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Fast Maximum Likelihood for Blind 
Identification of Multiple FIR Channels 

Yingbo Hua, Senior Member. IEEE 

Abstruct- This paper develops a fast maximum likelihood 
method for estimating the impulse responses of multiple FIR 
channels driven by an arbitrary unknown input. The resulting 
method consists of two iterative steps, where each step mini- 
mizes a quadratic function. The two-step maximum likelihood 
(TSML) method is shown to be high-SNR efficient, i.e., attaining 
the CramCr-Rao lower bound (CRB) at high SNR. The TSML 
method exploits a novel orthogonal complement matrix of the 
generalized Sylvester matrix. Simulations show that the TSML 
method significantly outperforms the cross-relation (CR) method 
and the subspace (SS) method and attains the CRB over a wide 
range of SNR. This paper also studies a Fisher information (FI) 
matrix to reveal the identifiability of the M-channel system. A 
strong connection between the FI-based identifiability and the 
CR-based identifiability is established. 

I. INTRODUCTION 
LIND identification of multiple FIR channels is an im- B portant problem arising in many areas including mobile 

communications, multisensor signal analysis, and multisensor 
image restoration. Although for some applications the un- 
known (or inaccessible) input to the FIR channels is known 
to have certain statistical or/and algebraic characteristics, for 
some others the unknown input could be virtually arbitrary 
such as nonstationary, non-Gaussian, and colored. Even in 
mobile communications, when a fast varying channel needs 
to be identified within a very short period of time, any known 
statistical characteristics (such as whiteness) of the unknown 
input becomes hardly useful since a too-short data sequence 
cannot yield a reliable statistical average. Therefore, under 
certain practical conditions, the input has to be assumed to be 
virtually arbitrary. 

Note that if a system is time invariant during a period 
when a long enough data sequence is available and a priori 
statistical information about its input is reliable, then the 
statistics of the input should be exploited. Examples of using 
statistical knowledge .of the input include the second-order 
statistic (SOS)-based methods [3]-[5], [32] and the higher 
order statistics (H0S)-based methods [6]-[8]. However, this 
paper addresses the situation where the available data sequence 
is relatively short or the system is fast varying. 
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Blind identification of multiple FIR channels driven by vir- 
tually arbitrary input was recently studied in [ll and [2]. They 
utilized a fact that for such an M-channel system, the output 
of a channel convolved with the impulse response of another 
channel is equal to the output of the first channel convolved 
with the impulse response of the second channel. This is what 
they called a cross-relation property, and hence, their method 
will be called the cross-relation (CR) method. Apparently, in 
order to emphasize the deterministic-input model under which 
the CR method was developed, the CR method was called a 
deterministic approach in [ 11-[2]. However, the CR method 
does not necessarily require the deterministic assumption. In 
fact, the CR method is another SOS-based method where the 
SOS of the channel outputs is estimated in a unique way. 
For short data sequences, the CR method has been shown in 
[l], [2], and [16] to significantly outperform the previously 
developed SOS-based methods [3]-[5]. Another SOS-based 
method called the subspace (SS) method, was recently reported 
in [15] and was also shown to be more accurate than those in 
[3]-[5]. A common feature of the CR and SS methods is that 
for a virtually arbitary input and in the absence of noise, both 
methods yield the exact channel identification. 

This paper presents a further investigation into the M -  
channel system driven by unknown deterministic input. A 
fast maximum likelihood method that consists of two iterative 
steps, where each step minimizes a quadratic function, is 
developed. The two-step maximum likelihood (TSML) method 
is shown to be high-SNR efficient, i.e., attaining the Cram&- 
Rao lower bound (CRB) at relatively high SNR. The TSML 
method performs significantly better than the CR and SS 
methods. The first step of the TSML method coincides in a 
natural way with the CR method, and the second step of the 
TSML method can be viewed as a weighted CR method. 

A discussion of a Fisher information (FI) matrix, which 
yields information on the channel identifiability, is also shown 
in this paper. Using the FI matrix to study the channel 
identifiability is in contrast with several existing approaches 
[ 11-[5]. A strong relation between the R-based identifiability 
and the CR-based identifiability [l], [2] is established in this 
paper. In a subsequent paper [18], the channel identifiability is 
further investigated using a concept called strict identifiability. 

Using the ML principle for this blind indentification prob- 
lem was also recently studied in [13] and [141. In [131, an 
iterative algorithm was developed based on the expectation- 
maximization (EM) principle whose convergence critically 
depends on a good initial estimate of the channel impulse 
response. In [14], a two-channel system was studied by fol- 
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lowing an idea called iterative quadratic maximum likelihood 
(IQML) [20]-[27]. Although the independently developed 
TSML method shown in this paper is similar to the IQML 
method in [14], the former applies to any number of channels 
(except the single channel case, of course), which is a sig- 
nificant generalization of the latter. Other ML methods such 
as [28] and [29] deal with a differently formulated problem, 
where the finite input alphabet is exploited, and an expensive 
search procedure is required. 

Despite the similarity between the TSML and the IQML, 
we prefer to name our algorithm TSML because further 
iteration (beyond the second iteration) of the TSML method 
(or the IQML algorithms shown in [20]-[27]) requires more 
computations and does not even asymptotically improve the 
estimation accuracy (or increasing the likelihood function). 

The rest of paper is organized as follows. The channel 
model and its properties are shown in Section 11, where an 
orthogonal complement matrix of the generalized Sylvester 
matrix is introduced, which lays a foundation for the rest of 
this work. The FI matrix of the channel model is studied in 
Section 111, where an exact equivalence between the FI-based 
identifiability and the CR-based identifiability is established. 
The TSML method is developed in Section IV, where its con- 
sistency and efficiency are proved. An efficient implementation 
of the TSML method is described in Section V. The simulation 
comparisons of the CR, SS, and TSML methods are shown in 
Section VI. 

11. THE CHANNEL MODEL AND ITS PROPERTIES 
This paper considers the following discrete M-channel FIR 

system: 

where 
y,(k) 
s ( k )  common input. 
h,(k) 
wz(k) noise. 

output of the channel i at time k 

finite impulse response (FIR) of the channel i 

It is assumed that the maximum order of the M channels is L,  
and the number of available output samples of each channel 
is N .  The symbol * denotes convolution. All quantities in 
(2.1), except the integers, are complex valued unless stated 
otherwise. Note that the channel order L will be assumed to 
be known throughout this paper. 

It is easy to verify that (2.1) can be expressed as follows: 

~ = H M s + w  (2.2) 

where y is the output vector of all channels 

y =  [yr yF . . .  . . .  Y 5  I’ (2.3) 

with 

and the superscript 
vector of all channels. s is the input vector 

denotes the transpose. w is the noise 

s =[s(-L) s ( - (L -  1)) . . .  s (0)  s(1) s ( N -  l)]? 

(2.5) 

H M  is known as a generalized Sylvester matrix [ 1 I] 

where H(z)  is the N x ( N  + L )  Sylvester matrix of the ith 
channel response, which is shown in (2.7) at the bottom of 
the page. 

The matrix H M  has a number of important properties. These 
properties, along with an orthogonal complement matrix of 
the generalized Sylvester matrix, will be shown later in this 
section. 

To describea property of channels, the notion of “zeros” will 
be needed. A zero 20 of the channel i is defined by 

L 

H i ( Z 0 )  = h,(k)z,h = 0 
k=O 

where H,(z) is known as the transfer function of the ith 
channel. Another common notion of linear systems will be 
needed. This notion is called “modes.” A mode in this paper 
is defined to be a finite sequence of the form m(k) = knzk 
for some complex number z and a nonnegative integer n, 
where z is referred to as its root and n the order. A sequence 
{ ~ ( k ) , k  = -L , . . . ,N  - l} of length N + L is said to have 
p modes if s ( k )  can be written as a linear combination of p 
modes of length N + L ,  i.e., for k = -L, . , N - 1 

2) 

s ( k )  = c czmz(k) 
0 = l  

where for each (nonzero) mode, all the coefficients of the 
corresponding lower order modes may or may not be zero. 
For example, the sequence clk2zf + czkzf + c3zf + cqzk is 
said to have four modes as long as c1 and c4 are nonzero. A 



channel is said to be associated with a mode m(k) if the root 
of the mode is a zero of the channel. The following facts on 
modes are easy to show:. 

Any m (distinct) modes of length r are independent of 
each other provided m 5 r .  
Any sequence of length r can be expressed as a linear 
combination of no more than r modes of length r .  
With probability one, an arbitrary sequence of length 
r has r modes of length r (although, in practice, a 
sequence of length r may have less than r dominant 
modes of length r ) .  
A mode of root z and order n at time k + 1 is a linear 
combination of modes of the same root x and orders 0, 
1, . . ., and n, at time k ,  i.e. 

(This relation is needed for Lemma 1 in [18].) 
The definitions of "modes" vary in the literature; see [19, p. 
1681, [l], and [2]. The modes defined in this paper can be 
viewed as independent basis functions to describe any finite 
length sequence (including any finite length realization of 
white or colored random processes)., 

For the first reading, readers may now choose to skip the 
following Lemmas 1-6 but read Theorem 1 and its discussions 
in the end of this section. Theorem 1 provides an orthogonal 
complement matrix of the generalized Sylvester matrix H M ,  
which is essential in relating the FI matrix to the CR method 
and in developing the TSML method. 

For the following lemmas, we need to define two matrices: 
a p-channel system matrix H p ,  which is simply H M  with M 
replaced - by p ,  and a "companion" p-channel system matrix 
Hp defined by 

Pro03 See proof of Theorem 1 in [l 11. + 
We now define two matrices of modes: MlZp  and 7V1:p, 

which are ( N  + L )  x c and N x e, respectively. Each column 
of M I : ,  or MI:, is a mode sequence with root equal to a 
zero shared by the channels 1 to p.  Let the modes m;(k), i = 
1 , 2 ,  . . . , c, be shared by the p channels, and then, we have 
(2.9), which appears at the bottom of the page, and Mlzp is 
the top N rows of Ml:p .  

Lemma 2: 

null(Hp) =range(M~:,) for N 2 L - c 

null(zp) =range(M1:,) for N 2 2L - e. 

Prooj? It is easy to verify that HPM1:, = 0 and 
rank(M1:,) = c, and hence, rank(HP)+rank(M1:,) = N+L,  
which is the total number of the columns of H p  (where Lemma 
1 is used). The same can be verified for the second equation.+ 

Lemma 3: Let each column of a ( N  + L)-row matrix M I %  
be a mode sequence with root not equal to any zero of the 
channel i ,  and let MI, be the top N rows of M I ,  and z,, be 
the top N - L rows of Miz. Then 

range(H(t)MId = range(=/%) 
_ _  

range(H(,)MI,) = range(%,,). 

Pro03 If all modes in MI% are of the first order with the 
distinct roots: ~ 1 ~ x 2 ,  + . . , x t ,  it is easy to verify that 

H(,)Ml, = MI, diag(zfH,(xl) 4 H z ( 2 4  e xkK(2t) ) .  

If any of the modes in M I %  is of higher order, one can similarly 
verify that 

HUA: FAST MAXIMUM LIKELIHOOD FOR BLIND IDENTIFICATION OF MULTIPLE FIR CHANNELS 663 

1% 1 
where p(,) is the top-left ( N  - L )  x N submatrix of H(%) .  

Lemma 1: 

rank(Hp) = N + L - c for N 2 L - c 

rank(pp) = N  - c for N 2 2L - c 

where c is the number of zeros shared by the channels 1 to p .  
(Note that c = L when p = 1). Hence, H p  and gp have full 
column rank if and only if there is no common zero among 
the p channels, provided N 2 2L. 

where T is a full-rank square matrix consisting of the channel 
transfer functions and their derivatives at the zeros, and the 
highest order of the derivatives is equal to the highest order of 
modes minus one. A similar proof can be found for the second 
equation in the lemma. + 

Lemma 4: 

where Ml:plp+l consists of the modes shared by the channels 
1 to p but not by the channel p + 1. The symbol c denotes 
"belong to." 
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Proofi It is easy to verify that 

where Lemmas 2 and 3 are applied. Since T is nonsingular, 

Lemma 5: For N 2 L,  the columns of Hp are independent 
Lemma 4 is proved. 4 

of those of Cl:, defined as 

whose dimension is p N  x (p- l)c,  and henc rank(H,, Cpp) = 

Proof: Suppose that there is a nonzero vector t such that 
Hpt belongs to range(Cl.,). Since the top N elements of H p t  
must be zero, i.e., H(l)t = 0, then t must be a linear combi- 
nation of the L modes of the channel 1 (Lemma 2 for p = 1). 
However, for i > 1, a nonzero H(,)t (other elements in Hpt)  
must belong to range(Ml,i,) (Lemmas 2 and 3 ) .  However, 
range(Ml.,l,) is independent of range(Ml-,). Therefore, no 

4 

+ L + ( p  - 2)c. 

nonzero Hpt belongs to range(C1 ,). 
We now define the matrix Gp as follows: 

1 

The following lemma shows a relation between Gp and Hp. 
Lemma 6: Forp = 2 and N 2 L+1, orp  > 2 and N > 2L, 

null(Gf) = range(Hp ClCP). 

Proofi One can easily verify that 

H(i)H(j) = E(#(;) 

which is in fact the commutativity of convolution. Then it is 
easy to verify that range(Hp, Cl:,) belongs to null(Gf ), 
i.e., G f ( H P , C l p )  = 0. What is left to show is that 
range(€€,, C1 ,) is the complete null space of GH. For p = 2 
and N 2 L + 1, it is easy to see that rank(G, ) = N - L 
and rank(H2,Cl.z) = N + L (Lemma 5) ,  and therefore, 
null(6;) = range(H2, Cl 2 ) .  (Note that the number of 
columns of Gf is 2N.) Now, it suffices to show that the 
lemma is true for Gp+l assuming it is true for Gp. Denote 

8 

a null vector of GF+l by 

= [ty = 

such that the equation 

Gp”++,t = 

is equivalent to the following: 

tP  t: I 
tP+l  

Gft, = O  

-H(,+l)t, + Z(,)t,+l = o for i = I, . . . ,p. 

We now search for the complete solution space of these 
two equations. The solution space of the first equation (for 
tu) is now assumed to be what is shown in the lemma. To 
find the complete solution space of the second equation (for 
tp + l), all we need to do is to find a solution for tp+l (if 
it exists) for each nonzero t, from range(Hp,Cl.,) and all 
solutions for tp+l when tu = 0. Note that range(Cl.,) = 
range(C;,,) +range(C’,’,,), where Ci , is Cl., with all modes 
shared by the channel p + 1, and Cyp is Cl with no modes 
shared by the channel p + 1. We now consider the following 
cases. 

Case a: If t, = Hpc for any c, then tp+l = H(,+l)c is a 
solution (easy to verify) 

Case b: Ift,  = CY:,c for some c, then tl = 0, and each t,, 
for i, > 1 must be a linear combination of the modes shared 
by the channels 1 to p but not by the channel p + 1. Then, 
tp+l must satisfy 

- 
-H(l)tp+l = 0 

and 

-Z(,+l)t% + H(,)tp+l = 0 for i 2 2. 

The former implies that tp+l is a linear combination of the 
L modes of the channel 1 (Lemma 2 for p = 1)) and then 
g(,)tP+l is a linear combination of the modes not shared by 
the channel i (Lemmas 2 and 3). However, -H(p+l)t, is a 
linear combination of the modes shared by the channels 1 to p 
(inchding the channel i) but not the channel p + 1. Therefore, 
for nonzero ta  = Cy.pc, there is no solution for tp+l (provided 
N 2 2L of course) 

Case c: If tu = C:.pc, then tp+l = 0 is a solution (easy 
to verify). 

Case d: If tu = 0, the solution space for tp+l is null(Hp) 
which is equal to range(M1,) (Lemma 2). However, the 
solution subspace tu = 0 and all tp+l from range(M1 plp+l) 

is a part of the solution space of Case a (Lemma 4). Hence, 
we only need to keep range(M1,,+1) for tp+l in this case. 

Combining Cases a 4  yields the complete solution space 
of G;++,t = 0, which is range(H,+1, C1.,+1). The proof is 
completed. 4 

- 
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’ Theorem I :  Provided that all channels do not share a com- 
mon zero, and N 2 2L (for M = 2, only N > L is required), 
an orthogonal complement matrix of the generalized Sylvester 
matrix H M  is GM, which is defined in (2.10), i.e. 

P G + P H = I  

where I is the identity matrix, and PG and PH denote 
the orthogonal projection matrices onto range(GM) and 
range(HM), respectively. 

Proofi This theorem follows directly from Lemma 6,  

The M N  x i M ( M  - 1)(N - L )  orthogonal complement 
matrix GM is expressed directly in terms of the system impulse 
response and, hence, is very useful for simplifying the ML 
estimation of the channel impulse responses, which will be 
shown in Section IV. Furthermore, GM will be instrumental in 
establishing a link between the FI matrix and the CR method, 
which will be shown in Section Ill. 

For M = 2, the form of GM was also shown in [14]. How- 
ever, for M > 2 ,  the form of GM is much more complicated, 
and its property as orthogonal complement of H M  is much 
more involved to prove. 

There are still open questions associated with Theorem 1. 
For M = 2 ,  the condition N 2 L + 1 is not only sufficient 
but also necessary (easy to show). However, for M > 2,  is 
the condition N 2 2L also necessary? We have not found an 
answer to this question except for the case where M = 3. 
For M = 3, the answer is yes, as is shown next. Assume 
that M = 3. Then, GM is of 3N x 3(N - L ) ,  HM is 
of 3N x ( N  + L ) ,  rank(HM) = N + L (from Lemma 1 
with c = 0 and N 2 L ) ,  and then, left-nullity(HM) = 
3N - ( N  + L) .  Then, a necessary condition for GM to be 
an orthogonal complement matrix of HM is columns(GM) 2 
left-nullity(HM), i.e., 3(N - L )  2 3N - ( N  + L ) ,  or 
equivalently, N 2 2L. 

Another question is about the uniqueness of GM. Clearly, 
GM does not always have independent columns, i.e., GM is 
“fat.” Searching for a “leaner” orthogonal complement matrix 
is still a challenge (deleting any columns of GM does not seem 
to yield another orthogonal complement matrix). 

where C ~ M  is empty. + 

111. E[ MATRIX 
Before a fast ML method is developed in the next section, 

this section presents a FI matrix for the M-channel system. 
For this purpose, it is assumed that the channel noise is 
white complex circular Gaussian, and the input sequence is 
unknown and deterministic. It then follows that the channel 
output vector y is Gaussian distributed with the mean vector 
m = H M S  and the covariance matrix By = g:I, where f f i  

is the noise variance. Except for n;, the unknown parameters 
in this system are described by the 2 ( M L  + M + N + L )  x 1 
vector a 

where s is the input vector defined in (2.5), and h the system 
impulse response vector defined as 

h = [h;r h; 1 * .  hT,]T 

and h, is the ith channel impulse response vector 

h, = [h,(O) h,(l) ... h,(L)IT. 

It is well known (easy to show) that the unknown noise 
variance 0; is decoupled from (or does not affect the CRB 
of) the parameters in the mean vector m. It is also easy to 
show that the FI matrix [12] associated with a (containing all 
unknown parameters in m) is given by 

(3.2) 

From here, one can verify that the 2(ML + M + N + L )  x 
2 ( M L  + M + N + L )  FI matrix can be further expressed as 

(3.3) 

whereF, i sa  ( M L + M + N + L )  x ( M L + M + N + L )  
complex FI matrix defined as 

F, = Q H Q  (3.4) 

with 

Q = [ I M @ S  HMI (3.5) 

(3.6) 

s(0) s(-1) ... s(-L)  
s (0)  . . .  s(-L + 1) 

s ( N  - 1) s (N - 2 )  . . .  s(N - L - 1) 

in which I M  is the M x M identity matrix, and @ is the 
Kronecker product. In fact, I M  @ S = diag(S, . . . , S ) .  The 
( i ,  j)th element of F, corresponds to the ith and jth elements 
of the complex parameter vector defined as 

r ac,1 1 

L , M L + M + N + L  1 
It is easy to show that if Fil  exists (this requires deleting 

certain rows and columns from F,, to be shown later), then 
the inverse of the H matrix is given by 

The CRB [12, p. 791 on the variance of each parameter is 
given by a corresponding element on the diagonal of F- l .  
Note that this CRB is a function of the input sequence. 

The FI matrix not only provides the CRB but also the 
information on the channel identifiability. It is well known 
[12, p. 701 that the ML method yields parameter estimates 
with variances equal to the CRB at high SNR (with all other 
variables such as N fixed). Therefore, if the FI matrix is 
invertible, i.e., the CRB exists, then all parameters associated 
with the FI matrix are identifiable as the SNR approaches 
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infinity. Based on this observation, it follows that the nullity 
of the H matrix is equal to the total number of parameters 
which are not identifiable, or in other words, 

nullity(F) = degrees of uncertainty. 

In terms of F,, it can be written as 

nullity(F,) = complex degrees of uncertainty (3.9) 

where a complex degree corresponds to a complex unknown 
parameter. 

The following theorem reveals several relations between 
nullity(F,) and the system conditions. 

Theorem 2: 
a) nullity(F,) 2 1. 
b) nullity(P,) > 1 if { s ( k ) ,  IC = -L, . . . , N - 1) has less 

than L + 2 modes, the M channels share a common 
zero, or N 5 L + 1. 

c) nuIlity(F,) = l i f{s (k) ,k  = -L , . - . ,N- - l )has2L+l  
or more modes, the M channels do not share a common 
zero, and N 4 3L + 1. 

d) If nullity(F,) = d ,  let FL be F,  without d rows and d 
columns of F,  corresponding to d nonzero parameters 
in a, and then, nullity(F/,) = 0. 

Pro08 Recall (3.4) and (3.5). Part a is easy to show by 
verifying that [h', s'] = [h, -SI is always a solution to 

Part d also follows from an observation of (3.10): deleting d 
columns of Q corresponding to d nonzero elements of [h , s ] 
leads to no solution to (3.10). A direct proof of Parts b and 
c has been found but is omitted here due to the following 
Theorem 3 and some related results in 111, 121, [18]. 

Part a) of Theorem 2 implies that there is always a complex 
degree of uncertainty in the M-channel system (which is not 
surprising of course). Based on this, we make a definition of 
the FI based system identifiability: 

Definition I-FI Identijiability: The M-channel system is 
said to be Fl identifiable if nullity(F, = 1). = 1. 

With this definition, Part b) provides a necessary channel 
identifiability (ID) condition, and Part c gives a sufficient 
ID condition. Comparing the FI-based ID conditions with 
those based on the CR method [l], [2] implies a close 
connection between the FI-based identifiability and the CR- 
based identifiability. To establish a strong connection between 
them, the CR-based identifiability is now reviewed. 

The authors of [l] and [2] exploited a (cross-relation) fact 
that the output of a channel convolved with the impulse 
response of another channel is equal to the output of the 
second channel convolved with the impulse response of the 
first channel, i.e., 

T T  

4 

Yz(k> * h3(k) = YJk) * hZ(k-1. 

Based on this, they showed that h' = h must be a solution to 
the following (cross-relation) equation in the absence of noise: 

Y M h '  = 0 (3.11) 

where 

with 

and 

Y(i) = 

y2 = F ( 2 )  -y(1)1 

(The CR equation (3.11) differs from that in [I] and [2] only 
in the order of rows of the matrix Y M . )  Clearly, if (3.11) has 
a unique solution in the absence of noise, then the M-channel 
system is identifiable in terms of h up to a constant scalar. 
Based on this, we make a formalization of the identifiability 
discussed in [ll and 121. 

Definition 2-CR Identifiability: The M-channel system is 
said to be CR identifiable if (3.11) has a unique solution in 
the absence of noise. 

Now, a strong relation between the FI identifiability and the 
CR identifiability can be demonstrated below. 

Theorem 3: Provided N 2 2L (or N >_ L + 1 for two 
channels), the H-based identifiability is equivalent to the CR- 
based identifiability. 

Pro08 The proof consists of two cases: 
Case a) There is a common zero among channels. 
Case b) There is no common zero among channels. 

For Case a), we show that the system is not identifiable based 
on either the FI matrix or the CR equation. For Case b), we 
first show that if the system is not CR identifiable, it must not 
be H identifiable and then show that if the system is not FI 
identifiable, it must not be CR identifiable. 

Case a): Suppose that there is a common zero among the M 
channels. Then, the M-channel system can be easily shown to 
be not identifiable based on either the CR equation or the FI 
matrix. The former was shown in [l] and [2], and the latter 
can be easily shown by observing that there are more than one 
independent solutions to (3.10), where H M  does not have a 
full column rank @,emma 1). 

Case b): Now, suppose that there is no common zero among 
the M channels. The following identity (easy to verify) will 
be needed 

Yn/rh' = GI,Hy (3.14) 

where G'L is constructed from h'. First, we further assume 
that the system is not CR identifiable. It then follows from 
(3.11) and (3.14) that for some h' independent of h 

(3.15) I ' H  ' H  Y M ~  = G M y  = G M H M s  =z 0 .  



H U A  FAST MAXIMUM LIKELIHOOD FOR BLIND IDENTIFICATION OF MULTIPLE FIR CHANNELS 661 

However, one can easily verify that 

G ~ H ~  = GN,H‘,. (3.16) 

Hence, (3.15) implies 

G & H ~ S  = 0 (3.17) 

which means that HLs is in null(G:), and hence, by 
Theorem 1 (provided N 2 2L or N 2 L + 1 for two channels) 

H ~ s  = -HMs’ (3.18) 

for some s’. It is easy to verify that (3.18) is equivalent to 
(3.10). Therefore, the system must not be FI identifiable. 

Still for Case b), we now assume that the system is not 
FI identifiable (and there is no common zero). Then, (3.10) 
or, equivalently, (3.18) must have the solution (h, -s) and 
another independent solution (h’, S I ) .  Given the fact that HM 
has a full column rank (Lemma l), (3.18) implies that h’ is 
independent of h. Using this ( h ’ , ~ ’ )  in (3.18) implies (3.17) 
and then (3.15) and, therefore, that the system must not be CR 
identifiable. The proof is completed. + 

IV. FAST MAXIMUM LIKELIHOOD 
We now develop a fast (conditional) ML method for estimat- 

ing the channel impulse responses. Assuming that the channel 
noise is white complex circular Gaussian, it is easy to show 
that the maximum likelihood (ML) estimation of h from y is 
obtained by 

max yHpHy 
h 

(4.1). 

or equivalently (under the condition of Theorem 1) 

h 
min yHpGy. (4.2) 

It is also well known that (4.1) or (4.2) is the least square 
error estimation where the error is the difference between the 
measured channel output and the estimated channel output. For 
short notation, HM and GM will be replaced by H and G, 
respectively. Once the ML estimate of h is available, the ML 
estimate of s is known to be (HHH)-lHHy. The estimation 
of s (i.e., equalization in the context of communications) will 
not be further addressed. 

It is clear that the projection matrix PH = H(HHH)-lHH 
is invariant to any complex constant scale on H or h, and 
hence, the solution to (4.1) or (4.2) is not exactly unique. This 
was predicted by Theorem 2. In the sequel, it is assumed that 
the sufficient ID condition as stated in Theorem 2 is satisfied 
so that the channels are identifiable uniquely up to an arbitrary 
complex scalar. If we subject (4.1) or (4.2) to llhll = 1, this 
will lead to a solution that has an arbitrary scalar of unit 
amplitude. 

A fast ML estimation can now be developed as follows. 
Rewrite the function in (4.2) into 

yHpGy = Y ~ G ( G ~ G ) + G ~ ~  (4.3) 

GHy = Yh (4.4) 

where + denotes the pseudoinverse. One can verify that 

where Y is a short form of YM defined in (3.12). Hence, 
(4.2) becomes 

min hHYH(GHG)+Yh. (4.5) 
h 

This expression suggests an iterative two-step estimation pro- 
cedure as shown below: 

The TSML Method 

Step 1: Minimize hH(YHY)h with llhll = 1 to yield h,. 
Step 2: Minimize hH(YH(GFGc)+Y)h with llhll = 1 

to yield he, where G, is constructed from h, 
according to (2.10). 

At a high computational level, the TSML method is indeed 
similar to the IQML methods developed for exponential sig- 
nal processing [20]-[27]. An important novelty here is the 
construction of G. As will be seen later, the TSML method 
differs significantly from the existing IQML algorithms at a 
lower computational level. 

The TSML method establishes a natural connection between 
the CR method El], [2] and the ML principle, i.e., Step 1 of 
the TSML method coincides with the CR method. The CR 
method was developed based on an algebraic insight into 
the M-channel system. It is interesting to know that this 
insight also relates to the classical concept of ML estimation 
through a simple weighting matrix (G?G,)+. Readers may 
recall a similar relation between Prony’s method and the ML 
estimation [21] in the context of exponential signal processing. 
In contrast to [21], we do not suggest further iterations beyond 
Step 2. This is because further iteration requires a lot more 
computations and is not guaranteed to improve the accuracy 
even asymptotically. 

Consistency and Eficiency 

As shown in [l] and [2], in the absence of noise, Step 1 
of the TSML method yields the exact solution h (up to a 
constant), i.e., h is the unique null vector of the covariance 
matrix Ry = YHY (a second-order statistic of the channel 
outputs). This is called high-SNR consistency of Step 1. 
Furthermore, if the noise is white and the data length N is 
infinite, one can verify that 

Ry = Rs + Rw (4.6) 

where Rs is the signal term without the effect of noise, and 
Rw is the noise term proportional to an identity matrix. In this 
large-sample case, the least eigenvector of Ry is also equal 
to h. This is called large-sample consistency of Step 1. 

In the following, we show that Step 2 of the TSML method 
is high-SNR consistent as well as high-SNR efficient (attaining 
the CRB). One can verify that in the absence of noise 

Y = G ~ ( I M  8 S )  (4.7) 

and then 

range(Y) = range(GH) (4.8) 

null(YH(GHG)+Y) = null(YHY). (4.9) 

and hence, 
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Therefore, Step 2 of the TSML method is high-SNR consistent. 
Note that this is true despite the fact that GHG may not be 
of full rank for M > 2. To show the high-SNR efficiency of 
the TSML method, it suffices to verify that at high SNR, 
the TSML method yields the same (up to the first order 
approximation) estimates as the exact ML method (e.g., see 
[12, p. 701). We now need to verify the following two 
equations: 

hfYH(GfG,)+Yh, = hfYH(GHG)+Yh, (4.10) 
hzYH(GEG,)+Yh, = hzYH(GHG)+Yhm (4.11) 

where 
m ML estimates, 
c consistent estimates, 
e estimates by the TSML method. 

Note that the minimizer he of the left-hand term of (4.10) 
is the TSML estimate, and the minimizer h, of the left- 
hand term of (4.11) is the ML estimate. The minimizer he 
of the right-hand term of (4.10) is obviously the same as 
the minimizer h, of the right-hand term of (4.11). What is 
left to show is that both (4.10) and (4.11) hold to the first- 
order approximation as SNR approaches infinity. To show that 
(4.10) holds at high SNR, we assume that L (which is the 
maximum order of the M-channel system) is known. Then, the 
weight matrix (GFGc)+ is a continuous function of the noise 
(despite the operation of pseudoinverse). Hence, one can write 
(GFG,)+ = W + AW, where W = (GHG)+ is the ideal 
weight, and AW approaches zero as SNR goes to infinity. One 
can also write he = h + Ah,, where Ah, approaches zero as 
SNR goes to infinity. By substituting these in the left-hand 
term of (4.10), one can easily verify that the resulting term 
becomes the right-hand term of (4.10) plus higher order terms 
of AW and Ah,. Therefore, (4.10) holds to the first-order 
approximation at high SNR. Equation (4.11) can be similarly 
proven. 

v. IMPLEMENTATION OF THE TSML METHOD 

The previous formulation of the TSML method is given 
at a high computational level. The computational efficiency 
of the TSML method still largely depends on how it is 
implemented. Note that the matrices G and Y are sparse, and 
the pseudoinverse (GHG)+ (with a known rank) needs to be 
computed. In this section, we discuss what we think is the most 
efficient implementations in terms of flops. (A flop is defined 
[9] as a complex addition and a complex multiplication. The 
number of flops is also roughly equal to the number of 
multiplications in a typical algorithm, and hence, one can count 
the flops simply by counting the multiplications.) This section 
should be useful for users of the TSML method. 

Implementation of Step 1 (CR Method) 

In Step 1, we need to compute the M ( L  + 1) x M ( L  + 1) 
matrix product YHY and its least eigenvector. The least 
eigenvector can be obtained with an order of M 2 ( L  + 1)2 

flops. The product YHY can be expressed as 

For i = j ,  YtlY(,) consists of the following multiplications: 

y:(k)y3 ( k  - p )  for k = 0,1, . . . , N - 1 - p 

p = 0,1;.. ,  L. 

However, for i # j,Y&Y,3.) consists of both the above 
multiplications and the followmg: 

y,*(k - p)y,(k)  for k = 0,1, , N - 1 - p 
p = 1 , 2 , .  . . , L.  

Based on the above analysis, one can show that for N >> L >> 
1, the computational flops required by Step 1 (equivalently by 
the CR method) are N M 2 L .  Note that the computation of the 
CR method is dominated by obtaining the covariance matrix 
Ry = YHY.  

Implementation of Step 2 (Direct Form) 
In Step 2, we need to compute the product GHG, the 

pseudoinverse (GHG)+, the product YH(GHG)+Y,  and then 
the least eigenvector of YH(GHG)+Y. It is easy to verify that 
the product GHG consists of J3( , )HEl) i  = l , . . . , M  ,.7 . - - 
i ,  . . . , M ,  and each H(;)Bf:) consists of 

for 

- _  

h, (k)h; ( p )  k = 0,1, . . . , L p = k ,  . . . , L. 

To obtain the pseudoinverse (GHG)+, one can compute 
the eigendecomposition GHG = ElElEY, where the zero 
eigenvalues are removed, E1 is ( M N  - N - L )  x ( M N  - 
N - L) ,  and El is i ( N  - L ) M ( M  - I) x ( M N  - N - L) .  
Then, one computes 

Y ~ ( G ~ G ) + Y  = ( E ~ Y ) ~ E ; ~ ( E ? Y )  (5.2) 

where zeros in Y should be exploited. A detailed flop count 
of the above computations shows that Step 2 of the TSML 
method in the direct-form implementation is dominated by the 
eigendecomposition of GHG, requiring O { N 3 M 6 }  flops. 

Implementation of Step 2 (Indirect Form) 
Alternatively, one can use the following expression: 

Y ~ ( G ~ G ) + Y  = Y ~ G + G ~ + Y  
= Y ~ G ~ ( G G ~ ) + ( G G ~ ) + G Y  
= Y ~ G ~ ( G G ~ ) + ~ G Y .  (5.3) 
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The product GGH requires the same number of flops as GHG. 
However, GGH has the dimension N M  x N M ,  which is 
smaller than that of GHG when 

2 N  
M > - + 1 ~ 3 .  

N - L  

Let the eigendecomposition of GGH be E2E2Ef, where the 
zero eigenvalues are removed, E2 is ( N M  - N - L )  x ( N M  - 
N - L ) ,  and E2 is N M  x ( N M  - N - L) .  Then, one can 
write the squared pseudoinverse: (GGH)S2 = E2E,2Ef.  
Using this in (5.3) yields 

YH(GHG)+Y = YHGNE2CT2EfGY. (5.4) 

To compue the above matrix, the following structure should 
be exploited: 

g2 
Furthermore, each a&Y ( j )  requires the multiplications 

A flop count shows that the eigendecomposition of GGH 
dominates the indirect-form implementation of Step 2, requir- 
ing O{N3M3}  flops. 

h : ( k ) g j ( p ) , k  = 0, l , . . . ,  L and p = O , l , . * * , N  - 1. 

Total Flops Required by the TSML Method 
Combining the previous results shows that an efficient 

implementation of the TSML method requires O { N M 2 L }  
flops for Step 1 (the CR method) and O{N31M"} flops for 
Step 2. 

2)  When the channel condition is relatively good, both the 
CR and SS methods attain the CRB at relatively high 
SNR, and the TSML method does not provide further 
improvement of accuracy at relatively high SNR. 

3) Both the TSML method and the SS method in general 
performs better than the CR method. 

4) When the first step of the TSML method is replaced by 
the SS method, the TSML method in general outper- 
forms the SS method and approaches the CRB over a 
much wider range of SNR. 

In our simulations, we considered a simple two-channel 
system, where each channel is a second-order FIR with the 
transfer function 

H,(z )  = h,(O) + hJ1)z-l + h,(2)z-2 
= 1 - 2 cOS(0,)z-l + 2-2 

- - (1 - eJez,-')(l - e-J'Z2-l) i = 1,2. 

This implies that M = 2 and that L = 2. It is clear that 0, 
represents the angular position of a corresponding zero on the 
unit circle. We will let 01 = I9 and I92 = 01 + S. Then, S 
represents a distance between the zeros of the two channels. 
When S is small, the channel is considered ill conditioned. 
(Common zero occurs when S is zero.) In addition, note that 
when 0 is - 6 1 2 , ~  - 1512 or 2n - 612, the two channels are 
identical and, of course, have common zeros. The channel 
outputs were corrupted by additive Gaussian white noise of 
variance gt. This system was driven by one realization of 
a white binary (1 or -1) process of variance of = 1. The 
number of the output samples from each channel was chosen 
to be N = 30. The SNR of the M-channel system was defined 
by 

SNR(dB) = 10loglo (:;,I:;;) 
which can be shown to be 

SNR(dB) = 2010g10 ( - %!E3). 
The performances of the CR, SS, and TSML methods were 
measured by the mean-square-error in decibels: 

VI. SIMULATIONS 
Although the TSML method is not meant for very long 

data sequences since the number of unknowns grows linearly 
with the data length, for applications where the data sequence 
is unavoidably short (e.g., in a rapid-changing environment), 
the TSML method should be used to achieve the optimum 
accuracy. 

We have run simulations to compare the performance of the 
TSML method against those of the CR method [l], [2] and 
the SS method [15]. Based on simulations, we have observed 
the following: 

1) When the channel condition is relatively ill (e.g., there 
are closely located zeros among channels so that the 
matrix H M  is ill conditioned), the TSML method always 
outperforms the CR and SS methods at relatively high 
SNR and approaches the CRB at relatively high SNR. 

where f i ; denotes the ith run estimate of h, and the first element 
of kt is normalized to be one (the same as h).  N, denotes the 
number of runs and was chosen to be 100. For each run, 100 
independent realizations of the channel noise were used. (Each 
noise realization was used only once in our simulation.) 

The CRB on the MSE was defined by 

CRB(dB) = 2010glo (hm) 
where F is the FI matrix (defined by (3.2)) with the 
row and column corresponding to hl(0) deleted, and 
trh(F-') denotes the sum of the diagonal elements of 
F-' associated with h. Note that hl(0) is normalized to 
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be one for the caculation of the MSE and, hence, should 
be treated as a known parameter in the calculation of the 
€!I matrix. In this example, both the input and the channel 
responses are real valued, and the unknown parameters are 
hl(l),hl(2),hz(O),hz(l),k2(2),s(-L),...,s(N). There- 
fore, trh(F-') is simply the sum of the first five diagonal 
elements of F-'. 

Fig. 1 shows the performances of the CR, SS, and TSML 
method against the channel condition (6) at a relatively high 
SNR (45 dB). In the region of poor channel condition (when 
d is near zero), the TSML method performed better than 
both the CR and SS methods. In the region of good channel 
condition (when 6 is near T )  , however, the three methods had 
comparable performances, and all approached the CRB. The 
TSML method always approached the CRB closely. 

Fig. 2 shows the performances of the CR, SS, and TSML 
methods against the angular location of the first channel zero 
(6') for a poor channel condition (small 6) and a relatively 
high SNR (45 dF3). The TSML method performed consistently 
better than the other two methods. In the regions around the 
three points 6' = -6/2,7r - 6/2 or 2~ - 6/2, the channel 
is very ill conditioned, and the differences between the three 
methods are very large. 

Fig. 3 shows the performances of the CR, SS, and TSML 
methods against the SNR for a good channel condition (6 
is T ,  and B is n/lO). The three methods had comparable 
performances, and all approached the CRB even at a very 
low SNR. The SNR threshold in this case is very good due to 
the good channel condition. The CR method and the TSML 
method are not distinguishable in this figure. 

Fig. 4 shows the performances of the CR, SS, and TSML 
methods against the SNR for a poor channel condition (6 
is n/10, 5nd 6' is ~ / 1 0 ) .  The TSML method consistently 
performed better than the CR method. The TSML method 
also performed better than the SS method for relatively high 
SNR, although in the low SNR region, the SS method is 
more robust. The latter phenomenon is due to the poor initial 
estimates by the first step (the CR method) of the TSML 
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0 
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Fig. 3. Performances of the CR, SS, and TSML methods versus SNR, where 
6 = T, and 8 = ~ / 1 0 .  

method. Nevertheless, in the region where the MSE is small, 
the SNR required by the TSML method (for a fixed MSE) is 
about 5 dB lower than the SS method and about 15 dl3 lower 
than the CR method. 

Fig. 5 illustrates the situation where the first step of the 
TSML method is replaced by the SS method. It can be seen 
that the modified TSML method becomes much more robust 
to noise and outperforms the SS method over a much wider 
S N R  range. 

Finally, it should be mentioned that the TXK method [3] 
performs very poorly for relatively short data. The MES of the 
TXK method was too large to fit in these figures and, hence, 
was omitted in tbs  paper. This phenomenon is consistent with 
the reports shown in 111, [21, [151, [161. 

VII. CONCLUSIONS 
The TSML method is a computationally efficient alternative 

to achieve the high-SNR optimum accuracy for this blind 
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Fig. 5. Performances of the CR, SS, and TSML methods versus SNR, where 
6 = n/10 and 0 = */lo,  and the first step of the TSML method was replaced 
by the SS method. 

system identification problem. Simulations have also supported 
that the TSML method performs significantly better than the 
CR and SS methods and approaches the CRB for a wide range 
of SNR. Replacing the first step of the TSML method by 
the SS method leads to an even more robust technique. The 
TSML method also provides an interesting link between the 
CR method and the ML principle. In studying the channel 
identifiability, the FI-based approach provides a new and 
interesting angle with respect to existing approaches. It is a 
pleasing result that the FI-based identifiability is equivalent 
to the CR-based identifiability under a mild condition. The 
orthogonal complement matrix G of the generalized Sylvester 
matrix H not only has played a critical role in developing the 
TSML method and understanding the FI matrix and the CR 
method but could also be useful in further investigation of the 
M-channel system. The role of the matrix G in understanding 

the SS method [15] needs further research. Some initial results 
are shown in [31]. 
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