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Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-
Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A
limitation of the numerical strategies is that it is conceptually difficult to incorporate these types
of models into molecular mechanics simulations, mainly because of the issue in assigning atomic
forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems
obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analyt-
ical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formu-
lations with those published in the literature. We showed that the formulations derived from the
Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-
Boltzmann systems with a finite number of singularities such as atomic point charges and the exis-
tence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819471]

I. INTRODUCTION

Solvation interaction is one of the essential determi-
nants of the structures and functions in proteins and nu-
cleic acids, and is crucial in their accurate modeling.1–15

Due to the high computational overhead in the explicit treat-
ments of solvent molecules, continuum models of solvation
interactions, specifically the electrostatic solvation modeling
that is based upon the Poisson-Boltzmann equation (PBE),
are widely used in the studies of biomolecules.1–15 Indeed
continuum electrostatics represents an effective and physi-
cally sound approach that makes it possible to account for
a number of phenomena involving solvent electrostatic ef-
fects on the functional analyses of biomolecules.1–15 These
efforts have been facilitated by numerical solutions of the
PBE that can be obtained routinely for biomolecules and their
complexes.3, 16–21 Among the numerical solution methods,
finite-difference method (FDM),22–34 finite-element method
(FEM),35–43 and boundary-element method (BEM)44–59 are
mostly used.

A disadvantage of the numerical continuum electrostatics
methods is that it is conceptually difficult to incorporate them
into molecular mechanics programs, mainly because of the
problem of assigning forces related to the dielectric boundary
(“dielectric stress”) to individual atoms.30, 35, 60–68 Other prob-
lems are the convergence of the energy and forces with respect
to the resolution of the solute-solvent boundary and charge
representation.69–71 Thus in most practical applications, the
PBE is only solved for a few fixed conformations of a solute
or solute complex. This limits the application of PBE in more
elaborative modeling of biomolecules.

Many efforts have been invested to develop methods
to compute electrostatic forces.30, 35, 49, 60–68, 72–79 The “virtual
work” method is apparently the defining benchmark for all

analytical methods. In the “virtual work” method the electro-
static energy G is recalculated for a small displacement d of
each atom in the x, y, and z directions, respectively. The nu-
merical force is then −�G/d for each direction. The limita-
tion of this approach, however, is that at least four full numer-
ical calculations are required in order to calculate each force
vector. Apparently, this is only realistic for molecules treated
as rigid bodies. In addition, the numerical forces, defined as
the negative finite-difference derivatives, are very difficult to
converge when the electrostatic energies are computed numer-
ically due to the cancellation of significant digits in the sub-
traction of two large numbers. Thus analytical calculation of
solvation forces is necessary for practical applications.

For the classical abrupt-transitioned two-dielectric mod-
els, multiple strategies have been proposed by Davis and
McCammon,60 Che et al.,65 Li et al.,67 and most recently
Cai et al.68 These formulations were derived following dif-
ferent strategies and were found to be consistent as to be dis-
cussed below. For the smooth-transitioned dielectric models,
we have the ground-breaking strategy by Gilson et al.64 Sub-
sequent works by Im et al.30 and Cai et al.66 were shown to be
consistent with that of Gilson et al.,64 though different strate-
gies were proposed to enhance numerical stability and con-
vergence in the later works. The numerical methods derived
from these formulations are mostly adapted for the numerical
solutions by the FDM. Another promising approach to incor-
porate the PBE electrostatics into molecular mechanics is the
BEM. The force calculation in a BEM calculation was first
described by Zauhar.62 Cortis et al.35 also tried to compute
the solvation force for their FEM calculations, leading to the
same formulation as that of Zauhar.62

These pioneer efforts in calculating the solvation forces
for the numerical PBE methods laid the foundation to develop
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more robust methods that eventually will lead to routine ap-
plication of the numerical PBE methods to biomolecular sim-
ulations. Interestingly, there is yet no theoretical analysis on
how to derive the Maxwell stress tensor, a crucial step in for-
mulating the analytical solvation forces, even if the concept
has been used in the solvation force derivations in the past.
This study presents a theoretical framework of deriving the
Maxwell stress tensor based on the full nonlinear PBE. In ad-
dition, it offers a systematic derivation of the formulations of
electrostatic forces for systems with and without singularities
that exist as point charges, abrupt-transitioned dielectric in-
terface, and ionic interface. The theoretical study further dis-
cusses the relations between the Maxwell stress tensor-based
formulations and the existing methods in the literature, and
highlights the benefits of various numerical strategies pro-
posed in the literature.

II. DERIVATION OF MAXWELL STRESS TENSOR FOR
THE FULL POISSON-BOLTZMANN SYSTEMS

In the following we focus on the full PBE for systems
with continuum mobile ions

∇•(ε∇ϕ) = −4πρf − 4π
∑

i

qicie
−qiϕ/kBT λ,

(1)

where ε is the dielectric constant, ϕ is the potential, ρ f is the
fixed charge distribution, qi is the charge of ion type i, ci is
the bulk number density of ion type i, λ is the ion exclusion
function, kB is the Boltzmann constant, and T is the absolute
temperature. Introducing the electric displacement vector D
= −ε∇ϕ, we can rewrite Eq. (1) as

∇•D = 4πρf + 4π
∑

i

qicie
−qiϕ/kBT λ. (2)

The total electrostatic free energy of a Poisson-Boltzmann
system can then be formulated as76

G =
∫ (

ρf ϕ − 1

8π
D•E − ��λ

)
dv,

(3)
�� = kBT

∑
i

ci(e
−qiϕ/kBT − 1),

where E is the electric field.
In classical electrostatics, electrostatic forces can be com-

puted via the variational approach, for example, as in Ref. 64,
or via the stress tensor approach.80 Though both strategies are
not trivial to follow, here we follow the strategy based on the
Maxwell stress tensor. The advantage of this strategy is that
it is straightforward once the Maxwell stress tensor is defined
for the problem at hand. As will be shown below, no matter
what strategy is followed, the general formulation for total
electrostatic forces is the same, at least for solution systems
without any singularity.

Given the Maxwell stress tensor in the form of a rank-two
tensor

P =

⎡
⎢⎣

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

⎤
⎥⎦ , (4)

we first proceed to compute the nine components Tij from the
electrostatic free energy for the ionic solution system obeying
the full PBE (Eq. (1)).

Following Landau’s notation,80 with no loss of generality,
we consider a thin and small disk of dielectric with small area
A and thickness h. Here h � √

A. Given the small dimension
of the volume element, we can assume its uniform composi-
tion, density, temperature, and electrostatic properties, such as
ε and λ. Furthermore, charge density ρ f, potential ϕ, and elec-
tric field E can all be assumed to be smooth variables within
the volume element so that the electrostatic free energy den-
sity g is also smoothly changed.

Consider the upper surface of the disk with area A and
normal vector n. The definition of stress tensor shows that
force acting upon the upper surface (by the volume element)
can be written as −∫

P • ndA, where −P • n = −(Txjnj,
Tyjnj, Tzjnj)T is simply the pressure acts upon the upper sur-
face. Here Einstein’s summation convention is used, i.e., Tijnj

= ∑
j

Tijnj . Our goal is to impose a virtual deformation of the

thin disk along a small virtual displacement s (s � h) whose
direction is arbitrary to compute the associated pressure via
the virtual displacement method. Suppose the deformation
of the disk is homogeneous so that the surface area of the
deformed thin disk remains the same, A. Homogeneity also
means that if a disk layer is located at z from the bottom sur-
face, its displacement is z

h
s after the deformation. See Fig. 1

before and after the deformation.

FIG. 1. Deformation of the disk volume element in deriving the Maxwell
stress tensor.



094106-3 Xiao et al. J. Chem. Phys. 139, 094106 (2013)

We further assume that the virtual deformation process is
isothermal to focus on the electrostatic properties. Upon the
virtual deformation the volume element does work −TijnjAsi

towards its environment. Again the Einstein’s summation con-
vention is used here: TijnjAsi = ∑

i

∑
j

TijnjAsi. On the other

hand, the work done by the volume element is equal to the
decrease in electrostatic free energy contained in the volume
element. Introducing g to denote the average electrostatic free
energy density (g), we can write the total electrostatic free en-
ergy within the volume element as gAh. Thus

−TijnjAsi = −δ (gAh) = −Aδ (g) h − Agδh. (5)

Removing identical terms from both sides,

Tijnj si = hδ (g) + gδh. (6)

According to Eq. (3), g = ρf ϕ − D•E
8π

− ��λ,76 varia-
tion of the electrostatic free energy density anywhere within
the volume element gives

δg = ϕδρf − 1

8π
E2δε − kBT

N∑
i

[(e− qi ϕ

kB T − 1)ci]δλ + ρf δϕ

− 1

4π
D•δE + λ

N∑
i

qicie
− qi ϕ

kB T δϕ. (7)

The change of ρ f is related to the change in the thickness of
the thin disk by δρf = − ρf δh

h
due to the assumption of the

homogeneous deformation.
The variation in E is computed based on the following

approximation on the potential distribution. The homogenous
deformation process implies that the potential distribution in
each disk layer remains the same. This is only true in a charge-
free parallel capacity field80 and is an approximation since the
change in the charge density apparently leads to a change in
potential if the PBE is satisfied. However, as shown in the
Appendix, Subsections A 1 and A 3, the change in potential
is a higher order small value compared with other changes if
the PBE is preserved.

Thus at a given point (r) within a disk layer there ap-
pears to be a point originally at r − u within another disk
layer. Here u is the vector of the displacement of the disk
layer. This observation leads to the following relation between
the potential and field as δϕ = ϕ(r − u) − ϕ(r) = −u•∇ϕ

= u•E, where E is the electric field in the undeformed vol-
ume element.80 Given E �= 0 and u = zs

h
due to the uniform

deformation, we have

δϕ = z (s•E)

h
, (8)

where z is the distance of the layer from the lower disk sur-
face. Taking the derivative of δφ over z gives

δE = n (s•E)

h
. (9)

Finally ε and λ are the variables that only depend on the
position and do not change upon the variation of ρ f and E so
that they do not cause any change in the free energy g at any
given position within the volume element.

With all above preparations and also given that δϕ is a
higher order small value compared to δE and δρ f as shown
in the Appendix, Subsections A 2 and A 3, Eq. (7) can be
simplified as

δg = ϕδρf − 1

4π
D•δE, (10)

after eliminating all the terms with δε, δλ, and δϕ because
they either do not or only make higher order small changes
when comparing with the variations in δρ f and δE. Note
too that ρ f is the free-charge density. In contrast, variation
of the classical electrostatics free energy density, with the
same assumptions, leads to δg = 1

2ϕδρ = 1
4π

D•δE = ϕδρ

− 1
4π

D•δE, with ρ being the total charge density. Hence, if
the classical electrostatics is used to model the full PBE solu-
tion system, ρ should include both the free (atomic) charges
and the mobile ion charges. Thus the variation of energy
of Eq. (10) is different from the standard statement in the
classical electrostatics. The extra term is responsible for the
entropy change from the ionic concentration change upon
polarization.81

Substituting (9) in (10), we have

δg = ϕδρf − 1

4π

(D•n) (s•E)

h
. (11)

Given g → g and δ(g) → δg in the limit for the dimension
of the volume element going to zero, and δρf = − ρf δh

h
, the

Maxwell stress tensor element in Eq. (6) can be computed as

Tijnj si = 1

4π
(D•n)(E•s) − ρf ϕ (s•n) + g (s•n)

=
(

εEiEj

4π
− 1

8π
εE2δij − ��λδij

)
nj si . (12)

Here we have also used the fact that δh = s•n. In summary

Tij = 1

4π
εEiEj − 1

8π
εE2δij − ��λδij , (13)

where �� = kBT
∑
i

ci(e−qiϕ/kBT − 1). Note also that the

tensor is symmetric, i.e., Tij = Tji.

III. COMPUTATION OF ELECTROSTATIC
FORCES—GENERAL METHOD

The force can be computed as P•nda for any area ele-
ment da with a normal direction of n. Since we are dealing
with an ideal classical fluid, the natural first step is the com-
putation of force density fdv for a volume element dv. This is
readily available as

∮
P•n da once P is known, namely, the net

force felt by the volume element is the total force acting upon
it on its enclosing surface. This procedure suggests that the
concept of divergence of the stress tensor can be introduced,

which is lim
dv→0

∮
P•n da

dv
, as is the case for the divergence of a

vector field. It is straightforward to show that the divergence
theorem also holds for the stress tensor80∫

∇•Pdv =
∮

P•n da. (14)

There are two consequences in Eq. (14) concerning us
here. (1) The force density is simply the divergence of the
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stress tensor, i.e.,

f = ∇•P. (15)

(2) Total force can be computed either by the differential
form, i.e., through the computation of force density [Eq. (15)]
followed by volume integration, or by the integral form, i.e.,
through the surface integral of the stress tensor, and they are
consistent according to Eq. (14), i.e., when the divergence the-
orem holds. Since the divergence is undefined in regions with
discontinuity, the differential form can only be used in regions
without singularity, i.e., without jump of dielectric constant
and without singular charge sources (for example, the point
charges represented as delta functions in the PB equation).
However, for systems/regions with singularity, only the inte-
gral form can be applied. As a side note, the variational ap-
proach is also limited because it only holds in regions without
singularity.64 In the following, we shall first start our deriva-
tion on systems without any singularity.

IV. TOTAL ELECTROSTATIC FORCES FOR SYSTEMS
WITHOUT SINGULARITY

Based on the general discussion in Sec. III, the force den-
sity is simply the divergence of the Maxwell stress tensor.80

The electrostatic force density f can then be expressed as

f = ρf E − 1

8π
E2∇ε − ��∇λ, (16)

with a simple derivation shown in the Appendix,
Subsection A 4. The first term represents the free-charge
force, the second term represents the bound-charge force
due to the variation in dielectric constant, and the third term
represents the pressure due to the presence of mobile ions.
This is formally consistent with the formulation derived
from the variational strategy by Gilson et al. from the total
electrostatic free energy (Eq. (3)).64 However, it is worth
noting the different condition from the variational approach
by Gilson et al. that requires the smoothness in charge
density, potential, and electric field throughout the solvated
system of interest: the differential approach based on the
stress tensor only requires the smoothness in charge density,
potential, and electric field within a local region where the
divergence operator is to be applied.

Cai et al. showed that the second term, termed dielectric
boundary force, can be reformulated with the explicit pres-
ence of the bound polarization charge66

fdiel
bnd = − 1

8π
|E|2 ∇ε = 1

2
ρpol |D|2

D•n
n, (17)

where ρpol is the polarized charge density, n is the normal di-
rection of the boundary surface, and D is the electric displace-
ment within the polarized area. Their numerical tests on real-
istic biomolecules show that the atomic solvation forces are
more stable and converge faster using the so-called charge-
based method. Of course both formulations are consistent
with the “virtual work” principle as they demonstrated in the
tested systems.

FIG. 2. The force on a small volume in the continuum solute.

V. TOTAL ELECTROSTATIC FORCES IN SYSTEMS
WITH SINGULARITY

If singularity exists in a solution system, Eq. (16) cannot
be used to compute electrostatic forces. We shall turn to the
integral form, which is more fundamental and does not require
the divergence of a singular Maxwell stress tensor. In general,
we consider four situations, i.e., the solute region without sin-
gularity, the solute region with singularity, the dielectric inter-
face region, and finally the mobile ion term at the Stern layer.

A. Solute region with and without singularity

To obtain a detailed force distribution on each atom of the
solute molecule, we first divide the solute volume into small
rectangular elements, �v (see Fig. 2). Apparently any rect-
angular volume element is much smaller than each atom, but
it is still an order-of-magnitude larger than the disk-like ele-
ment shown in Fig. 1 utilized to derive the expression of the
Maxwell stress tensor. As shown in the Appendix, Subsec-
tions A 5, for a solute region without singularity, the electro-
static force for each volume element �v is

F = ρf E. (18)

For a solute volume element with singularity, we further
divide the volume element into a smaller spherical region con-
taining the singular charge and the rest where there is no sin-
gular charge (see Fig. 3). We can then obtain the analytical

FIG. 3. Singular charge enclosed by an infinitely small spherical volume S′
with radius δ.
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expression for the electrostatic force in the small rectangular
volume element based on the Maxwell stress tensor. As shown
and summarized in the Appendix, Subsections A 6, the force
density can then be universally written as

f = ρf E (19)

in the solute region whether the charge density is singular or
not.

B. The dielectric interface region

Cai et al. utilized the integral formulation based on the
Maxwell stress to compute the force in the dielectric interface
region for the piece-wise constant classical dielectric models
of biomolecules.68 Their derivation shows that

fdiel
bnd = (Po − Pi)•n = 1

4π

[(
εoE

2
on − 1

2
εoE2

o

)

−
(

εiE
2
in − 1

2
εiE2

i

)]
n, (20)

where n is the outward-directed normal unit vector of the
molecular surface, and Pi and Po are the stress tensors on the
surfaces parallel to the dielectric interface inside and outside
of the solute. Eo, Ei, respectively, are the electric fields on the
two sides of the solute-solvent interface; and Ein, Eon, respec-
tively, are the electric field components on the n directions of
Eo, Ei.

They further pointed out that a charge-based strategy
could also be proposed for the piece-wise constant dielectric
treatment. Briefly the dielectric boundary force can be written
as

fdiel
bnd = 1

2
σpol εiEi•Eo

Eon
n = 1

2
σpol Di•Do

Don
n, (21)

where σ pol is the bound polarized surface charge density, and
Do and Di are the corresponding electric displacements of the
solvent and solute side, respectively.

An interesting observation is the similarity of Eq. (21)
and the charge-based approach for the smooth-transition di-
electric treatment Eq. (17).66 Of course, volume density and
integration should be used in the smooth-transition dielec-
tric model because there is no longer a sharp interface be-
tween the solvent and solute. However, the basic operation is
still the same where the polarization charges and electric dis-
placements are needed in the region of non-uniform dielectric
constant.

The numerical tests show that the charge-based formula-
tion offers much better consistency between the results at all
grid spacings, as demonstrated by the fact that the slope is al-
ways very close to 1 and the deviation from analytical values
is smaller than the method as in Eq. (20). Furthermore, the
numerical uncertainties of the atomic forces by the charge-
based method are also smaller, suggesting less significant grid
dependence. The mean total electrostatic force by the charge-
based formulation is also closer to zero, but its fluctuation is
on the same order as that by the method as in Eq. (20).

C. The ionic interface region

At the Stern Layer, mobile ions exist only on one side
though the dielectric constants on both sides are the same.
The classical method models the Stern layer with a step func-
tion of λ that changes from 0 to 1. Given the availability of
Maxwell stress tension, the boundary force caused by the ex-
cess osmotic pressure is the same as that caused by the jump
of dielectric constant. We have

f ion
bnd = (Po − Pi)•n = −∇�, (22)

where Po, Pi are the corresponding stress tensors on outside
and inside of the Stern layer from Eq. (13). Here we have used
the notation that λ is 1 or 0 on the two sides of the layer. The
simplicity of the derivation demonstrates the clean physics in
the Maxwell stress tensor approach.

VI. CONNECTION AND COMPARISON WITH THE
STRATEGY OF GILSON ET AL.

As discussed above, the field-based methods and the
charge-based methods in the computation of dielectric bound-
ary forces are mathematically consistent with the original
method proposed by Gilson et al. Furthermore, by tak-
ing the limit of infinite thin transition zone in the smooth-
transitioned dielectric model, the smooth-transitioned and
abrupt-transitioned formulations can be shown to be consis-
tent with each other mathematically, implying a high level of
internal consistency between the integral and differential ap-
proaches based on the Maxwell stress tensor.

We expect all algorithms become numerically indistin-
guishable in the limit of zero grid spacing in the finite-
difference method when the harmonic averaging method is
used to smooth the transition between the solute and solvent
dielectrics (chosen to be 1 and 80, respectively, in this test).
Here we used a poly-alanine alpha-helix (eight residues) as
an example to demonstrate their consistency numerically at
the tested fine grid spacing of 1/16 Å. The finite difference
box was set to be 1.5 times the dimension of the model he-
lix due to the extremely large memory usage requirement of
the finite-grid spacing. No electrostatic focusing was applied
to maintain the highest possible quality in the numerical so-
lution. The convergence of the numerical solver is reached
when the relative residue is less than 10−9. The default Am-
ber charges and continuum radii were used in the numerical
calculations.82

The correlations among the four methods are shown in
Fig. 4. It can be seen that the linear correlation coefficients
between the other three methods and the method of Gilson
et al. are very high. Worth noting is the much higher agree-
ment between the two methods based on the same smooth-
transitioned dielectric treatment, i.e., the method of Gilson
et al. (labeled as “Smooth Field” in the figure) and the charge-
based method (labeled as “Smooth Charge”). The numerical
test demonstrates that the four methods are numerically con-
sistent, in agreement with our theoretical discussion above.
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FIG. 4. Correlations between the atomic dielectric boundary forces for a
model helix computed by the smooth field method (i.e., the method of Gilson
et al.) and those computed by the smooth charge view method, the abrupt
charge view method, and abrupt field method, respectively. Top: correlation
between the smooth charge view method and the smooth field method; re-
gression line y = −0.005 + 0.999x, r2 = 0.9999. Middle: correlation be-
tween the abrupt charge view method and the smooth field method; regres-
sion line y = −0.036 + 0.957x, r2 = 0.9989. Bottom: correlation between the
abrupt field method and the smooth field method; regression line y = −0.022
+ 0.974x, r2 = 0.9996. All computations were at the grid spacing of 1/16 Å.
Unit: kcal/(mol Å).

VII. DISCUSSION

Much community-wide effort has been devoted to the
calculation of the solvation forces in the numerical PBE
methods.1, 30, 35, 49, 60–68, 72–80 Due to the difficulty in computa-
tion of dielectric boundary forces, most of the previous reports
were focused on this aspect of the force calculation.

For the abrupt-transitioned dielectric models, Davis and
McCammon proposed a formulation by examining the inte-
gration of the Maxwell stress tensor of a Poisson system, the
dielectric boundary forces surface density was shown as60

fDBF = − 1

8π
(εo − εi) (Eo · Ei) n̂. (23)

Integration of this quantity over the surface yields the to-
tal dielectric boundary force for the molecule. The dielec-
tric boundary forces formulation of Cai et al.68 on the
abrupt-transitioned dielectric models is also derived from the
Maxwell stress tensor. It can be shown that their method is
consistent with the Davis and McCammon method: Eq. (20)
can be transformed into Eq. (23) by Davis and McCammon60

given the jump conditions.68

Che et al. revisited the dielectric boundary forces calcu-
lation through a variational strategy in the classical abrupt-
transitioned dielectric models.65 Given the assumption that
the normal surface field contributes predominantly to dielec-
tric boundary force, they showed that the dielectric boundary
force can be formulated as

fDBF = − 1

8π

(
1

εi

− 1

εo

)
|ε∇ϕ|2 n̂, (24)

where ε∇ϕ represents the continuous normal dielectric dis-
placement vector on the solute/solvent dielectric interface.
This formulation was later updated by Li et al. in their sec-
ond paper on deriving the dielectric boundary forces from the
variation of the electrostatic free energy with respect to the
location change of the dielectric boundary to67

fDBF = 1

4π

[
εo |∇ϕo · n|2 − 1

2
εo |∇ϕo|2

− εi |∇ϕi · n|2 + 1

2
εi |∇ϕi |2

]
. (25)

This formulation can be shown as consistent with Eq. (23) and
Eq. (20).

For the smooth-transitioned dielectric models, Gilson
et al. presented a ground-breaking variational approach for
the dielectric boundary forces,64 and it was further tailored
into a numerical algorithm for the FDM. Their expression for
the dielectric boundary forces can be expressed as

fDBF = − 1

8π
|E|2 ∇ε. (26)

Note this is consistent with Eq. (17) as derived by Cai
et al. based on the Maxwell stress tensor discussed above.66

Im et al. proposed a method equivalent to Eq. (26) as

fDBF =
[

1

8π
ϕ∇ ·

(
∂ε

∂r
∇ϕ

)]
n̂, (27)

where r represents the atomic coordinates.30 Apparently
both Eqs. (26) and (27) require smoothly varying dielectric



094106-7 Xiao et al. J. Chem. Phys. 139, 094106 (2013)

models since ∇ε has to be finite, i.e., ε has to be designed to
change from εi to εo sufficient smoothly for stable numerical
performance.83 This would exclude the abrupt-transitioned di-
electric models where ∇ε is infinite.

The BEM is another promising approach to incorpo-
rate the continuum electrostatics into molecular mechanics
simulations.49, 72–75, 84, 85 The dielectric boundary forces cal-
culation in the BEM using a polarization charge method was
first described by Zauhar,62 who showed that the dielectric
boundary forces can be calculated as

fDBF = −
[

2πσ 2εi + 1

8π
(εo − εi) |Eo|2

]
n̂. (28)

This expression was derived from Eq. (23). The use of sur-
face polarization charge density makes it straightforward in
the BEM, where the Poisson’s equation can be solved through
the iteration of the surface polarization charge density. Cortis
et al. also tried to compute the dielectric boundary forces via
the Maxwell stress tensor for their FEM, leading to the same
formulation as that of Zauhar.35 Of course, it is also consistent
with Eq. (21) as proposed by Cai et al.68

VIII. CONCLUSION

In this study, we addressed the theoretical issue in using
the Maxwell stress tensor to derive the electrostatic solvation
forces in systems obeying the nonlinear Poisson-Boltzmann
equation and further using the stress-tensor based methods in
formulating electrostatic solvation forces. Different from the
widely used variational approach that requires the smoothness
in charge density, potential, and electric field throughout the
solvated system of interest, the integral approach based on
the stress tensor only requires the smoothness in charge den-
sity, potential, and electric field within a local region. This is
because that the variational approach requires the variation of
the total free energy of the whole system that has to be smooth
everywhere. In contrast, the integral approach based on the
Maxwell stress tensor allows the existence of a finite number
of singularities as presented as atomic point charge sources.
It is also straightforward to handle both piece-wise constant
dielectric models. Of course the simple step-function model
of the ionic interface can also be addressed.

It is worth noting that a charge-based strategy can be
proposed to enhance the numerical behavior of numerical
forces for the FDM calculations.66, 68 An interesting observa-
tion is the similarity of the charge-based approaches between
the smooth-transitioned and the abrupt-transitioned dielectric
treatments.66, 68 Indeed, by taking the limit of infinite thin
transition zone in the smooth-transitioned dielectric model,
the two formulations can be shown to be consistent with each
other mathematically, implying a high level of internal consis-
tency between the integral and differential approaches based
on the Maxwell stress tensor. The numerical tests for both
types of dielectric models show that the charge-based formu-
lation offers much better consistency between the numerical
forces at all grid spacings.66, 68 Furthermore, the numerical
uncertainties of the atomic forces by the charge-based method
are also smaller, suggesting less significant grid dependence.
The mean total electrostatic force by the charge-based formu-

lation is also closer to zero.66, 68 These are all important for
future applications to molecular mechanics applications.

Given the summary of both the theoretical analyses and
algorithm developments, it is instructive to address the future
direction to be taken to reach the goal of routine applications
of the numerical PBE methods for molecular mechanics sim-
ulations. To further improve the numerical PBE methods, it
is important to work on both its efficiency and accuracy. Re-
garding to the accuracy of the numerical PBE methods, more
advanced numerical solvers are certainly necessary to achieve
higher accuracy than the widely used classical methods to im-
prove the convergence of numerical forces. To improve the
scalability of force calculations on more complex biomolec-
ular systems, the particle-particle particle-mesh method can
certainly be explored to achieve a good scalability of the pro-
posed algorithms.
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APPENDIX: MATHEMATICAL DETAILS

1. Derivation of δE upon the variation of the
volume element

As shown in Eq. (8)

δϕ = z (s•E)

h
. (A1)

Taking the derivative, we obtain

δE = −δ∇ϕ = −n (s•E)

h
− ∇ (s•E)

h
z. (A2)

Given that E is a smooth variable, ∇(s•E) in Eq. (A2) is well
defined and bounded. Define k = |∇(s•E)|

|s•E| . Then we have

|∇ (s•E)| = |k (s•E)| . (A3)

Since h can be arbitrarily small, it is always possible to choose
h so that k � 1

h
and

|k (s•E)| �
∣∣∣∣ (s•E)

h

∣∣∣∣ =
∣∣∣∣ (s•E) n

h

∣∣∣∣ . (A4)

The condition of z < h leads to∣∣∣∣∇ (s•E)

h
z

∣∣∣∣ < |∇ (s•E)| . (A5)

Combining Eqs. (A3)–(A5), we have∣∣∣∣∇ (s•E)

h
z

∣∣∣∣ �
∣∣∣∣ (s•E) n

h

∣∣∣∣ , (A6)

which is denoted as | ∇(s•E)
h

z| ∼ |o[ (s•E)n
h

]|, as h → 0. Here
the little o notation means lim

h→0
|o[ (s•E)n

h
]|/| (s•E)n

h
| = 0. Thus

Eq. (A2) can be written as

δE = −n (s•E)

h
+ o

[
n (s•E)

h

]
. (A7)
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2. Relative orders among δϕ, δE, and δρf upon the
variation of the volume element

We are now ready to prove that δϕ is a higher order small
value than δE, and δρ f is the same order small value as δE.
Dot production by n on both side of Eq. (A7) gives

n•δE = − (s•E)

h
+ o

[
(s•E)

h

]
. (A8)

Comparing (A8) and δϕ = z(s•E)
h

, (A1) and also noting z < h,
we have

|δϕ| < |hn • δE| ∼ |o(n • δE)| , as h → 0. (A9)

Here the little o notation means lim
h→0

|o [n • δE]| / |n • δE|
= 0. Thus δϕ is a higher order small value than δE.

Next given δh = s•n, we have

∣∣δρf
∣∣ =

∣∣∣∣ρf δh

h

∣∣∣∣ =
∣∣∣∣ρf (s•n)

h

∣∣∣∣ . (A10)

Comparison of Eqs. (A10) with (A8) shows that δρ f is a same
order small value as δE since they both contains small value s
in the numerator and small value h in the denominator while
both ρ f and E are finite.

Similarly from (A1) we have

|δϕ| =
∣∣∣∣ (s•E) z

h

∣∣∣∣ . (A11)

Since z is a small value but both ρ f and E are finite, δϕ is one
order smaller than δρ f as given in (A10).

3. Preservation of nonlinear-PB equation upon the
variation of the volume element

We have shown in (A7) that the leading term of δE is

δE = −n (s•E)

h
. (A12)

Apparently any change in the field must also satisfy the gov-
erning PB equation

∇ · εE = −4πρf − 4πρm, (A13)

where ρm = ∑
i

qicie
−qiϕ/kBT λ is the charge distribution of

the mobile ions. Indeed a potential violation of the PB equa-
tion is possible during the deformation process as discussed
in the following. However, any deviations from the PB equa-
tion are only higher order small variations than that in (A12)
and its comparable variations.

Given that ε and λ do not change at the same position,
δλ = 0 and δε = 0 during the deformation process. The PB
equation

∇ · εE = −4πρf − 4π
∑

i

qicie
−qiϕ/kBT λ (A14)

can be varied as

∇ · εδE = −4πδρf +4π
∑

i

q2
i ci/kBT e−qiϕ/kBT λδϕ (A15)

after dropping the zero variations. Since we only consider a
very small volume element with infinite small changes in all

smooth variables in the variational analysis, only the lowest
order small terms need to be retained. All higher order small
terms can be eliminated during the derivation.

After eliminating δϕ in Eq. (A15), we have

∇ · (εδE) = 4πρf δh

h
. (A16)

Substitution of Eq. (A12), we have

∇ · (εδE) = −
∂
∂n

[ε(s•E)]

h
. (A17)

Next we show that Eq. (A16) can be satisfied by
making an infinitely small adjustment of δE. Introduc-

ing ∂
∂n

[ε(s•E)] to denote the average value of the gra-
dient within the volume element, we change δE to δE

+ ∂
∂n

[ε(s•E)]
εh

z + 4πρf δh
εh

z, so that

δE = −n (s•E)

h
+

∂
∂n

[ε(s•E)]

εh
z + 4πρf δh

εh
z. (A18)

And then

∇ · εδE = −
∂
∂n

[ε(s•E)]

h
+

∂
∂n

[ε(s•E)]

h
+ 4πρf δh

h
. (A19)

Notice that ε, E are both smoothly changed and hence we
can expect that there is only a very small difference between
∂
∂n

[ε(s•E)] and ∂
∂n

[ε(s•E)]. Also given δh = s • n, so that

∣∣∣∣4πρf δh

h

∣∣∣∣ ∼
∣∣∣4πρf s•n

h

∣∣∣ ∼
∣∣∣∣∣

∂
∂n

[ε(s•E)]

h

∣∣∣∣∣
	

∣∣∣∣∣−
∂
∂n

[ε(s•E)]

h
+

∂
∂n

[ε(s•E)]

h

∣∣∣∣∣ . (A20)

Thus we can eliminate the first two terms on the right side of
Eq. (A19) and Eq. (A16) is satisfied.

Finally z < h is a very small value, so that the second term
and the third term on the right hand side of Eq. (A19) are one
order smaller compare to the first term. In summary we only
need to modify the original variation of E with a higher order
small value to preserve the PB equation. The same argument
can also be applied for derivation with δϕ as the leading small
value.

4. Derivation of the electrostatic force density

Based on the general discussion in Sec. III, the force den-
sity is simply the divergence of the Maxwell stress tensor.80

f = ∇•P = ∂

∂x
(ex•P) + ∂

∂y
(ey•P) + ∂

∂z
(ez•P). (A21)

We rewrite Eq. (13) into the following form:

Tij = 1

4π
EiDj − 1

8π
εE2δij − ��λδij , (A22)
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where �� = kBT
∑
i

ci(e−qiϕ/kBT − 1). So along the direc-

tion of ex, the force component is

fx = ∂Txx

∂x
+ ∂Txy

∂y
+ ∂Txz

∂z

= 1

4π

[
−1

2
ε

∂

∂x
E2 +

∑
i

∂ (ExDi)

∂i

]
− E2

8π

∂ε

∂x
− ��

∂λ

∂x

+
∑

j

qj cj e
−qiϕ/kBT λ

∂φ

∂x

= 1

4π

[
−

∑
i

εEi

∂Ei

∂x
+

∑
i

Di

∂Ex

∂i
+ Ex

∑
i

∂Di

∂i

]

−E2

8π

∂ε

∂x
− ��

∂λ

∂x
−

∑
j

qj cj e
−qiϕ/kBT λEx

= 1

4π

∑
i

Di

(
∂Ex

∂i
− ∂Ei

∂x

)
− E2

8π

∂ε

∂x
− ��

∂λ

∂x

+ 1

4π

⎛
⎝−4π

∑
j

qj cj e
−qiϕ/kBT λ + ∇•D

⎞
⎠ Ex, (A23)

where i = x, y, z. Since there is no changing magnetic field,
we have ∇ × E = 0. Thus the first term on the right side of
Eq. (A23) equals to zero. Given the notation in Eq. (2), we
obtain

fx = ρf Ex − E2

8π

∂ε

∂x
− ��

∂λ

∂x
. (A24)

Following the same way, we obtain

fy = ρf Ey − E2

8π

∂ε

∂y
− ��

∂λ

∂y
,

(A25)

fz = ρf Ez − E2

8π

∂ε

∂z
− ��

∂λ

∂z
.

Thus the force density f is

f = ρf E − 1

8π
E2∇ε − ��∇λ. (A26)

5. Solute region without singularity

For a volume element in the solute region, shown in
Fig. 2, the force acting on the left surface perpendicular to
the x axis is written as

Fx(x) = P (x)�y�z

=
[

1

4π

(
εiE

2
x − 1

2
εiE

2

)
ex + 1

4π
(εiEyEx)ey

+ 1

4π
(εiEzEx)ez

]
�y�z

=
[

1

8π
(εiE

2
x − εiE

2
y − εiE

2
z )ex + 1

4π
(εiEyEx)ey

+ 1

4π
(εiEzEx)ez

]
�y�z. (A27)

Similarly the force acting on the right surface perpendicular
to the x axis is

Fx(x + �x)

=
[

1

8π
[εiE

2
x(x +�x)−εiE

2
y(x +�x)−εiE

2
z (x +�x)]ex

+ 1

4π
[εiEy(x + �x)Ex(x + �x)]ey

+ 1

4π
[εiEz(x + �x)Ex(x + �x)]ez

]
�y�z

=
[

1

8π
εi

[(
Ex + ∂Ex

∂x
�x

)2

−
(

Ey + ∂Ey

∂x
�x

)2

−
(

Ez + ∂Ez

∂x
�x

)2
]

ex

+ 1

4π
εi

[(
Ey + ∂Ey

∂x
�x

)(
Ex + ∂Ex

∂x
�x

)]
ey

+ 1

4π
εi

[(
Ez + ∂Ez

∂x
�x

) (
Ex + ∂Ex

∂x
�x

)]
ez

]
�y�z.

(A28)

Due to the absence of singularity, the Taylor expansion can
be used. The difference of Fx(x) and Fx(x + �x) is the force
acting on the surface perpendicular to the x direction. With
�x�y�z = dv, we have

Fx(x) − Fx(x + �x)

= 1

4π
εi

[(
∂Ex

∂x
Ex − ∂Ey

∂x
Ey − ∂Ez

∂x
Ez

)
ex

+
(

∂Ex

∂x
Ey + ∂Ey

∂x
Ex

)
ey

+
(

∂Ex

∂x
Ez + ∂Ez

∂x
Ex

)
ez

]
dv. (A29)

Similarly, the force acting on the surfaces perpendicular to the
y direction and the z direction is

Fy(y) − Fy(y + �y)

= 1

4π
εi

[(
∂Ex

∂y
Ey + ∂Ey

∂y
Ex

)
ex

+
(

∂Ey

∂y
Ey − ∂Ex

∂y
Ex − ∂Ez

∂y
Ez

)
ey

+
(

∂Ey

∂y
Ez + ∂Ez

∂y
Ey

)
ez

]
dv. (A30)

Fz(z) − Fz(z + �z)

= 1

4π
εi

[(
∂Ex

∂z
Ez + ∂Ez

∂z
Ex

)
ex

+
(

∂Ey

∂z
Ez + ∂Ez

∂z
Ey

)
ey

+
(

∂Ez

∂z
Ez − ∂Ex

∂z
Ex − ∂Ey

∂z
Ey

)
ez

]
dv. (A31)
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Summation of the ex components of Fx(x) − Fx(x + �x),
Fy(y) − Fy(y + �y), and Fz(z) − Fz(z + �z) gives us the
force acting on the volume element in the x direction

Fx = 1

4π
εi

(
∂Ex

∂x
Ex − ∂Ey

∂x
Ey − ∂Ez

∂x
Ez + ∂Ex

∂y
Ey

+ ∂Ey

∂y
Ex + ∂Ex

∂z
Ez + ∂Ez

∂z
Ex

)
dv. (A32)

Due to ∇ × E = 0, we have⎧⎪⎪⎨
⎪⎪⎩

∂Ey

∂x
Ey = ∂Ex

∂y
Ey

∂Ez

∂x
Ez = ∂Ex

∂z
Ez,

(A33)

With Eq. (A33), Eq. (A32) can be simplified as

Fx = 1

4π
εi

(
∂Ex

∂x
Ex + ∂Ey

∂y
Ex + ∂Ez

∂z
Ex

)
dv. (A34)

Similarly it can be shown that

Fy = 1

4π
εi

(
∂Ex

∂x
Ey + ∂Ey

∂y
Ey + ∂Ez

∂z
Ey

)
dv (A35)

Fz = 1

4π
εi

(
∂Ex

∂x
Ez + ∂Ey

∂y
Ez + ∂Ez

∂z
Ez

)
dv. (A36)

With Eqs. (A34)–(A36), the total force acting the volume el-
ement can be written as

F = Fxex + Fyey + Fzez

= 1

4π
εi

(
∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z

)
(Exex + Eyey + Ezez)dv

= 1

4π
εi∇ · EEdv

= ρf Edv. (A37)

6. Solute region with singularity

In elementary physics the total electrostatic force is pre-
sented as qE given a singular charge of qδ(x − x′) in an ex-
ternal field. Apparently the electric field here does not in-
clude the singular self field, i.e., it is the field from all other
fixed/mobile charges and polarized bound charges. This ex-
pression can be obtained with the force formulation based on
the Maxwell stress tensor though it is not trivial. The difficulty
exists because the stress tensor is a function of total electric
field that contains the singular self field.

To start we note that for any singular charge source in an
arbitrary solute region enclosed by S, we can always isolate
the singular charge in a small spherical volume element en-
closed by S′ with the charge in the center, as shown in Fig. 3.
Since there is no more singularity in the region enclosed by
surface S and S′, we know the total force acting on the S and S′

surfaces is
∫

ρf Edv from Eq. (A37). Here, we have assumed
that a smooth charge source, ρ f, still exists in the region. Now
the question is the total force acting upon the small spherical
volume element enclosed by S′. We cannot follow the previ-
ous strategy based on the Taylor expansion to compute the
total force because the total electric field is singular at the
center of S′.

FIG. 5. Decomposition of Er on the surface of the chosen small spherical
volume S′ in Fig. 3.

We proceed by separating the total electric field into two
parts, E = Es + Er. Here Es is the singular self field, the
Coulombic field of the singular charge source; and Er is the
regular interaction field, including the Coulombic field of all
other charge sources and the reaction field. We further exploit
the fact that the singular Coulombic field Es is spherically
symmetrical to make the derivation manageable within a few
pages. Indeed, the small spherical volume element was also
chosen to exploit the symmetry. Since Es only has the normal
component on S′, the force on S′ is also spherically symmetri-
cal if there is no other field in the system. Thus self Coulombic
force is zero, as expected.

Next we first assume that Er is a constant within S′ to
obtain the 0th order approximation for the total force. It will
become clear later that this is already a very good approxima-
tion because the charge density [qδ(x − x′)] is infinitely large
at x′. Without loss of generality, we set Er to be along the z-
axis (Fig. 5). And since the charge density ρ f, potential ϕ, and
electric field E is smooth on the surface of S′, the Maxwell
stress tensor in the local coordinate system of (n, t), is[

E2
n − 1

2 (E2
n + E2

t ) EnEt

EtEn E2
t − 1

2 (E2
n + E2

t )

]
. (A38)

Note that the contribution from the tangential force density is
zero. And the force density on the surface element is

P · n =
[

1

2

(
E2

n − E2
t

)
, EtEn

]
. (A39)

In general both the normal and tangential force density com-
ponents are nonzero as follows:

Fn = 1

2
(ES + Er cos θ )2 − 1

2
(Er )2 sin θ,

(A40)
Ft = Er sin θ (ES + Er cos θ ),

with En = Es + Ersin θ and Et = Ercos θ , where Es is the
electric filed induced by the singularity, and Er is the mode of
the approximated constant field Er.
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The force from Fn in the z-direction is

FZ
n = Fn cos θ

= r2
∫ 2π

0
dϕ

∫ π

0
sin θ cos θ

[
E2

S + 1

2
(Er )2(cos2 θ

− sin2 θ ) + ESE
r cos θ

]
dθ

= 4

3
πr2ESE

r. (A41)

And similarly we can obtain the force from Ft in the z-
direction

FZ
t = Ft sin θ

= r2
∫ 2π

0
dϕ

∫ π

0
Er sin3 θ (Es + Er cos θ )dθ

= 8

3
πr2ESE

r. (A42)

Finally the total force from Fn and Ft in the z-direction are

FZ = FZ
n + FZ

t

= 4πr2ESE
r

= qEr. (A43)

Here the Gauss law for the singular point charge is used. Sim-
ilarly we can obtain the total forces in the x- and y-direction
and these are identically zero, apparently due to symmetry.
Thus the total force is qEr that is along the direction of Er.
This result holds regardless of the radius of the spherical
volume element due to the existence of the singular charge
source.

With variable Er, the derivation is more complicated
when the Taylor expansion of Er at the center has to be used
to represent Er on S′. Nevertheless, if we represent Er as

Er = Er (x ′) + O(δ, θ, φ), (A44)

where lim
δ→0

O(δ, θ, φ) = 0 collectively represents the first-

order variations (as in Taylor expansions) of Er on S′ with
respect to Er at center x′. It is straightforward to show that
substitution of Eq. (A44) into Eq. (A43) does not make the
finite term qE go away even if all terms containing O(δ, θ , ϕ)
go to 0 in the limit of δ → 0. This is because of the singu-
lar charge density of qδ(x − x′). In summary, our discussion
shows that the total force of the spherical volume element can
still be expressed as

∫
ρf Edv with the understanding that ρ f

can be singular and E does not contain the singular self field.
Thus the force density can be universally written as∫

ρf Edv (A45)

in the solute region whether the charge density is singular or
not.
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