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Abstract

On Bayesian Methods in Network Regression

by

Sharmistha Guha

There has been a growing interest during recent years in connectomics, which is the study of

interconnections or networks within the human brain. This interest has been spurred by the

development of new imaging technologies, which allow researchers to peer non-invasively into

the human brain and obtain data on connections. Motivated by these datasets, this dissertation

develops a novel class of Bayesian regression models which study the relationships between

neuro-scientific phenotypes and brain connectome networks of individuals.

First, we introduce a novel approach that develops a regression framework of the brain

network (represented in the form of a symmetric matrix) on a continuous phenotypic response.

We propose a novel network shrinkage prior on the network predictor coefficient matrix. The

proposed framework is able to identify nodes or functional regions in the brain network and

interconnections between different regions, significantly related to the phenotypic response.

To the best of our knowledge, our framework is the first principled Bayesian framework that

enables identification of network nodes and edges significantly related to the response. The

performance of the proposed model is evaluated with respect to a wide range of existing com-

petitors available in the high dimensional frequentist and Bayesian literature using a variety of

simulation studies. The proposed model identifies important brain regions and interconnections

significantly associated with creativity for a group of subjects.

xviii



Next, we extend our model to build network classifiers when a brain connectome net-

work along with a binary response is provided for a group of individuals. Here we develop

a broader class of global-local network shrinkage priors which includes the novel prior distri-

bution specified earlier as a special case. We specifically consider two different global-local

network shrinkage priors from this class of priors and investigate them using simulation stud-

ies. In particular, we assess their performance in terms of network classification and identifying

influential network nodes and edges for the purpose of classification. We also demonstrate su-

perior performance of our proposed network classifiers over state-of-the-art high dimensional

classification techniques. Another major contribution remains developing theoretical conditions

to guarantee asymptotically consistent classification for the proposed framework. In particular,

we derive conditions on the number of network nodes, sparsity in the network coefficient ma-

trix as a function of the sample size to achieve asymptotically optimal classification. While

theoretical results on high dimensional binary regression with ordinary shrinkage priors have

emerged recently, developing theory for our network classifier model involves several addi-

tional challenges due to the complex nature of the global local shrinkage prior developed here.

The framework is used to classify individuals into high and low IQ groups based on their brain

connectomes.

Notably, the work discussed in the last two paragraphs tacitly assumes that all nodes

and edges have similar impact on a phenotype for every individual. In our next project, we

study a brain connectome data where this assumption is violated. In fact, there is a relatively less

developed literature in neuroscience that argues for different groups of individuals having shared

relationships between brain networks and phenotypes, though this literature lacks a principled

xix



Bayesian approach that takes into account different relationships of nodes and edges with the

response for different groups of individuals and facilitates clustering of individuals. Motivated

by this problem and our dataset, we have developed a Bayesian network mixture regression

model. Simulation studies and analysis of the brain connectome dataset demonstrate superior

performance of the proposed approach over the approach described earlier. Simulation studies

are also used to evaluate the performance of the proposed approach by varying the true and

fitted number of clusters, size of the network and sample size.

For these projects, computationally efficient Bayesian sampling algorithms are de-

veloped to enable computations even for reasonably large networks in presence of moderately

large sample size.
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Chapter 1

Introduction

1.1 Terminology and Network Properties

Interconnections among independent (or otherwise) components of a system can yield

valuable information and may be of scientific interest in several scenarios. The intercommunica-

tion between these components (or actors) along with the structure formed by them is generally

known as a network or a graph. One may find several applications of networks in fields such

as the bio-sciences (eg. genetic interactions, protein networks), epidemiology (transmission of

infectious diseases), the social sciences (social relationships and interactions), political science

(international relations), finance (interactions between multinational corporations, economic

interactions between various economies) and engineering (communication networks, networks

across the internet) to name a few.

Network data is challenging to analyze, not only because it requires dimensionality

reduction procedures to effectively deal with the large number of pairwise relationships, but
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also because flexible formulations are needed to account for the topological structure of the

network. In addition to creating models that can efficiently explain the network structure, it is

also of scientific interest to make predictions about missing and/or future relationships between

network nodes and edges. An advantage of creating effective statistical models to explain and

make predictions regarding networks is that they come with measures of uncertainty around the

estimates and predictions.

The simplest form of network is a binary network in which the edges simply denote

connection or lack of the same amongst any pair of nodes, thus being dichotomous in nature.

Examples of this type of network could include ones providing information on whether a pair

of actors are friends or not, or whether they are involved in a conflict or not, and so on. A

network might also be one in which the edges are weighted. The weights may denote counts,

e.g., distance or the number of transactions of a specific kind between a pair of nodes. Such a

network is commonly known as a valued or a weighted network.

Networks may also be classified as directed or undirected. A directed (or asymmetric)

relationship between a pair of actors would consist of two values, each value representing the

stance of one actor towards the other. On the other hand, an undirected (or symmetric) relation-

ship would consist only of a single value representing the stance of each pair of members. A

simple example of an undirected network would be a brain imaging network where the relation-

ship between a pair of regions of interest in the brain is captured by a single value. On the other

hand, an example of a directed network could be a social influence network in which there is an

influencer whose opinions or actions influence several followers but not the other way round.

Network data can usually be encoded using a so-called adjacency matrix. For a net-
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work with V nodes, the adjacency matrix is a V ×V matrix, with the cell entries being dichoto-

mous or continuous depending on whether the network is binary or weighted, respectively.

The matrix would be symmetric or asymmetric depending upon the nature of the relationships

between pairs of nodes, i.e. whether they are undirected or directed. Also, if there are no self-

relationships, diagonal elements are not modeled. Notationally, A = ((ak,l))
V
k,l=1 will be used to

denote the V ×V adjacency matrix corresponding to a network, where ak,l corresponds to the

weighted or unweighted relationship between nodes k and l. Again, a network is often asso-

ciated with edge specific covariates. Let X = [xk,l] be a covariate array of predictor variables

xk,l corresponding to dyad (k, l). Sometimes covariates are available corresponding to every

node, referred to as node specific attributes. Mathematically, we denote the attribute vector

corresponding to the kth node by hk.

There are various approaches in the literature in order to visualize and characterize

networks, several of them being graph-theoretic in nature. Of course, the most appropriate way

to visualize a network in a given context depends on the scientific question at hand. A review

of network properties and measure summaries can be found in [140]; [104] and [103].

There are certain measures which are often used in the literature to summarize a

network. A very important measure in the characterization of a network is the degree of its

nodes. The degree of a node is the number of edges connected to that node. This is a measure of

the extent of “connectedness” of each of the nodes in a network. Another measure is the vertex

centrality which gauges the relative importance of a node in a network and is usually based

on the geodesic distance or shortest distance between two nodes [140]; [86]. The connectivity

of nodes within a network is represented by the cohesion of the system. Connection between
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nodes of a network based on their corresponding attributes is known as homophily or assortative

mixing and is often encountered in social networks. Acute cases of homophily in which the

network exhibits strong community structure, or in other words, a situation in which subsets of

nodes or actors display cohesive patterns as a result of the underlying relational framework, also

constitute an active field of research.

1.2 Statistical models for networks

Some of the pioneering work in the statistical modeling of networks dates back to the

late 1950s and early 1960s. Prevailing literature in this field deals mainly with single network

observations, with or without accompanying information on nodal attributes. By and large,

the relationship between network and nodal attributes has been studied using two separate ap-

proaches. One of these approaches focuses on modeling the structure of the network conditional

of the nodal attributes. The goal in this case is to understand how social relationships are formed

based on attributes of individuals, a process known as “selection”. The other approach consists

of models of the nodal attributes and their association conditional on the network structure.

These models are employed to understand how relationships affect attributes of the individuals

in a network, a process referred to as “influence” or “contagion.” Additional scenarios include

the one in which the network and nodal attributes are jointly modeled. Another scenario of in-

terest is when a response (continuous, binary or categorical) is regressed on a network, leading

to a network regression problem, which is extensively studied in this proposal. We proceed to

discuss each scenario in more detail below.
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1.2.1 Models for Selection

Some of the pioneering work in the statistical modeling of networks dates back to the

late 1950s and early 1960s. Prevailing literature in this field deals mainly with single network

observations, with or without accompanying information on nodal attributes. More specifically,

in most of the existing literature, a single network is subjected to an unsupervised analysis using

random graph models [39]; [56], exponential random graph models [49], social space models

[72]; [67], stochastic block models [106], bilinear mixed models [67] or eigenmodels [68]. We

offer brief descriptions on these classes of models below.

The random graph model [39]; [56] is one of the foremost network models in the lit-

erature and is constructed in such a way that the edge between any pair of nodes is incorporated

into the graph independently and with a fixed probability. In most real-world scenarios, the

distribution of the degree of a network turns out to be positively skewed, since only a few nodes

are expected to be very highly connected. This is a drawback for the random graph models since

they imply a lighter tailed distribution of the degree. They are also more inclined to be dense,

have small diameter and low clustering, which make them unrealistic for practical purposes.

More realistic situations in network data are accommodated by the exponentially pa-

rameterized random graph models (ERGM), also known as the p∗ models [49]; [141]. ERGMs

are expressed in exponential form and usually involve some summary statistics of the network.

Specifically, the probability mass function for an ERGM is given by

p(A |X ,θ) =
exp
{

∑
K
k=1 θkSk(A,X)

}
κ(θ)

where each Sk(A,X) is a network statistic, θ = (θ1, ...,θK)
T is a K-dimensional unknown pa-

5



rameter vector and κ(θ) is a normalizing constant. Recall that examples of network statistics

include degree, vertex centrality, cohesion and homophily, as described in section 1.1. ERGMs,

though having some desirable features, have some shortcomings. They can be computationally

challenging and can have the issue of model degeneracy (i.e. putting inordinate importance to

a few network configurations). A detailed treatment of ERGMs can be found in [115] and [96].

A broad class of network models can be included under the umbrella of social space

models. In the realm of social space models, the use of random effects in the context of probit or

logistic regression to model binary networks has also become popular in recent times. Consider

a probit model (the logistic model is analogous and has been used by [72] and [67] in which the

ak,l’s are conditionally independent with probability of interaction

θk,l ≡ p(ak,l = 1 |β,γk,l,xk,l) = Φ(xT
k,lβ+ γk,l); k, l = 1, ...,V ; k < l

where Φ denotes the cumulative distribution function of a standard normal random variable, β

is an unknown vector of fixed effects and γk,l is an unobserved dyad (k, l)-specific random effect

unrelated to the predictor variable.

If the matrix of random effects Γ = [γk,l] is jointly exchangeable, there exists a sym-

metric function α(·, ·) such that γk,l = α(uk,ul) where uk, k ∈ {1, ...,V} [4]. The form of the

function α(·, ·) is directly associated with the important structural characteristics of the net-

work. There have been a number of alternatives to select the latent factors which give rise to

different classes of social space models. For example, stochastic block models [106] assume

that each node k is associated with an unobserved latent class and there is a probability distri-
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bution characterizing the relationship between each pair of nodes. Here the latent effects are

specified as α(uk,ul) = muk,ul , where uk,ul ∈ {1,2,3, ...,R}, R is the number of latent classes,

and also mr,s ∈ R and mr,s = ms,r. Latent distance models [72], on the other hand, assume

that α(uk,ul) = −|uk−ul|, where | · | denotes the euclidean norm. The underlying assumption

here is that the probability of an edge between two nodes increases as the latent characteristics

of these nodes come closer in terms of their euclidean distance. Bilinear models [67] assume

that the probability of an edge between two nodes is a symmetric multiplicative effect. The

multiplicative interaction for a dyad (k, l) is expressed in terms of a bilinear effect, i.e. the inner

product of the unobserved latent vectors uk and ul . Hence, the latent effects are specified as

α(uk,ul) = uT
k ul , where uT

k ul is the bilinear effect. The rationale behind this type of models is

that the probability of an edge between two nodes increases as the angle formed by the corre-

sponding latent positions becomes wider, i.e. nodes k and l would be prone to having a tie if the

angle between them is acute (uT
k ul > 0), neutral to a tie if the angle is a right angle (uT

k ul = 0)

and averse to having a tie if the angle between them is obtuse (uT
k ul < 0). Bilinear models can

generalize distance models, but not latent class models, since the eigenvalues of latent class

models may be negative [68]. Eigenmodels [68] are a generalization of the latent class and la-

tent distance models due to the fact that they can be used to represent the same network features

but not the other way round. These models are based on the principles of eigen-analysis and

render the relationship between two nodes as the inner-product of node-specific latent vectors,

i.e. α(uk,ul) = uT
k Λul , where Λ is a R×R diagonal matrix.
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1.2.2 Models of Contagion

Models of contagion are usually constructed by regressing a nodal attribute on the

attributes of other nodes in the social network (e.g., see [24]; [47]; [124] and references therein),

with common methodological approaches including simultaneous autoregressive (SAR) models

[94] and threshold models [142]. For instance, node specific responses {yk : k ∈ {1, ...,V}} are

regressed on the node specific attributes using the simultaneous autoregressive models (SAR)

that respect the network structure.

1.2.3 Joint Modeling of Network and Attributes

It is usually a complicated problem to ascertain the direction of a causal relationship

between network structure and link or nodal attributes, i.e. whether it pertains to selection or

contagion [33]. Hence, a section of the literature focusses on jointly modeling the co-evolution

of network and nodal attributes through shared latent variables. In recent years, joint models

of network and attributes have been receiving increased attention. [46] have recently proposed

an extension of the bilinear model of [67] in a static setting where the nodal attributes and la-

tent factors used to describe transitivity (the extent to which the relation between two nodes

in a network that are connected by an edge is transitive) in the network are jointly modeled

using a multivariate normal distribution. [36], on the other hand, propose joint modeling of

a binary/categorical response and a network using latent variable tensor factorization of the

joint probability model. [30] have proposed time varying joint models for network and at-

tributes when the attributes are binary or categorical in a dynamic setting, while [105] extend
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the framework to accommodate continuous nodal attributes. [61] propose a Bayesian approach

to inference, testing and prediction for co-evolving networks and nodal attributes by accommo-

dating both discrete and continuous attributes and considering the more general case of time

series data. They use a common set of latent factors to explain network transitivity and covari-

ation among attributes and network structure, and provide a fully Bayesian test of association

in order to study individual nodal attributes. When the nodal attributes are assumed to fol-

low conditional Gaussian distribution, their model can be interpreted as a dynamic version of

the model presented in [46], with a structured and more parsimonious prior on the covariance

matrix between the latent traits and the nodal attributes.

1.2.4 Models for Network Regression

Previous models focus on the analysis of a single network. There are situations in

which a network is collected for each observational unit. This is especially pertinent to bio-

logical and physiological problems wherein, for example, each node corresponds to a certain

fixed location in the human brain or a particular genetic unit in a gene network. Furthermore,

the data might contain a continuous or categorical outcome corresponding to each individual

in the sample, possibly associated with the network. Examples of such datasets include brain

connectome applications for multiple individuals which we discuss in detail in Chapters 2, 3

and 4. The nodes in the network correspond to the brain regions of interest (ROI) shared by all

individuals in the sample and are registered by mapping every brain to a common brain atlas.

Additionally, data on a phenotype is available for every individual. For example, the phenotype

can be continuous such as a measure of creativity for each individual called the Composite Cre-
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ativity Index (CCI). Sometimes the outcome can be binary representing whether a subject has

‘high’ or ‘low’ IQ.

In relating the response to the undirected network, a common approach would be to

vectorize the network predictor (originally obtained in the form of a symmetric matrix) and treat

it as a collection of a large number of edge weights [114]; [27]. Subsequently, the response

would be regressed on the high dimensional collection of edge weights. This idea can take

advantage of the recent developments in high dimensional regression, consisting of both penal-

ized optimization [133] and Bayesian shrinkage [109],[17],[5] perspectives. Additionally, these

models are computationally convenient and are generally accompanied by theoretical guaran-

tee. While the predictive performance of these methods turns out to be satisfactory, their in-

terpretability is limited to individual edge selection, which is scientifically less interesting than

identifying nodes impacting the response. Furthermore, they ignore the network structure, i.e.

the relevant wiring mechanism in the brain architecture for brain connectome analysis, which

may contain a plethora of scientific information.

While there are existing approaches for network classification, most of them fail to in-

corporate the full network information in the process of classification and rather use a few sum-

mary measures from the network, for e.g. see [11] and references therein. [113] have recently

proposed a penalized optimization scheme that not only enables classification of networks, but

also identifies important nodes and edges. Although their framework is demonstrated for classi-

fication purposes, it can be adapted to facilitate regression settings (as described in Chapter 2).

One key shortcoming of this approach is that it is unable to provide any measure of predictive

uncertainty. The need for valid measures of uncertainty on parameter (predictive) estimates is
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crucial, especially in settings with low or moderate sample sizes with complex predictor depen-

dence, which naturally motivates our Bayesian approach.

There are recent Bayesian approaches which propose joint modeling of response and

predictors, see e.g. [36]. However, these methods are somewhat restrictive for multiple reasons.

First, their approach is heavily dependent on the assumption that the network is binary and does

not find easy extension when the network is weighted. Secondly, their modeling perspective

focuses on the classification of a population of networks into two groups and does not assume

easy extension to regression settings. In a separate approach, [137] regress a network response

on a scalar predictor, which is a different problem from the one we are interested in.

1.3 Thesis Outline

In Chapter 2 we develop a novel framework to answer some important questions aris-

ing from datasets of these types. Primarily, in Chapter 2, our inferential focus lies in developing

a high-dimensional regression model of a continuous response on the network predictors that

employs all edge weights, but aims at identifying influential nodes and edges to yield scien-

tifically meaningful results. To this end, we construct a novel Bayesian network shrinkage

prior that incorporates network information in the coefficients corresponding to the network

predictors through a social space model [72] with latent variables embedded within a Bayesian

shrinkage prior [109], [17], [5]. We index these latent variables by nodes in the network and

incorporate a spike-and-slab variable selection prior to choose the relevant node specific latent

variables explaining variation in the response. The proposed framework is simple enough to
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allow computation through a data-augmented Gibbs sampler. We make the practical benefit of

the proposed approach in terms of inference and prediction amply clear by comparing it to other

existing methods in various simulation studies. Further, we provide detection of influential brain

regions and influential interconnections between different regions responsible for creativity of

individuals in a principled Bayesian way which was hitherto not present in the literature. The

model provides additional inferences which can be found in Chapter 2.

Chapter 3 focuses on a network classification problem where a binary response along

with a network is available from every subject. The aim lies in developing a classification of

subjects, along with identifying network nodes and edges influential for the purpose of classifi-

cation. We broadens the formulation of Bayesian network shrinkage prior developed in Chapter

2 and propose a new class of Bayesian network global-local shrinkage prior that includes the

network shrinkage prior formulated in Chapter 2 as a special case. Simulation studies show

superior performance of the proposed formulation over the existing network classification mod-

els. We employ the framework to analyze a dataset that aims at classifying subjects into a ‘low’

or ‘high’ IQ group based on her/his brain connectome network. One important contribution

of Chapter 3 remains theoretical study of asymptotic properties of the posterior distribution for

binary network regression model. In particular, we offer theoretical conditions to ensure asymp-

totically optimal classification from the binary network regression model proposed in Chapter 3.

The proofs of the theoretical results in Chapter 3 can be easily adapted to show the consistency

of the posterior distribution for the model proposed in Chapter 2.

Chapter 4 presents a brain connectome dataset with a phenotype and brain connec-

tome network corresponding to multiple subjects. Analysis of the data with the Bayesian net-
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work regression model proposed in Chapter 2 seems inadequate. Indeed, there is a literature

in neuroscience arguing differential relationships between brain networks and human creativ-

ity for different groups of individuals. In particular, they argue that the relationship may be

very different from people with high IQ compared to people with low IQ. To address this issue,

Chapter 4 proposes a Bayesian network mixture regression model, allowing for different net-

work regression models for different groups of subjects. Finally, Chapter 7 presents appendices

with details of model implementations and proofs of theorems.
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Chapter 2

Bayesian Regression with Undirected

Network Predictors with an

Application to Brain Connectome Data

2.1 Introduction

In recent years, network data has become ubiquitous in disciplines as diverse as neuro-

science, genetics, finance and economics. Nonetheless, statistical models that involve network

data are particularly challenging, not only because they require dimensionality reduction pro-

cedures to effectively deal with the large number of pairwise relationships, but also because

flexible formulations are needed to account for the topological structure of the network.

The literature has paid heavy attention to models that aim to understand the rela-
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tionship between node-level covariates and the structure of the network. A number of classic

models treat the dyadic observations as the response variable, examples include exponential

random graph models [49], social space models [72, 67, 68] and stochastic block models [106].

The goal of these models is often either to predict unobserved links or to investigate homophily,

i.e., the process of formation of social ties due to matching individual traits. Alternatively, mod-

els that investigate influence or contagion attempt to explain the node-specific covariates as a

function of the network structure (e.g., see [24]; [47]; [124] and references therein). Common

methodological approaches in this context include simultaneous autoregressive (SAR) models

[94] and threshold models [142]. However, ascertaining the direction of a causal relationship

between network structure and link or nodal attributes, i.e., whether homophily or contagion

are in play, is difficult (e.g., see [33] and [120] and references therein). Hence, there has been a

growing interest in joint models for the coevolution of the network structure and nodal attributes

[46, 36, 30, 105, 61].

In this chapter we investigate Bayesian models for network regression. Unlike the

problems discussed above, in network regression we are interested in the relationship between

the structure of the network and one or more global attributes of the experimental unit on which

the network data is collected. As a motivating example, we consider the problem of predicting

the composite creativity index of individuals on the basis of neuroimaging data measuring the

connectivity of different brain regions. The goal of these studies is twofold. First, neurosci-

entists are interested in identifying regions of the brain that are involved in creative thinking.

Secondly, it is important to determine how the strength of connection among these influential

regions affects the level of creativity of the individual. To address these challenges we construct
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a novel Bayesian network shrinkage prior that combines ideas from spectral decomposition

methods and spike-and-slab priors to generate a model that takes into account the structure of

the predictors. The model produces accurate predictions, allows us to identify both nodes and

links that have influence on the response, and yields well-calibrated interval estimates for the

model parameters.

A common approach to network regression is to use a few summary measures from

the network in the context of a flexible regression or classification approach (e.g., see [11] and

references therein). Clearly, the success of this approach is highly dependent on selecting the

right summaries to include. Furthermore, this kind of approach cannot identify the impact of

specific nodes on the response, which is of clear interest in our setting. Alternatively, a number

of authors have proceeded to vectorize the network predictor (originally obtained in the form of

a symmetric matrix). Subsequently, the continuous response would be regressed on the high di-

mensional collection of edge weights [114, 27]. This approach can take advantage of the recent

developments in high dimensional regression, consisting of both penalized optimization [133]

and Bayesian shrinkage [109, 17, 5]. However, this approach treats the links of the network as

if they were fully exchangeable, ignoring the fact that coefficients that involve common nodes

can be expected to be correlated a priori. Ignoring this correlation is known to lead to poor

predictive performance and to potentially impact model selection.

Recently, [113] proposed a penalized optimization scheme that not only enables clas-

sification using network predictors, but also identifies important nodes and edges. Although

this model seems to perform well for prediction problems, uncertainty quantification is diffi-

cult because standard bootstrap methods are not consistent for Lasso-type methods [89, 21].
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Modifications of the bootstrap that produce well-calibrated confidence intervals in the context

of standard Lasso regression have been proposed [22], but it is not clear whether they extend to

the kind of group Lasso penalties discussed in [113]. Recent developments on tensor regression

[147, 62] are also relevant to our work. However, these approaches tend to focus mainly on

prediction and identification of important edges, but are not designed to detect important nodes

impacting the response.

The rest of the chapter evolves as follows. Section 3.2 proposes the novel network

shrinkage prior and discusses posterior computation for the proposed model. Empirical investi-

gations with various simulation studies are presented in Section 2.3, while Section 2.4 analyzes

the brain connectome dataset. We provide results on region of interest (ROI) and edge selec-

tion and find them to be scientifically consistent with previous studies. Finally, Section 2.5

concludes the chapter with an eye towards future work.

2.2 Model Formulation

2.2.1 Definitions and Notations

Let yi and Ai ∈ RV×V represent the observed scalar response and the corresponding

weighted undirected network for the i-th sample, i = 1, . . . ,n, respectively. Depending on the

problem yi is continuous or binary. For example, yi ∈ R is continuous in Chapters 2 and 4,

and yi ∈ {0,1} is binary in Chapter 3. All graphs share the same labels on their nodes. In all

our applications, Ai encodes the strength of the network connections between different regions

of the brain for the i-th individual. Mathematically, this amounts to Ai being a V ×V matrix,
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with the (k, l)-th entry of Ai denoted by ai,k,l ∈ R. We focus on networks that contain no self

relationship, i.e., ai,k,k ≡ 0, and are undirected (ai,k,l = ai,l,k). The brain connectome application

considered here naturally justifies these assumptions. Although we present our models specific

to these settings, it will be evident that the proposed model can be easily extended to directed

networks with self-relations. Throughout all chapters, we denote the Frobenius inner product

between two V ×V matrices A and B by 〈A,B〉F = Trace(B′A). Frobenius inner product is

the natural inner product on the space of matrices and is a generalization of the dot product

from vector to matrix spaces. Frobenius norm of a matrix A is defined as ||A||F =
√
〈A,A〉F .

Additionally, for any vector a=(a1, ...,ap)
′, define the L1, L2 and L∞ norms by ||a||1 =∑

p
l=1 |al|,

||a||2 =
√

∑
p
l=1 a2

l and ||a||∞ = max
l
|al| respectively. || · ||0 denotes the L0-norm, i.e. the number

of non-zero entries for vectors. The || · ||1, || · ||2 and || · ||∞ norms of a matrix are defined

analogously. All vectors and matrices are denoted by lowercase bold letters and uppercase bold

letters respectively.

2.2.2 Bayesian Network Regression Model

We propose the high dimensional regression model of the response yi for the i-th

individual on the undirected network predictor Ai = ((ai,k,l))
V
k,l=1 as

yi = µ+ 〈Ai,B〉F + εi, εi
iid∼ N(0,τ2), (2.1)

where B is the symmetric network coefficient matrix of dimension V×V whose (k, l)-th element

is given by γk,l/2 and 〈Ai,B〉F = Trace(B′Ai) denotes the Frobenius inner product between Ai

and B. The Frobenius inner product is the natural inner product in the space of matrices and is a
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generalization of the dot product from vector to matrix spaces. Note that, similar to the network

predictor, the network coefficient matrix B is assumed to be symmetric with zero diagonal

entries. The parameter τ2 is the variance of the observational error.

Since self relationship is absent and both Ai and B are symmetric,

〈Ai,B〉F = ∑
1≤k<l≤V

ai,k,lγk,l , and (2.1) can be rewritten as

yi = µ+ ∑
1≤k<l≤V

ai,k,lγk,l + εi, εi ∼ N(0,τ2). (2.2)

Equation (2.2) connects the network regression model with the linear regression framework

with ai,k,l’s as predictors and γk,l’s as the corresponding coefficients. However, while in ordinary

linear regression the predictor coefficients are indexed by the natural numbers N , Model (2.2)

indexes the predictor coefficients by their positions in the matrix B. This is done in order to

keep tabs not only on the edge itself but also on the nodes connecting the edges.

2.2.3 Developing the Network Shrinkage Prior

Vector Shrinkage Prior

High dimensional regression with vector predictors has recently been of interest in

Bayesian statistics. Continuous shrinkage priors, which strongly shrink coefficients correspond-

ing to unimportant variables to zero while minimizing the shrinkage of coefficients correspond-

ing to influential variables, have become particularly popular. Many of these priors can be ex-

pressed as a scale mixture of normal distributions, commonly referred to as global-local scale

mixtures [110], that enable fast computation employing simple conjugate Gibbs sampling. More
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precisely, in the context of model (2.2), a global-local scale mixture prior would take the form

γk,l ∼ N(0,sk,lτ
2), sk,l ∼ g1, τ

2 ∼ g2, 1≤ k < l ≤V.

Note that s1,2, . . . ,sV−1,V are local scale parameters controlling the shrinkage of the coefficients,

while τ2 is the global scale parameter. Different choices of g1 and g2 lead to different classes of

Bayesian shrinkage priors. For example, the Bayesian Lasso [109] prior takes g1 as exponential

and g2 as the Jeffreys prior, the Horseshoe prior [17] takes both g1 and g2 as half-Cauchy

distributions, and the Generalized Double Pareto Shrinkage prior [5] takes g1 as exponential

and g2 as the Gamma distribution.

The direct application of this global-local prior in the context of (2.2) is unappealing.

In practice, we expect the matrix of coefficients B (which itself can be regarded as describing a

weighted network) to exhibit transitivity effects, i.e., we expect that if the interactions between

regions i and j and between regions i and k both influence the response, the interaction between

regions j and k will also be influential [93]. Ordinary global-local shrinkage priors do not

necessarily conform to such an important restriction.

Network Shrinkage Prior

We propose a shrinkage prior on the coefficients γk,l and refer to it as the Bayesian

Network Shrinkage prior (BNSP). The prior borrows ideas from low-order spectral representa-

tions of matrices, and aims to capture transitivity effects in the matrix of regression coefficients.

Let u1, . . . ,uV ∈ RR be a collection of R-dimensional latent variables, one for each node, such

that uk corresponds to node k. We draw each γk,l conditionally independent from a density that
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can be represented as a location and scale mixture of normals. More precisely,

γk,l|sk,l,uk,ul,τ
2 ∼ N(u′kΛul,τ

2sk,l), sk,l ∼ Exp(θ/2), θ∼ Gamma(ζ, ι), (2.3)

where sk,l is the scale parameter corresponding to each γk,l , and Λ = diag(λ1, . . . ,λR) is an R×R

diagonal matrix with λr ∈ {0,1}. Conditional on the latent variables uk, ul and Λ, if sk,l = 0

then (4.5) implies a reduced rank-decomposition Γ = 2B =U ′ΛU , where U is an R×V matrix

whose k-th column corresponds to uk and Γ = ((γk,l))
V
k,l=1. Drawing intuition from [67], we

can interpret the latent vectors u1, . . . ,uV as the positions of the nodes in a latent “social” space,

with the strength of the edge effect being controlled by the angular distance between the vectors.

In this interpretation, ∑
R
r=1 λr = Re f f ≤ R, represents the effective dimensionality of the latent

space. The effect of the interaction between the k-th and l-th nodes has a positive, negative or

neutral impact on the response depending on whether the node specific latent variables uk and

ul are in the same direction, opposite direction or orthogonal to each other respectively. In other

words, whether the angle between uk and ul is acute, obtuse or right, i.e., u′kΛul > 0, u′kΛul < 0

or u′kΛul = 0 respectively. This kind of bilinear structure is commonly used to model social and

biological networks because of its ability to capture the kind of transitive effects we discussed

before [67, 66].

In order to learn which components of uk are informative for (4.5), we assign a hier-

archical prior

λr ∼ Ber(πr), πr ∼ Beta(1,rη), η > 1.

The choice of hyper-parameters of the beta distribution is crucial. In particular, note

that E[λr] = 1/(1+rη)→ 0 as r→∞ and that ∑
R
r=1 var(λr) = ∑

R
r=1

rη

(1+rη)2(2+rη)
< ∞ as R→∞.

21



The first property provides (weak) identifiability of the different latent dimensions, while the

second ensures that limR→∞ var(uk) < ∞ as long as the prior for the uk’s has a finite second

moment. In fact, we can think of our model as a level-R truncation of an infinite dimensional

model, similar in spirit to the stick-breaking construction of the Indian Buffet process [132].

Therefore, as long as R is chosen to be “large enough”, the inferences will be roughly invariant

to this choice. In our illustrations, we perform sensitivity analyses to determine an optimal value

of R that maintains computational efficiency, and at the same time ensures the robustness of the

results.

In order to determine which nodes are most influential in explaining the response, we

assign a spike-and-slab mixture prior [76] to the latent factor uk,

uk ∼


N(0,M), if ξk = 1,

δ0, if ξk = 0,
ξk ∼ Ber(∆), (2.4)

where δ0 is the Dirac-delta function at 0 and M is a covariance matrix of order R×R. The

parameter ∆ corresponds to the probability of the nonzero mixture component. Note that if the

k-th node of the network predictor is not influential in predicting the response then, a-posteriori,

ξk should provide high probability to 0. Thus, based on the posterior probability of ξk, it will

be possible to identify unimportant nodes, which we loosely refer to as “uninfluential nodes”,

in the network regression.

The rest of the hierarchy is accomplished by assigning prior distributions on ∆ and M

as follows:

M ∼ IW (ν,I), ∆∼ Beta(a∆,b∆),
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where IW (ν,I) denotes an Inverse-Wishart distribution with identity scale matrix I and degrees

of freedom ν. Finally, we choose a non-informative prior on (µ,τ2) such that p(µ,τ2) ∝
1
τ2 .

Appendix A shows the propriety of the posterior distribution under this prior.

The previous discussion assumes that we have conditioned on the latent positions

u1, . . . ,uV and the local scale parameters (sk,l). Now that we have described the full hierarchical

structure of the model, it is instructive to briefly discuss the structure of the marginal prior distri-

bution obtained after integrating these latent variables. In this regard, note first that integrating

over the sk,l’s alone leads to double exponential priors that are reminiscent of the Lasso. On

the other hand, while no closed form expression exists for the marginal prior after integrating

u1, . . . ,uV , it is easy to see that, marginally, the edge coefficients have mean zero and are not

independent. Hence, from this point of view, the latent positions u1, . . . ,uV simply provide a

mechanism to sparsely model the prior dependence among coefficients.

2.2.4 Posterior Computation

Although summaries of the posterior distribution cannot be computed in closed form,

full conditional distributions for all the parameters are available and correspond, in most cases,

to standard families. Thus, posterior computation can proceed through a Markov chain Monte

Carlo algorithm. We note, however, that a naive implementation of such algorithm to update Γ

would have complexity O(q3), where q =V (V −1)/2. The resulting algorithm would therefore

be computationally too expensive for situations such as our real data application, where V = 68

and q= 2278. To address this issue, we follow [8], who propose the use of the Woodbury matrix

identity to instead compute the inverse of an n× n matrix. Since in the type of applications
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with which this chapter is concerned n is typically much smaller than q, this approach leads

to substantial computational savings that make real-life applications feasible. Details of all the

Markov chain Monte Carlo algorithm are presented in Appendix B.

While inferences on the latent positions u1, . . . ,uV is not our main focus, being able

to visualize these positions can be helpful in terms of interpreting the model results. However,

note that vectors u1, . . . ,uV are not identifiable because the model is invariant to rotations of

the latent space. Hence, before we can use the posterior samples generated by our algorithm to

conduct inferences on these latent positions we must first rotate them to a common orientation.

This is done using a “Procrustean” transformation [125, 72, 67]. For each posterior sample U (`)

we find the rotation Ũ (`) that has the smallest sum of squared deviations from an arbitrary fixed

reference matrix U0. This rotation is given by Ũ (`)
=U0

(
U (`)

)′{
U (`)U ′0U0

(
U (`)

)′}−1/2
U (`).

In our analysis, we use the first iterate after burn-in, U (1), as the reference matrix U0.

In order to identify whether the k-th node is important in terms of predicting the

response, we rely on the post burn-in L samples ξ
(1)
k , . . . .,ξ

(L)
k of ξk. Node k is said to be

influential if 1
L ∑

L
l=1 ξ

(l)
k > 0.5. To identify influential edges we utilize a modification of the

algorithm proposed in [92] that allows us to estimate the false discovery rate of the procedure

as a function of the number of discoveries. Details are provided in Appendix C. Finally, an

estimate of P(Re f f = r |Data) is given by 1
L ∑

L
l=1 I(∑R

m=1 λ
(l)
m = r), where I(A) for an event A

is 1 if the event A happens and 0 otherwise, and λ
(1)
m , . . . ,λ

(L)
m are the L post burn-in MCMC

samples of λm.
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2.3 Simulation Studies

This section comprehensively contrasts both the inferential and predictive perfor-

mances of our proposed approach with a number of competitors in various simulation settings.

As competitors, we consider both penalized likelihood methods as well as Bayesian shrinkage

priors for high-dimensional regression.

Our first set of competitors use generic variable selection and shrinkage methods that

treat edges between nodes as “bags of predictors” and rely on high dimensional regression,

thereby ignoring the relational nature of the predictor. More specifically, we use Lasso [133],

which is a popular penalized optimization scheme, and the Bayesian Lasso [109] and Horseshoe

priors [17], which are popular Bayesian shrinkage regression methods. The Horseshoe in par-

ticular is considered to be a state-of-the-art Bayesian shrinkage prior and is known to perform

well, both in sparse and not-so-sparse regression settings. We use the glmnet package in R [50]

to implement Lasso regression, and the monomvn package in R [59] to implement the Bayesian

Lasso (BLasso for short) and the Horseshoe (BHS for short).

A thorough comparison with these methods will indicate the relative advantage of

exploiting the structure of the network predictor.

Additionally, we compare our method to a frequentist approach that develops network

regression in the presence of a network predictor and scalar response [113]. To be precise, we

adapt [113] to a continuous response context and propose to estimate the network regression
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coefficient matrix B by solving

B̂ = arg min
B∈R,B=B′,diag(B)=0

{
1
n

n

∑
i=1

(yi−µ−〈Ai,B〉F)2+

ϕ

2
||B||2F + ς

(
V

∑
k=1
||B(k)||2 +ρ||B||1

)}
, (2.5)

where ||B||F =
√
〈B,B〉F denotes the Frobenius norm, ||B||1 is the sum of the absolute values

of all the elements of matrix B, || · ||2 is the l2 norm of a vector, B(k) is the k-th row of B and

ϕ,ρ,ς are tuning parameters. The best possible choice of the tuning parameter triplet (ϕ,ρ,ς)

is made using cross validation over a grid of possible values. [113] argue that the penalty in

(2.5) incorporates the network information of the predictor, thereby yielding superior inference

to any ordinary penalized optimization scheme. Hence comparison with (2.5) will highlight

the advantages of a carefully structured Bayesian network shrinkage prior over the penalized

optimization scheme incorporating network information. In the absence of open source code,

we implemented the algorithm in [113] ourselves. All Bayesian competitors are allowed to draw

50,000 MCMC samples, out of which the first 30,000 are discarded as burn-ins. All posterior

inference is carried out based on the rest 20,000 MCMC samples after suitably thinning the

post burn-in chain. Convergence is assessed by comparing different simulated sequences of

representative parameters started at different initial values [52].

2.3.1 Predictor and Response Data Generation

In all simulation studies, the response yi is generated according to the network regres-

sion model

yi = µ0 + 〈Ai,B0〉F + εi, εi ∼ N(0,τ2
0), (2.6)
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with τ2
0 as the true noise variance. In all of our simulations, we use V = 20 nodes and n = 70

samples.

Simulation 1

In this group of simulations, the (k, l)-th entry of B0 is given by w′kwl
2 , where the

vectors w1, . . . ,wV , each of dimension Rgen, are generated from a mixture

wk ∼ πwNRgen(wmean,w2
sd)+(1−πw)δ0, k ∈ {1, . . . ,V}, (2.7)

where δ0 is the Dirac-delta function and πw is the probability of any wk being nonzero. (1−πw)

is the probability of a node not being influential, it is referred to as the node sparsity parameter.

This data generation mechanism is quite similar (although not identical) to our hierarchical

prior. Hence, the goal of this first simulation is to evaluate the ability of the model to recover

the true data-generation mechanism and, in particular, its ability to identify the true dimension

of the latent space, as well as the sensitivity of the results to the choice of the maximum latent

dimension R.

For a comprehensive picture of Simulation 1, we consider 11 different cases as sum-

marized in Table 3.1. In each of these cases, the network predictor coefficient and the response

are generated by changing the sparsity πw and the true dimension Rgen of the latent variables

wk’s. The table also presents the maximum dimension R used to fit the model of the latent vari-

ables uk for the network regression model (2.2). Note that we include various cases of model

mis-specification in which R > Rgen. For all simulations, wmean and w2
sd are set as 0.5× 1Rgen

and IRgen×Rgen , respectively, and the variance τ2
0 is fixed at 1. In Cases 1-9, the entries of the
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network predictor Ai for the i-th sample are simulated from a standard normal distribution. In

Cases 10 and 11 the network predictor Ai for the i-th sample follows a stochastic blockmodel.

In Case 10, we assume that each brain network has 3 local clusters with high within-cluster and

low between-cluster connectivity. More specifically, the matrices Ai’s consist of 3 symmetric

block diagonal matrices of dimensions 6× 6, 7× 7 and 7× 7 respectively. Elements in these

matrices have been drawn from N( j, j2) where j ∈ {1,2,3}, for the j-th block diagonal. The

off-diagonal blocks are highly sparse with very few randomly chosen non-sparse elements de-

noting connections between nodes in different clusters randomly chosen from N(0,1). In Case

11, the adjacency matrices Ai’s also consists of 3 block diagonal matrices, in this case of dimen-

sions 5× 5, 8× 8 and 7× 7. As before, the elements in these matrices have been drawn from

N( j, j2) where j ∈ {1,2,3}, for the j-th block diagonal. However, in this case the elements in

the off-diagonal matrices have been drawn from N(4,1), N(5,1) and N(6,1).

Simulation 2

In this case, the matrix of coefficients B0 is constructed by first generating V binary

indicators ξ0
1, . . . ,ξ

0
V independently from a Ber(π2,w), one for each node in the network. If both

ξ0
k = 1 and ξ0

l = 1, the edge coefficient connecting the k-th and the l-th nodes (k < l) is simulated

from N(0.8,1). Otherwise, we set the (k, l)-th edge coefficient to be 0. Similar to Simulation

1, we refer to 1−π2,w as the node sparsity parameter. While this simulation scenario has some

similarities to our proposed model, the mean effect for active nodes is constant. Therefore, the

goal of this simulation is to evaluate the performance of the model in situations where there are

weak network effects in the matrix of coefficients. The network predictor Ai for the i-th sample
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is simulated by drawing ai,k,l independently from a N(0,1) distribution for k < l and setting

ai,k,l = ai,l,k and ai,k,k = 0 for all k, l ∈ {1, . . . ,V}. Finally, the variance τ2
0 is fixed at 1 as in

Simulation 1. Table 2.2 presents the two cases we consider for Simulation 2, which are obtained

by varying the node sparsity parameter.

Simulation 3

In this case, we draw V indicator variables ξ0
1, . . . ,ξ

0
V from a Ber(π2,w) corresponding

to the V nodes of the network. If both ξ0
k = 1 and ξ0

l = 1, then the edge coefficient connecting

the k-th and the l-th nodes (k < l) is simulated from a mixture distribution given by

π3,w ∼ NRgen(0.8,1)+(1−π3,w)δ0, k, l ∈ {1, . . . ,V}. (2.8)

Otherwise, if ξ0
k = 0 for any k, we set (k, l)-th edge coefficient to be 0 for all l. Contrary to

Simulation 2, Simulation 3 allows the possibility of an edge between the k-th and the l-th nodes

having no impact on the response even when both ξ0
k and ξ0

l are nonzero. In the context of

Simulation 3, (1−π2,w) and (1−π3,w) are referred to as the node sparsity and the edge sparsity

parameters, respectively. Hence, the goal of this simulation is to evaluate the impact of edge

sparsity and its interaction with node sparsity on model performance. Network predictors are

randomly generated using the same mechanism as in Simulation 2 and the true variance τ2
0 is

again fixed at 1 for all cases. Table 2.3 presents the four cases we consider in this evaluation,

which are generated by changing the node sparsity and edge sparsity.
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Cases Rgen R Sparsity

Case - 1 2 2 0.5
Case - 2 2 3 0.6
Case - 3 2 5 0.3
Case - 4 2 4 0.4
Case - 5 2 5 0.5
Case - 6 4 5 0.4
Case - 7 3 4 0.5
Case - 8 2 4 0.7
Case - 9 3 5 0.7
Case - 10 3 5 0.5
Case - 11 2 5 0.6

Table 2.1: Table presents different cases for Simulation 1. The true dimension Rgen is the
dimension of vector object wk using which data has been generated. The maximum dimension
R is the dimension of vector object uk using which the model has been fit. Sparsity refers to the
fraction of generated wk = 0, i.e., (1−πw).

Cases R Sparsity

Case - 1 5 0.7
Case - 2 5 0.2

Table 2.2: Table presents different cases for Simulation 2. The maximum dimension R is the
dimension of vector object uk using which the model has been fit. Simulation 2 only has one
sparsity parameter π2,w.

2.3.2 Results

In all simulation results shown in this section, our BNSP model is fitted with the choices of the

hyper-parameters given by ν = 10, a∆ = 1, b∆ = 1, ζ = 1 and ι = 1. Our extensive simulation

studies reveal that both inference and prediction are robust to various choices of the hyper-
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Cases R Node Sparsity Edge Sparsity

Case - 1 5 0.7 0.5
Case - 2 5 0.2 0.5
Case - 3 5 0.7 0.3
Case - 4 5 0.2 0.7

Table 2.3: Table presents different cases for Simulation 3. The maximum dimension R is the
dimension of vector object uk using which the model has been fit. While Simulation 2 only
has a sparsity parameter, Simulation 3 has a node sparsity (π2,w) and an edge sparsity (π3,w)
parameter respectively.

parameters.

Identification of Influential Nodes

Figures 2.1 and 2.2 show the posterior probability of the k-th node being detected as

influential, i.e., P(ξk = 1 |Data), for each node and each case within Simulation 1, Simulation

2 and Simulation 3. In the case of Simulation 1, the model is able to accurately identify nodes

influencing the response for any reasonable cutoff threshold. Indeed, the receiver operating

characteristic (ROC) curves associated with all these simulations have areas under the curve

(AUC) very close to 1. For Simulation 2, the model performs very well in Case 1, which

corresponds to relatively high node sparsity. However, when the node sparsity is relatively low

(Case 2), using our default threshold of 0.5 leads to all nodes being identified as influential.

While this is a somewhat disappointing result, we note that the model does tend to assign lower

posterior probabilities to truly non-influential nodes. Hence, the associated AUC for Case 2

is nonetheless quite high (0.98). A similar pattern can be observed in Simulation 3, with the
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model performing very well when the node sparsity is high, and somewhat poorly when the

node sparsity is low. Furthermore, it is interesting to observe that the level of edge sparsity

has very little effect on the results when the node sparsity is high (Cases 1 and 3), but does

impact the results when node sparsity is low (Cases 2 and 4). In particular, when node sparsity

is low but edge sparsity is high, the model yields a very high number of false negatives for our

default 0.5 detection threshold, while the reverse seems to be true when both node and edge

sparsity are low. Digging a bit deeper, when both node and edge sparsity are low, the model

assigns lower posterior probabilities to the non-influential nodes, resulting in a relatively high

AUC (0.88), which is consistent with our Simulation 2 results. On the other hand, when we

have low node sparsity but high edge sparsity (the most unfavorable conditions for our model),

the model struggles to even get the ranking of the nodes correctly, resulting in a relatively poor

AUC (0.66). Among the competitor models, the only one that allows for the identification of

influential nodes is the method of [113]. When this approach is applied to these simulations, it

selects all nodes as significant in every case.

Parameter estimation

Tables 2.4, 2.5, 2.6 present the mean squared error (MSE) of all the competitors in

Simulations 1, 2 and 3 respectively. Given that both the fitted network regression coefficient B

and the true coefficient B0 are symmetric, the MSE is calculated as 2
V (V−1) ∑k<l(γ̂k,l − γk,l,0)

2,

where γ̂k,l is the point estimate of γk,l . For Bayesian models (including our proposed model),

γ̂k,l is taken to be the posterior mean of γk,l .

Table 2.4 shows that BNSP outperforms all its competitors in all cases of Simulation
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Figure 2.1: Posterior probability that a node is influential, P(ξk = 1 |Data), for each node and
each of the 11 cases associated with Simulation 1. Dark cells correspond to the truly influential
nodes.

1. In Cases 1-7, where the sparsity parameter is low to moderate, we perform overwhelmingly

better than all the competitors. When the sparsity parameter in Simulation 1 is high (Cases 8-9),

our simulation scheme sets a very large proportion of γk,l,0’s to zero. As a result, BNSP only

slightly outperforms Horseshoe and BLasso. BNSP also shows superior performance when the

network predictor has modular structure (Cases 10-11). While BNSP is expected to perform

much better than BLasso, Horseshoe and Lasso due to incorporation of network information, it

is important to note that the carefully chosen global-local shrinkage prior with a well formulated

hierarchical mean structure seems also to outperform [113], which is explicitly designed to

account for the network structure.
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(a) Simulation 2 (b) Simulation 3

Figure 2.2: Posterior probability that a node is influential, P(ξk = 1 |Data), for each node and
all cases associated with Simulation 2 and Simulation 3. Dark cells correspond to the truly
influential nodes.

For Simulations 2 and 3, Tables 2.5 and 2.6 demonstrate that, when node or edge spar-

sity are high, BNSP performs very similarly to Horseshoe. This might be due to the fact that

a high degree of sparsity in the edge coefficients in the truth favors ordinary high dimensional

regression. As node sparsity decreases, so that more edge coefficients are nonzero in the truth

and the network structure in the predictors dominates, BNSP tends to show increasing advan-

tage in terms of estimating the network coefficient B.
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MSE

Cases BNSP Lasso Relión(2017) BLasso Horseshoe

Case - 1 0.008 0.438 0.524 0.472 0.395
Case - 2 0.007 0.660 0.929 0.863 0.012
Case - 3 0.006 1.295 1.117 1.060 1.070
Case - 4 0.008 0.455 0.552 0.465 0.393
Case - 5 0.006 0.371 0.493 0.699 0.299
Case - 6 0.008 1.986 1.892 2.138 2.043
Case - 7 0.009 1.344 1.629 1.638 1.381
Case - 8 0.004 0.010 0.069 0.008 0.004
Case - 9 0.004 0.029 0.071 0.019 0.007
Case - 10 0.091 2.231 2.207 0.751 0.706
Case - 11 0.003 0.025 0.047 0.018 0.012

Table 2.4: Performance of BNSP vis-a-vis competitors for cases in Simulation 1. Parametric
inference in terms of point estimation of edge coefficients has been captured through the Mean
Squared Error (MSE). The minimum MSE among competitors for any case is made bold.

MSE

Cases BNSP Lasso Relión(2017) BLasso Horseshoe

Case - 1 0.015 0.012 0.036 0.008 0.006
Case - 2 0.629 0.843 0.859 0.836 0.948

Table 2.5: Performance of BNSP vis-a-vis competitors for cases in Simulation 2. Parametric
inference in terms of point estimation of edge coefficients has been captured through the Mean
Squared Error (MSE). The minimum MSE among competitors for any case is made bold.

Identifying influential edges

Tables 2.7 and 2.8 show the true positive rates (TPR) and false positive rates (FPR)

associated with the detection of important edges for Simulation 1 and Simulation 3 using BNSP,
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MSE

Cases BNSP Lasso Relión(2017) BLasso Horseshoe

Case - 1 0.005 0.006 0.017 0.004 0.002
Case - 2 0.457 0.636 0.617 0.669 0.629
Case - 3 0.008 0.004 0.036 0.005 0.004
Case - 4 0.131 0.178 0.145 0.182 0.145

Table 2.6: Performance of BNSP vis-a-vis competitors for cases in Simulation 3. Parametric
inference in terms of point estimation of edge coefficients has been captured through the Mean
Squared Error (MSE). The minimum MSE among competitors for any case is made bold.

Lasso and [113]. The results for our method are based on controlling the FDR at 0.05 using

the algorithm described in Appendix C. In Simulation 1, BNSP outperforms Lasso and [113],

BNSP Lasso Relión (2017)

Cases TPR FPR TPR FPR TPR FPR

Case - 1 0.69 0 0.60 0.29 1 1
Case - 2 1 0.02 0.86 0.25 1 1
Case - 3 0.96 0 0.14 0.05 1 1
Case - 4 1 0.08 0.53 0.23 1 1
Case - 5 0.80 0.08 0.47 0.27 1 1
Case - 6 0.92 0 0.59 0.29 1 1
Case - 7 0.97 0.04 0.60 0.27 1 1
Case - 8 0.86 0.01 0.73 0.22 1 1
Case - 9 0.70 0.02 0.87 0.29 1 1
Case - 10 0.84 0 0.58 0.18 1 1
Case - 11 0.85 0.04 0.61 0.17 1 1

Table 2.7: True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases in
Simulation 1.
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although when node sparsity becomes high, Lasso becomes competitive with BNSP. Lasso is

also competitive with BNSP in Simulation 3, although in this case all models tend to perform

poorly when node sparsity is low but edge sparsity is relatively high. [113] appears to have a

very poor performance, as it identifies all edges as important in all the simulation scenarios,

resulting in high FPRs.

BNSP Lasso Relión(2017)

Cases TPR FPR TPR FPR TPR FPR

Case - 1 0.71 0 0.86 0.20 1 1
Case - 2 0.35 0.12 0.36 0.21 1 1
Case - 3 1 0.02 0.91 0.15 1 1
Case - 4 0.91 0.86 0.23 0.07 1 1

Table 2.8: True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases in
Simulation 3.

Inference on the effective dimensionality

Figures 2.3 and 2.4 present posterior probabilities of effective dimensionality in all

11 cases in Simulation 1, which is the only setting in which the true dimension of the latent

space is known. In all 11 cases the posterior mode corresponds to the true dimension of the

latent space.

Predictive Inference

We compare the out-of-sample predictive ability of the different models based on

the point prediction and characterization of predictive uncertainties using test samples of size
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure 2.3: Posterior probability distributions of the effective dimensionality in cases 1− 6 in
Simulation 1. Filled bullets indicate the true value of effective dimensionality.

38



(a) Case 7 (b) Case 8 (c) Case 9

(d) Case 10 (e) Case 11

Figure 2.4: Posterior probability distributions of the effective dimensionality in cases 7−11 in
Simulation 1. Filled bullets indicate the true value of effective dimensionality.
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npred = 30. To assess point prediction, we employ the mean squared prediction error (MSPE).

As measures of predictive uncertainty, we provide coverage and length of 95% predictive in-

tervals. For frequentist competitors, 95% predictive intervals are obtained by using predictive

point estimates plus and minus 1.96 times standard errors.

Tables 2.9, 2.10, 2.11 and 2.12 show results for Simulation 1, Simulation 2 and

Simulation 3. For Simulation 1, BNSP clearly outperforms other competitors in terms of point

prediction. Horseshoe becomes competitive in cases with a higher degree of sparsity (Cases

2, 8 and 9). Lasso and BLasso are competitive only in Case 8, while our approach seems to

dominate the method of [113] in all cases. In terms of prediction uncertainty, BNSP tends to

generate by far the shortest intervals, but also to exhibit a slight under-coverage, particularly in

Cases 5 and 11. As in the case of point prediction, Horseshoe seems to yield results that are

very similar to those of our model in Cases 2, 8 and 9.

In the case of Simulations 2 and 3, BNSP seems to outperform all other methods in

situations where the node sparsity is low. Note that this is the opposite of what we found when

investigating the performance of the model to identify influential nodes. Similar observations

can be made with respect to the coverage and length of the intervals. BNSP seems to have the

shortest intervals and about nominal coverage in Case 2 of Simulation 1 and in Cases 2 and 4

of Simulation 3, making it the obvious top performer. For the remaining cases in Simulations 2

and 3, Horseshoe seems to be at least competitive with our method.
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MSPE

Cases BNSP Lasso Relión(2017) BLasso Horseshoe

Case - 1 0.012 0.324 0.537 0.405 0.421
Case - 2 0.008 0.707 0.574 0.638 0.013
Case - 3 0.007 0.442 0.498 0.487 0.409
Case - 4 0.012 0.494 0.571 0.426 0.317
Case - 5 0.014 0.412 0.517 0.759 0.238
Case - 6 0.005 0.447 0.539 0.821 0.745
Case - 7 0.007 0.533 0.605 0.572 0.563
Case - 8 0.039 0.075 0.365 0.060 0.046
Case - 9 0.044 0.236 0.486 0.151 0.067
Case - 10 0.029 0.830 0.816 0.381 0.385
Case - 11 0.062 1.000 0.446 0.230 0.153

Table 2.9: MSPE under the BNSP vis-a-vis competitors for cases in Simulation 1. Lowest
MSPE for any case is made bold.

Sensitivity to the choice of R

In order to examine the behavior of the model with increasing R, we rerun our model

for each simulation scenario with R= 10,15 and 20 (in addition to our original choice of R). For

the sake of brevity, we only provide results for the data corresponding to Case 9 in Simulation

1 (see Table 2.14). The behavior of all metrics is quite stable. The only summary that seems to

be slightly affected are the posterior means of Re f f and the length of the 95% credible intervals,

which increase by about 16% and 11% respectively when we go from R = 5 to R = 20.
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Coverage of 95% PI

Case - 1 0.867 0.967 0.567 0.967 0.967
Case - 2 0.933 0.967 0.867 1.000 1.000
Case - 3 0.933 0.900 0.767 1.000 1.000
Case - 4 0.900 0.900 0.567 0.967 0.967
Case - 5 0.800 1.000 0.700 0.933 0.933
Case - 6 1.000 0.967 0.667 0.900 0.967
Case - 7 0.933 0.967 0.633 1.000 0.967
Case - 8 0.933 1.000 0.900 1.000 0.967
Case - 9 0.967 1.000 0.733 0.933 0.933

Case - 10 1.000 0.933 0.900 1.000 1.000
Case - 11 0.833 0.333 0.867 1.000 0.900

Length of 95% PI

Case - 1 5.093 41.528 16.789 39.656 32.868
Case - 2 5.040 49.254 27.983 58.449 9.366
Case - 3 5.900 38.259 30.126 67.251 61.534
Case - 4 5.321 37.814 21.848 39.728 33.529
Case - 5 4.461 41.251 22.115 43.027 30.132
Case - 6 11.053 67.922 36.434 75.322 76.089
Case - 7 5.214 70.655 31.746 83.132 68.103
Case - 8 4.753 23.964 12.122 8.578 5.846
Case - 9 4.780 14.397 8.227 8.783 5.868

Case - 10 21.571 75.309 61.221 55.603 69.886
Case - 11 3.874 13.216 10.419 11.485 6.618

Table 2.10: Coverage and length of 95% predictive intervals (PIs) under the BNSP vis-a-vis
competitors for cases in Simulation 1.

Scalability and Computation Time

Computation times for competing methods are provided in Table 2.15. It is to be

noted that computation times for frequentist methods and BNSP are not directly comparable as
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MSPE

Cases BNSP Lasso Relión(2017) BLasso Horseshoe

Case - 1 0.213 0.144 0.335 0.131 0.122
Case - 2 0.426 0.532 0.621 0.568 0.626

Coverage of 95% PI

Case - 1 0.900 1.000 0.900 0.933 0.900
Case - 2 0.933 0.800 0.600 0.967 0.933

Length of 95% PI

Case - 1 8.323 15.940 9.544 7.957 6.079
Case - 2 43.834 34.413 24.117 45.959 43.219

Table 2.11: MSPE, coverage and length of 95% predictive intervals (PIs) under the BNSP vis-
a-vis competitors for cases in Simulation 2. Lowest MSPE for any case is made bold.

BNSP is based on 50,000 MCMC iterations while the former methods yield results just after

a few of iterations. For the Bayesian method BNSP, the table records run time (in seconds)

per equivalent effective posterior sample, to account for the fact that posterior samples are

correlated. In absence of any open source code, we have implemented [113] by ourselves with

the run time provided in the table. Perhaps a more efficient implementation of [113] could

reduce its run time. As expected, the computation time of BNSP grows approximately linearly

with V and n3.
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MSPE

Cases BNSP Lasso Relión(2017) BLasso Horseshoe

Case - 1 0.108 0.183 0.452 0.138 0.101
Case - 2 0.677 0.959 0.817 0.869 0.888
Case - 3 0.066 0.049 0.354 0.050 0.047
Case - 4 0.604 0.877 0.732 0.781 0.720

Coverage of 95% PI

Case - 1 1.000 1.000 0.900 0.933 0.967
Case - 2 0.967 0.700 0.533 1.000 1.000
Case - 3 0.900 1.000 0.900 1.000 0.833
Case - 4 0.967 0.400 0.533 0.967 0.967

Length of 95% PI

Case - 1 6.371 13.080 7.877 6.508 5.268
Case - 2 41.492 26.028 18.387 51.459 48.694
Case - 3 5.069 22.774 11.760 5.980 4.005
Case - 4 18.704 7.397 8.547 22.049 20.227

Table 2.12: MSPE, coverage and length of 95% predictive intervals (PIs) under the BNSP vis-
a-vis competitors for cases in Simulation 3. Lowest MSPE for any case is made bold.

2.4 Application to Human Brain Network Data

Human creativity has been at the crux of the evolution of the human civilization, and

has been the topic of research in several disciplines, including neuroscience. Though creativity

can be defined in numerous ways, one could envision a creative idea as one that is unusual as

well as effective in a given social context [44]. Neuroscientists generally concur that a coa-

lescence of several cognitive processes determines the creative process, which often involves
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Cases Rgen R Sparsity BNSP Lasso Relión(2017) BLasso Horseshoe

Case - 1 2 2 0.5 0.009 0.438 0.524 0.472 0.395
Case - 2 2 3 0.6 0.007 0.660 0.929 0.863 0.012
Case - 3 2 5 0.3 0.006 1.295 1.117 1.060 1.070
Case - 4 2 5 0.4 0.006 0.371 0.493 0.699 0.298
Case - 5 3 5 0.5 0.009 1.344 1.629 1.638 1.381
Case - 6 4 5 0.4 0.006 3.054 2.601 2.680 3.284
Case - 7 2 4 0.5 0.009 0.438 0.524 0.472 0.395

Table 2.13: Performance of Bayesian Network Regression vis-a-vis competitors. Predictive
point estimation has been captured through the Mean Squared Prediction Error (MSPE).

R MSE MSPE Coverage Length of 95% PI Posterior Mean of Re f f

5 0.0044 0.044 0.967 4.780 2.83
10 0.0038 0.0437 0.967 4.996 2.95
15 0.0039 0.0438 0.967 5.362 3.23
20 0.0041 0.0433 0.967 5.341 3.31

Table 2.14: Model behavior in terms of model performance metrics with changing values of R
for data corresponding to Simulation 1, Case 9. We report MSE, MSPE, length and coverage of
95% predictive intervals and the posterior mean of effective dimensionality Re f f .

a divergence of ideas to conceivable solutions for a given problem. To measure the creativity

of an individual, [80] propose the CCI, which is formulated by linking measures of divergent

thinking and creative achievement to cortical thickness of young (23.7 ± 4.2 years), healthy

subjects. Three independent judges grade the creative products of a subject from which the

“composite creativity index” (CCI) is derived.

Along with CCI measurements, brain network information for n= 79 subjects is gath-

ered using diffusion weighted magnetic resonance imaging (DWI). DWI is an imaging tech-
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V n BNSP Lasso Relión(2017)

20 70 0.1392 0.3606 2.3954
20 100 0.1594 0.6693 3.1306
20 150 0.2069 0.4900 3.3002

40 70 0.6435 0.5150 30.0046
40 100 0.8296 0.4829 39.9697
40 150 1.1467 0.8013 54.5337

60 70 2.7874 1.0954 150.9617
60 100 3.7153 0.7423 200.4439
60 150 5.3052 0.8603 285.5792

80 70 8.1378 1.7925 435.5506
80 100 11.6997 1.3206 645.1986
80 150 17.2309 2.0388 995.7408

100 70 20.1989 0.8699 1165.969
100 100 26.5559 1.3059 1467.85
100 150 31.4653 1.5472 2031.46

Table 2.15: Computation time of competing methods for different values of sample size (n) and
number of nodes (V ). For the Bayesian method BNSP, the table records run time (in seconds)
per equivalent effective posterior sample for BNSP, to account for the fact that posterior samples
are correlated. The last two columns record total run time for frequentist methods.

nique that enables measurement of the restricted diffusion of water in tissue in order to produce

neural tract images. The brain imaging data we use has been pre-processed using the NDMG

pre-processing pipeline [82, 81, 83]. In the context of DWI, the human brain is divided accord-

ing to the Desikan atlas [32] that identifies 34 cortical regions of interest (ROIs) in each of the

left and right hemispheres of the human brain, implying 68 cortical ROIs in all. A ‘brain net-

work’ for each subject is represented by a symmetric adjacency matrix whose rows and columns
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correspond to different ROIs and entries correspond to estimates of the number of ‘fibers’ con-

necting pairs of brain regions. A “lobe” in a human brain is composed of a number of ROIs.

According to Desikan atlas, brain consists of 12 lobes, 6 on right and left hemisphere each.

Figure 2.5 shows maps of the brain network for two representative individuals in the sample.

In this Section we are interested in predicting the CCI of a subject from his/her brain

network, and to identify brain regions (nodes in the brain network) that are involved with cre-

ativity, as well as influential connections between different brain regions. Before carrying out

our analysis, each cell of the adjacency matrix is standardized by subtracting the mean and di-

viding by the standard deviation with respect to all n = 79 samples. CCI is also standardized

in a similar fashion. The MCMC chain for our model is run for 50,000 iterations, with the first

40,000 iterations discarded as burn-in. Convergence is assessed by comparing different simu-

lated sequences of representative parameters started at different initial values [52]. We monitor

the auto-correlation plots and effective sample sizes. Prior distributions for all the parameters

are chosen as in the simulation studies.

2.4.1 Findings from BNSP

For the purpose of this data analysis, BNSP was fitted with R = 5. Later, we show

that the results are robust to moderate increases in the value of R. A posteriori, the mean of the

effective dimension Re f f was 3. Figure 2.6 shows the posterior means of the latent positions

u1, . . . ,uV for the two highest-variance components of the latent space. The clump of nodes

located at the origin all correspond to ROIs that our method deems to be non-influential on the

response (see discussion below).
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(a) Representative Network Adjacency Matrix 1

(b) Representative Network Adjacency Matrix 2

Figure 2.5: Maps of the brain network (weighted adjacency matrices) for two representative
individuals in the sample. Since the (k, l)-th off-diagonal entry in any adjacency matrix corre-
sponds to the number of fibers connecting the k-th and the l-th ROIs, the adjacency matrices are
symmetric. Hence the figure only shows the upper triangular portion.

48



Figure 2.6: Posterior means of the latent positions u1, . . . ,uV for the two highest-variance com-
ponents of the latent space.
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Recall that the k-th node is identified as influential if P(ξk = 1 |Data) exceeds 0.5.

In this dataset, this criteria identifies 41 ROIs out of 68 as influential. Of the influential ROIs,

19 belong to the left hemisphere and 22 belong to the right hemisphere (see Table 2.17). This

coincides with results that have been previously presented in the literature. A large number of

the 41 influential nodes detected by our method are part of the frontal (16) and temporal (7)

cortices in both hemispheres. The frontal cortex has been scientifically associated with diver-

gent thinking and problem solving ability, in addition to motor function, spontaneity, memory,

language, initiation, judgement, impulse control and social behavior [131]. Some of the other

functions directly related to the frontal cortex seem to be behavioral spontaneity, interpreting

environmental feedback and risk taking [112, 99, 87]. Similarly, [43] report de novo artistic ex-

pression to be associated with the frontal and temporal regions. Our method also finds a strong

relationship between creativity and the right parahippocampal gyrus and right inferior parietal

lobule, regions found to be involved with creativity by a few earlier scientific studies, see e.g.,

[23].

Our results also show substantial overlap with those of [80], in which a regression

model is used to understand the relationship between CCI and ROI-specific measures to ac-

count for the relationship between creativity and different brain regions. In particular, both

approaches identify the middle frontal gyrus, the left cingulate cortex, the left orbitofrontal re-

gion, the left lingual region, the left fusiform, the right cuneus, the right superior parietal lobule,

the superior parietal lobules and the right singulate regions as influencing CCI. However, al-

though there is significant intersection between the findings of [80] and our method, there are

a few regions that we detect as influential and they do not, and vice versa. For example, our
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model detects the right precuneus and the supramarginal regions in both the hemispheres to

be significantly related to CCI, while [80] do not. On the other hand, they identify the right

angular region to be significant while we do not. Applying the method of [113] to our dataset

leads to the identification of 65 out of 68 ROIs as influential. The three regions that are found

to be uninfluential are the frontalpole, temporalpole and the transversetemporal regions in the

right hemisphere.

Along with influential ROIs, we are interested in identifying the statistically signifi-

cant edges or connections between the 68 ROIs. Figure 2.7 plots the 523 interconnections that

appear to be influential (out of a total of 2,016), controlling for a 0.05 FPR.

Our interest turns now to the predictive ability of the Bayesian network regression

model. Table 2.16 reports the mean squared prediction error (MSPE), length and coverage of

95% predictive intervals for a ten-fold cross-validation exercise. As reference, we also present

MSPE, length and coverage values for Lasso, BLasso and [113].

BNSP clearly outperforms all other methods in terms of point prediction. In terms of

prediction intervals, all methods perform similarly. However, note that, while the coverage of

BNSP is slightly under our target, the coverage all of the other methods is slightly above target.

Finally, we assess the sensitivity of the model to the choice of R. Table 2.18 shows

nearly identical results by choosing R = 5,6,7 and 10, suggesting that our original choice of R

is sufficiently large for this application.
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BNSP Lasso Relión(2017) BLasso Horseshoe

MSPE 0.77 0.98 0.98 1.84 1.78
Coverage of 95% PI 0.92 0.97 0.97 0.97 0.93
Length of 95% PI 3.73 3.88 3.89 3.40 4.99

Table 2.16: Predictive performance of competitors in terms of mean squared prediction error
(MSPE), coverage and length of 95% predictive intervals, obtained through 10-Fold Cross Val-
idation in the context of real data. Note that since the response has been standardized, an MSPE
value greater than or around 1 will denote an inconsequential analysis.

2.5 Conclusion

This chapter proposes a novel Bayesian framework to address a regression problem

with a continuous response and network-valued predictors. Our contribution lies in carefully

constructing a novel class of network shrinkage priors that account for the correlation in the

regression coefficients that is expected from the relational nature of the predictor. Empirical

results from simulation studies show that our method is superior to popular alternatives in sit-

uations where the level of node sparsity is at least moderate, and mostly competitive in other

circumstances. In our analysis of the Composite Creativity Index, the results generated by our

model largely agree with those previously reported in the literature.
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Figure 2.7: Significant inter-connections detected among influential brain regions of interest
(ROIs) in the Desikan atlas. White cells show significant nodal associations among ROIs. Prefix
‘lh-’ and ‘rh-’ in the ROI names denote their positions in the left and right hemispheres of the
brain respectively.
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Left Hemisphere Lobes

Temporal Cingulate Frontal Occipital Parietal Insula

fusiform rostral-anteriorcingulate caudal-middlefrontal cuneus postcentral

inferiortemporal caudal-anteriorcingulate lateral-orbitofrontal lingual supramarginal

transversetemporal isthmus-cingulate pars-opercularis pericalcarine

pars-triangularis

rostral-middlefrontal

superior-frontal gyrus

frontalpole

medial-orbitofrontal

Right Hemisphere Lobes

Temporal Cingulate Frontal Occipital Parietal Insula

middle-temporal caudal-anteriorcingulate caudal-middlefrontal cuneus precuneus insula

superior-temporal isthmus-cingulate lateral-orbitofrontal lateral-occipital superior-parietal

entorhinal medial-orbitofrontal pericalcarine supramarginal-gyrus

fusiform pars-orbitalis lingual

precentral

rostral-middlefrontal

superior-frontal

pars-triangularis

Table 2.17: Brain regions (ROIs) detected as influential for the composite creativity index by
BNSP.

BNSP (R = 5) BNSP (R = 6) BNSP (R = 7) BNSP (R = 10)

MSPE 0.77 0.87 0.83 0.85
Coverage of 95% PI 0.92 0.92 0.92 0.91
Length of 95% PI 3.73 3.78 3.81 3.84

Posterior Mean of Re f f 2.41 2.69 2.46 2.57

Table 2.18: Predictive performance of BNSP with R = 5,6,7,10 to assess the sensitivity of
predictive inference with the choice of R.
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Chapter 3

High Dimensional Bayesian Network

Classification with Network

Global-Local Shrinkage Priors

3.1 Introduction

Chapter 2 discusses the network regression problem with a continuous response and

an undirected network predictor. However, there are pertinent biological and physiological

studies where a network along with a binary response is obtained for each subject. The goal

of these studies is usually to classify the networks according to the binary response and predict

the associated binary response from a network. We refer to this problem as the network or

graph classification problem. Additionally, Chapter 2 focuses on a specific network shrinkage
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prior, whereas this chapter generalizes the inference to a class of network global-local shrinkage

priors, which includes the prior specification in Chapter 2 as a special case.

Earlier literature on network or graph classification has been substantially motivated

by the problem of classification of chemical compounds [129], [65], where a graph represents a

compound’s molecular structure. In such analyses, certain discriminative patterns in a graph are

identified and used as features for training a standard classification method [31], [42]. Another

type of method is based on graph kernels [135], which defines a similarity measure between

two networks. Both of these approaches are computationally feasible only for small networks,

do not account for uncertainty, and do not facilitate influential network node identification.

When the number of network nodes is moderately large, a common approach to network clas-

sification is to use a few summary measures (average degree, clustering coefficient, or average

path length) from the network and then apply statistical procedures in the context of standard

classification methods (see, for e.g., [11] and references therein). These procedures have been

recently employed in exploring the relationship between the brain network and neuropsychi-

atric diseases, such as Parkinson’s [107] and Alzheimer’s [29], but the analyses are sensitive to

the chosen network topological measures, with substantially different results obtained for dif-

ferent types of summary statistics. Indeed, global summary statistics collapse all local network

information, which can affect the accuracy of classification. Furthermore, identification of the

impact of specific nodes on the response, which is of clear interest in our setting, is not feasible.

As with network regression problems, an alternate approach proceeds to vectorize the network

predictor and treat edge weights together as a long vector followed by developing a high di-

mensional regression model with this long vector of edge weights as predictors [114]; [27];

56



[146]. This approach can take advantage of the recent developments in high dimensional binary

regression, consisting of both penalized optimization [133] and Bayesian shrinkage [109]; [17];

[5] perspectives. However, as mentioned in Chapter 2, this treats the links of the network as

exchangeable, ignoring the fact that coefficients involving common nodes can be expected to

be correlated a priori. In a related work, [136] propose to look for a minimal set of nodes which

best explains the difference between two groups of networks. This requires solving a combina-

torial problem. Again, [35] propose a high dimensional Bayesian tensor factorization model for

a population of networks that allows to test for local edge differences between two groups of

subjects. Both of these approaches tend to focus mainly on classification and are not designed

to detect important nodes and edges impacting the response.

Our goal in this chapter is to develop a high-dimensional Bayesian network classi-

fier that additionally infers on influential nodes and edges impacting classification. To achieve

this goal, we formulate a high dimensional logistic network regression model with the binary

response regressed on the network predictor corresponding to each subject. The network pre-

dictor coefficient is assigned a prior from the class of Bayesian network global-local shrinkage

priors discussed in this chapter. The proposed prior imparts low-rank and near sparse struc-

tures a priori on the network predictor coefficient. The low-rank structure of the coefficient is

designed to address the transitivity effect on the network predictor coefficient and captures the

effect of network edge coefficients on classification due to the interaction between nodes. On

the other hand, the near sparse structure accounts for the residual effect due to edges.

One important contribution of this chapter is a careful study of the asymptotic prop-

erties of the proposed binary network classification (BNC) framework. In particular, we focus
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on consistency properties for the posterior distribution of the BNC framework using a specific

network global-local shrinkage prior, namely the Bayesian Network Lasso prior. Theory of

posterior contraction for high dimensional regression models has gained traction lately, though

the literature is less developed in shrinkage priors compared to point-mass priors. For ex-

ample, [19] and [7] have established posterior concentration and variable selection properties

for certain point-mass priors in the normal-means models. The latter chapter also establishes

asymptotically nominal coverage of Bayesian credible sets. Results on posterior concentration

and variable selection in high dimensional linear models are also established by [18] and [98]

for certain point-mass priors. In contrast, literature on posterior contraction properties for high

dimensional Bayesian shrinkage priors is relatively limited. To this end, [6] were the first to

show posterior consistency in the ordinary linear regression model with shrinkage priors for

low-dimensional settings under the assumption that the number of covariates does not exceed

the number of observations. Using direct calculations, [134] show that the posterior based on

the ordinary horseshoe prior concentrates at the optimal rate for normal-mean problems. Re-

cently, [128] considers a general class of continuous shrinkage priors and obtains posterior

contraction rates in ordinary high dimensional linear regression models. In the same vein, [143]

offers analysis of posterior concentration for logistic regression models with shrinkage priors

on coefficients. While [143] are the first to delineate a theoretical approach for ordinary high di-

mensional binary classification models with shrinkage priors, the study of posterior contraction

properties for more structured binary network classification problems in the Bayesian paradigm

has not appeared in the literature. In fact, developing the theory for Bayesian network clas-

sification with the Bayesian Network Lasso prior proposed in this chapter is faced with two
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major challenges. First, the novel Bayesian Network Lasso prior imparts a more complex prior

structure (incorporating a low-rank structure in the prior mean of edge coefficients, as described

in Chapter 2) than that in [143], introducing additional theoretical challenges. Second, we aim

at proving a challenging but practically desirable result of asymptotically optimal classification

when the number of edges in the network predictor grows at a super-linear rate as a function of

the sample size. Both of these present obstacles which we overcome in this work. The theoreti-

cal results provide insights on how the number of nodes in the network predictor, or the sparsity

in the true network predictor coefficients should vary with sample size n to achieve asymptoti-

cally optimal classification. We must mention that developing a similar theory for the Bayesian

Network Horseshoe prior proposed in this chapter faces more challenges due to complex prior

structure in parameters. We plan to tackle that problem as part of future work.

Section 3.2 develops the model and the prior distributions. Section 3.3 discusses

theoretical developments justifying the asymptotically desirable prediction from the proposed

model. Section 3.4 details posterior computation. Results from various simulation experiments

and a brain connectome data analysis have been presented in Sections 3.5 and 3.6 respectively.

Finally, Section 3.7 concludes the chapter with a brief discussion of the proposed methodology.

3.2 Model Formulation

In the context of network classification, we propose the high dimensional logistic

regression model of the binary response yi ∈ {0,1} on the undirected network predictor Ai as

yi ∼ Ber
[

exp(ψi)

1+ exp(ψi)

]
, ψi = µ+ 〈Ai,Γ〉F , (3.1)
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where Γ is a V ×V symmetric network coefficient matrix whose (k, l)th element is given by

γk,l/2, with γk,k = 0, for all k = 1, ...,V .

Model (3.1) can be expressed in the form of a generalized linear model. To be more

specific, 〈Ai,Γ〉F = ∑
1≤k<l≤V

ai,k,lγk,l , so that ψi = µ+ ∑
1≤k<l≤V

ai,k,lγk,l and the probability mass

function of yi can be written as

p(yi) =
exp(ψi)

yi

1+ exp(ψi)
(3.2)

Note that, if xi = (ai,1,2, ...,ai,(V−1),V )
′ ∈ RV (V−1)/2 is the collection of all upper triangular ele-

ments of Ai, and γ = (γ1,2, ...,γ(V−1),V )
′ ∈ RV (V−1)/2 is the vector of corresponding upper trian-

gular elements of 2Γ, then (3.1) can be written as

yi ∼ Ber
(

fγ(xi)
)
, fγ(xi) =

exp(µ+ x′iγ)
(1+ exp(µ+ x′iγ))

. (3.3)

Although the binary network regression model is proposed for the logit link, it assumes natural

extension for any other link function. The next section describes a class of network global-local

shrinkage priors on network coefficients.

3.2.1 Bayesian network global-local shrinkage prior on the network predictor

coefficient

In this chapter, we propose the network global-local shrinkage prior given by,

γk,l|sk,l,σ
2 ∼ N(u′kΛul,σ

2s2
k,l), σ∼ H1(·), sk,l ∼ H2(·). (3.4)

Note that this framework a priori centers γk,l at a low-rank decomposition and controls the

spread of the prior distribution of γk,l using a global-local shrinkage prior. The formulation
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includes a wide variety of network shrinkage priors by choosing different functions H1(·) and

H2(·). For example, Chapter 2 has investigated a particular class of such prior distributions,

obtained by choosing H1(σ) = δ1(σ), where δ1(σ) is the Dirac-delta function that is defined as

δ1(σ) = 1 if σ = 1, and 0 otherwise; and H2(s2
k,l) as an exponential density, referred to as the

Network Lasso prior. To show the generality of (3.4), we additionally investigate performance

of (3.4) in binary regression with sk,l ∼ C+(0,1) and σ ∼ C+(0,1). The resulting prior is re-

ferred to as the Network Horseshoe prior. The rest of the hierarchy on λr’s, uk’s follows as in

Chapter 2.

3.3 Posterior Contraction of the Binary Network Classification Model

This section establishes convergence results for (3.1) with γk,l’s following the Bayesian

Network Lasso shrinkage prior. From the hierarchical specification given in (3.4), the Bayesian

Network Lasso shrinkage prior is given by γk,l|sk,l ∼ N(u′kΛul,s2
k,l), s2

k,l ∼ Exp(θn/2). For the

theoretical study, a common practice is to fix θn as a function of n [5]. Our theoretical inves-

tigations will also fix θn (the exact expression is given in Condition (F) in the next subsection)

with the fixed values specified later.

Here we consider an asymptotic setting in which the number of nodes in the network

predictor, Vn, grows with the sample size n. This paradigm attempts to capture the fact that

the number of elements in Ai, given by V 2
n can be substantially larger than sample size. Since

model (3.1) is equivalent to model (3.3), the size of the coefficient γ in (3.3) is also a function

of n, given by qn =
Vn(Vn−1)

2 . This creates theoretical challenges, related to (but distinct from)
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those faced in showing posterior consistency for high dimensional continuous [5] and binary

regressions [143].

Let yn = (y1, ...,yn)
′. Using the superscript (0) to indicate true parameters, the true

data generating model is given by

yi ∼ Bernoulli

[
exp(ψ(0)

i )

1+ exp(ψ(0)
i )

]
, ψ

(0)
i = 〈Ai,Γ

(0)〉F . (3.5)

where Γ
(0) is the true network coefficient. Let γ(0) be the vectorized upper triangular part of

Γ
(0). We assume, γ

(0)
k,l = u(0)

′

k Λu(0)l + γ
(0)
2,k,l , where u(0)k is a R0 dimensional vector, k = 1, ...,V .

γ
(0)
2 is the vector of all γ

(0)
2,k,l , k < l, and we denote the number of nonzero elements of γ

(0)
2 by

s0
2,n, i.e. ||γ(0)2 ||0 = s0

2,n.

For any ε> 0, define An =

{
γ : 1

n

n
∑

i=1
| fγ(xi)− f

γ(0)(xi)| ≤ ε

}
as a neighborhood around

the true density. Further suppose πn(·) and Πn(·) are the prior and posterior densities of γ with

n observations, so that

Πn(Ac
n) =

∫
Ac

n
pγ(yn)πn(γ)∫

pγ(yn)πn(γ)
,

where pγ(yn) denotes the likelihood of the ndimensional response vector yn.

3.3.1 Main Results

To show the posterior contraction results, we follow [143] and [5], with substantial

modifications required due to the nature of our proposed network lasso prior distribution. In

proving the results, we make a couple of simplifications. It is assumed that the dimension R of

uk is fixed and is the same as R0, the dimension of u(0)k . Consequently, effective dimensionality

is not required to be estimated, and hence Λ = I is a non-random matrix. Additionally, we
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assume M to be non-random and M = I. We emphasize that both these assumptions are not es-

sential for the posterior contraction rate result to be true, and are only introduced for simplifying

calculations.

For two sequences {C1,n}n≥1 and {C2,n}n≥1, C1,n = o(C2,n) if C1,n/C2,n→ 0, as n→∞.

To begin with, we state the following assumptions under which posterior contraction will be

shown.

(A) sup
r=1,..,R;k=1,..,Vn

|u(0)k,r |< ∞;

(B) Vn = o( n
log(n));

(C) ||Ai||∞ is bounded for all i = 1, ..,, w.l.o.g assume ||Ai||∞ ≤ 1.

(D) s0
2,n log(qn) = o(n)

(E) ||γ(0)2 ||∞ < ∞;

(F) θn =
C

qnnρ/2 log(n) for some C > 0 and some ρ ∈ (1,2).n

Remark: Conditions (A), (C) and (E) are technical conditions ensuring that each of

the entries in the true network coefficient and the network predictor are bounded. Condition (B)

puts an upper bound on the growth of the number of network nodes with sample size to achieve

asymptotically optimal classification. Similarly, (D) puts a restriction on the number of nonzero

elements of γ
(0)
2 with respect to n.

The following theorem shows contraction of the posterior asymptotically under mild

sufficient conditions on Vn,s0
2,n. The proof of the theorem is provided in Appendix F.
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Theorem 3.3.1 Under assumptions (A)-(F) for the Bayesian Network Lasso prior on γ, Πn(An)→

0 in P
γ(0) as n→ ∞, for any ε > 0.

3.4 Posterior Computation

We have implemented both the Bayesian Network Lasso and Network Horseshoe

shrinkage priors on γ. Using the result in [111], the data augmented representation of the distri-

bution of yi given in (3.2) follows as below

p(yi|ωi) = 2−b exp(kiψi)exp(−ωiψ
2
i /2), ωi ∼ PG(1,0), (3.6)

where ki = yi− 1/2. Let xi = (ai,1,2,ai,1,3, ...,ai,1,V ,ai,2,3,ai,2,4, ...,ai,2,V , ....,ai,V−1,V )
′ be of di-

mension q× 1, where q = V (V−1)
2 . Assume X = (x1 : · · · : xn)

′ is an n× q matrix. Then the

conditional likelihood of y = (y1, ...,yn)
′ given ω = (ω1, ...,ωn)

′ and γ is given by

p(y |X ,γ,ω) ∝

n

∏
i=1

p(yi |xi,γ,ωi, ...)

∝

n

∏
i=1

exp
{
(yi−0.5)(µ+ x′iγ)−ωi(µ+ x′iγ)

2/2
}

∝

n

∏
i=1

exp

{
−ωi

2

[
(yi−0.5)

ωi
− (µ+ x′iγ)

]2
}

In matrix notation, the likelihood may be written as

p(y |X ,γ,ω...) ∝ N(t |µ1+Xγ,Ω−1)

where t = ((y1− 0.5)/ω1, ...,(yn− 0.5)/ωn)
′ = (k1/ω1, ...,kn/ωn)

′ and Ω = diag(ω1, ...,ωn).

While the full posterior distributions for the parameters are not in closed forms, they mostly

belong to the standard families. Hence drawing posterior samples using MCMC can be readily
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implemented. Appendix D and Appendix E describe full conditional distributions of parameters

for Bayesian Network Lasso and Network Horseshoe priors on γ, respectively.

Let Ω
(1), ...,Ω(L), Γ

(1), ...,Γ(L) and µ(1), ...,µ(L) be the L post burn-in MCMC samples

for Ω, Γ and µ respectively after suitable thinning. To classify a newly observed network M∗ as

a member of one of the two groups, we compute S(l) = exp(µ(1)+〈M∗,Γ(l)〉)
1+exp(µ(1)+〈M∗,Γ(l)〉) for l = 1, ...,L. M∗

is classified as a member of group ‘low’ or ‘high’ if 1
L ∑

L
l=1 S(l) is less than or greater than 0.5,

respectively. To judge sensitivity to the choice of the cut-off, the simulation section presents

Area under Curve (AUC) of ROC curves with True Positive Rates (TPR) and False Positive

Rates (FPR) of classification corresponding to a range of cut-off values.

Node k is recognized to be influential in the classification process if 1
L ∑

L
l=1 ξ

(l)
k > 0.5,

where ξ
(1)
k , ...,ξ

(L)
k are the L post burn-in MCMC samples of ξk. Again, one of the goals of the

proposed framework is to identify influential network edges impacting the response. We employ

the algorithm described in Appendix C to identify influential edges. The algorithm takes care

of multiplicity correction by controlling the false discovery rate (FDR) at 5% level. Finally, we

present an estimate of P(Re f f = r |Data) computed by 1
L ∑

L
l=1 I(∑R

m=1 λ
(l)
m = r), where I(A) for

an event A is 1 if the event A happens and 0 otherwise, and λ
(1)
m , ...,λ

(L)
m are the L post burn-in

MCMC samples of λm.

3.5 Simulation Studies

This section evaluates the inferential and classification ability of our proposed Bayesian

network classification (BNC) framework, along with a number of competitors, using synthetic
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networks generated under various simulation settings. Our proposed network classification ap-

proach with the Bayesian Network Lasso prior and the Bayesian Network Horseshoe prior are

referred to as the Bayesian Network Lasso classifier (BNLC) and Bayesian Network Horseshoe

classifier (BNHC), respectively. In each simulation, we assess the ability of the BNLC and

BNHC approaches to correctly identify influential nodes and edges, to accurately estimate pre-

dictive edge coefficients and to classify a network with precise characterization of uncertainties.

Classification performance of both methods are assessed using the area under the Receiving Op-

erating Characteristics (ROC) curve (AUC).

To study all competitors under various data generation schemes, we simulate the re-

sponse from (3.1) given by

yi ∼ Ber
(

exp(µ0 + 〈Ai,Γ0〉F)
1+ exp(µ0 + 〈Ai,Γ0〉F)

)
, (3.7)

where Γ0 is a symmetric matrix with zero diagonal entries. The intercept µ0 is fixed at 2 in all

simulation scenarios. We consider two different schemes of generating the network Ai, referred

to as Simulation 1 and Simulation 2, respectively.

Simulation 1. In Simulation 1, the network edges (i.e., the elements of the matrix Ai) are sim-

ulated from N(0,1). Thus, Simulation 1 assumes that the network predictor follows an Erdos-

Renyi graph.

Simulation 2. In Simulation 2, the network predictor Ai corresponding to the ith sample is

generated from a stochastic blockmodel. Here nodes in a simulated network are organized into

communities so that nodes in the same community tend to have stronger connections than nodes
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belonging to different communities. This simulation scenario simulates networks which closely

mimic brain connectome networks [11]. To simulate networks with such community structures,

we assign each node a community label, fk ∈{1,2, ...,3}, k = 1, ...,V . The node assignments are

the same for all networks in the population. Given the community labels, the (k,k′)th element of

A is simulated from N(m fk, fk′ ,σ
2
0), where mk,l = 0.5 when k = l. When k 6= l, i.e., the concerned

edges connect nodes belonging to different clusters, we sample a fixed number of edge locations

randomly and simulate the values from N(0,1), assigning the values at the remaining locations

to be 0. We set σ2
0 = 1 and the three clusters with 8, 9 and 8 nodes respectively, in the three

communities. We note that the network predictors are simulated from a stochastic blockmodel

in Simulation 2 which also ensures transitivity in the network predictor.

Simulating the network predictor coefficient Γ0. In both Simulations 1 and 2, the network pre-

dictor coefficient Γ0 is constructed as the sum of two matrices Γ0,1 and Γ0,2. We provide the

details of constructing the two matrices as below.

In both Simulations 1 and 2, we draw V latent variables uk,0, each of dimension Rg,

from a mixture distribution given by

uk,0 ∼ πNRg(um,g,u2
s,g)+(1−π)δ0; k ∈ {1, ...,V}, (3.8)

where δ0 is the Dirac-delta function and π is the probability of any uk,0 being nonzero. Define

a symmetric matrix Γ0,1 whose (k, l)th element is given by
u′k,0ul,0

2 , k < l and = 0 if k = l. Note

that if uk,0 is zero, then the kth node has no contribution to the mean function in (4.8), i.e., the

kth node becomes non-influential in predicting the response. Since (1−π) is the probability of

a node being inactive, it is referred to as the node sparsity parameter in the context of the data
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generation mechanism under Simulations 1 and 2. All elements of um,g are taken to be 0.5 and

us,g is taken to be 1.

We also construct another symmetric sparse matrix Γ0,2 to add additional edge effects

corresponding to edges connecting a few randomly selected nodes. Let π2 be the proportion of

nonzero elements of Γ0,2, set randomly at either 0.05 or 0.1. We randomly choose π2 proportion

of locations from the set of all (k, l). The nonzero entries are drawn using one of the three

following strategies:

Strategy 1: Nonzero entries are simulated from N(1,0.1).

Strategy 2: Nonzero entries are simulated from N(0.5,0.1).

Strategy 3: All nonzero entries are fixed at 0.5.

The quantity (1−π2) is referred to as the residual edge sparsity.

Note that the specification of true edge coefficients largely preserves the transitivity

property in Γ0. To see this, note that Γ0,2 is highly sparse, so that γ0,1,k,l = γ0,k,l for most pairs

(k, l), k < l. For those pairs, γ0,k,l 6= 0 and γ0,l,l′ 6= 0 imply that uk,0 6= 0, ul,0 6= 0 and ul′,0 6= 0.

Thus it follows that γ0,k,l′ =
u′k,0ul′,0

2 6= 0.

For a comprehensive picture of Simulation 1 and Simulation 2, we consider 4 different

cases each in both simulations as summarized in Table 3.1 and 3.2 respectively. In each of these

cases, the network predictor coefficient and the response are generated by changing the node

sparsity (1− π), the residual edge sparsity (1− π2) and the true dimension Rg of the latent

variables uk,0’s. The table also presents the maximum fitted dimension R of the latent variables

uk for the logistic regression model (3.2). Note that the various cases also allow model mis-

specification with unequal choices of R and Rg.
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Cases Rg R Node Residual Edge Strategy
Sparsity (1−π) Sparsity (1−π2)

Case - 1 2 2 0.5 0.95 Strategy 1
Case - 2 3 5 0.6 0.95 Strategy 1
Case - 3 2 5 0.5 0.90 Strategy 2
Case - 4 2 5 0.4 0.90 Strategy 3

Table 3.1: Table presents different cases for Simulation 1. The true dimension Rg is the di-
mension of vector object uk,0 using which data has been generated. The maximum dimension R
is the dimension of vector object uk using which the model has been fitted. Node sparsity and
residual edge sparsity are described in the text.

Cases Rg R Node Residual Edge Strategy
Sparsity (1−π) Sparsity (1−π2)

Case - 1 2 2 0.5 0.95 Strategy 1
Case - 2 2 4 0.5 0.95 Strategy 1
Case - 3 2 3 0.7 0.95 Strategy 1
Case - 4 2 5 0.4 0.90 Strategy 3

Table 3.2: Table presents different cases for Simulation 2. The true dimension Rg is the di-
mension of vector object uk,0 using which data has been generated. The maximum dimension R
is the dimension of vector object uk using which the model has been fitted. Node sparsity and
residual edge sparsity are described in the text.

As competitors, we use generic variable selection and shrinkage methods that treat edges be-

tween nodes together as a long predictor vector to run high dimensional regression, thereby

ignoring the relational nature of the predictor. More specifically, we use Lasso [133], which is

a popular penalized optimization scheme, and the Bayesian Lasso (BLasso for short)[109] and

Bayesian Horseshoe (BHS for short) priors [17], which are popular Bayesian shrinkage regres-

sion methods, all three under the logistic regression framework. We use the glmnet package
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in R [50] to implement the frequentist Lasso, while we write our own codes for BLasso and

BHS. A comparison with these methods will indicate any relative advantage of exploiting the

structure of the network predictor. Additionally, we compare our methods to a frequentist ap-

proach that develops network classification in the presence of a network predictor and a binary

response [113]. We refer to this approach as Relión.

All Bayesian competitors are allowed to draw 50,000 MCMC samples, out of which

the first 30,000 are discarded as burn-ins. Convergence is assessed by comparing different

simulated sequences of representative parameters starting at different initial values [53]. All

posterior inference is carried out based on the rest 20,000 MCMC samples after suitably thin-

ning the post burn-in chain. We monitor the auto-correlation plots and effective sample sizes of

the iterates, and they are found to be satisfactorily uncorrelated. In all of our simulations, we

set V = 25 nodes and n = 250 samples.

We present analysis for ν = 20, a∆ = b∆ = 1. For BNLC, there are two additional

hyper-parameters ι and ζ, both of which are set to 1. Note that the choice of a∆ = b∆ = 1

ensures that the prior on models is such that we have a uniform distribution on the number

of active nodes, and conditional on the size of the model, a uniform distribution on all possible

models of that size. The choice of ν = 20 ensures that the prior distribution of M is concentrated

around a scaled identity matrix. Since model is invariant to rotations of the latent positions, so

we want the prior on uk’s to also be invariant under rotation. That requires that we center M

around a matrix that is proportional to the identity. Our choice of ι and ζ set the prior mean

of sk,l at 0.5 which is the suggested prior mean for the local parameters proposed in [109].

Sensitivity to the choice of hyper-parameters is discussed later, both for simulation studies and
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for the real data analysis.

3.5.1 Identification of Influential Nodes

Figures 3.1 and 3.2 show the posterior probability of the k-th node being detected

as influential, i.e., P(ξk = 1|Data), by BNLC and BNHC for each node and each case within

Simulations 1 and 2, respectively. Some interesting observations emerge from the results. We

find that both methods work well with lower node sparsity and higher residual edge sparsity.

Decreasing the residual edge sparsity and increasing the node sparsity have adverse effects on

the performance. In general, BNLC shows relatively better performance than BNHC in cases

with higher node sparsity and/or lower residual edge sparsity. We provide a brief discussion

below to support these observations.

For BNHC, case 2 exhibits a few false positives, and the separation of posterior prob-

abilities for truly active and truly inactive nodes is much more stark in case 1 than in case 2.

BNLC does a better job of node identification than BNHC in case 2. Residual edge effect does

have an impact on the probabilities, which is evident by comparing cases 1 and 3. For BNHC,

case 3 (Simulation 1) displays poor performance with a higher number of both false positives

and false negatives. Performance of BNLC appears to be better than BNHC in case 3. Fixing

the residual edge sparsity and increasing the node sparsity has a negative impact on node identi-

fication, as seen by comparing performances in cases 3 and 4 (Simulation 1). For Simulation 2,

both competitors perform quite well in cases 1 a nd 2. Again, case 3 (Simulation 2) represents a

higher node sparsity, so that both BNHC and BNLC do not perform well in this case. Similar to

Simulation 1, BNHC shows inferior performance to BNLC in case 3. While BNHC offers a few
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false positives and false negatives in case 4 (Simulation 2), the performance appears to be much

better than in case 3. Notice that case 3 has both higher node sparsity and residual edge sparsity

than case 4. While they have opposing effects, it appears that higher node sparsity demonstrates

more of an adverse effect here compared to a small perturbation in the residual edge sparsity.

Recall that [113] is the only other competitor which is designed to detect influential nodes. It

detects all nodes to be influential in all simulation cases.

Simulation Cases
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Figure 3.1: Simulation 1: clear background denotes uninfluential and dark background denotes
influential nodes in the truth for BNLC and BNHC models. Note that there are 25 rows (cor-
responding to 25 nodes) and 4 columns corresponding to 4 different cases in Simulation 1.
The model-detected posterior probability of being influential has been super-imposed onto the
corresponding node.
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(a) BNLC (b) BNHC

Figure 3.2: Simulation 2: clear background denotes uninfluential and dark background denotes
influential nodes in the truth for BNLC and BNHC models. Note that there are 25 rows (cor-
responding to 25 nodes) and 4 columns corresponding to 4 different cases in Simulation 2.
The model-detected posterior probability of being influential has been super-imposed onto the
corresponding node.

3.5.2 Identification of Influential Edges

We apply the algorithm with a mixture of skewed t-distributions described in Ap-

pendix C to detect influential edges from the post burn-in MCMC samples of the edge coeffi-

cients using a threshold of t = 0.05. The proposed approach controls FDR below a threshold

of 0.05 to account for multiplicity correction. Tables 3.3 and 3.4 provide the true positive rates

(TPR) and false positive rates (FPR) in detecting important edges for Simulations 1 and 2 for

the competitors, respectively. It is observed that when node sparsity is moderate and residual

edge sparsity is high (cases 1 and 2), both BNLC and BNHC offer moderate performance in

terms of identifying true positives, and include very few false positives. In these cases, BNHC
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generally exhibits a little higher FPR than BNLC. In the case of high node sparsity (e.g., case

3, Simulation 2) both these methods unfortunately show much lower true positive rates. Again,

lower edge sparsity (case 3, Simulation 1) has almost no effect on FPR of BNLC, but decreases

TPR substantially. For BNHC, both TPR and FPR increase when residual edge sparsity is re-

duced. Nevertheless, both of them perform significantly better than Lasso in almost all cases.

The competitor in [113] appears to have suboptimal performance, as it identifies all edges as

important in all the simulation scenarios, resulting in high FPRs.

BNLC BNHC Lasso Relión (2017)

Cases TPR FPR TPR FPR TPR FPR TPR FPR

Case - 1 0.65 0.01 0.72 0.12 0.50 0.22 1 1
Case - 2 0.64 0.00 0.63 0.02 0.40 0.14 1 1
Case - 3 0.45 0.00 0.86 0.40 0.42 0.22 1 1
Case - 4 0.72 0.09 0.70 0.12 0.54 0.16 1 1

Table 3.3: True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases in
Simulation 1.

BNLC BNHC Lasso Relión(2017)

Cases TPR FPR TPR FPR TPR FPR TPR FPR

Case - 1 0.63 0.00 0.84 0.08 0.44 0.20 1 1
Case - 2 0.56 0.00 0.63 0.12 0.53 0.22 1 1
Case - 3 0.46 0.02 0.59 0.08 0.31 0.16 1 1
Case - 4 0.68 0.03 0.75 0.06 0.34 0.12 1 1

Table 3.4: True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases in
Simulation 2.
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The results in Tables 3.3 and 3.4 indicate higher number of edges identified as influ-

ential by BNHC than BNLC in all simulations. Digging a bit deeper, we report the ratio of the

number of edges in the intersection of both methods to the number of total edges identified by

each method independently in Table 3.5. In all simulation cases, almost all edges identified as

influential by BNLC are also identified as influential by BNHC. In cases 2 and 4 (Simulation

1), the fractions corresponding to BNLC and BNHC are very similar, indicating similar edge

identification by both of them. However, this fraction appears to be lower in BNHC for cases

1 and 3 (Simulation 1). This again shows that the edges identified by BNLC are also identified

by BNHC, with BNHC identifying more edges. The discrepancy turns out to be more in case

3 (Simulation 1) where BNHC has identified many more edges. Simulation 2 shows a similar

trend. We further track the top 10, 20 and 30 edges identified from BNLC and record how many

of these edges belong to the top 10, 20 and 30 edges identified from BNHC. Table 3.5 shows a

high level of intersection among the top edges identified by these two methods.

A number of interesting observations emerge from the analysis. First of all, as men-

tioned earlier, the edges identified by BNLC are generally also identified by BNHC. BNHC

tends to identify more edges, leading to higher TPR and FPR. Broadly, in presence of higher

node sparsity, the discrepancy is greater, with BNHC having much higher TPR and FPR. In-

terestingly, the absolute values of the edge coefficients follow very similar rankings for BNHC

and BNLC, which leads to high intersections among the top edges selected by these methods.

Perhaps the difference in shrinkage mechanism imposed by BNHC and BNLC is responsible

for their difference in tail behavior, leading to differences in edge selection.
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Simulation 1 Simulation 2

Cases NBL,BH
NBL

NBL,BH
NBH

Top NBL,BH
NBL

NBL,BH
NBH

Top

10 20 30 10 20 30

1 0.94 0.61 9 19 27 1.00 0.58 7 17 26
2 0.85 0.83 8 14 21 1.00 0.46 8 17 26
3 1.00 0.25 9 13 24 0.97 0.70 9 18 28
4 0.91 0.87 8 18 27 0.91 0.75 8 17 27

Table 3.5: NBL,BH represents the number of edges identified by both BNLC and BNHC. Simi-
larly, NBL and NBH represent the number of edges identified by BNLC and BNHC, respectively.
Top 10 represents the number of edges common among the top ten edges identified by BNLC
and BNHC. Top 20 and Top30 are defined analogously.

3.5.3 Estimation of Edge Coefficients and Classification Accuracy

The mean squared errors (MSE) associated with the point estimation of edge coef-

ficients for different competitors are presented in Tables 3.6 and 3.7, corresponding to Sim-

ulations 1 and 2, respectively. For the Bayesian competitors, point estimates are computed

using the posterior means of the edge coefficients. In all cases, BNLC and BNHC consistently

outperform all other competitors, with the binary Bayesian Lasso exhibiting the next best per-

formance. In all simulation cases, BNLC comprehensively outperforms BNHC in terms of

estimating edge coefficients. Consistent with earlier observations, both competitors tend to be

less accurate when node sparsity increases. Figure 3.3 records AUC for all competitors in Sim-

ulations 1 and 2. In almost all cases, AUC for BNHC and BNLC turn out to be higher than

other competitors. On the other hand, [113] appears to have close to random classification of

samples with AUC around 0.5.
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Cases

A
U
C

1 2 3 4

0.
0

0.
5

1.
0

BNLC
BNHC
Binary Lasso
Relion
Binary BLasso
Binary BHS

(a) Simulation 1 (b) Simulation 2

Figure 3.3: Figure shows classification performance in the form of Area under Curve (AUC) of
ROC for all cases in Simulations 1 and 2.

MSE

Cases BNLC BNHC Lasso Relión(2017) Binary Binary
BL Horseshoe

Case - 1 0.164 0.683 1.197 1.387 0.980 1.160
Case - 2 2.349 3.568 3.943 4.368 3.502 3.993
Case - 3 0.106 0.467 0.906 1.056 0.695 0.856
Case - 4 0.166 0.200 0.485 0.617 0.329 0.415

Table 3.6: Performance of BNLC and BNHC vis-a-vis competitors for cases in Simulation 1.
Parametric inference in terms of point estimation of edge coefficients has been captured through
the Mean Squared Error (MSE). The minimum MSE among competitors for any case is made
bold.
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(a) Case 1, BNLC (b) Case 2, BNLC (c) Case 3, BNLC

(d) Case 4, BNLC (e) Case 1, BNHC (f) Case 2, BNHC

(g) Case 3, BNHC (h) Case 4, BNHC

Figure 3.4: Plots showing posterior probability distribution of effective dimensionality for
BNLC and BNHC models in all 4 cases in Simulation 1. Filled bullets indicate the true value
of effective dimensionality.
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(a) Case 1, BNLC (b) Case 2, BNLC (c) Case 3, BNLC

(d) Case 4, BNLC (e) Case 1, BNHC (f) Case 2, BNHC

(g) Case 3, BNHC (h) Case 4, BNHC

Figure 3.5: Plots showing posterior probability distribution of effective dimensionality for
BNLC and BNHC models in all 4 cases in Simulation 2. Filled bullets indicate the true value
of effective dimensionality.
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3.5.4 Estimation of Effective Dimensionality

Figures 3.4 and 3.5 present posterior probabilities of effective dimensionality of the

latent positions u1, . . . ,uV for BNLC and BNHC in Simulations 1 and 2, respectively. Note that

the true dimension of the latent space is known and recorded for all simulations in Tables 3.1

and 3.2. In all 8 cases, the posterior mode corresponds to the true dimension of the latent space

for both BNLC and BNHC. Compared to BNLC, the posterior distribution of Re f f in BNHC

concentrates more sharply around Rg in all cases.

MSE

Cases BNLC BNHC Lasso Relión(2017) Binary Binary
BL Horseshoe

Case - 1 0.279 0.418 0.807 0.939 0.712 0.739
Case - 2 0.180 0.388 0.514 0.665 0.423 0.548
Case - 3 0.134 0.549 0.906 1.097 0.748 0.883
Case - 4 0.066 0.106 0.167 0.221 0.137 0.141

Table 3.7: Performance of BNLC and BNHC vis-a-vis competitors for cases in Simulation 2.
Parametric inference in terms of point estimation of edge coefficients has been captured through
the Mean Squared Error (MSE). The minimum MSE among competitors for any case is made
bold.

3.5.5 Sensitivity to the choice of Hyperparameters

To assess how sensitive the inferences from BNLC and BNHC are, we analyze BNLC

and BNHC with different combinations of hyperparameters. Specifically for BNLC, we use the

five different combinations given by, (i) a∆ = 1,b∆ = 9; (ii) ν = 20,δ = 5 (iii) ν = 50,δ = 5
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(iv) ν = 20,δ = 0.2 (v) ν = 50,δ = 0.2. Combination (i) ensures small prior mean for ξk’s,

while combinations (ii)-(v) allow a range of prior means for θ and M. On the other hand, the

three different combinations we employ for BNHC are, (i)’ a = 1, b = 9 (ii)’ ν = 10 (iii)’

ν = 50. With these hyperparameter combinations for BNLC and BNHC, we analyze the data

simulated in case 4, Simulation 1 (case chosen randomly), report performances on influential

node and edge identification and the MSE values for estimating the network coefficient matrix.

All these inferences with different choices of hyperparameters are compared among themselves

and compared with the inferences reported earlier on case 4, Simulation 1.

Table 3.8 records the MSE values for estimating the network coefficient under all

these combinations. The MSE values for BNLC range between 0.10 and 0.30 (please see ta-

ble 3.6). MSE values for BNHC are found to range between 0.19 and 0.28 with different choices

of hyperparameters, as shown in able 3.6. Figure 3.6 shows the posterior probabilities of a node

being identified as influential under all these hyperparameter combinations. It shows probabili-

ties being only little affected by the change of hyper-parameters. In fact, under hyper-parameter

combinations (i),(ii) and (iv), BNLC identifies the same set of nodes as influential which have

been identified as influential by the original BNLC prior. Under combination (iii), BNLC does

not identify node 9 as influential which has been identified as influential by the original BNLC

prior. Under combination (iv) BNLC identifies one additional node (node 21) as influential over

the set of nodes identified by the original prior. Under hyperparameter combination (i)’, BNHC

identifies the same set of nodes with the original BNHC prior except nodes 4,9,18,25 which

are identified as influential by the original prior, but not by the combination (i)’. Combinations

(ii)’ and (iii)’ also identify the same set of nodes with the original BNHC prior except for nodes
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9,18,25. Finally, Table 3.9 offers TPR and FPR values corresponding to the identification of

influential edges for BNLC and BNHC under various combinations of hyper-parameters. The

TPR for BNHC under combination (iii)’ turns out to be a little higher than the rest, but overall

numbers do not show a lot of variation. We emphasize that the results turn out to be better than

our competitors under all combinations.

BNLC BNHC

Combinations (i) (ii) (iii) (iv) (v) (i)’ (ii)’ (iii)’

MSE 0.14 0.30 0.22 0.10 0.22 0.19 0.28 0.28

Table 3.8: Mean Squared Error (MSE) of estimating the network coefficient in BNLC and
BNHC for different combinations of hyper-parameters.

Simulation Cases

N
od
es

1 2 3 4 5

25
22

19
16

13
10

8
6

4
2

0.411
1.000
1.000
0.833
1.000
1.000
0.224
0.235
0.906
0.996
0.999
0.330
1.000
0.418
0.190
1.000
1.000
0.128
0.232
0.235
0.511
0.221
0.216
0.329
0.884

0.260
1.000
1.000
0.870
1.000
1.000
0.192
0.191
0.927
1.000
0.999
0.230
1.000
0.200
0.190
1.000
1.000
0.186
0.181
0.200
0.226
0.188
0.227
0.192
0.725

0.295
0.993
0.993
0.994
0.867
0.967
0.217
0.223
0.211
0.897
0.945
0.228
1.000
0.178
0.189
0.923
0.697
0.307
0.156
0.353
0.212
0.164
0.206
0.274
0.941

0.255
1.000
1.000
0.726
1.000
1.000
0.213
0.215
0.818
0.997
0.999
0.252
1.000
0.219
0.216
1.000
1.000
0.226
0.225
0.238
0.267
0.226
0.224
0.216
0.843

0.082
1.000
1.000
0.632
1.000
1.000
0.070
0.073
0.793
0.999
0.999
0.088
1.000
0.082
0.071
1.000
1.000
0.072
0.077
0.083
0.113
0.074
0.080
0.075
0.814

(a) BNLC Sensitivity

Combinations

N
od
es

1 2 3

25
22

19
16

13
10

8
6

4
2

0.001
1.000
1.000
0.998
0.845
1.000
0.006
0.012
0.001
1.000
1.000
0.000
1.000
0.000
0.004
1.000
0.967
0.001
0.000
0.034
0.000
0.092
0.000
0.006
0.001

0.000
1.000
0.998
0.999
0.899
1.000
0.002
0.009
0.001
0.875
1.000
0.004
1.000
0.008
0.027
0.969
0.944
0.344
0.003
0.000
0.003
0.079
0.000
0.001
0.004

0.000
1.000
1.000
0.000
1.000
1.000
0.000
0.001
0.000
1.000
1.000
0.240
1.000
0.000
0.000
1.000
1.000
0.000
0.000
0.006
0.002
0.000
0.001
0.048
0.002

(b) BNHC Sensitivity

Figure 3.6: Figure shows P(ξk = 1|Data) for BNLC and BNHC under different hyper-parameter
combinations in the simulated data for case 4 (Simulation 1).
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BNLC BNHC

Combinations (i) (ii) (iii) (iv) (v) (i)’ (ii)’ (iii)’

TPR 0.80 0.76 0.82 0.83 0.78 0.64 0.88 0.82

FPR 0.16 0.21 0.17 0.21 0.18 0.19 0.24 0.18

Table 3.9: True Positive Rates (TPR) and False Positive Rates (FPR) of identifying influential
edges in BNLC and BNHC for different combinations of hyper-parameters.

3.6 Brain Connectome Application

In this section, we present the inferential and classification ability of BNLC and

BNHC in the context of a weighted diffusion tension imaging (DTI) dataset. Our dataset con-

tains information on the full scale intelligence quotient (FSIQ) for multiple individuals. Full

scale intelligence quotient (FSIQ) is a measure of an individual’s complete cognitive capacity.

It is derived from administration of selected sub-tests from the Wechsler Intelligence Scales

(WIS), designed to provide a measure of an individual’s overall level of general cognitive and

intellectual functioning, and is a summary score derived from an individual’s performance on

a variety of tasks that measure acquired knowledge, verbal reasoning, attention to verbal ma-

terials, fluid reasoning, spatial processing, attentiveness to details, and visual-motor integration

[15]. A substantial body of literature has suggested that there is an IQ threshold (usually de-

scribed as an IQ of approximately 120 points) that may be characterized as superior reasoning

ability [10, 16]. Following this literature, we have converted the FSIQ scores into a binary re-

sponse variable y, which takes value 0 if FSIQ is less or equal to 120, and takes value 1 if FSIQ

is greater than 120. Thus, we classify the subjects in our study as belonging to the low IQ group
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if y = 0, and the high IQ group if y = 1.

Along with FSIQ measurements, brain connectome information for n = 114 subjects

is gathered using weighted diffusion tensor imaging (DTI). DTI is a brain imaging technique

that enables measurement of the restricted diffusion of water in tissue in order to produce neural

tract images. The brain imaging data we use has been pre-processed using the NDMG pre-

processing pipeline [82]; [81]; [83]. In the context of DTI, the human brain is divided according

to the Desikan atlas [32], which identifies 34 cortical regions of interest (ROIs) both in the left

and right hemispheres of the human brain, implying 68 cortical ROIs in all. Similar to Chapter

2, this results in a brain network of a 68× 68 matrix for each individual. Our scientific goals

in this setting include identification of brain regions or network nodes significantly related to

FSIQ and classification of a subject into the low IQ or high IQ group based on his/her brain

connectome information.

Identical prior distributions for all the parameters as in the simulation studies have

been used. BNLC and BNHC are both fitted with R = 4, which is found to be sufficient for

this study. Further, Chapter 2 shows robust inference as long as the chosen R is bigger than the

effective dimensionality of the latent variables. Similar to Chapter 2, we also do a sensitivity

study to check the impact of R on predictive inference. The choice of hyperparameters for

BNLC and BNHC are made similar to the simulation studies. A brief explanation for such

choices of hyper parameters is provided in the simulation section. The MCMC chain is run

for 50,000 iterations, with the first 30,000 iterations discarded as burn-in. Convergence is

assessed by comparing different simulated sequences of representative parameters started at

different initial values [52]. All inference is based on the remaining 20,000 post burn-in iterates

84



appropriately thinned.

3.6.1 Findings from the Brain Connectome Application

As in simulation studies, we put our emphasis on identifying influential brain regions

of interest (ROIs) associated with FSIQ. The BNLC model estimates posterior probabilities

over 0.5 (hence detecting as influential) for 38 ROIs, out of which 20 regions are in the left

hemisphere and 18 regions are in the right hemisphere. Among the regions detected in both

the hemispheres, a large number belong to the frontal, temporal and cingulate lobes. Using the

same principle, the BNHC model identifies 48 nodes to be influential. Out of the 48 influential

nodes, 26 are detected in the left hemisphere and the rest in the right hemisphere. The ROIs

are mainly detected in the temporal, frontal, parietal and cingulate lobes in both hemispheres.

Figure 3.8 plots the estimated posterior probability of an ROI being detected as influential by

the BNLC and BNHC models. Notably, there are 29 ROIs identified by both BNLC and BNHC,

given in Table 3.10.

A large number of the 29 influential nodes detected by both BNLC and BNHC are part

of the frontal lobes in both the hemispheres. Numerous studies have linked the frontal region

to an individual’s intelligence and cognitive functions [145, 131, 112, 99, 87]. Our method

also finds a significant association between FSIQ and the left inferior parietal lobule, the left

precuneus and the supramarginal gyri in both the hemispheres, in the parietal lobe, regions also

found to be significantly related to FSIQ by [145].

We additionally look into ROIs which are detected by only of the two methods (lets

say, BNLC), and report the posterior probabilities of these ROIs being active under the other
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method (i.e., BNHC). Figure 3.7 shows the posterior probabilities of nodes being active under

the ‘other’ method as discussed above. It is observed that the nodes selected by BNHC but not

by BNLC have probabilities not very far from 0.5 under BNLC, which says that BNLC is not

enough confident to exclude these nodes from the set of influential nodes. However, most of the

nodes selected by BNLC but not by BNHC show smaller probabilities of being influential under

BNHC. Perhaps, BNLC is more conservative in including nodes in the set of influential nodes,

which is responsible for the discrepancy between the number of identified nodes by BNHC and

BNLC.

As described earlier, we identify influential edges connecting pairs of influential

nodes using the algorithm described in Appendix C. Figure 3.9 presents the influential edges

(among all edges connecting pairs of influential nodes) identified by the BNLC and BNHC

models. Note that BNLC and BNHC identify 142 and 291 edges as being influential out of
(38

2

)
and

(48
2

)
possibilities, respectively. Since a different number of nodes are detected as influential

by BNHC and BNLC, to make a fair comparison, we consider the 29 nodes detected as influen-

tial by both methods, and use our algorithm to find the number of influential edges among these(29
2

)
possibilities for both BNLC and BNHC. The numbers turn out to be 96 and 184, respec-

tively. We note that there are a few nodes which are identified as influential by either BNHC or

BNLC, but none of the edges connecting these nodes are found to be influential. As an example,

although the frontal pole and the temporal pole in the left hemisphere are identified as influen-

tial nodes by BNLC, none of the edges connecting these two nodes turn out to be influential.

This phenomenon may be due to the use of the FDR in the edge selection procedure, which

finds edges that are most likely to be active while controlling for false discoveries. Hence, not
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Figure 3.7: Figure shows the posterior probabilities of nodes selected as influential by one
method, but not by another, of being active.

identifying an edge does not necessarily mean that the edge is not active, it just means that there

are others that satisfy the criteria better.

Similar to simulation studies, we dig deeper to analyze the discrepancy in the num-

ber of influential edges identified by BNLC and BNHC. Specifically, we rank the
(29

2

)
= 406

edges connecting the nodes found to be influential by both BNLC and BNHC, according to the

absolute values of their posterior means. Table 3.11 shows between 23-74% intersections.
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Hemisphere Lobe Node

Left

Temporal fusiform, middle temporal gyrus, parahippocampal, temporal pole, transverse temporal

Cingulate isthmus cingulate cortex

Frontal pars opercularis, pars orbitalis, pars triangularis, frontal pole

Occipital lingual

Parietal inferior parietal lobule, precuneus, supramarginal gyrus

Insula insula

Right

Temporal parahippocampal, superior temporal gyrus, temporal pole

Cingulate caudal anterior cingulate, isthmus cingulate cortex

Frontal lateral orbitofrontal, medial orbitofrontal, pars opercularis, pars orbitalis,

rostral middle frontal gyrus, superior frontal gyrus

Occipital pericalcarine

Parietal supramarginal gyrus

Insula insula

Table 3.10: Nodes identified as influential by both BNLC and BNHC.

To examine the predictive ability of the Bayesian network classification model, we

report the area under curve (AUC) of the ROC curve for BNLC and BNHC, along with all

competing methods. The AUCs are computed using a 10-fold cross validation approach. The

AUC estimates presented in Table 3.12 indicate better performance of both BNLC and BNHC,

with BNLC slightly outperforming. Frequentist Binary Lasso turns out to be the next best

performer, while BLasso and BHS perform very similar to a random classifier. Finally, the

effective dimensionality of the model is investigated for both BNLC and BNHC, and they turn

out to be 2.17 and 2, respectively.
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(a) BNLC

(b) BNHC

Figure 3.8: Lateral and medial views of the brain (left and right hemispheres) showing all 68
regions of interest (ROIs). The size and color of the ROIs vary according to the value of the
posterior probabilities of them being actively related to the binary response for both BNLC and
BNHC models.
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Top 100 Top 200 Top 300

23 99 222

Table 3.11: Top 100 represents the number of edges common among the top 100 edges identified
by BNLC and BNHC. Top 200 and Top 300 are defined analogously.

Method BNLC BNHC Lasso Relión(2017) Binary Binary
BL BHS

AUC 0.617 0.598 0.532 0.466 0.461 0.484

Table 3.12: Predictive performance of Bayesian Network Classification (BNC) vis-a-vis com-
petitors in terms of Area Under Curve (AUC) of the ROC. AUC has been calculated in each
case using 10-fold cross validation.

3.6.2 Sensitivity to the choice of hyperparameters

We have already discussed how the hyperparameters are chosen for the simulation

studies and data analysis. To assess how sensitive the inferences from BNLC and BNHC are,

we analyze BNLC and BNHC with different combinations of hyperparameters. Specifically for

BNLC, we use the five different combinations (i)-(v) given in Section 3.5.5, and three different

combinations (i)’-(iii)’ for BNHC also mentioned in Section 3.5.5. We report performances

on the number of influential nodes identified. We also find the number of influential edges

connecting influential nodes.

Table 3.13 records the number of nodes identified as influential and the number of

intersections of influential nodes between different combinations and the original analysis. Re-

call that the original analysis of BNLC identifies 38 influential nodes. Since this is a high
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BNLC BNHC

Combinations (i) (ii) (iii) (iv) (v) (i)’ (ii)’ (iii)’

# Nodes detected 35 39 34 40 37 45 49 44

# Intersections with original analysis 34 36 34 37 37 42 45 43

Table 3.13: Number of nodes identified as influential for all combinations are presented. The
table also presents the number of intersections of influential nodes between different combina-
tions and the original analysis.

BNLC BNHC

Combinations (i) (ii) (iii) (iv) (v) (i)’ (ii)’ (iii)’

# Edges detected 122 113 125 118 107 272 265 262

# Intersections with original analysis 117 112 119 111 101 263 264 257

Table 3.14: Number of edges identified as influential for all combinations are presented. The
table also presents the number of intersections of influential nodes between different combina-
tions and the original analysis.

dimensional regression paradigm with number of parameters far exceeding the sample size, one

expects the prior hyper-parameters to have some effect on the inference. Indeed, there is some

variation in the number of identified nodes, though they largely agree with each other under

different hyperparameter settings. In fact, we find a large number of intersections among the

identified nodes in the original analysis with the nodes identified under different hyperparam-

eter combinations. A similar story emerges from BNHC. We also find 31 nodes identified by

all hyperparameter combinations in BNLC. Similarly, 40 nodes are identified by all hyperpa-

rameter combinations of BNHC. We calculate the number of influential edges among these
(31

2

)
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edges and
(40

2

)
edges in BNLC and BNHC respectively, for all hyperparameter combinations.

Table 3.14 presents the number of edges detected as influential, as well as the number of inter-

secting edges with the original analysis. Again, due to the high dimensionality of the problem,

the variation in the number of identified edges with different choices of hyperparameters is

expected, though the variation turns out not to be very significant.

Finally, to check sensitivity to the choice of R on the performance of BNLC and

BNHC, we run the data analysis for BNHC and BNLC with R = 8 and R = 10, and report

the posterior mean of the effective dimensionality, along with AUC. Table 3.15 reports the

posterior mean of effective dimensionality, which shows very moderate increase with increasing

R. However, increasing R seems to have almost no effect on AUC.

BNLC BNHC

R = 4 R = 8 R = 10 R = 4 R = 8 R = 10

Posterior mean Eff. Dim. 2.17 2.78 2.96 2.00 2.74 3.04

AUC 0.61 0.63 0.59 0.59 0.60 0.59

Table 3.15: AUC and posterior mean of effective dimensionality for BNLC and BNHC under
different choices of R.

3.7 Summary

We develop a binary Bayesian network regression model that enables classifying mul-

tiple networks with “labeled nodes” into two groups, identifies influential network nodes and

predicts the class in which a newly observed network belongs. Our contribution lies in carefully
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constructing a class of network global-local shrinkage priors on the network predictor coeffi-

cient while recognizing the latent network structure in the predictor variable. In particular, we

investigate two specific network shrinkage priors from this general class, leading to two network

classifiers BNLC and BNHC. Our extensive simulation study shows competitive performance

between BNLC and BNHC in terms of inference and classification with no clear winner, and

both of them are found to outperform other competitors. Another major contribution of the pro-

posed framework remains theoretically understanding the Bayesian network classifier model

with the Network Lasso shrinkage prior. Specifically, we develop theory guaranteeing accurate

classification as the sample size tends to infinity. The theoretical developments allow the num-

ber of possible interconnections in the network predictor to grow at a faster rate than the sample

size. We analyze a brain connectome dataset with brain connectivity networks between differ-

ent regions of interest for multiple individuals, and information on whether an individual is in

a low or a high IQ category. BNC shows satisfactory out of sample classification and identifies

important brain regions actively influencing the FSIQ of an individual.
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Figure 3.9: Plot showing whether an edge connecting two influential nodes is influential or not.
Note that the map is a M×M symmetric matrix, where M denotes the number of influential
nodes, and each cell denotes an edge connecting the corresponding pair of nodes. The axis
labels are the abbreviated names of the influential ROIs in the left (starting with ‘lh -’) and the
right (starting with ‘rh -’) hemispheres of the brain. Full names of the ROIs can be obtained
from the widely available Desikan brain atlas. A white cell represents an influential edge, while
red cell represents a non-influential edge. 94



Chapter 4

High Dimensional Bayesian Network

Mixture Regression

4.1 Introduction

Chapters 2 and 3 introduce a Bayesian framework for regression with a continuous

or binary scalar response and a network predictor, and the models proposed therein directly

characterize the effect of influential network nodes and edges in explaining the response yi.

However, these models tacitly assume an identical relationship between the scalar response and

the network predictor for each subject, and that the same set of nodes and edges influence the

regression function in a similar manner for every individual. While this assumption may hold

true for some applications, it may appear to be restrictive in explaining the relationship between

yi and Ai for a variety of neuro-scientific data.

The literature provides evidence of differences in the relationship between brain con-
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nectivity networks with phenotypic traits for different groups of individuals [26]. However,

flexible statistical methods for analyzing such differences have lagged behind the increasingly

routine collection of such data in neuroscience. Rather than addressing the general problem of

developing a flexible relationship between a response yi and the corresponding network predic-

tor Ai, for i = 1, ...,n, that accounts for changes in different groups of individuals, the literature

has largely focused on a more specific problem where response yi is categorized into a binary

response with two groups. The literature then proceeds to identify differences between these

groups and fit different models relating yi and Ai in different groups [37].

While this literature is effective in identifying differences between brain networks in

two groups of individuals, it does not address a number of inferential questions of our concern.

First, these methods pre-identify the two groups having potentially different relationships be-

tween the response and the network predictor before doing the analysis. Second, none of these

methods focus on identifying different sets of network nodes influencing the response for differ-

ent groups of individuals. This chapter will develop a flexible, nonparametric mixture modeling

framework for a continuous response yi and a network predictor Ai. The proposed framework

will allow model based clustering of subjects into groups having similar relationships between

yi and Ai. In each group, the same set of network nodes will significantly influence the response.

To begin, we present a dataset in the next section that motivates our framework.

4.1.1 OCEAN Brain Connectome Dataset

The dataset that we use consists of information on the Big Five personality traits,

namely Openness, Conscientiousness, Extraversion, Agreeableness and Neuroticism, for every
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subject. The big five personality traits, also known as the OCEAN model, is a taxonomy for per-

sonality traits. Beneath each of the included global factors, lie a number of correlated and more

specific primary factors. For example, extraversion is said to include such related qualities as

gregariousness, assertiveness, excitement seeking, warmth, activity, and positive emotions. The

relationships of these personality traits with major life indicators such as subjective well-being

[123], career success [79], relationship attachments and outcomes [122] have been examined

and recognized by neuroscientists. A personality trait for each subject has been assigned a nu-

merical score between 0 and 100, 0 indicating mild level and 100 signifying severe level for

a specific personality trait. The five personality traits are correlated, and we focus on the first

principal component as our continuous response yi for the ith individual, which captures 45%

of the variability of these traits. The first principle component of the five traits in OCEAN data

has been constructed and used in other studies, see [28]. In the first principle component, agree-

ableness contributes overwhelmingly, while extraversion, openness and conscientiousness have

similar weights. The weights corresponding to neuroticism is close to zero.

Along with personality traits, we observe data on the brain connectome matrix for

each individual. In this case, the brain connectome matrix for each individual is of dimension

12× 12, with the (k, l)th entry signifying the total number of neuron connections between the

kth and the lth brain lobes. The dataset contains information on yi and Ai for n= 113 individuals.

To begin with, we fit a frequentist Lasso regression of yi on vectorized Ai and analyze

the residuals. The density plot of the residuals in Figure 4.1 shows signs of multi-modality

in the distribution of the residuals, perhaps due to the difference in relationships between yi

and Ai for different groups of subjects. The BNSP model introduced in Chapter 2 is unsuitable
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Figure 4.1: Error density and QQ-plot of residuals after fitting Lasso on 113 subjects of OCEAN
dataset.

for this data since it is based on the assumption that yi and Ai share the same relationship for

all i = 1, ..,n. We have demonstrated this in sections 4.4.3 and 4.5.2. Additionally, the QQ

plot of the standardized residuals in Figure 4.1 reveals non-normal behavior of the residuals,

so that the normality of the error distribution of the BNSP model is not justified for this data.

We propose to employ a Bayesian mixture model in this chapter. Bayesian mixture models are

able to cluster subjects into different groups having different regression relationships between

personality traits and brain connectomes. Thus, our model would offer inference on influential

nodes and edges in different clusters, allowing for the scientific understanding of the relation-

ship between personality traits and the brain connectome with characterization of uncertainty in

different groups/clusters of subjects. As a byproduct, the proposed mixture model relaxes the

normality assumption on the errors, deemed appropriate for the dataset of interest.
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4.2 Model and Prior Specification

To develop a sufficiently flexible relationship between yi and Ai, we propose to use a

mixture model to characterize the distribution of yi |Ai flexibly. The conditional distribution of

yi |Ai,τ
2, denoted by f (yi|Ai,τ

2) is defined as

f (yi|Ai,τ
2) =

∫
N(yi|µ+ 〈Ai,B〉,τ2)dG(B,µ), (4.1)

which can be seen as a mixture of the network regression model proposed in Chapter 2 with the

mixing distribution given by G(·). G is a random probability measure given by

G =
H

∑
d=1

ωdδ(B∗d ,µ
∗
d)
, (B∗d ,µ

∗
d)∼ G0, (4.2)

where G0 is the base measure and δ(B∗d ,µ
∗
d)

corresponds to the Dirac-delta function at (B∗d ,µ
∗
d).

Equation (4.2) contains a broad class of species sampling priors, including the Dirichlet process

prior through the popular stick breaking construction [119]. In this work, we jointly model

cluster inclusion probabilities with the following stick breaking construction

ω1 = v∗1, ω2 = v∗2(1− v∗1), ..,ωH−1 = v∗H−1

H−2

∏
l=1

(1− v∗l ), ωH =
H−1

∏
l=1

(1− v∗l ),

v∗l ∼ Beta(1−α1,α2 + lα1), l = 1, ..,H−1; α1 ∈ [0,1], α2 > (−α1), (4.3)

where H is an upper bound on the number of clusters. As H → ∞, this choice leads to the

classical Pitman-Yor process [75]. Choosing α1 = 0 in the representation leads to the classical

Dirichlet process prior. A useful method for selecting H is to choose a value that yields a

marginal density for y = (y1, ...,yn)
′ close to its limit as H → ∞. Of course the adequacy of

this truncation will also depend upon α1,α2, but even if they are unknown parameters, we can
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still monitor the marginal density by looking at the value for α1,α2 in our MCMC iterations

(see [75] for more details). For implementation of our approach, we start our analysis with a

bigger value of H, so that a lot of clusters are unoccupied. Parameters α1 and α2 are assigned

Beta(aα1 ,bα1) and Gamma(aα2 ,bα2) prior distributions, respectively.

Using (4.1) and (4.2), the conditional distribution of yi can be written as

f (yi|Ai,τ
2) =

H

∑
d=1

ωdN(yi|µ∗d + 〈Ai,B∗d〉,τ2). (4.4)

The model presented in (4.4) acknowledges more flexible distribution in modeling yi|Ai,τ
2. In-

troducing a cluster index zi ∈ {1, ..,H} corresponding to the individual i, we obtain yi|Ai,zi,τ
2∼

N(yi|µ∗zi
+ 〈Ai,B∗zi

〉,τ2), with P(zi = d) = ωd , for d = 1, ...,H. This conditional independence

structure, given the cluster indices of the individuals, facilitates computation, while still allow-

ing a flexible dependence structure between the different components marginally.

To develop prior distributions on µ∗d ,B
∗
d and τ2, we adopt the network shrinkage prior

framework developed in Chapter 2. More precisely, let u1,d , ...,uV,d ∈ RR be a collection of R-

dimensional d-th mixture specific latent variables, one for each node, such that uk,d corresponds

to node k in the d-th mixture component. Let the vectorized upper triangular part of B∗d be

given by γd . Each γk,l,d is assumed to be conditionally independent with a density that can be

represented as a location and scale mixture of normals as described in Chapter 2,

γk,l,d |sk,l,d ,uk,d ,ul,d ,τ
2 ∼ N(u′k,dΛdul,d ,τ

2sk,l,d), sk,l,d ∼ Exp(θ2
d), θ

2
d ∼ Gamma(ζ, ι), (4.5)

where sk,l,d is the scale parameter corresponding to each γk,l,d and Λd = diag(λ1,d , ...,λR,d) is an

R×R diagonal matrix. In the same spirit as Chapters 2 and 3, we assign a spike and slab prior
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distribution [76] on the latent factor uk,d as below

uk,d ∼


N(0,Qd), if ξk,d = 1

δ0, if ξk,d = 0
, ξk,d ∼ Ber(∆d), Qd ∼ IW (ν, I), ∆d ∼ Beta(a,b). (4.6)

Here Qd is a covariance matrix of order R×R. The parameter ∆d corresponds to the probabil-

ity of the nonzero mixture component. Importantly, ξk,d = 0 implies that uk,d has no influence

in predicting the response. The location parameter µd is assigned a standard normal distri-

bution. We assign a hierarchical prior λr,d ∼ Ber(πr,d), πr,d ∼ Beta(1,rη), η > 1, and τ2 is

assigned a flat prior. With the construction specified as above, the form of the base measure G0

can be expressed as G0(B∗d ,µ
∗
d |τ2) = G0,1(B∗d |τ2)G0,2(µ∗d |τ2), where G0,2(µ∗d |τ2) = N(0,1), and

G0,1(B∗d |τ2) is expressed as follows:

G0,1(B∗d |τ2) =
∫ {

∏
k<l

N(u′k,dΛdul,d ,τ
2sk,l,d)p(sk,l)

}
V

∏
k=1

p(uk,d)
R

∏
r=1

p(λr,d)
R

∏
r=1

dλr,d

V

∏
k=1

duk ∏
k<l

dsk,l.

The model and prior specification allows clustering of individuals into a number of

classes less or equal to H. In each class, the response and network predictor is represented

by separate network regression structures. Recall that in Chapters 2 and 3, all subjects share

the same set of network nodes and edges actively related to the response. In the framework

introduced here, subjects belonging to different clusters may have different sets of nodes and

edges significantly related to the response. In the context of the brain connectome application in

Section 4.5, it boils down to assuming that the relationship between the response and network

predictors may vary from group to group [26].
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4.3 Posterior Computations

The full posterior of parameters is intractable, hence posterior inference is carried out

using MCMC. Similar to earlier chapters, all parameters except α1 and α2 have full conditional

posterior distributions lying in standard families of distributions, as described in Appendix G.

Hence Gibbs sampling with Metropolis can be readily implemented. All simulations and real

data analysis results are presented with a = 1,b = 1,ζ = 2, ι = 2 and ν = 20. Detailed justifica-

tion for this specific choices of a, b and ν have already been provided in Chapter 3, Section 3.5.

The hyperparameters ζ and ι imply a prior mean for the scale parameters sk,l,d’s that is not too

small or too large. Detailed sensitivity analyses with choices of a, b, ζ, ι, ν for both simulation

studies and real data are presented subsequently. Finally, the hyperparameters aα1 , bα1 , aα2 and

bα2 are chosen so that the number of clusters a priori becomes close to the eyeball estimate of

the number of clusters from the plot of the response variable. We will offer more discussion on

the prior number of components implied by our choice of hyperparameters in each simulation

case and in the real data examples.

To assess inference of the proposed mixture model, we find the point estimate of

clustering denoted by ẑ (not reported), heat maps of the posterior probability of two samples be-

longing to the same cluster, P(zi = z j|y) (which provide a measure of the uncertainty associated

with the clustering), and a histogram of the posterior distribution of the number of identified

clusters. The point estimate ẑ is obtained by minimizing (using iterative componentwise opti-
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mization) the expected loss function discussed in [90],

F(ẑ) =
n

∑
i=1

n

∑
j=i+1

1(ẑi = ẑ j)

[
w2

w1 +w2
−P(zi = z j|y)

]
. (4.7)

The ratio w1/w2 controls the relative loss of incorrectly clustering or separating a pair of sam-

ples. In our illustrations we set w1 = w2 = 1.

The posterior inference is based on 5000 suitably thinned samples from the MCMC

sampler after a burn in of 20000 samples. The results are robust to small to moderate changes in

the prior specification, and the convergence of parameters has been checked using convergence

diagnostics available in the coda package in R.

4.4 Simulation Studies

This section considers synthetic datasets to assess the performance of our model,

referred to as the Nonparametric Bayesian network regression (NBNR) model, along with a

competitor.

4.4.1 Simulation Settings

To study all competitors under various data generation schemes, we simulate the re-

sponse yi depending on the network predictor Ai from the finite mixture model given by

yi|Ai ∼
H0

∑
d=1

ωd,0N(µd,0 + 〈Ai,Bd,0〉F ,τ2
0), (4.8)

where Bd,0, d = 1, ...,H0 are mixture specific symmetric network coefficient matrices, each

having zero diagonal entries. The network predictor matrices Ai = ((ai,l,l′))
V
l,l′=1 are simulated

by drawing the edges ai,l,l′ i.i.d from N(0,1), for l < l′, ai,l,l′ = ai,l′,l and ai,l,l = 0.
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To simulate the network coefficients, we draw V latent variables ud,k,0, each of di-

mension Rg, from a mixture distribution given by

ud,k,0 ∼ π0NRg(ud,m,g,u2
d,s,g)+(1−π0)δ0; k ∈ {1, ...,V}, (4.9)

where δ0 is the Dirac-delta function and π0 is the probability of any ud,k,0 being nonzero in the

truth, d = 1, ...,H0 (fixed at 0.5 for all simulations). We then consider six different cases as

following:

Cases 1-5: In Cases 1-5, the (l, l′)th element of the network predictor coefficient Bd,0 corre-

sponding to the d-th mixture component is constructed using a low-rank approach bd,0,l,l′ =

u′d,l,0ud,l′,0/2, accounting for the interaction between nodes l and l′, for all d = 1, ...,H0. The 5

different cases are obtained by varying the number of true mixture components (H0), the number

of mixture components in the fitted model (H) and sample size (n) , as summarized in Table 4.1.

Case 6: In Case 6, we consider H0 = 3, ω1,0 = ω2,0 = ω3,0 = 1/3, and B1,0, B2,0 and B3,0 are

simulated in different ways as following:

Simulating B1,0: The (l, l′)th element of the network predictor coefficient B1,0 is constructed

using a low-rank approach b1,0,l,l′ = u′1,l,0u1,l′,0/2.

Simulating B2,0: B2,0 is simulated as a block diagonal matrix with three 5× 5 symmetric di-

agonal blocks, each having 0 diagonal entries. The upper triangular entries of the three block

matrices are simulated from N(1,1), N(2,2) and N(3,3) distributions, respectively.

Simulating B3,0: If both u3,l,0,u3,l′,0 6= 0, b3,0,l,l′ is simulated from N(0,1), otherwise b3,0,l,l′ is

set to 0. Model is fitted with H = 15 clusters for the data generated in Case 6. All cases fixes

the number of network nodes at V = 15, as summarized in Table 4.1.
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The intercept µd,0, d = 1, ...,H0 in each mixture component is drawn from N(0.5,0.2),

while τ2
0 is fixed at 0.1.

Cases H0 H V n

Case - 1 2 15 15 400
Case - 2 2 15 15 200
Case - 3 3 15 15 400
Case - 4 4 20 15 500
Case - 5 1 20 15 200
Case - 6 3 15 15 450

Table 4.1: Table presents different cases in the simulation study. The parameters H0, H refer
to the true and fitted number of mixture components in the nonparametric Bayesian network
regression model. Different cases also present various combinations of the number of network
nodes V and sample size n.

Note that Cases 1-5 represent the true model being included in the class of fitted

models. On the other hand, Case 6 shows departure of the true model from the class of fitted

models. For each of the six cases, each component of the mean vector ud,m,g is randomly

generated to lie between (−2,2) and the standard deviation ud,s,g is generated between 0.3 and

2.

4.4.2 Competitors and Metrics of Evaluation

As a competitor of our model, we employ the Bayesian network shrinkage prior

(BNSP) regression model proposed in Chapter 2. BNSP assumes (a) the same set of influ-

ential nodes and edges affect a neurological response for every individual, and, (b) normality of

the error distribution. Hence, comparison with BNSP will help assess the inferential advantage
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of our proposed model over BNSP when the data supports different relationships between re-

sponse and network predictor for different groups of individuals and non-normality of the error

distribution.

The competitors are assessed based on their ability to estimate the true regression

function E0[yi|Ai] = ∑
H0
d=1 ωd,0(µd,0 + 〈Ai,Bd,0〉). In particular, we compute mean squared error

(MSE) of estimating the true regression function over all data points given by 1
n ∑

n
i=1(E0[yi|Ai]−

Ê[yi|Ai])
2, where Ê[yi|Ai] denotes the posterior mean of the regression function from a compet-

ing method. While MSE offers an evaluation of point estimation by both competitors, the

uncertainty in estimating the true regression function is measured using the coverage and length

of 95% credible intervals obtained from the competing methods.

We also compare between BNSP and NBNR in terms of a popular model fitting statis-

tic, referred to as the posterior predictive loss criterion (PPLC) [51]. PPLC is described as the

sum of two quantities G and P, where G represents the quality of model fitting and P represents

the complexity of the model. The resulting quantity D = G+P strikes a balance between model

fit and model complexity.

In addition to reporting the posterior distribution of the number of clusters and the

uncertainty associated with clustering through P(zi = z j|y) in the simulation studies, we also

evaluate the ability of the models to identify clusters using the Adjusted Rand Index (ARI) [73]

of the posterior cluster configurations with respect to the known cluster configuration. The ARI

evaluates the agreement in cluster assignment between two cluster configurations. For any two

partitions C1 and C2 of {1, ...,n}, the Rand index calculates the ratio of agreement between C1

and C2 of {1, ...,n}. Three quantities denoted as c1,c2 and c3 are calculated: c1 represents the
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number of pairs of objects that are placed in the same cluster in C1 and the same cluster in C2,

c2 are the pairs that are in different clusters in both partitions, and c3 is the total number of pairs

equaling
(n

2

)
. The Rand index (RI) is RI= c1+c2

c3
. The adjusted Rand index (ARI) is corrected for

chance. It ranges between −1 and 1, with larger values indicating agreement between cluster

configurations.

4.4.3 Simulation results

We note that our choice of hyperparameters aα1 , bα1 , aα2 and bα2 ensures mean num-

ber of clusters to be approximately 3.97, 3.62, 3.97, 4.17, 3.62 and 3.02 respectively for the 6

simulation cases a priori. Figures 4.4, 4.2 and 4.3 provide insight into the estimates of the

cluster structure and associated uncertainty by displaying discrepancy between true and esti-

mated number of clusters and heat maps of posterior probabilities of pairs of subjects belonging

to the same cluster. To facilitate visualization, regions are ordered according to the true cluster

configuration in the heatmap. In cases 1-3, the model recovers the true cluster structure, with

little uncertainty associated with the estimator. In case 4, it appears that clusters 2 and 3 are

not well identifiable, and hence the estimation as well as the uncertainty characterization suffer.

Specifically, the two middle clusters (clusters 2 and 3) show much higher uncertainties. In case

5, the model identifies the true single cluster quite well. The most challenging case among all

is case 6, which corresponds to model mis-specification. With model mis-specification, estima-

tion of clusters becomes more challenging, with the posterior distribution of ARI concentrating

below the other cases. Further, in case 6, there appears to be higher uncertainty with elements

in the third cluster, where the model is a bit uncertain about whether to include some samples
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in the 2nd or the 3rd cluster.

The posterior distributions of the number of identified clusters are also presented in

the form of barplots in Figure 4.5. Consistent with the story presented so far, the posterior

distribution of the number of clusters appears to concentrate around the true number of clusters

H0 in cases 1-5. Cases 1, 2, 3 and 5 show clear modes at the true number of clusters. The

posterior distribution of the number of clusters in Case 4 also finds mode at the truth H0 = 4,

though posterior probability of the number of clusters equalling 5 turns out to be high. The most

difficult case is case 6, with model mis-specification, where the model mildly overestimates the

posterior probability of the number of clusters. Note that out of H assigned clusters, most are

not populated in each case. Hence the choice of H is sufficient in each case.

Table 4.2 presents mean squared errors (MSE) for the estimates of the regression

mean function under each of the competitors. Further, coverage and average length of 95%

credible intervals are provided to assess how well calibrated the estimates are. A few interesting

observations emerge from Table 4.2. Comparing cases 1 and 2, it turns out that NBNR offers

smaller MSE and narrower credible intervals when the sample size is smaller. Also, comparing

cases 3 and 4, it appears that increasing the true number of mixture components H0 results in a

considerable increase in MSE and the length of 95% credible interval. Except for case 5, NBNR

demonstrates coverage more than nominal in every other case.

Given that the data have been generated from a mixture of network regression distri-

butions except for case 5, BNSP is expected to perform inferior to NBNR. Indeed, Table 4.2

shows substantially inferior MSE and much wider credible intervals offered by BNSP compared

to NBNR in all other cases, except case 5. In case 5, when data has been generated from the
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 4.2: Plots showing uncertainty in estimating the clusters in the simulation cases 1-4.
Boldfaced horizontal and vertical lines indicate the true clustering.
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(a) Case 5 (b) Case 6

Figure 4.3: Plots showing uncertainty in estimating the clusters in the simulation cases 5-6.
Boldfaced horizontal and vertical lines indicate the true clustering.

BNSP model (i.e., NBNR model with H0 = 1), BNSP is found to provide mildly better MSE

than NBNR. While the coverage of both competitors are close to nominal in case 5, BNSP

displays shorter credible interval than NBNR.

Similar to the MSE values, the G values representing fit of the two models (Table 4.3)

show superior performance of NBNR when the data are simulated from a mixture model with

more than one mixture component. In case 5, with the true data generating model being the

BNSP model, BNSP demonstrates better performance than NBNR. The P values increase when

the number of true mixture components grow. We also find a sharp increase in the P value for

case 4 which represents both higher H0 and H. Overall, the model fitting statistics reveal ad-

vantages of fitting NBNR over BNSP in presence of data generated from a mixture distribution.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Figure 4.4: Posterior distribution of ARI in the 6 simulation cases.
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(a) Case 1, H0 = 2 (b) Case 2, H0 = 2 (c) Case 3, H0 = 3

(d) Case 4, H0 = 4 (e) Case 5, H0 = 1 (f) Case 6, H0 = 3

Figure 4.5: Bar plots showing the posterior distribution of the number of chosen clusters by the
model in the 6 simulation cases. The true number of clusters H0 is also mentioned in each case.
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Mean Squared Error (MSE)

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NBNR 0.02 0.07 0.65 2.62 0.36 0.07
BNSP 18.74 10.97 48.38 37.96 0.34 16.77

Coverage of 95% Credible Interval (CI)

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NBNR 0.99 0.99 0.99 0.98 0.95 0.98
BNSP 0.94 0.93 0.94 0.94 0.93 0.93

Average Length of 95% Credible Interval (CI)

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NBNR 1.70 2.05 2.87 7.98 2.68 1.83
BNSP 16.97 12.19 25.52 23.44 2.03 15.02

Table 4.2: Mean squared error (MSE), coverage and length of 95% credible intervals in esti-
mating the regression function for NBNR and BNSP are provided for all the cases.
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G

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NBNR 18.88 3.93 14.72 55.64 10.85 10.42
BNSP 29047.54 3498.95 69409.94 92226.81 9.49 30595.55

P

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NBNR 51.22 35.63 257.09 1343.33 21.01 98.67
BNSP 40099.77 6441.24 92223.09 115729.9 18.72 39420.5

D

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NBNR 70.11 39.53 271.81 1398.95 31.87 109.09
BNSP 69147.30 9940.19 161633.03 207956.7 28.22 70016.05

Table 4.3: G, P, D values for BNSP and NBNR for all six cases.
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4.4.4 Sensitivity to the choice of hyperparameters in simulations

To check sensitivity of inference to the choice of hyper-parameters, we consider a

representative case (case 3) and re-analyze the same simulated data with different combinations

of hyper-parameters. In particular, we consider five different hyper-parameter settings for case

3 and compare the inference with the results on case 3 presented earlier. The five combinations

are given by, (i) a = 1,b = 9,ν = 20, ζ

ι
= 1; (ii) a = 1,b = 1,ν = 20, ζ

ι
= 0.2; (iii) a = 1,b =

1,ν = 20, ζ

ι
= 5; (iv) a = 1,b = 1,ν = 50, ζ

ι
= 0.2; (v) a = 1,b = 1,ν = 50, ζ

ι
= 5. Notice that

(i) presents a priori mean of 0.1 for each ∆d . Again, (ii), (iv) represent low prior means for θd ,

while (iii) and (v) represent higher prior means for θd . The various combinations also present

variations of the hyperparameter ν in the Inverse-Wishart distribution of Qd .

Figure 4.6 shows the uncertainty quantification associated with clustering for the five

different settings and compares them with Figure 4.6(f) (the original setting). Of all the param-

eters, only variations in a and b seem to have an effect in the inferences, but this effect is found

to be very small. The posterior distributions of the number of clusters presented in Figure 4.7

for different settings also show mildly sensitive results with changes in hyper-parameters a and

b, though the distribution is generally much less affected by changes in other hyper-parameters.

The posterior mean of the number of clusters in five combinations are presented in Table 4.2.

The posterior mean of the number of clusters in the original case 3 is 3.52 and the corresponding

results from combinations (ii)-(v) are very close. Only combination (i) shows an overestimation

in the posterior mean number of clusters. A similar trend appears in the posterior distribution

of ARI, as presented in Figure 4.8. The MSE, coverage and length of 95% credible intervals
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a = 1,b = 9 ζ

ι
= 0.2, ν = 20 ζ

ι
= 5, ν = 20 ζ

ι
= 0.2, ν = 50 ζ

ι
= 5, ν = 50

MSE 0.70 0.55 0.50 0.66 0.82
Coverage 0.99 0.99 0.99 0.99 0.98
Length 3.29 2.90 2.98 2.90 2.92
M.C. 4.2 3.75 3.42 3.44 3.43

Table 4.4: Mean squared error (MSE), coverage and length of 95% credible intervals in es-
timating the regression function for NBNR under different hyper-parameter settings. The last
row of the table shows the posterior mean of the number of clusters (M.C. or mean number of
clusters) in the five different hyperparameter combinations.

for different hyper-parameter combinations are also presented in Table 4.4 and are compared

with corresponding results from case 3 in Table 4.2. The results appear to be of the same order

in different hyper-parameter settings with NBNR maintaining significant advantage in terms of

point estimation and uncertainty over BNSP under all these hyper-parameter settings.

In addition to investigating sensitivity of inference with the choice of hyperparame-

ters, we also check sensitivity with the choice of prior distribution on ω1,...,ωH . As discussed

earlier, the Pitman-Yor process is derived using a stick breaking construction of ω1,...,ωH . We

also draw inference in case 3 using an alternative construction of the prior on (ω1, ...,ωH) that

specifies (ω1, ...,ωH) ∼ Dir(α̃/H, ..., α̃/H), where α̃ > 0 and α̃ follows a Gamma distribution

with parameters implying a prior mean of the number of clusters ≈ 3.32. The plots for prior

distribution of the number of clusters for the Pitman-Yor prior in case 3 and this truncated DP

prior are shown in Figure 4.9. As H → ∞, this prior converges to the Dirichlet process prior.

The ARI, posterior distribution of the number of clusters and uncertainty in clustering are pre-

sented in Figure 4.10. The sensitivity of the results to this different prior choice on ω1, ...,ωH
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(a) a = 1,b = 9 (b) ζ/ι = 0.2, ν = 20

(c) ζ/ι = 5, ν = 20 (d) ζ/ι = 0.2, ν = 50

(e) ζ/ι = 5, ν = 50 (f) ζ/ι = 1, ν = 20, a = 1,b = 1

Figure 4.6: Plots showing uncertainty in estimating the clusters under various hyper-parameter
settings in Case 3.
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(a) a = 1,b = 9 (b) ζ/ι = 0.2, ν = 20 (c) ζ/ι = 5, ν = 20

(d) ζ/ι = 0.2, ν = 50 (e) ζ/ι = 5, ν = 50 (f) ζ/ι = 1, ν = 20, a = 1,b = 1

Figure 4.7: Bar plots showing the posterior distribution of the number of chosen clusters by the
model under various hyper-parameter settings in Case 3.
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(a) a = 1,b = 9 (b) ζ/ι = 0.2, ν = 20

(c) ζ/ι = 5, ν = 20 (d) ζ/ι = 0.2, ν = 50

(e) ζ/ι = 5, ν = 50 (f) ζ/ι = 1, ν = 20, a = 1,b = 1

Figure 4.8: Posterior distribution of ARI in various hyper-parameter combinations for sensitiv-
ity analysis in simulation.
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(a) PY prior (b) truncated DP prior

Figure 4.9: Prior distribution of the number of clusters for our choice of PY prior in case 3 and
the truncated Dirichlet process prior.

is very small. The posterior mean of the number of clusters is 3.34, which is close to the what

has been obtained in the original analysis of case 3. The MSE, coverage and length of 95% CI

for the posterior mean function turn out to be 0.61, 0.99 and 2.93 which are very close to the

numbers corresponding to case 3 in Table 4.2.

4.5 Brain Connectome Data Application

This section reports analysis of the OCEAN brain connectome dataset described in

Section 4.1.1. We fit NBNR for H = 20 to allow a sufficient number of clusters to be iden-

tified. Table 4.5 shows that the model fit corresponding to NBNR improves over BNSP by a

considerable margin, indicating the need for fitting the Bayesian mixture model to this data.

The left panel in the first row of Figure 4.11 shows the distribution of the number of

clusters implied by our choice of prior hyperparameters. The distribution is bimodal in 2 and

3 and there is a considerable mass at 4. The right panel in the first row shows the posterior
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(a) ARI (b) Number of clusters

(c) Uncertainty in clustering

Figure 4.10: Posterior distribution of ARI, the number of clusters and the uncertainty related to
clustering are presented for the choice (ω1, ...,ωH)∼ Dir(α/H, ...,α/H).
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(a) Prior dist. of no. of clusters (b) Posterior dist. of no. of clusters

(c) Uncertainty

Figure 4.11: OCEAN Data: 4.11(a) shows the distribution of the number of clusters implied by
our choice of prior hyperparameters. 4.11(c) shows the uncertainty in estimating the clusters.
4.11(b) shows a barplot for the posterior dist. of the estimated number of clusters. The inference
is presented for H = 20.
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Methods NBNR with H = 20 BNSP

Comparison Metric G P D G P D

Values 15.35 31.69 47.05 101.98 114.11 216.09

Table 4.5: Model fitting statistics for NBNR and BNSP for the OCEAN data.

distribution of the number of clusters (figure 4.11) has a clear mode at 2. Figure 4.11 in the

second row displays the heat map of posterior probabilities of any pair of individuals lying

in the same cluster. The model fit with H = 20 shows two prominent clusters a posteriori.

Importantly, there is no posterior probability of having more than 8 clusters, suggesting that

H = 20 is sufficiently large and appropriate for this analysis.

Influential nodes for Group 1

Left Hemisphere Lobes Temporal, Cingulate, Frontal, Occipital

Right Hemisphere Lobes Parietal, Insula

Influential nodes for Group 2

Left Hemisphere Lobes Temporal, Frontal, Parietal, Insula

Right Hemisphere Lobes Cingulate, Frontal, Occipital

Table 4.6: Brain regions (ROIs) detected as influential for the two detected clusters of individ-
uals in the OCEAN dataset.

We supply the model with the estimated cluster indicators and run it again to draw

further inference on the influential nodes and edges in the two clusters. Table 4.6 presents the

influential nodes identified in the two clusters. Note that 6 and 7 nodes (out of 12) are identified
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Influential nodes

Left Hemisphere Lobes Temporal, Frontal, Occipital, Parietal

Right Hemisphere Lobes Frontal, Occipital, Parietal, Cingulate

Table 4.7: Brain regions (ROIs) detected as influential by BNSP in the OCEAN dataset.

for the two groups of individuals as influential, respectively. Both groups identify the temporal

and frontal lobes as influential in the left hemisphere, but only the second group identifies

frontal lobe as influential in the right hemisphere. We also identify 7 and 18 influential edges

connecting the influential nodes for the two groups of individuals. Among these, there are 2

common edges connected to the frontal lobe and 1 common edge connected to the temporal

lobe. We also fit BNSP to this dataset which identifies 4 lobes in each hemisphere as influential.

These 8 lobes include the temporal and frontal lobes in the left hemisphere, and the frontal lobe

in the right hemisphere. BNSP identifies 16 influential edges connecting the influential lobes.

4.5.1 Sensitivity to the choice of hyperparameters in the OCEAN data

Similar to simulation studies, we also present sensitivity of inference in the OCEAN

data analysis to different choices of the hyperparameters. We stick to the five combinations of

hyperparameters presented in Section 4.4.4. Additionally, we consider two more combinations.

In one of them, we set α1 = 0, so that the Pitman-Yor prior becomes equivalent to a Dirichlet

process prior. In the other combination, we change the hyperparameters of the Pitman-Yor

process so that the prior distribution of the number of clusters is concentrated much higher

than what we have used in our analysis. In fact, the prior mean of the number of clusters
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is ≈ 10 with this choice of hyperparameters. The second column of Table 4.8 presents the

discrepancy between optimal clusters identified by each combination and the optimal clusters

identified by our original analysis. Except for combination a = 1,b = 9, and for α1 = 0, they

turn out to be perfect matches. Figure 4.12 presents heat maps of posterior probabilities of

pairs of individuals lying in the same cluster under all combinations. The uncertainty tends

to be similar under all combinations. Additionally, the posterior distribution of the number of

clusters displays mode at 2 for all combinations of hyperparameters (see Figure 4.13). With a

higher prior mean of the number of clusters, we might expect the inference to deteriorate, but

are pleasantly surprised to see the inference not being affected. Perhaps the larger sample size

is responsible for good inference under this setting. We also report model fitting statistics (G, P,

D) for all these combinations, which can be compared with the results presented in Table 4.5.

The model fitting turns out to be very similar under all the combinations, except for somewhat

inferior performance in terms of PPLC in (i) with a = 1,b = 9.

4.5.2 Analysis of a Brain Connectome Dataset with Composite Creativity Index

(CCI) as the Response

In this section, we analyze the brain connectome data described in Chapter 2 using

the NBNR model proposed in this chapter, with one exception. Recall that in Chapter 2, cor-

responding to every individual, we have a brain network predictor of dimension 68× 68 with

68 nodes in the network representing 68 ROIs. However, working with ROI level data is com-

putationally challenging in the context of nonparametric mixture models. Also, from various

simulation studies we realize that the performance of the method deteriorates considerably when
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(a) a = 1,b = 9 (b) ζ/ι = 0.2, ν = 20 (c) ζ/ι = 5, ν = 20

(d) ζ/ι = 0.2, ν = 50 (e) ζ/ι = 5, ν = 50

(f) α1 = 0 (g) PY: higher mean

Figure 4.12: Plots showing uncertainty in estimating the clusters under various hyperparameter
settings in the OCEAN data.
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(a) a = 1,b = 9 (b) ζ/ι = 0.2, ν = 20 (c) ζ/ι = 5, ν = 20

(d) ζ/ι = 0.2, ν = 50 (e) ζ/ι = 5, ν = 50

(f) α1 = 0 (g) PY: higher mean

Figure 4.13: Barplots showing the posterior distribution of the number of chosen clusters by the
model under various hyperparameter settings in the OCEAN data.
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Methods NBNR with H = 20

Comparison Metric ARI G P D

a = 1,b = 9 0.96 19.54 53.43 72.97

ζ

ι
= 0.2, ν = 20 1.00 16.13 31.45 47.59

ζ

ι
= 5, ν = 20 1.00 17.83 32.26 50.09

ζ

ι
= 0.2, ν = 50 1.00 16.66 31.66 48.32

ζ

ι
= 5, ν = 50 1.00 17.30 32.99 50.29

α1 = 0 0.92 20.34 41.07 61.41

PY: higher mean 1.00 18.25 32.70 50.95

Table 4.8: Performance of NBNR under different hyperparameter choices for the OCEAN
data. The first column presents different combinations to check sensitivity. the second column
presents ARI between optimal clusters obtained from each combination and the optimal clusters
obtained by the original analysis of the OCEAN data.

the V/n ratio increases. Hence, we use lobe level network data for every individual rather than

the ROI level data. This means that the network predictor corresponding to every individual is

of dimension 12×12 in this analysis. As in Chapter 2, CCI is taken to be the response.

We start by fitting the NBNR model with H = 20 for this data. Figure 4.14 presents

the posterior distribution of the number of clusters, as well as the uncertainty in estimating two

subjects in the same cluster. Both Figures 4.14(a) and 4.14(b) indicate the existence of one

cluster in the data. The optimal clustering configuration ẑ estimated from (4.7) also includes all

subjects in the same cluster. Given that the NBNR places all posterior probability on a single

cluster, the model fitting statistics with the G, P and D values demonstrate marginally better
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(a) H = 20 (b) H = 20

Figure 4.14: CCI Data: The left plot shows uncertainty in estimating the clusters. The plot
on the right is a barplot for the posterior distribution of the estimated number of clusters. The
inference is presented for H = 20.

performance of BNSP over NBNR (see Table 4.9).

Our analysis identifies 9 lobes to be influential to predict CCI, out of which five are

in the left hemisphere and four in the right hemisphere (see table 4.10). These include the

temporal, frontal, cingulate and occipital lobes in both hemispheres. As discussed in Chapter 2,

there is considerable literature suggesting close association of creativity with the frontal and

temporal lobes. Findings from this analysis also suggest the same. We also find 7 influential

edges among all edges connecting between two influential nodes.

Methods NBNR with H = 20 BNSP

Comparison Metric G P D G P D

Values 60.84 77.01 137.86 56.21 78.18 134.39

Table 4.9: Model fitting statistics for NBNR and BNSP for the brain connectome CCI data
application.
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Left Hemisphere Lobes Temporal, Cingulate, Frontal, Occipital, Parietal

Right Hemisphere Lobes Temporal, Cingulate, Frontal, Occipital

Table 4.10: Brain regions (ROIs) detected as influential for the composite creativity index.

4.6 Summary

This chapter develops a Bayesian mixture model of network regressions. The pro-

posed model allows groups of subjects sharing similar relationships between the scalar response

and the network predictor. Unlike Chapter 2, the framework developed in this chapter is able to

incorporate the neuroscientific phenomenon that different sets of individuals may have different

relationships between brain lobes and a specific phenotype. Our proposed model also allows

clustering of individuals into groups showing similar relationships between the phenotype and

the brain connectome. Simulation studies and the brain connectome data analysis reveal supe-

rior performance of the proposed model over the BNSP model devised in Chapter 2.
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Chapter 5

Conclusion

This dissertation develops novel regression frameworks for scalar responses and net-

work predictors. Chapter 2 introduces a novel approach that develops a regression framework

of a continuous phenotypic response on a brain network (represented in the form of a symmet-

ric matrix). We propose a novel network shrinkage prior on the network predictor coefficient

matrix. The proposed framework is able to identify nodes or functional regions in the brain

network and interconnections between different regions, significantly related to the phenotypic

response. To the best of our knowledge, our framework is the first principled Bayesian frame-

work that enables identification of network nodes and edges significantly related to the response.

The performance of the proposed model is evaluated with respect to a wide range of existing

competitors available in the high dimensional frequentist and Bayesian literature using a variety

of simulation studies. The proposed model identifies important brain regions and interconnec-

tions significantly associated with creativity for a group of subjects.
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Next, in chapter 3 we extend our model to build network classifiers when a brain con-

nectome network along with a binary response is provided for a group of individuals. Here we

develop a broader class of global-local network shrinkage priors which includes the novel prior

distribution specified earlier as a special case. We specifically consider two different global-

local network shrinkage priors from this class of priors and investigate them using simulation

studies. In particular, we assess their performance in terms of network classification and identi-

fying influential network nodes and edges for the purpose of classification. We also demonstrate

superior performance of our proposed network classifiers over state-of-the-art high dimensional

classification techniques. Another major contribution remains developing theoretical conditions

to guarantee asymptotically consistent classification for the proposed framework. In particular,

we derive conditions on the number of network nodes, sparsity in the network coefficient ma-

trix as a function of the sample size to achieve asymptotically optimal classification. While

theoretical results on high dimensional binary regression with ordinary shrinkage priors have

emerged recently, developing theory for our network classifier model involves several addi-

tional challenges due to the complex nature of the global local shrinkage prior developed here.

The framework is used to classify individuals into high and low IQ groups based on their brain

connectomes.

In chapter 4, we have developed a Bayesian network mixture regression model. The

model allows the relationship between the scalar response and the network predictor to vary

between groups of subjects. Simulation studies and analysis of the brain connectome dataset

demonstrate superior performance of the proposed approach over the approach described in

Chapter 2. Simulation studies are also used to evaluate the performance of the proposed ap-
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proach by varying the true and fitted number of clusters, size of the network and sample size.
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Chapter 6

Future Work

A number of future directions emerge from this work. The present framework de-

velops network shrinkage priors to detect ineffective nodes and edges. Instead, one may cast

this problem as a model selection problem in high dimensional network regression and develop

non-local priors [78] for identifying influential nodes and edges. Another important direction

appears to be the development of Gaussian process regression with the network as an input and

the scalar response as the output. The problem is challenging since it requires developing a

covariance kernel on network predictors which are not in the standard Euclidean space. One

may also extend the current approaches to multivariate settings where, corresponding to each

network predictor, there are multiple responses. For example, one may jointly model the big

personality traits, such as agreeableness, conscientiousness, openness, extraversion and neu-

roticism, as a multivariate response and regress it on the brain network predictor for a subject.

To elaborate, let Pi,1,Pi,2,Pi,3,Pi,4 and Pi,5 be the five personality traits with the corresponding
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network predictor Ai. One may consider employing a series of Bayesian network regression

models with the network coefficient for the jth regression as B j,

Pi, j = µ j + 〈Ai,B j〉F + εi, j, i = 1, ...,n; j = 1,2,3,4,5.

The errors are correlated εi = (εi,1, ...,εi,5)
′∼N(0,Σ) and B1,B2,B3,B4 and B5 are also modeled

jointly to borrow information across different responses. Borrowing information may improve

identification of influential nodes and edges.

Another important research direction we aim to pursue is to exploit the hierarchical

structure of lobes and ROIs and develop multi-scale network regression models. To elaborate,

we propose to develop a multi-scale network regression model

yi = µ+ 〈Ai,B1〉F + 〈Ri,B2〉F + εi, εi ∼ F,

where F(·) is some symmetric error distribution, Ai is the 68× 68 network predictor matrix

representing the number of neuron connections between 68 ROIs, and Ri is the 12×12 network

predictor matrix representing the number of neuron connections between 12 lobes. The matrices

B1 and B2 are the network predictor coefficients corresponding to Ai and Ri, respectively. We

plan to develop network shrinkage priors on B1 and B2 in such a way that a-priori ensures

all ROIs to be uninfluential if the lobe containing the ROI is uninfluential. Finally, we also

propose to extend our theoretical results to general global-local shrinkage priors. Some of these

constitute our present work.
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Chapter 7

Appendix

7.1 Appendix A

This section shows the posterior propriety of the parameters in the BNR model. With-

out loss of generality, we set µ= 0 while proving the posterior propriety. To begin with, we state

a number of useful lemmas.

Preliminary Results

Lemma 7.1.1 If C is an h×h non-negative definite matrix, then |C+ I| ≥ 1.

Proof The eigenvalues of (C+I) are given by ϕ1+1, ...,ϕh+1, where ϕ1, ...,ϕh are eigenvalues

of C. Since C is non-negative definite, ϕ1 ≥ 0, ...,ϕh ≥ 0. The result follows from the fact that

|C+ I|= ∏
h
l=1(ϕl +1) is the product of eigenvalues.

Lemma 7.1.2 Let C be an h× h diagonal matrix with diagonal entries c1, ...,ch all greater
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than 0. Suppose A is an n× h matrix with the largest eigenvalue of AA′ given by µAA′ . Then

ACA′+ I ≤
(
µAA′ ∑

h
l=1 cl +1

)
I, where H1 ≤ H2 implies H2−H1 is a positive definite matrix.

Proof Since c1, ...,ch > 0, ACA′ ≤ (∑h
l=1 cl)AA′. Consider the spectral decomposition of the

matrix AA′. Let the eigen-decomposition of AA′ = ΛHΛ
′, where Λ is the matrix of eigen-

vectors and H is a diagonal matrix with diagonal entries µ1, ...,µn. Since each µi ≤ µAA′ ,

AA′ ≤ µAA′ΛΛ
′ = µAA′I. Thus, ACA′ ≤ (∑h

l=1 cl)µAA′I. Hence ACA′+ I ≤
(
µAA′ ∑

h
l=1 cl +1

)
I.

Lemma 7.1.3 Suppose z is an h×1 vector and A is an h×h symmetric positive definite matrix.

Let B be another h× h positive definite matrix such that A ≥ B (where A ≥ B implies A−B is

non-negative definite). Then z′A−1z≤ z′B−1z.

Proof A≥B implies B−1/2AB−1/2≥ I. Thus all eigenvalues of B−1/2AB−1/2 =B−1/2A1/2A1/2B−1/2

are greater than or equal to 1. Since commuting the product of two matrices does not change the

eigenvalues, A1/2B−1A1/2 has all eigenvalues greater than or equal to 1. Thus A1/2B−1A1/2 ≥ I,

which implies A−1 ≤ B−1. Then z′A−1z≤ z′B−1z.

Main Result

Note that the posterior distribution of the parameters is given by

p(γ,τ2,u1, ..,uV ,ξ1, ..,ξV ,λ1, ..,λR,θ
2,∆,{sk,l}k<l,π1, ...,πR,M |y,X)

∝ N(y |Xγ,τ2I)×N(γ |W ,τ2D)× 1
τ2 ×

V

∏
k=1

[ξkN(uk |0,M)+(1−ξk)δ0]

×∏
k<l

Exp(sk,l |θ2/2)×Gamma(θ2 |ζ, ι)× IW (M |S,ν)×Beta(∆ |a∆,b∆)

×
R

∏
r=1

[Ber(λr |πr)×Beta(πr |1,rη)]×
V

∏
k=1

Ber(ξk |∆).
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Integrating over ξ1, ...,ξV

p(γ,τ2,u1, ..,uV ,λ1, ..,λR,θ
2,∆,{sk,l}k<l,π1, ...,πR,M |y,X) ∝ N(y |Xγ,τ2I)×

N(γ |W ,τ2D)× 1
τ2 ×

V

∏
k=1

[∆N(uk |0,M)+(1−∆)δ0]×∏
k<l

Exp(sk,l |θ2/2)×

Gamma(θ2 |ζ, ι)× IW (M |S,ν)×Beta(∆ |a∆,b∆)×
R

∏
r=1

[Ber(λr |πr)×Beta(πr |1,rη)] .

Further integrating over π1, ...,πR yields,

p(γ,τ2,u1, ..,uV ,λ1, ..,λR,θ
2,∆,{sk,l}k<l,M |y,X) ∝ N(y |Xγ,τ2I)×N(γ |W ,τ2D)×

1
τ2 ×

V

∏
k=1

[∆N(uk |0,M)+(1−∆)δ0]×∏
k<l

Exp(sk,l |θ2/2)×Gamma(θ2 |ζ, ι)×

IW (M |S,ν)×Beta(∆ |a∆,b∆)×
R

∏
r=1

Γ(λr +1)Γ(1−λr + rη)Γ(rη +1)
Γ(rη +2)Γ(rη)

.

The prior specifications on ∆ enable it to be bounded within a finite interval of (0,1).

Thus in showing the posterior propriety of parameters with unbounded range, it is enough to

treat ∆ as constant. We treat it as fixed henceforth.

Note that each λr ∈ {0,1}, hence marginalizing out λr gives

p(γ,Λ,τ2,u1, ..,uV ,θ
2,{sk,l}k<l,M |y,X) ∝ ∑

λr∈{0,1}

[
N(y |Xγ,τ2I)×N(γ |W ,τ2D)×

1
τ2 ×

V

∏
k=1

[∆N(uk |0,M)+(1−∆)δ0]×∏
k<l

Exp(sk,l |θ2/2)×Gamma(θ2 |ζ, ι)×

IW (M |S,ν)×
R

∏
r=1

Γ(λr +1)Γ(1−λr + rη)Γ(rη +1)
Γ(rη +2)Γ(rη)

]
.
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Integrating over γ, we obtain,

p(u1, ..,uV ,τ
2,θ2,{sk,l}k<l,M |y,X) ∝ ∑

λr∈{0,1}

[ 1
(τ2)n/2+1|XDX ′+ I|1/2×

exp
{
−(y−XW )′(XDX ′+ I)−1(y−XW )

2τ2

}
×

V

∏
k=1

[∆N(uk |0,M)+(1−∆)δ0]×

∏
k<l

Exp(sk,l |θ2/2)×Gamma(θ2 |ζ, ι)× IW (M |S,ν)×

R

∏
r=1

Γ(λr +1)Γ(1−λr + rη)Γ(rη +1)
Γ(rη +2)Γ(rη)

]
.

Next, we integrate w.r.t. θ2 to obtain

p(u1, ..,uV ,τ
2,{sk,l}k<l,M |y,X) ∝ ∑

λr∈{0,1}

[ 1
(τ2)n/2+1|XDX ′+ I|1/2×

exp
{
−(y−XW )′(XDX ′+ I)−1(y−XW )

2τ2

}
×

V

∏
k=1

[∆N(uk |0,M)+(1−∆)δ0]×

1
(ι+ ∑

k<l
sk,l)q+ζ

× IW (M |S,ν)×
R

∏
r=1

Γ(λr +1)Γ(1−λr + rη)Γ(rη +1)
Γ(rη +2)Γ(rη)

]
. (7.1)

(7.1) is a discrete sum of 2R terms with different combinations of λ1, ...,λr. The sum integrated

out over all the parameters is finite if the individual summands are finite when integrated out

w.r.t all parameters.

Denote a representative summand by p∗(u1, ..,uV ,τ
2,{sk,l}k<l,M |y,X), where

p∗(u1, ..,uV ,τ
2,{sk,l}k<l,M |y,X) ∝

1
(τ2)n/2+1|XDX ′+ I|1/2×

exp
{
−(y−XW )′(XDX ′+ I)−1(y−XW )

2τ2

}
×

V

∏
k=1

[∆N(uk |0,M)+(1−∆)δ0]×

1
(ι+ ∑

k<l
sk,l)q+ζ

× IW (M |S,ν)×
R

∏
r=1

Γ(λr +1)Γ(1−λr + rη)Γ(rη +1)
Γ(rη +2)Γ(rη)

.

Note the fact that D is a diagonal matrix with all positive diagonal entries. Thus XDX ′
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is non-negative definite and by using Lemma 7.1.2

XDX ′+ I ≤ XX ′∑
k<l

sk,l + I ≤

(
µXX ′ ∑

k<l
sk,l +1

)
I,

where A ≤ B implies A−B is a non-negative definite matrix and µXX ′ is the largest eigenvalue

of XX ′. Using Lemma 7.1.3, the above inequality implies

(y−XW )′(XDX ′+ I)−1(y−XW )≥ ||y−XW ||2

µXX ′ ∑k<l sk,l +1
.

Let

p̃(u1, ..,uV ,τ
2,{sk,l}k<l,M) =

1
(τ2)n/2+1|XDX ′+ I|1/2×

exp
{
−(y−XW )′(XDX ′+ I)−1(y−XW )

2τ2

}
×

V

∏
k=1

N(uk |0,M)×

1
(ι+ ∑

k<l
sk,l)q+ζ

× IW (M |S,ν)×
R

∏
r=1

Γ(λr +1)Γ(1−λr + rη)Γ(rη +1)
Γ(rη +2)Γ(rη)

. (7.2)

With little algebra it can be shown that

p∗(u1, ..,uV ,τ
2,{sk,l}k<l,M |y,X)

= constant× ∑
1≤ j1,..., jl≤V,0≤l≤V

∆
l(1−∆)V−l p̃(u j1 , ..,u jl ,u jl+1 = 0, ..,u jV = 0,τ2,{sk,l}k<l,M).

Therefore, the integral of (7.1) w.r.t. all parameters is finite if and only if

∫
p̃(u1, ..,uV ,τ

2,{sk,l}k<l,M)du1 · · ·duV dτ
2dMd ∏

k<l
sk,l < ∞.

Henceforth, we will proceed to show that this integral is finite.

With little algebra, we have that

∫
IW (M|ν,S)

V

∏
k=1

N(uk |0,M)dM ∝
1

|S+∑
V
k=1 uku′k|(ν+V )/2

.
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Hence,

p̃(u1, ..,uV ,τ
2,{sk,l}k<l)≤ constant× 1

|S+∑
V
k=1 uku′k|(ν+V )/2

1
(τ2)n/2+1×

exp
{
− ||y−XW ||2

2τ2(µXX ′ ∑k<l sk,l +1)

}
× 1

(ι+ ∑
k<l

sk,l)q+ζ

1
|XDX ′+ I|1/2×

R

∏
r=1

Γ(λr +1)Γ(1−λr + rη)Γ(rη +1)
Γ(rη +2)Γ(rη)

.

Define A =
{
(u1, ...,uV ) : ||y−XW ||2 > 1

}
. Then

∫
p̃(u1, ..,uV ,τ

2,{sk,l}k<l)du1 · · ·duV dτ
2d ∏

k<l
sk,l

=
∫
A

p̃(u1, ..,uV ,τ
2,{sk,l}k<l)du1 · · ·duV dτ

2d ∏
k<l

sk,l+

∫
Ac

p̃(u1, ..,uV ,τ
2,{sk,l}k<l)du1 · · ·duV dτ

2d ∏
k<l

sk,l.

Now,

∫
A

p̃(u1, ..,uV ,τ
2,{sk,l}k<l)dτ

2d ∏
k<l

sk,ldu1 · · ·duV ≤ constant
∫
A

du1 · · ·duV

|S+∑
V
k=1 uku′k|(ν+V )/2

×

∫ 1
(τ2)n/2+1 exp

{
− 1

2τ2(µXX ′ ∑k<l sk,l +1)

}
× 1

(ι+ ∑
k<l

sk,l)q+ζ

dτ2d ∏
k<l

sk,l

|XDX ′+ I|1/2×

R

∏
r=1

Γ(λr +1)Γ(1−λr + rη)Γ(rη +1)
Γ(rη +2)Γ(rη)

≤ constant


∫
A

1
|S+∑

V
k=1 uku′k|(ν+V )/2

du1 · · ·duV

×
∫

(µXX ′ ∑k<l sk,l +1)n/2

|XDX ′+ I|1/2(ι+ ∑
k<l

sk,l)q+ζ
d ∏

k<l
sk,l

× R

∏
r=1

Γ(λr +1)Γ(1−λr + rη)Γ(rη +1)
Γ(rη +2)Γ(rη)

.
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Note that

∫
A

1
|S+∑

V
k=1 uku′k|(ν+V )/2

du1 · · ·duV ≤
∫
A

1

∏
V
k=1 |S+uku′k|ν/2V+1/2

du1 · · ·duV

≤
V

∏
k=1

∫
A

1
|S+uku′k|ν/V+1 duk

1/2

,

where the first inequality follows from the fact that |S+∑
V
k=1 uku′k| ≥ |S+ uku′k| for all k. The

second inequality is a direct application of the Cauchy-Schwarz inequality. By the ratio test

of integrals, this integral is finite if
∫ 1

[(1+uk,1)2···(1+uk,R)2]ν/V+1 duk is finite. Now use the fact that

∫ 1
x1+c dx < ∞ for any c > 0 to argue that

∫ 1
[(1+uk,1)2···(1+uk,R)2]2ν/V+1 duk is finite.

Similarly,{∫ (µXX ′ ∑k<l sk,l+1)n/2

|XDX ′+I|1/2(ι+ ∑
k<l

sk,l)q+ζ
d ∏k<l sk,l

}
≤

{∫ (µXX ′ ∑k<l sk,l+1)n/2

(µXX ′,min mink<l sk,l+1)n/2(ι+ ∑
k<l

sk,l)q+ζ
d ∏k<l sk,l

}
, where

µXX ′,min is the minimum eigenvalue of XX ′. The last inequality follows from the fact that

XX ′ ≥ µXX ′,min mink<l sk,lI.

{∫ (µXX ′ ∑k<l sk,l+1)n/2

(µXX ′,min mink<l sk,l+1)n/2(ι+ ∑
k<l

sk,l)q+ζ
d ∏k<l sk,l

}
is finite if and only

if

{∫ (µXX ′ ∑k<l sk,l+1)n/2

(µXX ′,min ∑
k<l

sk,l+1)n/2(ι+ ∑
k<l

sk,l)q+ζ
d ∏k<l sk,l

}
< ∞, by ratio test of integrals. Since the latter

integral is finite,
∫
A

p̃(u1, ..,uV ,τ
2,{sk,l}k<l)du1 · · ·duV dτ2d ∏

k<l
sk,l ≤ ∞.

Now consider the expression
∫

Ac
p̃(u1, ..,uV ,τ

2,{sk,l}k<l)dτ2d ∏
k<l

sk,ldu1 · · ·duV . It is

easy to see that Ac = {(u1, ...,uV ) : ||y−XW ||2 ≤ 1} is a bounded set, so that the bounded

function
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exp
{
− ||y−XW ||2

2τ2(µXX ′ ∑k<l sk,l+1)

}
achieves the maximum value at W =W ∗. Thus,

∫
Ac

p̃(u1, ..,uV ,τ
2,{sk,l}k<l)du1 · · ·duV dτ

2d ∏
k<l

sk,l ≤ constant
∫
Ac

1
|S+∑

V
k=1 uku′k|(ν+V )/2

×

exp
{
− ||y−XW ∗||2

2τ2(µXX ′ ∑k<l sk,l +1)

}
×

∫ 1
(ι+ ∑

k<l
sk,l)q+ζ

dτ2d ∏
k<l

sk,l

(τ2)n/2+1

1
|XDX ′+ I|1/2

≤ constant
||y−XW ∗||n


∫
Ac

1
|S+∑

V
k=1 uku′k|(ν+V )/2

du1 · · ·duV

×
∫

(µXX ′ ∑k<l sk,l +1)n/2

|XDX ′+ I|1/2(ι+ ∑
k<l

sk,l)q+ζ
d ∏

k<l
sk,l

< ∞,

where the last step follows from earlier discussions.

7.2 Appendix B

This section provides details of posterior computation for all the parameters in the

Bayesian network regression with a continuous response.

Let xi = (ai,1,2,ai,1,3, ...,ai,1,V ,ai,2,3,ai,2,4, ...,ai,2,V , ....,ai,V−1,V )
′ be of dimension q×

1, where q = V×(V−1)
2 . Assume y = (y1, ...,yn)

′ ∈ Rn and X = (x1 : · · · : xn)
′ is an n× q ma-

trix. Further, assume W = (u′1Λu2, ...,u′1ΛuV , ....,u′V−1ΛuV )
′, D = diag(s1,2, ...,sV−1,V ) and

γ = (γ1,2, ...,γV−1,V )
′. Thus, with n data points, the hierarchical model with the Bayesian Net-
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work Lasso prior can be written as

y∼ N(µ+Xγ,τ2I)

γ∼ N(W ,τ2D), (µ,τ2)∼ π(µ,τ2) ∝
1
τ2 , uk|ξk = 1∼ N(uk |0,M), uk|ξk = 0∼ δ0, µ∼ f lat()

sk,l ∼ Exp(θ2/2), θ
2 ∼ Gamma(ζ, ι), M ∼ IW (S,ν), ∆∼ Beta(a∆,b∆),ξk ∼ Ber(∆)

λr ∼ Ber(πr), πr ∼ Beta(1,rη), η > 1.

The hierarchical model specified above leads to straightforward Gibbs sampling with

full conditionals obtained as following:

• µ |− ∼ N
(

1′(y−Xγ)
n , τ2

n

)
• γ |− ∼ N(µγ | ·,Σγ | ·), where µγ | · = (X ′X +D−1)

−1
(X ′(y−µ1)+D−1W )

and Σγ | · = τ2(X ′X +D−1)
−1

• τ2 |− ∼ IG
[
(n

2 +
V (V−1)

4 ), (y−µ1−Xγ)′(y−µ1−Xγ)+(γ−W )′D−1(γ−W )
2

]
• sk,l |− ∼ GIG

[
1
2 ,

(γk,l−u′kΛul)
2

τ2 ,θ2
]
, where GIG denotes the generalized inverse Gaussian

distribution.

• θ2 |− ∼ Gamma
[(

ζ+ V (V−1)
2

)
,
(
ι+∑k<l

sk,l
2

)]
• uk |− ∼ wuk δ0(uk)+ (1−wuk)N(uk |muk ,Σuk), where U∗k = (u1 : · · · : uk−1 : uk+1 : · · · :

uV )
′Λ, Hk = diag(s1,k, ...,sk−1,k,sk,k+1, ...,sk,V ), γk = (γ1,k, ...,γk−1,k,γk,k+1, ...,γk,V ), and

Σuk =
(

U∗
′

h H−1
k U∗k/τ

2 +M−1
)−1

, muk = ΣukU
∗′
k H−1

k γk/τ
2

wuk =
(1−∆)N(γk |0,τ2Hk)

(1−∆)N(γk |0,τ2Hk)+∆N(γk |0,τ2Hk +U∗kMU∗′k )
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• ξk|− ∼ Ber(1−wuk)

• ∆ |− ∼ Beta
[
(a∆ +∑

V
k=1 ξk),(b∆ +∑

V
k=1(1−ξk))

]
.

• M |− ∼ IW [(S+∑k:uk 6=0 ukΛu′k),(ν+{#k : uk 6= 0})].

• λr |− ∼ Ber(pλr), where pλr =
πrN(γ |W 1,τ

2D)
πrN(γ |W 1,τ2D)+(1−πr)N(γ |W 0,τ2D)

. Here

W 1 = (u′1Λ1u2, ...,u′1Λ1uV , ....,u′V−1Λ1uV )
′, W 0 = (u′1Λ0u2, ...,u′1Λ0uV , ....,u′V−1Λ0uV )

′,

Λ1 = diag(λ1, ..,λr−1,1,λr+1, ..,λR), Λ0 = diag(λ1, ..,λr−1,0,λr+1, ..,λR), for r = 1, ..,R.

• πr |− ∼ Beta(λr +1,1−λr + rη), for r = 1, ..,R.

As noted in Section 2.3 of the main text, naively sampling from the full conditional of γ above

faces substantial computational difficulties. We now state Lemma 7.2.1 that provides a com-

putational strategy to draw posterior samples of γ efficiently. Proof of Lemma 7.2.1 is given

below.

Lemma 7.2.1 Let γW be a random variable such that

γW |− ∼ N
[
(D−1 +XT X)−1XT (y−µ1

¯
−XW ),τ2(D−1 +XT X)−1] . (7.3)

Then the following results hold.

(a) γ
D
= γW +W

(b) Let, ∆γ1
∼ N(0,τ2D), ∆γ2

∼ N(0, I), ∆γ3
= X

τ
∆γ1

+∆γ2
,

γW = ∆γ1
+(τ2D)XT

τ
(XDXT + I)−1

[
(y−µ1

¯
−XW )
τ

−∆γ3

]
.

Remark: This algorithm ensures that samples from the posterior full conditionals of γ can

be obtained by sampling from the posterior full conditionals of γW . Lemma 7.2.1 shows that
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obtaining samples from the full conditional of γW only requires inverting an n×n matrix. As-

suming n << q, which is typically encountered in the real data applications, the computational

complexity of the proposed approach is substantially mitigated.

Proof of Lemma 7.2.1

(a) Note that

E(γW +W ) =W +(D−1 +XT X)−1XT (y−µ1
¯
−XW )

=W − (D−1 +XT X)−1XT XW +(D−1 +XT X)−1XT (y−µ1
¯
)

=W − (D−1 +XT X)−1(D−1 +XT X−D−1)W +(D−1 +XT X)−1XT (y−µ1
¯
)

=W − (I− (D−1 +XT X)−1D−1)W +(D−1 +XT X)−1XT (y−µ1
¯
)

= (D−1 +XT X)−1D−1W +(D−1 +XT X)−1XT (y−µ1
¯
)

= (D−1 +XT X)−1(D−1W +XT (y−µ1
¯
)) = E(γ).

Also note that Var(γW +W ) =Var(γ) trivially since W is a given in the Gibbs step.

(b) Note that

E(γW ) = E
(

∆γ1
+(τ2D)

XT

τ
(XDXT + I)−1

[
(y−µ1

¯
−XW )

τ
−∆γ3

])
= 0+(τ2D)

XT

τ
(XDXT + I)−1

[
(y−µ1

¯
−XW )

τ
−0
]

= DXT (XDXT + I)−1(y−µ1
¯
−XW ).

Using the Sherman-Morrison-Woodbury matrix identity, we have that (D−1 +XT X)−1 =

D−DXT (XDXT + I)−1XD.
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Hence

E
(

∆γ1
+(τ2D)

XT

τ
(XDXT + I)−1

[
(y−µ1

¯
−XW )

τ
−∆γ3

])
= DXT (XDXT + I)−1(y−µ1

¯
−XW )

= (DXT −DXT +DXT (XDXT + I)−1)(y−µ1
¯
−XW )

= (D−DXT (XDXT + I)−1XD)XT (y−µ1
¯
−XW )

= (D−1 +XT X)−1XT (y−µ1
¯
−XW )

= E(γW ),

where the last step follows from equation (5) in the main text under Lemma 2.1.

Using the fact that Var(∆γ1
)= τ2D, Var(∆γ2

)= I, Var(∆γ3
)= (XDXT +I) and Cov(∆γ1

,∆γ3
)=

τXD, we have

Var
(

∆γ1
+(τ2D)

XT

τ
(XDXT + I)−1

[
(y−µ1

¯
−XW )

τ
−∆γ3

])
=Var(∆γ1

)+ τDXT (XDXT + I)−1Var(∆γ3
)(τDXT (XDXT + I)−1)

T

+ τDXT (XDXT + I)−1Cov(∆γ1
,∆γ3

)

= τ
2D+ τ

2DXT (XDXT + I)−1(XDXT + I)[DXT (XDXT + I)−1]
T

−2τ
2DXT (XDXT + I)−1

= τ
2D+ τ

2DXT (XDXT + I)−1(XDXT + I)[DXT (XDXT + I)−1]
T

−2τ
2DXT (XDXT + I)−1

= τ
2 [D−DXT (XDXT + I)−1XD

]
= τ

2(D−1 +XT X)−1 =Var(γW ),

where the last step follows from equation (5) in the main text under Lemma 2.1.
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7.3 Appendix C

In this section, we describe the procedure for edge selection in our model, taking into

account multiplicity correction. It is well acknowledged that the problem of selecting important

coefficients is a challenging task when γ is assigned a continuous shrinkage prior, since none

of the coefficients is zero in any MCMC iteration. Recently, [92] proposed an approach that

aims to address the problem of identifying influential edge coefficients through a novel method

of post processing of posterior samples. The approach is based on first obtaining a posterior

distribution of the number of signals by clustering the signal and the noise coefficients and then

estimating the signals from the posterior median. While [92] addresses the problem of variable

selection from posterior samples of coefficients, the procedure does not necessarily address the

problem of multiple comparisons.

Here we propose a novel procedure that is inspired by [92] that explicitly allows to

generate accurate estimates of the false discovery rate (FDR) associated with the procedure.

Our approach also relies on fitting a mixture model to the logarithm of the absolute value of

the point estimates of the coefficients using an Expectation-Maximization algorithm, but one

more flexible than the one implicitly used in [92]. The probability that each coefficient is

generated by the mixture component with the lowest mean (which is a natural byproduct of

the EM algorithm) provides an estimate of the local FDR associated with that coefficient [101],

from which an estimate of the FDR curve can be easily generated. The details of the algorithm

are as follows:

1. Obtain posterior mean of all edge coefficients from post burn-in MCMC samples.
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2. Cluster the logarithm of absolute values of the posterior mean of coefficients into two

groups using a either a two-component mixture of Gaussian distributions or a two com-

ponent mixture of skewed t-distributions. We use the R library mclust for when we

use Gaussian mixture [48], and library EMMIXcskew while using mixture of skewed t-

distribution.

3. Using the probability that each coefficient is generated by the mixture component with

the lowest mean as an estimate of the local FDR, compute for every H the FDR associated

with the H largest coefficients, FDR(H), as the sum of their local FDR values divided by

H.

4. Given a value α of the FDR that we are aiming to control for (say, for example, 0.05),

pick as significant the H∗ largest coefficients, where H∗ is the largest value of H such that

FDR(H)≤ α

7.4 Appendix D

This section provides full conditionals for all the parameters in the Bayesian binary

network regression with network lasso shrinkage prior on γ described in Chapter 3. Assume

W =(u′1Λu2, ...,u′1ΛuV , ....,u′V−1ΛuV )
′, D= diag(s2

1,2, ...,s
2
V−1,V ) and γ=(γ1,2, ...,γV−1,V )

′. Thus,

with n data points, the hierarchical model with the network lasso prior in the binary setting can
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be written as

t ∼ N(µ+Xγ,Ω−1)

γ∼ N(W ,D), uk|ξk = 1∼ N(uk |0,Q), uk|ξk = 0∼ δ0, ξk ∼ Ber(∆), µ∼ f lat()

s2
k,l ∼ Exp(θ2/2), θ

2 ∼ Gamma(ζ, ι), Q∼ IW (ν, I), ∆∼ Beta(a∆,b∆)

p(ωi)∼ PG(1,0), λr ∼ Ber(πr), πr ∼ Beta(1,rη), η > 1.

The full conditional distributions of the model parameters are given below.

• µ |− ∼ N
(

1′Ω(t−Xγ)
1′Ω1 , 1

1′Ω1

)
• γ |− ∼ N(µγ | ·,Σγ | ·), where µγ | · = (X ′ΩX +D−1)

−1
(X ′Ω(t − µ1) + D−1W ) and Σγ | · =

(X ′ΩX +D−1)
−1

• s2
k,l |− ∼ GIG

[1
2 ,(γk,l−u′kΛul)

2,θ2
]
, where GIG denotes the generalized inverse Gaus-

sian distribution.

• θ2 |− ∼ Gamma
[(

ζ+ V (V−1)
2

)
,

(
ι+∑k<l

s2
k,l
2

)]

• uk |− ∼ wuk δ0(uk)+ (1−wuk)N(uk |muk ,Σuk), where U∗k = (u1 : · · · : uk−1 : uk+1 : · · · :

uV )
′Λ, Hk = diag(s2

1,k, ...,s
2
k−1,k,s

2
k,k+1, ...,s

2
k,V ), γk = (γ1,k, ...,γk−1,k,γk,k+1, ...,γk,V ), and

Σuk =
(

U∗
′

h H−1
k U∗k +Q−1

)−1
, muk = ΣukU

∗′
k H−1

k γk

wuk =
(1−∆)N(γk |0,Hk)

(1−∆)N(γk |0,Hk)+∆N(γk |0,Hk +U∗kQU∗′k )

• ξk|− ∼ Ber(1−wuk)

• ∆ |− ∼ Beta
[
(a∆ +∑

V
k=1 ξk),(b∆ +∑

V
k=1(1−ξk))

]
.
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• Q |− ∼ IW [(ν+{#k : uk 6= 0}),(I +∑k:uk 6=0 ukΛu′k)].

• λr |− ∼ Ber(pλr), where pλr =
πrN(γ |W 1,D)

πrN(γ |W 1,D)+(1−πr)N(γ |W 0,D) . Here

W 1 = (u′1Λ1u2, ...,u′1Λ1uV , ....,u′V−1Λ1uV )
′, W 0 = (u′1Λ0u2, ...,u′1Λ0uV , ....,u′V−1Λ0uV )

′,

Λ1 = diag(λ1, ..,λr−1,1,λr+1, ..,λR), Λ0 = diag(λ1, ..,λr−1,0,λr+1, ..,λR), for r = 1, ..,R.

• πr |− ∼ Beta(λr +1,1−λr + rη), for r = 1, ..,R.

Using the relationship, PG(x |b,c) ∝ exp(− c2x
2 )PG(x |1,0) [111], we obtain

• ωi |− ∼ PG(1,µ+ x′iγ), for i = 1, ..,n.

7.5 Appendix E

This section provides full conditionals for all the parameters in the Bayesian network

classifier model introduced in Chapter 3 with Bayesian network horseshoe prior. Assume W =

(u′1Λu2, ...,u′1ΛuV , ....,u′V−1ΛuV )
′, D= diag(σ2s2

1,2, ...,σ
2s2

V−1,V ) and γ=(γ1,2, ...,γV−1,V )
′. Thus,

with n data points, the hierarchical model with the network horseshoe prior in the binary setting

can be written as

t ∼ N(µ+Xγ,Ω−1)

γ∼ N(W ,D), uk|ξk = 1∼ N(uk |0,Q), uk|ξk = 0∼ δ0, ξk ∼ Ber(∆), µ∼ f lat()

sk,l ∼C+(0,1), σ∼C+(0,1), Q∼ IW (ν, I), ∆∼ Beta(a∆,b∆)

p(ωi)∼ PG(1,0), λr ∼ Ber(πr), πr ∼ Beta(1,rη), η > 1.
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Note that, following [97],

sk,l ∼C+(0,1), σ∼C+(0,1)

can be written in an augmented form as

s2
k,l |νk,l ∼ IG

(
1
2
,

1
νk,l

)
, νk,l ∼ IG

(
1
2
,1
)
, σ

2 |σ2 ∼ IG
(

1
2
,

1
σ2

)
, σ2 ∼ IG

(
1
2
,1
)
.

With the model formulation described above, the full conditional distributions of the

model parameters are given by the following distributions:

• µ |− ∼ N
(

1′Ω(t−Xγ)
1′Ω1 , 1

1′Ω1

)
• γ |− ∼ N(µγ | ·,Σγ | ·), where µγ | · = (X ′ΩX +D−1)

−1
(X ′Ω(t − µ1) + D−1W ) and Σγ | · =

(X ′ΩX +D−1)
−1

• s2
k,l |− ∼ IG

[
1,( 1

νk,l
+

(γk,l−u′kΛul)
2

2σ2 )
]

• σ2 |− ∼ IG
[(

1
2 +

V (V−1)
4

)
,

(
1

σ2
+∑k<l

(γk,l−u′kΛul)
2

2s2
k,l

)]

• νk,l |− ∼ IG
[

1,(1+ 1
s2

k,l
)

]

• σ2 |− ∼ IG
[
1,(1+ 1

σ2 )
]

• uk |− ∼ wuk δ0(uk)+ (1−wuk)N(uk |muk ,Σuk), where U∗k = (u1 : · · · : uk−1 : uk+1 : · · · :

uV )
′Λ, Hk = diag(s2

1,k, ...,s
2
k−1,k,s

2
k,k+1, ...,s

2
k,V ), γk = (γ1,k, ...,γk−1,k,γk,k+1, ...,γk,V ), and

Σuk =
(

U∗
′

h H−1
k U∗k/σ

2 +Q−1
)−1

, muk = ΣukU
∗′
k H−1

k γk/σ
2

wuk =
(1−∆)N(γk |0,σ2Hk)

(1−∆)N(γk |0,σ2Hk)+∆N(γk |0,σ2Hk +U∗kQU∗′k )
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• ξk|− ∼ Ber(1−wuk)

• ∆ |− ∼ Beta
[
(a∆ +∑

V
k=1 ξk),(b∆ +∑

V
k=1(1−ξk))

]
.

• Q |− ∼ IW [(ν+{#k : uk 6= 0}),(I +∑k:uk 6=0 ukΛu′k)].

• λr |− ∼ Ber(pλr), where pλr =
πrN(γ |W 1,σ

2
2D)

πrN(γ |W 1,σ
2
2D)+(1−πr)N(γ |W 0,σ

2
2D)

. Here

W 1 = (u′1Λ1u2, ...,u′1Λ1uV , ....,u′V−1Λ1uV )
′, W 0 = (u′1Λ0u2, ...,u′1Λ0uV , ....,u′V−1Λ0uV )

′,

Λ1 = diag(λ1, ..,λr−1,1,λr+1, ..,λR), Λ0 = diag(λ1, ..,λr−1,0,λr+1, ..,λR), for r = 1, ..,R.

• πr |− ∼ Beta(λr +1,1−λr + rη), for r = 1, ..,R.

Using the relationship, PG(x |b,c) ∝ exp(− c2x
2 )PG(x |b,0) [111], we obtain

• ωi |− ∼ PG(1,µ+ x′iγ), for i = 1, ..,n.

7.6 Appendix F

Similar to the assumptions made by [143] in their proof of posterior consistency for

binary logistic regression, we prove our results assuming that the centering parameter µ = 0 in

both the true and the data generating models. We note that the main structure of the proof will

remain unchanged with this assumption and the result proved in this chapter can be trivially

extended to the setting with nonzero µ.

We begin by defining some notations. In the proof, Π(·) will be used to denote the
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generic probability notation. We define the notation of the log-likelihood function by

wγ,n(yn) =
n

∑
i=1

[(x′iγ)yi− z(x′iγ)], z(x′iγ) = log(1+ exp(x′iγ)). (7.4)

We also introduce the function Cyn,n(·) to quantify the curvature of wγ,n(yn) around γ(0),

Cyn,n(γ) = wγ,n(yn)−w
γ(0),n(yn)−∇w

γ(0),n(yn)
′(γ− γ

(0)), (7.5)

where ∇w
γ(0),n(yn) is the derivative of w

γ(0),n(yn) w.r.t. γ, evaluated at γ(0). Also the likelihood

pγ(yn) can be written using the above notations as pγ(yn) = ∏
n
i=1 exp(wγ,n(yi)). The notations

Eγ(·) and E
γ(0)(·) have been reserved to denote expectation w.r.t the distribution of yn|γ and

yn|γ(0) respectively.

The proof of Theorem 3.3.1 relies in part on the existence of exponentially consistent

sequence of tests.

Definition An exponentially consistent sequence of test functions Φn for testing H0 : γ = γ0

vs. H1 : γ ∈ Ac
n satisfies

Eγ0(Φn)≤ d1 exp(−h1n), sup
γ∈Ac

n

Eγ(1−Φn)≤ d2 exp(−h2n)

for some d1,d2,h1,h2 > 0.

Lemma 7.6.1 For some h > 0, there exists a sequence of test functions for testing H0 : γ = γ0

vs. H1 : γ ∈ Ac
n , which satisfy

Eγ0(Φn)≤ exp(−hn), sup
γ∈Ac

n

Eγ(1−Φn)≤ exp(−hn). (7.6)

Proof The construction of the test is provided in the proof of Theorem 2 and Lemma 4 in [55].
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We also state another result which will be subsequently used in the proof.

Lemma 7.6.2 Let u(0)k = (u(0)k,1, ...,u
(0)
k,R)
′ for k = 1, ..,Vn, and υk,l be the only positive root of the

equation

x2 + x(||u(0)k ||2 + ||u
(0)
l ||2)−η1 = 0, k < l. (7.7)

Assume υ = mink,l υk,l . Then, for W = (u′1u2, ...,u′Vn−1uVn)
′ and W (0) = (u(0)

′

1 u(0)2 , ...,u(0)
′

Vn−1u(0)Vn
)′

Π(||W −W (0)||∞ < η1)≥Π(||uk−u(0)k ||2 ≤ υ, ∀ k = 1, ..,Vn). (7.8)

Proof for k < l,

|u′kul−u(0)
′

k u(0)l |= |
R

∑
r=1

uk,rul,r−
R

∑
r=1

u(0)k,r u(0)l,r |

≤ |
R

∑
r=1

(uk,r−u(0)k,r )ulr|+ |
R

∑
r=1

(ul,r−u(0)l,r )u
(0)
k,r |

≤ ||uk−u(0)k ||2||ul||2 + ||ul−u(0)l ||2||u
(0)
k ||2

≤ ||uk−u(0)k ||2
[
||ul−u(0)l ||2 + ||u

(0)
l ||2

]
+ ||ul−u(0)l ||2||u

(0)
k ||2.

If ||uk−u(0)k ||2 ≤ υ, ∀ k = 1, ..,Vn, the above inequality implies

|u′kul−u(0)
′

k u(0)l | ≤ υ(υ+ ||u(0)l ||2)+υ||u(0)k ||2 ≤ η1, ∀ k < l.

Hence Π(||W −W (0)||∞ < η1)≥Π(||uk−u(0)k ||2 ≤ υ, ∀ k = 1, ..,Vn).

Proof of Theorem 3.3.1

Suppose En =
{

y : ||∇w
γ(0),n(y)||∞ ≤ 2

√
nqn

}
. Then the probability of the vector yn belonging

to the set En is given by,

P
γ(0)(yn ∈ En)≥ 1−P

γ(0)( max
1≤ j≤qn

|
n

∑
i=1

(yi−∇z(x′i(γ− γ
(0))))xi j|> 2

√
nqn)≥ 1− 2

qn
,
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where the last step follows from the Hoeffding inequality. Note that as n→ ∞, qn→ ∞, hence

P
γ(0)(yn ∈ En)→ 1. Hence, in the subsequent proof we can assume without loss of generality

that yn ∈ En. It can be observed that

Πn(Ac
n) =

∫
Ac

n
pγ(yn)πn(γ)∫

pγ(yn)πn(γ)
=

∫
Ac

n

pγ(yn)
p

γ(0)
(yn)

πn(γ)∫ pγ(yn)
p

γ(0)
(yn)

πn(γ)
=

Nn

Dn
≤Φn +(1−Φn)

Nn

Dn
, (7.9)

where Φn is the exponentially consistent sequence of tests given in Lemma 7.6.1. The above

equation is true as Nn/Dn ≤ 1. This is in turn true as both are integrals of the same nonnegative

functions, Dn is the integral of that function over the entire set of possible γ’s, while Nn is the

integral over a subset Ac
n . In proving Theorem 3.3.1, we will proceed in three steps as following.

(a) Step 1 shows that Φn→ 0, as n→ ∞, almost surely.

(b) Step 2 shows that exp(hn/2)(1−Φn)Nn→ 0, as n→ ∞, almost surely.

(c) Finally, step 3 shows that exp(hn/2)Dn→ ∞, as n→ ∞.

Here h is the one as defined in Lemma 7.6.1. By (7.9), (a)-(c) implies Πn(Ac
n)→ 0. We will

now proceed proving (a)-(c).

(a) Step 1

An application of the Markov inequality and (7.6) in Lemma 7.6.1 yield,

P
γ(0) (Φn > exp(−nh/2))≤ E

γ(0) (Φn)exp(nh/2)≤ exp(−nh/2).

Therefore ∑
∞
n=1 P

γ(0) (Φn > exp(−nh/2))< ∞.
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Applying Borel-Cantelli lemma, Thus, P
γ(0)(Φn > exp(−nh/2)happens infinitely often)=

0. This means that ∃n0 and a set Ω with P
γ(0)(Ω) = 0, s.t. for all n > n0, Φn(ω)< exp(−nh/2),

for all ω ∈Ωc. Since exp(−nh/2)→ 0, this means that Φn→ 0 almost surely.

Thus,

Φn→ 0 a.s. (7.10)

(b) Step 2

We have

E
γ(0)((1−Φn)Nn) =

∫
(1−Φn)

∫
Ac

n

pγ(yn)

p
γ(0)(yn)

πn(γ)p
γ(0)(yn)

=
∫

Ac
n

∫
(1−Φn)pγ(yn)πn(γ)

=
∫

Ac
n

Eγ(1−Φn)πn(γ)

≤ sup
γ∈Ac

n

Eγ(1−ΦnΠ(Ac
n)

≤ sup
γ∈Ac

n

Eγ(1−Φn)≤ exp(−nh)≤ exp(−nh/2).

Consider the set Gn,h,2 = {(1−Φn)Nn exp(nh/2)> exp(−nh/4)}. The above inequality implies

that ∑
∞
n=1 P

γ(0)(Gn,h,2)<∞. Again since h is fixed, applying Borel-Cantelli lemma P
γ(0)(limsupn→∞Gn,h,2)=

0. Using the definition of limsup of the sets Gn,h,2 [85], P
γ(0)(Gn,h,2 happens infinitely often) = 0.

Thus, P
γ(0)((1−Φn)Nn exp(nh/2) > exp(−nh/4) happens infinitely often) = 0. Let Ω2 be the

set s.t. P
γ(0)(Ω)= 0 and (1−Φn(ω))Nn exp(nh/2)> exp(−nh/4)happens infinitely often for all

ω∈Ω2. This means that ∃n0,2 s.t. for all n> n0,2, (1−Φn(ω))Nn exp(nh/2)< exp(−nh/4), for

all ω ∈Ωc
2. Since exp(−nh/4)→ 0, this means that exp(nh/2)(1−Φn)Nn→ 0 almost surely.
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exp(nh/2)(1−Φn)Nn→ 0 a.s.. (7.11)

(c) Step 3

∫ pγ(yn)

p
γ(0)(yn)

π(γ) =
∫

exp
(

∇w
γ(0),n(yn)

′(γ− γ
(0))+Cyn,n(γ)

)
π(γ)

≥
∫

exp
(
−||∇w

γ(0),n(yn)||∞||γ− γ
(0)||2−

n
8
||γ− γ

(0)||22
)

π(γ)

≥
∫

exp
(
−2
√

nqn||γ− γ
(0)||2−

n
8
||γ− γ

(0)||22
)

π(γ)

≥ exp
(
−2
√

nqn
η1

nρ/2 −
nη2

1
8nρ

)
Π

(
||γ− γ

(0)||2 <
η1

nρ/2

)
,

where ρ is the one defined in the statement of the theorem and the inequality in the second

line follows from the Taylor series expansion after taking into account that ∇2z(·) ≤ 1/4 (z(·)

defined in (7.4)), which is true as d2

d f 2 log
(
1+ e f

)
= e f

(1+e f )2 ≤ 1/4. The inequality in the third

line follows from the fact that yn ∈ En.

First, observe that, given all the hierarchical parameters, the Bayesian network lasso

prior distribution on γ can be written as γ = W + γ2, where γ2 follows the ordinary Bayesian

lasso shrinkage prior. With this observation, one can see

Π

(
||γ− γ

(0)||2 <
η1

nρ/2

)
≥Π

(
||γ2− γ

(0)
2 ||2 <

η1

2nρ/2

)
Π

(
||W −W (0)||2 <

η1

2nρ/2

)
,

where W and W (0) are as defined in Lemma 7.6.2. We will show sequentially

(i) − logΠ

(
||W −W (0)||2 < η1

2nρ/2

)
= o(n) and

(ii) − log
{

Π

(
||γ2− γ

(0)
2 ||2 <

η1
2nρ/2

)}
= o(n).

(i) Note that, with R (dimensions of the latent variables) and ∆ (probability of a node being
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influential) as defined before we obtain,

Π(||W −W (0)||2 <
η1

2nρ/2 )≥Π(||uk−u(0)k ||2 ≤ υn, ∀ k = 1, ..,Vn)

≥ E
[
Π(||uk−u(0)k ||2 ≤ υn, ∀ k = 1, ..,Vn|∆)

]
≥ E

[
Vn

∏
k=1

{
exp
(
−1

2
u(0)

′

k u(0)k

)
Π(||uk||2 ≤ υn|∆)

}]
, (7.12)

where the first inequality follows from Lemma 7.6.2 by replacing η1 with η1
2nρ/2 with a slight

abuse of notation, and υn is defined accordingly. The last inequality follows from the An-

derson’s Lemma. We will now make use of the fact that
∫ a
−a exp(−x2/2)dx ≥ exp(−a2)2a to

conclude

Π(||uk||2 ≤ υn|∆)≥
R

∏
r=1

Π

(
|uk,r| ≤

υn

R
|∆
)
=

R

∏
r=1

(
(1−∆)+

∆√
2π

∫
υn/R

−υn/R
exp(−x2/2)

)
≥

R

∏
r=1

(
(1−∆)+

∆√
2π

exp(−υ
2
n/R2)

2υn

R

)
≥
[
(1−∆)+

∆√
2π

exp(−υ
2
n/R2)

2υn

R

]R

.

Vn

∏
k=1

Π(||uk||2 ≤ υn)≥ E
[
(1−∆)+

∆√
2π

exp(−υ
2
n/R2)

2υn

R

]RVn

= E

[
RVn

∑
h1=1

(
RVn

h1

)
(1−∆)h1∆

RVn−h1

(
2υn

R

)RVn−h1

exp
(
−(RVn−h1)υ

2
n/R2)]

≥
RVn

∑
h1=1

(
RVn

h1

)
Beta(RVn−h1 +1,h1 +1)

(
2υn

R

)RVn−h1

exp
(
−(RVn−h1)υ

2
n/R2)

≥
RVn

∑
h1=1

(RVn)!
h1!(RVn−h1)!

h1!(RVn−h1)!
(RVn +1)!(

2υn

R

)RVn−h1

exp
(
−(RVn−h1)υ

2
n/R2)

≥ RVn

RVn +1

(
2υn

R

)RVn

exp(−Vnυ
2
n/R).
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Where the last inequality follows from Lemma 7.6.2 by considering the fact that,

υn = min
k,l

−[||u(0)k ||+||u
(0)
l ||]+

√
[||u(0)k ||+||u

(0)
l ||]2+2η1/nρ/2

2 ≤
√

η1√
2nρ/4 . Hence, 0 < 2υn

R < 1 for large n. It

now follows from (7.12) that

− logΠ

(
||W −W (0)||2 <

η1

2nρ/2

)
≤

Vn

∑
k=1

u(0)
′

k u(0)k
2

+
Vnη1

2Rnρ/2 − (RVn) log
(

2
√

η1√
2Rnρ/4

)
+ log(RVn +1)

− log(RVn) = o(n),

by the assumptions (A) and (B). This proves (i).

We will now prove (ii). Let S 0 = { j : γ
(0)
2, j 6= 0}. Define s as the vector of upper

triangular part of the matrix with (k, l)th entry sk,l . It follows that

Π

(
||γ2− γ

(0)
2 ||2 <

η1

2nρ/2

)
≥Π

(
|γ2, j− γ

(0)
2, j |<

η1

2
√

qnnρ/2 , j ∈ S 0
)

Π

(
∑
j 6∈S 0

|γ2, j|2 <
(qn− s0

2,n)η
2
1

4qnnρ

)
.

(7.13)

We will lower bound two components of the product in (7.13) individually. By Chebyshev’s

inequality

Π

(
∑
j 6∈S 0

|γ2, j|2 <
(qn− s0

2,n)η
2
1

4qnnρ

)
≥

(
1−

E[∑ j 6∈S 0 |γ2, j|2]4qnnρ

(qn− s0
2,n)η

2
1

)

=

(
1− 2θnqnnρ

η2
1

)
. (7.14)

Π

(
|γ2, j− γ

(0)
2, j |<

η1

2
√

qnnρ/2 , j ∈ S 0
)
= E

[
Π

(
|γ2, j− γ

(0)
2, j |<

η1

2
√

qnnρ/2 , j ∈ S 0|sS 0

)]
= E

[
∏
j∈S 0

Π

(
|γ2, j− γ

(0)
2, j |<

η1

2
√

qnnρ/2 |sS 0

)]
.
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Using the fact that
∫ b

a e−x2/2dx≥ e−(a
2+b2)/2(b−a), one obtains

∏
j∈S 0

Π

(
|γ2, j− γ

(0)
2, j |<

η1

2
√

qnnρ/2 |sS 0

)
≥ ∏

j∈S 0


 η1√

2qnnρπs2
j

exp

(
−
|γ0

2, j|2 +η2
1/(4qnnρ)

s2
j

) .

Thus

Π

(
|γ2, j− γ

(0)
2, j |<

η1

2
√

qnnρ/2 , j ∈ S 0
)

≥ E

∏
j∈S 0


 η1√

2qnnρπs2
j

exp

(
−
|γ0

2, j|2 +η2
1/(4qnnρ)

s2
j

)


≥
(

η1θn√
2qnnρπ

)s0
2,n

∏
j∈S 0

∫
s j

 1√
s2

j

exp

(
−
|γ0

2, j|2 +η2
1/(4qnnρ)

s2
j

−
θns2

j

2

)
ds2

j

 .

Use the change of variable 1
s2

j
= z j and the normalizing constant from the inverse Gaussian

density to deduce

∫
s j

 1√
s2

j

exp

(
−
|γ0

2, j|2 +η2
1/(4qnnρ)

s2
j

−
θns2

j

2

)
ds2

j


=

∫
z j

 1√
z3

j

exp
(
−(|γ0

2, j|2 +η
2
1/(4qnnρ)z j−

θn

2z j

)
dz j


=

√(
2π

θn

)
exp

(
−θn

√
2
(
|γ0

2, j|2 +η2
1/(4qnnρ)

))
.

Therefore,

Π

(
|γ2, j− γ

(0)
2, j |<

η1

2
√

qnnρ/2 , j ∈ S 0
)
≥
(

η1
√

θn√
qnnρ

)s0
2,n

exp

(
−θn ∑

j∈S 0

√
2
(
|γ0

2, j|2 +η2
1/(4qnnρ)

))
.

(7.15)

Combining results from (7.14) and (7.15)

Π

(
||γ2− γ

(0)
2 ||2 <

η1

2nρ/2

)
≥
(

η1
√

θn√
qnnρ

)s0
2,n

exp

(
−θn ∑

j∈S 0

√
2
(
|γ0

2, j|2 +η2
1/(4qnnρ)

))
(

1− 2θnqnnρ/2

η2
1

)
.
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Referring to Assumption (F),

− logΠ

(
||γ2− γ

(0)
2 ||2 <

η1

2nρ/2

)
≤ s0

2,n[η+ log(qn)+(3ρ/4) log(n)+ log(log(n))/2]

+

√
2
(
|γ0

2, j|2 +η2
1/(4qnnρ)

)
qnnρ/2 log(n)

− log
(

1− 2
η2 log(n)

)
= o(n), (7.16)

under assumptions (B)-(F).

Finally,

− log(Dn)≤ 2
√

nqn
η1

nρ/2 +
nη2

8nρ
− logΠ

(
||γ− γ

(0)||2 <
η1

nρ/2

)
= 2η

√
qnn(1−ρ)/2 +

η2
1

8
n1−ρ− logΠ

(
||γ− γ

(0)||2 <
η1

nρ/2

)
.

Using (7.16), the fact that (1−ρ)/2 ∈ (−1/2,0) and assumption (B), we obtain − log(Dn) =

o(n). Thus (c) follows.

7.7 Appendix G

This section provides full conditionals for all the parameters in the Nonparametric

Bayesian network regression described in Chapter 4.

Let xi = (ai,1,2,ai,1,3, ...,ai,1,V ,ai,2,3,ai,2,4, ...,ai,2,V , ....,ai,V−1,V )
′ be of dimension q× 1, where

q= V×(V−1)
2 . Assume y= (y1, ...,yn)

′ ∈Rn and X = (x1 : · · · : xn)
′ is an n×q matrix. Further, as-

sume W d = (u′1,dΛdu2,d , ...,u1,d′ΛduV,d , ....,u′(V−1),dΛduV,d)
′, Dd = diag(s1,2,d , ...,sV−1,V,d) and

γd = (γ1,2,d , ...,γV−1,V,d)
′.
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With n data points, the hierarchical model is written as

yi |(zi = d)∼ N(µd +Xγd ,τ
2I); d = 1, ...,H; i = 1, ...,N

γd ∼ N(W d ,τ
2Dd), π(τ2) ∝

1
τ2 , µd ∼ N(0,1), uk,d |ξk,d = 1∼ N(uk,d |0,Qd), uk,d |ξk,d = 0∼ δ0,

sk,l,d ∼ Exp(θ2
d/2), θ

2
d ∼ Gamma(ζ, ι), Qd ∼ IW (S,ν), ∆d ∼ Beta(a,b),

ξk,d ∼ Ber(∆d), λr,d ∼ Ber(πr,d), πr,d ∼ Beta(1,rη), η > 1, P(zi = d) = ωd

ω1 = v∗1, ω2 = v∗2(1− v∗1), ..,ωH−1 = v∗H−1

H−2

∏
l=1

(1− v∗l ), ωH =
H−1

∏
l=1

(1− v∗l ),

v∗l ∼ Beta(1−α1,α2 + lα1), l = 1, ..,H−1; α1 ∼U(0,1), α2 ∼ Gamma(aα,bα).

The model computation proceeds using the popular Markov Chain Monte Carlo algorithm with

the full conditional distributions of parameters are given as following:

• µd |− ∼ N
(

1Ed
′(yEd

−XEd γd)

1Ed
′1Ed

, τ2

1Ed
′1Ed

)

• γd |− ∼ N(µγd | ·,Σγd | ·), where µγd | · = (X ′Ed
XEd +D−1

d )
−1
(X ′Ed

(yEd
− µd1Ed ) + D−1

d W d)

and Σγd | · = τ2(X ′Ed
XEd +D−1

d )
−1

• τ2 |− ∼ IG
[
(N

2 + V (V−1)H
4 ),∑H

d=1
||(yEd

−µd1Ed−XEd γd)||2+(γd−W d)
′D−1

d (γd−W d)

2

]

• sk,l,d |−∼GIG
[

1
2 ,

(γk,l,d−u′k,dΛdul,d)
2

τ2 ,θ2
d

]
, where GIG denotes the generalized inverse Gaus-

sian distribution.

• θ2
d |− ∼ Gamma

[(
ζ+ V (V−1)

2

)
,
(
ι+∑k<l

sk,l,d
2

)]
• uk,d |− ∼ wuk,d δ0(uk,d)+(1−wuk,d )N(uk,d |muk,d ,Σuk,d ), where

U∗k,d = (u1,d : · · · : uk−1,d : uk+1,d : · · · : uV,d)
′Λd ,
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bHk,d = diag(s1,k,d , ...,sk−1,k,d ,sk,k+1,d , ...,sk,V,d),

γk,d = (γ1,k,d , ...,γk−1,k,d ,γk,k+1,d , ...,γk,V,d), and

Σuk,d =
(

U∗
′

h,dH−1
k,dU∗k,d/τ

2 +Q−1
d

)−1
, muk,d = Σuk,dU

∗′
k,dH−1

k,dγk,d/τ
2

wuk,d =
(1−∆d)N(γk,d |0,τ2Hk,d)

(1−∆d)N(γk,d |0,τ2Hk,d)+∆dN(γk,d |0,τ2Hk,d +U∗k,dQdU∗′k,d)

• ξk,d |− ∼ Ber(1−wuk,d )

• ∆d |− ∼ Beta
[
(a+∑

V
k=1 ξk,d),(b+∑

V
k=1(1−ξk,d))

]
.

• Qd |− ∼ IW [(S+∑k:uk,d 6=0 uk,dΛdu′k,d),(ν+{#k : uk,d 6= 0})].

• λr,d |− ∼ Ber(pλr,d ), where pλr,d =
πr,dN(γd |W 1,d ,τ

2Dd)

πr,dN(γd |W 1,d ,τ2Dd)+(1−πr,d)N(γd |W 0,d ,τ2Dd)
. Here

W 1,d = (u′1,dΛ1,du2,d , ...,u′1,dΛ1,duV,d , ....,u′V−1,dΛ1,duV,d)
′,

W 0,d = (u′1,dΛ0,du2,d , ...,u′1,dΛ0,duV,d , ....,u′V−1,dΛ0,duV,d)
′,

Λ1,d = diag(λ1,d , ..,λr−1,d ,1,λr+1,d , ..,λR,d),

Λ0,d = diag(λ1,d , ..,λr−1,d ,0,λr+1,d , ..,λR,d), for r = 1, ..,R.

• πr,d |− ∼ Beta(λr,d +1,1−λr,d + rη), for r = 1, ..,R.

• P(zi = d |−) = ωdN(yi |x′iγd+µd ,τ
2)

∑
H
d′=1 ωd′N(yi |x′iγd′+µd′ ,τ

2)
, for d = 1, ..,H. v∗l | − Beta(1−α1 + #{i : zi =

l},α2 + lα1 +∑
H
ss=l+1 #{i : zi = ss}), l = 1, ...,H−1,

ω1 = v∗1, ω2 = v∗2(1− v∗1), ..,ωH−1 = v∗H−1 ∏
H−2
l=1 (1− v∗l ), ωH = ∏

H−1
l=1 (1− v∗l )

• Parameters α1 and α2 are updated using Metropolis Hastings algorithm.
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