al. A bernstein—von mises theorem for smooth func-

tionals in semiparametric models. The Annals of Statistics, 43(6):2353-2383, 2015.

Ismaél Castillo, Aad van der Vaart, et al. Needles and straw in a haystack: Posterior
concentration for possibly sparse sequences. The Annals of Statistics, 40(4):2069-2101,

2012.

Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky. Rank-
sparsity incoherence for matrix decomposition. SIAM Journal on Optimization,

21(2):572-596, 2011.

A Chatterjee and S Lahiri. Asymptotic properties of the residual bootstrap for lasso
estimators. Proceedings of the American Mathematical Society, 138(12):4497-4509,

2010.

167



[22] Arindam Chatterjee and Soumendra Nath Lahiri. Bootstrapping lasso estimators. Journal

of the American Statistical Association, 106(494):608-625, 2011.

[23] RA Chavez, A Graff-Guerrero, JC Garcia-Reyna, V Vaugier, and C Cruz-Fuentes. Neu-
robiology of creativity: preliminary results from a brain activation study. Salud Mental,

27(3):38-46, 2004.

[24] Nicholas A Christakis and James H Fowler. The spread of obesity in a large social

network over 32 years. n engl j med, 2007(357):370-379, 2007.

[25] Nicholas A Christakis and James H Fowler. The collective dynamics of smoking in a

large social network. New England Journal of Medicine, 358(21):2249-2258, 2008.

[26] Comparing connectomes across subjects and populations at different scales. Meskaldji,
djalel eddine and fischi-gomez, elda and griffa, alessandra and hagmann, patric and mor-

genthaler, stephan and thiran, jean-philippe. Neurolmage, 80:416—425, 2013.

[27] R Cameron Craddock, Paul E Holtzheimer III, Xiaoping P Hu, and Helen S Mayberg.
Disease state prediction from resting state functional connectivity. Magnetic Resonance
in Medicine: An Official Journal of the International Society for Magnetic Resonance in

Medicine, 62(6):1619-1628, 2009.

[28] Jeffrey M Cucina, Nicholas L Vasilopoulos, and Arwen H DeCostanza. Using principal
component scores to enhance the validity and reliability of big five personality measures.

Journal of Individual Differences, 2017.

168



[29]

[30]

[31]

[32]

[33]

[34]

[35]

Madelaine Daianu, Neda Jahanshad, Talia M Nir, Arthur W Toga, Clifford R Jack Jr,
Michael W Weiner, and Paul M Thompson, for the Alzheimer’s Disease Neuroimag-
ing Initiative. Breakdown of brain connectivity between normal aging and alzheimer’s

disease: a structural k-core network analysis. Brain connectivity, 3(4):407-422, 2013.

Kayla De la Haye, Garry Robins, Philip Mohr, and Carlene Wilson. Obesity-related

behaviors in adolescent friendship networks. Social Networks, 32(3):161-167, 2010.

Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis. Frequent
substructure-based approaches for classifying chemical compounds. IEEE Transactions

on Knowledge and Data Engineering, 17(8):1036-1050, 2005.

Rahul S Desikan, Florent Ségonne, Bruce Fischl, Brian T Quinn, Bradford C Dickerson,
Deborah Blacker, Randy L Buckner, Anders M Dale, R Paul Maguire, Bradley T Hyman,
et al. An automated labeling system for subdividing the human cerebral cortex on MRI

scans into gyral based regions of interest. Neuroimage, 31(3):968-980, 2006.

Patrick Doreian. Causality in social network analysis. Sociological Methods & Research,

30(1):81-114, 2001.

Daniele Durante and David B Dunson. Nonparametric bayes dynamic modeling of rela-

tional data. Biometrika, 101(4):883-898, 2014.

Daniele Durante and David B. Dunson. Bayesian inference and testing of group differ-
ences in brain networks. Bayesian Analysis, doi:10.1214/16-BA1030, 2017. Advance

publication.

169



[36] Daniele Durante, David B Dunson, et al. Bayesian inference and testing of group differ-

ences in brain networks. Bayesian Analysis, 2017.

[37] Daniele Durante, David B Dunson, et al. Bayesian inference and testing of group differ-

ences in brain networks. Bayesian analysis, 13(1):29-58, 2018.

[38] Daniele Durante, David B Dunson, and Joshua T Vogelstein. Nonparametric bayes
modeling of populations of networks. Journal of the American Statistical Association,

112(520):1516-1530, 2017.

[39] Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publication of the

Mathematical Institute of the Hungarian Academy of Sciences, 5(1):17-60, 1960.

[40] Michael D Escobar and Mike West. Bayesian density estimation and inference using

mixtures. Journal of the American Statistical Association, 90(430):577-588, 1995.

[41] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. Log-det heuristic for matrix rank
minimization with applications to hankel and euclidean distance matrices. In American
Control Conference, 2003. Proceedings of the 2003, volume 3, pages 2156-2162. IEEE,

2003.

[42] Hongliang Fei and Jun Huan. Boosting with structure information in the functional space:
an application to graph classification. In Proceedings of the 16th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 643-652. ACM,

2010.

170



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Yoram Finkelstein, Jacob Vardi, and Israel Hod. Impulsive artistic creativity as a presen-

tation of transient cognitive alterations. Behavioral Medicine, 17(2):91-94, 1991.

Alice W Flaherty. Frontotemporal and dopaminergic control of idea generation and cre-

ative drive. Journal of Comparative Neurology, 493(1):147-153, 2005.

Alex Fornito, Andrew Zalesky, and Michael Breakspear. Graph analysis of the human

connectome: promise, progress, and pitfalls. Neuroimage, 80:426-444, 2013.

Bailey K Fosdick and Peter D Hoff. Testing and modeling dependencies between
a network and nodal attributes. Journal of the American Statistical Association,

110(511):1047-1056, 2015.

James H Fowler and Nicholas A Christakis. Dynamic spread of happiness in a large
social network: longitudinal analysis over 20 years in the framingham heart study. British

Medical Journal, 337:a2338, 2008.

Chris Fraley, Adrian E Raftery, T Brendan Murphy, and Luca Scrucca. mclust version
4 for r: normal mixture modeling for model-based clustering, classification, and density

estimation. Technical report, 2012.

Ove Frank and David Strauss. Markov graphs. Journal of the American Statistical

Association, 81(395):832-842, 1986.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for general-
ized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22,

2010.

171



[51] Alan E Gelfand and Sujit K Ghosh. Model choice: a minimum posterior predictive loss

approach. Biometrika, 85(1):1-11, 1998.

[52] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Don-

ald B Rubin. Bayesian data analysis, volume 2. CRC press Boca Raton, FL, 2014.

[53] Andrew Gelman, Jessica Hwang, and Aki Vehtari. Understanding predictive information

criteria for bayesian models. Statistics and computing, 24(6):997-1016, 2014.

[54] Edward I George and Robert E McCulloch. Variable selection via gibbs sampling. Jour-

nal of the American Statistical Association, 88(423):881-889, 1993.

[55] Subhashis Ghosal, Anindya Roy, et al. Posterior consistency of gaussian process prior

for nonparametric binary regression. The Annals of Statistics, 34(5):2413-2429, 2006.

[56] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141-

1144, 1959.

[57] Cedric E Ginestet, Arnaud P Fournel, and Andrew Simmons. Statistical network analysis
for functional mri: summary networks and group comparisons. Frontiers in computa-

tional neuroscience, 8:51, 2014.

[58] Matthew F Glasser, Stamatios N Sotiropoulos, J Anthony Wilson, Timothy S Coal-
son, Bruce Fischl, Jesper L Andersson, Jungian Xu, Saad Jbabdi, Matthew Webster,
Jonathan R Polimeni, et al. The minimal preprocessing pipelines for the human connec-

tome project. Neuroimage, 80:105-124, 2013.

172



[59] Robert B Gramacy. R package monomvn. 2013.

[60] Sharmistha Guha and Abel Rodriguez. Bayesian regression with undirected network pre-
dictors with an application to brain connectome data. arXiv preprint arXiv:1803.10655,

2018.

[61] R Guhaniyogi and A Rodriguez. Joint modeling of longitudinal relational data and ex-
ogenous variables. https://www.soe.ucsc.edu/sites/default/files/technical-reports/UCSC-

SOE-17-17.pdf, 2017.

[62] Rajarshi Guhaniyogi, Shaan Qamar, and David B Dunson. Bayesian tensor regression.

Journal of Machine Learning Research, 18(79):1-31, 2017.

[63] Steve Hanneke, Wenjie Fu, Eric P Xing, et al. Discrete temporal models of social net-

works. Electronic Journal of Statistics, 4:585-605, 2010.

[64] Chris Hans. Bayesian lasso regression. Biometrika, 96(4):835-845, 2009.

[65] Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The predictive

toxicology challenge 2000-2001. Bioinformatics, 17(1):107-108, 2001.

[66] Peter Hoff. Modeling homophily and stochastic equivalence in symmetric relational data.

In Advances in neural information processing systems, pages 657-664, 2008.

[67] Peter D Hoff. Bilinear mixed-effects models for dyadic data. Journal of the American

Statistical Association, 100(469):286-295, 2005.

173



[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Peter D Hoff. A hierarchical eigenmodel for pooled covariance estimation. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 71(5):971-992, 2009.

Peter D Hoff. Multiplicative latent factor models for description and prediction of social

networks. Computational and mathematical organization theory, 15(4):261, 2009.

Peter D Hoff. Hierarchical multilinear models for multiway data. Computational Statis-

tics & Data Analysis, 55(1):530-543, 2011.

Peter D Hoff. Multilinear tensor regression for longitudinal relational data. The Annals

of Applied Statistics, 9(3):1169, 2015.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social
network analysis. Journal of the American Statistical Association, 97(460):1090-1098,

2002.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification,

2(1):193-218, 1985.

Madhura Ingalhalikar, Alex Smith, Drew Parker, Theodore D Satterthwaite, Mark A
Elliott, Kosha Ruparel, Hakon Hakonarson, Raquel E Gur, Ruben C Gur, and Ragini
Verma. Sex differences in the structural connectome of the human brain. Proceedings of

the National Academy of Sciences, 111(2):823-828, 2014.

Hemant Ishwaran and Lancelot F James. Approximate dirichlet process computing in
finite normal mixtures: smoothing and prior information. Journal of Computational and

Graphical statistics, 11(3):508-532, 2002.

174



[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: frequentist and

Bayesian strategies. Annals of Statistics, 33(2):730-773, 2005.

Saad Jbabdi, Stamatios N Sotiropoulos, Suzanne N Haber, David C Van Essen, and Tim-
othy E Behrens. Measuring macroscopic brain connections in vivo. Nature neuroscience,

18(11):1546, 2015.

Valen E Johnson and David Rossell. Bayesian model selection in high-dimensional set-

tings. Journal of the American Statistical Association, 107(498):649—660, 2012.

Timothy A Judge, Chad A Higgins, Carl J Thoresen, and Murray R Barrick. The big
five personality traits, general mental ability, and career success across the life span.

Personnel psychology, 52(3):621-652, 1999.

Rex E Jung, Judith M Segall, H Jeremy Bockholt, Ranee A Flores, Shirley M Smith,
Robert S Chavez, and Richard J Haier. Neuroanatomy of creativity. Human Brain Map-

ping, 31(3):398-409, 2010.

G Kiar, K Gorgolewski, and D Kleissas. Example use case of sic with the ndmg pipeline

(sic: ndmg). GigaScience Database, 2017.

G Kiar, W Gray Roncal, D Mhembere, E Bridgeford, R Burns, and JT Vogelstein. ndmg:

Neurodata’s MRI graphs pipeline, 2016.

Gregory Kiar, Krzysztof J Gorgolewski, Dean Kleissas, William Gray Roncal, Brian Litt,

Brian Wandell, Russel A Poldrack, Martin Wiener, R Jacob Vogelstein, Randal Burns,

175



et al. Science in the cloud (sic): A use case in MRI connectomics. Giga Science, 6(5):1-

10, 2017.

[84] Noona Kiuru, William J Burk, Brett Laursen, Katariina Salmela-Aro, and Jari-Erik
Nurmi. Pressure to drink but not to smoke: Disentangling selection and socialization

in adolescent peer networks and peer groups. Journal of adolescence, 33(6):801-812,

2010.

[85] Achim Klenke. Probability theory: A Comprehensive Course. Springer Science & Busi-

ness Media, 2013.

[86] Eric D Kolaczyk and Gabor Csardi. Statistical analysis of network data with R, vol-

ume 65. Springer, 2014.

[87] Bryan Kolb and Brenda Milner. Performance of complex arm and facial movements after

focal brain lesions. Neuropsychologia, 19(4):491-503, 1981.

[88] Pavel N Krivitsky and Mark S Handcock. A separable model for dynamic networks.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):29—

46, 2014.

[89] Minjung Kyung, Jeff Gill, Malay Ghosh, George Casella, et al. Penalized regression,

standard errors, and bayesian lassos. Bayesian Analysis, 5(2):369—411, 2010.

[90] John W Lau and Peter J Green. Bayesian model-based clustering procedures. Journal of

Computational and Graphical Statistics, 16(3):526-558, 2007.

176



[91] Bing Li, Min Kyung Kim, and Naomi Altman. On dimension folding of matrix-or array-

valued statistical objects. The Annals of Statistics, pages 1094-1121, 2010.

[92] Hanning Li and Debdeep Pati. Variable selection using shrinkage priors. Computational

Statistics & Data Analysis, 107:107-119, 2017.

[93] YaPeng Li, Yuanyuan Qin, Xi Chen, and Wei Li. Exploring the functional brain network
of alzheimer’s disease: based on the computational experiment. PloS one, 8(9):e73186,

2013.

[94] Xu Lin. Identifying peer effects in student academic achievement by spatial autoregres-
sive models with group unobservables. Journal of Labor Economics, 28(4):825-860,

2010.

[95] Xi Luo. High dimensional low rank and sparse covariance matrix estimation via convex

minimization. Arxiv preprint, 2011.

[96] Dean Lusher, Johan Koskinen, and Garry Robins. Exponential random graph models for

social networks: Theory, methods, and applications. Cambridge University Press, 2012.

[97] Enes Makalic and Daniel F Schmidt. A simple sampler for the horseshoe estimator. IEEE

Signal Processing Letters, 23(1):179-182, 2015.

[98] Ryan Martin, Raymond Mess, Stephen G Walker, et al. Empirical bayes posterior con-

centration in sparse high-dimensional linear models. Bernoulli, 23(3):1822-1847, 2017.

[99] Laurie Miller and Brenda Milner. Cognitive risk-taking after frontal or temporal

177



lobectomy-II. The synthesis of phonemic and semantic information. Neuropsychologia,

23(3):371-379, 1985.

[100] S. Minhas, P.D. Hoff, and M.D. Ward. Influence networks in international relations.

2017.

[101] Peter Muller, Giovanni Parmigiani, and Kenneth Rice. Fdr and bayesian multiple com-

parisons rules. 2006.

[102] Katherine L Narr, Roger P Woods, Paul M Thompson, Philip Szeszko, Delbert Robinson,
Teodora Dimtcheva, Mala Gurbani, Arthur W Toga, and Robert M Bilder. Relationships
between iq and regional cortical gray matter thickness in healthy adults. Cerebral cortex,

17(9):2163-2171, 2006.

[103] Mark Newman. Networks: An Introduction. Oxford University Press, 2010.

[104] Mark EJ Newman. The structure and function of complex networks. SIAM review,

45(2):167-256, 2003.

[105] N M K Niezink and T A B Snijders. Co-evolution of social networks and continuous

actor attributes. 2016.

[106] Krzysztof Nowicki and Tom A B Snijders. Estimation and prediction for stochastic block

structures. Journal of the American Statistical Association, 96(455):1077-1087, 2001.

[107] Kim TE Olde Dubbelink, Arjan Hillebrand, Diederick Stoffers, Jan Berend Deijen,

Jos WR Twisk, Cornelis J Stam, and Henk W Berendse. Disrupted brain network

178



[108]

[109]

[110]

[111]

[112]

[113]

[114]

topology in parkinson’s disease: a longitudinal magnetoencephalography study. Brain,

137(1):197-207, 2013.

Hae-Jeong Park and Karl Friston. Structural and functional brain networks: from con-

nections to cognition. Science, 342(6158):1238411, 2013.

Trevor Park and George Casella. The Bayesian lasso. Journal of the American Statistical

Association, 103(482):681-686, 2008.

Nicholas G Polson and James G Scott. Shrink globally, act locally: Sparse bayesian

regularization and prediction. Bayesian Statistics, 9:501-538, 2010.

Nicholas G Polson, James G Scott, and Jesse Windle. Bayesian inference for logistic
models using pélya—gamma latent variables. Journal of the American statistical Associ-

ation, 108(504):1339-1349, 2013.

Olga M Razumnikova. Creativity related cortex activity in the remote associates task.

Brain Research Bulletin, 73(1):96-102, 2007.

Jestis D Arroyo Relidn, Daniel Kessler, Elizaveta Levina, and Stephan F Taylor. Network
classification with applications to brain connectomics. arXiv preprint arXiv:1701.08140,

2017.

Jonas Richiardi, Hamdi Eryilmaz, Sophie Schwartz, Patrik Vuilleumier, and Dimitri Van
De Ville. Decoding brain states from fmri connectivity graphs. Neuroimage, 56(2):616—

626, 2011.

179



[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Garry Robins, Tom Snijders, Peng Wang, Mark Handcock, and Philippa Pattison. Re-
cent developments in exponential random graph (p*) models for social networks. Social

Networks, 29(2):192-215, 2007.

Abel Rodriguez, David B Dunson, and Alan E Gelfand. The nested dirichlet process.

Journal of the American Statistical Association, 103(483):1131-1154, 2008.

Judith Rousseau and Kerrie Mengersen. Asymptotic behaviour of the posterior distri-
bution in overfitted mixture models. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 73(5):689-710, 2011.

Mikail Rubinov and Olaf Sporns. Complex network measures of brain connectivity: uses

and interpretations. Neuroimage, 52(3):1059-1069, 2010.

Jayaram Sethuraman. A constructive definition of dirichlet priors. Statistica sinica, pages

639-650, 1994.

Cosma Rohilla Shalizi and Andrew C Thomas. Homophily and contagion are generically
confounded in observational social network studies. Sociological methods & research,

40(2):211-239, 2011.

Maksim G Sharaev, Viktoria V Zavyalova, Vadim L Ushakov, Sergey I Kartashov, and
Boris M Velichkovsky. Effective connectivity within the default mode network: dynamic

causal modeling of resting-state fmri data. Frontiers in human neuroscience, 10:14,2016.

Phillip R Shaver and Kelly A Brennan. Attachment styles and the” big five” personal-

180



[123]

[124]

[125]

[126]

[127]

[128]

[129]

ity traits: Their connections with each other and with romantic relationship outcomes.

Personality and Social Psychology Bulletin, 18(5):536-545, 1992.

Kennon M Sheldon, Richard M Ryan, Laird J Rawsthorne, and Barbara Ilardi. Trait self
and true self: Cross-role variation in the big-five personality traits and its relations with
psychological authenticity and subjective well-being. Journal of personality and social

psychology, 73(6):1380, 1997.

David A Shoham, Ross Hammond, Hazhir Rahmandad, Youfa Wang, and Peter Hov-
mand. Modeling social norms and social influence in obesity. Current Epidemiology

Reports, 2(1):71-79, 2015.

Robin Sibson. Studies in the robustness of multidimensional scaling: Procrustes statis-
tics. Journal of the Royal Statistical Society. Series B (Methodological), pages 234-238,

1978.

Tom Snijders, Christian Steglich, and Michael Schweinberger. Modeling the coevolution

of networks and behavior. https://s3.amazonaws.com/academia.edu.documents, 2007.

Tom AB Snijders. The statistical evaluation of social network dynamics. Sociological

Methodology, 31(1):361-395, 2001.

Qifan Song and Faming Liang. Nearly optimal bayesian shrinkage for high dimensional

regression. arXiv preprint arXiv:1712.08964, 2017.

Ashwin Srinivasan, Stephen H Muggleton, Michael JE Sternberg, and Ross D King.

181



Theories for mutagenicity: A study in first-order and feature-based induction. Artificial

Intelligence, 85(1-2):277-299, 1996.

[130] Cornelis J Stam. Modern network science of neurological disorders. Nature Reviews

Neuroscience, 15(10):683, 2014.

[131] DT Stuss, P Ely, H Hugenholtz, MT Richard, S LaRochelle, CA Poirier, and I Bell. Sub-
tle neuropsychological deficits in patients with good recovery after closed head injury.

Neurosurgery, 17(1):41-47, 1985.

[132] Yee Whye Teh, Dilan Griir, and Zoubin Ghahramani. Stick-breaking construction for the

indian buffet process. In Artificial Intelligence and Statistics, pages 556-563, 2007.

[133] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), 58(1):267-288, 1996.

[134] Stéphanie L Van Der Pas, Bas JK Kleijn, Aad W Van Der Vaart, et al. The horseshoe
estimator: Posterior concentration around nearly black vectors. Electronic Journal of

Statistics, 8(2):2585-2618, 2014.

[135] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt.

Graph kernels. Journal of Machine Learning Research, 11(Apr):1201-1242, 2010.

[136] Joshua T Vogelstein, William Gray Roncal, R Jacob Vogelstein, and Carey E Priebe.
Graph classification using signal-subgraphs: Applications in statistical connectomics.

IEEE transactions on pattern analysis and machine intelligence, 35(7):1539-1551, 2013.

182



[137] Lu Wang, Daniele Durante, Rex E Jung, and David B Dunson. Bayesian network—

response regression. Bioinformatics, 33(12):1859-1866, 2017.

[138] Michael D Ward, John S Ahlquist, and Arturas Rozenas. Gravity’s rainbow: A dynamic

latent space model for the world trade network. Network Science, 1(1):95-118, 2013.

[139] Michael D Ward and Peter D Hoff. Persistent patterns of international commerce. Journal

of Peace Research, 44(2):157-175, 2007.

[140] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Appli-

cations, volume 8. Cambridge University Press, 1994.

[141] Stanley Wasserman and Philippa Pattison. Logit models and logistic regressions for
social networks: An introduction to markov graphs. Psychometrika, 61(3):401-425,

1996.

[142] Duncan J Watts and Peter Dodds. Threshold models of social influence. The Oxford

Handbook of Analytical Sociology, pages 475497, 2009.

[143] Ran Wei and Subhashis Ghosal. Contraction properties of shrinkage priors in logistic

regression. Preprint at http://wwwH4. stat. ncsu. edu/~ ghoshal/papers, 2017.

[144] Eric P Xing, Wenjie Fu, Le Song, et al. A state-space mixed membership blockmodel for

dynamic network tomography. The Annals of Applied Statistics, 4(2):535-566, 2010.

[145] Youngwoo Bryan Yoon, Won-Gyo Shin, Tae Young Lee, Ji-Won Hur, Kang Ik K Cho,

William Seunghyun Sohn, Seung-Goo Kim, Kwang-Hyuk Lee, and Jun Soo Kwon. Brain

183



[146]

[147]

structural networks associated with intelligence and visuomotor ability. Scientific reports,

7(1):2177, 2017.

Jie Zhang, Wei Cheng, ZhengGe Wang, ZhiQiang Zhang, WenLian Lu, GuangMing
Lu, and Jianfeng Feng. Pattern classification of large-scale functional brain networks:
identification of informative neuroimaging markers for epilepsy. PloS one, 7(5):e36733,

2012.

Hua Zhou, Lexin Li, and Hongtu Zhu. Tensor regression with applications in neuroimag-
ing data analysis. Journal of the American Statistical Association, 108(502):540-552,

2013.

184



	List of Figures
	List of Tables
	Abstract
	Dedication
	Introduction
	Terminology and Network Properties
	Statistical models for networks
	Models for Selection
	Models of Contagion
	Joint Modeling of Network and Attributes
	Models for Network Regression

	Thesis Outline

	Bayesian Regression with Undirected Network Predictors with an Application to Brain Connectome Data
	Introduction
	Model Formulation
	Definitions and Notations
	Bayesian Network Regression Model
	Developing the Network Shrinkage Prior
	Posterior Computation

	Simulation Studies
	Predictor and Response Data Generation
	Results

	Application to Human Brain Network Data
	Findings from BNSP

	Conclusion

	High Dimensional Bayesian Network Classification with Network Global-Local Shrinkage Priors
	Introduction
	Model Formulation
	Bayesian network global-local shrinkage prior on the network predictor coefficient

	Posterior Contraction of the Binary Network Classification Model
	Main Results

	Posterior Computation
	Simulation Studies
	Identification of Influential Nodes
	Identification of Influential Edges
	Estimation of Edge Coefficients and Classification Accuracy
	Estimation of Effective Dimensionality
	Sensitivity to the choice of Hyperparameters

	Brain Connectome Application
	Findings from the Brain Connectome Application
	Sensitivity to the choice of hyperparameters

	Summary

	High Dimensional Bayesian Network Mixture Regression
	Introduction
	OCEAN Brain Connectome Dataset

	Model and Prior Specification
	Posterior Computations
	Simulation Studies
	Simulation Settings
	Competitors and Metrics of Evaluation
	Simulation results
	Sensitivity to the choice of hyperparameters in simulations

	Brain Connectome Data Application
	Sensitivity to the choice of hyperparameters in the OCEAN data
	Analysis of a Brain Connectome Dataset with Composite Creativity Index (CCI) as the Response

	Summary

	Conclusion
	Future Work
	Appendix
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G

	Bibliography



