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Abstract

Acquired immunodeficiency syndrome (AIDS) is one of the most deadly 

diseases worldwide. AIDS was first  reported in 1981, with its disease causing virus 

discovered and isolated two years later (Gottlieb et al., 1981; Barré-Sinoussi et al., 1983; 

Gallo et al., 1983). Since then, the three decades of research has seen huge progress on 

many aspects, especially on lengthening the life span of HIV infected patients. Yet today, 

there are still more than 34 million people living with HIV/AIDS, (http://www.amfar.org/

About_HIV_and_AIDS/Facts_and_Stats/Statistics__Worldwide/) and we are no where 

close to thoroughly understanding the pathogenesis of this virus and to finding an 

ultimate cure for the disease. Despite the enormous amount of studies, the enigma of 

HIV infection and how it progresses to AIDS remains elusive.

The progression of HIV infection varies greatly among individuals. Since HIV 

uses the cellular machinery to replicate, many researchers have been focusing on 

identifying the host factors that determine the resistance to HIV progression. Numerous 

genome wide association studies (GWAS) have been conducted to unveil these 

determining genetic variation and to infer causal genes, but  there has been little success. 

Most GWA studies agree on the significant roles of HLA genes (mainly  HLA-B and 

HLA-C), which are challenging candidates due to their complexity.

In this study, I adopt a novel computational method to identify candidate genes 

by leveraging the information in GWAS and expression quantitative trait loci (eQTL) 

data. The combination of GWAS and eQTL reveal several new genes, including MED28, 

CD151, A4GALT, and ANAPC2, that have never been implicated in previous GWA 
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studies. Substantial literature evidence support the potential roles of these genes. 

Hypergeometric test between HIV interactome data (Jager et al., 2011), RNAi screens 

(Brass et al., 2008; Konig et al., 2008; Zhou et al., 2008; Yeung et  al., 2009) and my 

result shows significant overlap. 
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Chapter One: Introduction

 In the first half of this chapter, I introduce the concept of GWAS and the new 

approach I adopt to understand GWAS data. The second part presents the biological 

question I try to answer by laying out the background of HIV infection progression and 

previous works on HIV control.

1.1 Genome Wide Association Study (GWAS)

Mendel’s laws of inheritance is the earliest model to explain the transmission of 

phenotypes in diploid organisms (Altshuler et al., 2008). Mendel Genetics can be 

elegantly summarized into the law of segregation and the law of independent assortment. 

Yet the advancement of molecular biology  and molecular genetics has shown that most 

human phenotypes, such as body height, disease risk, and disease resistance, are not 

determined by  single alleles. Naturally occurring phenotypes cannot be explained by 

Mendel Genetics. Instead, they are results of extremely complex interplay  between genes, 

epigenetic and environmental factors. 

The idea of genetic association studies emerged in the 1980s. In the 1990s, Hill et 

al. reported case-control studies that showed the association between alleles in Human 

Leukocyte Antigen (HLA) genes and the resistance to severe malaria (Hill et al., 1991; 

Hill et al., 1992). These early  association studies were based on hypotheses about the 

functions of the target genes, but  prior knowledge might not be available in most search 

for the targets. It was much desired to develop a systematic method to uncover true causal 
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genes with minimal prior knowledge. This did not become practical until the advent of 

GWAS. 

GWAS examines common genetic variation in a population to see if the variation 

is associated with certain traits. Typically, GWAS focuses on the association between 

single-nucleotide polymorphisms (SNPs) and traits such as the resistance or susceptibility 

to certain disease, or the response to drugs and therapies. The study  breaks test subjects 

into two groups. One group has the trait (case) and the other does not (control). By 

comparing the DNAs between the two groups, GWAS returns a list of SNPs, each 

followed by a p-value indicating the significance of the association. A small p-value 

indicates a high confidence about the association.

Most classical GWA studies focus on the genes that contain or in close proximity 

to the most significant signals. For instance, in 2005, the GWAS published by Klein et al. 

greatly supported the hypothesis that polymorphisms in Human Complement Factor H 

(CFH) can lead to Age-related Macular Degeneration (AMD). The strongest SNP signal 

rs380390 is contained within CFH gene (Klein et  al., 2005).  In another famous triumph 

of GWAS on Crohn’s Disease, Duerr et al. identified IL23R as associated with the 

disease. IL23R was revealed due to multiple strong signals within the IL23R region 

(Duerr et al., 2006). 

1.2 New Approach to Interpret GWAS Results

The shortcoming of the approach mentioned above is that GWAS identifies loci 

but not genes per se. One reason for the successes in the cases of AMD and Crohn’s 
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Disease is that the strongest signals all happen to reside within the genes, but  this is not 

always the case. It did not take long for the researchers to realize that most loci identified 

do not map  to amino acid changes in proteins. In fact, many of the loci do not map to the 

open reading frames of any  recognizable protein, but intergenic regions, causing huge 

ambiguities in the mapping from SNPs to causal genes (Hardy and Singleton, 2009). 

The speculation is that the loci alter transcriptional or translational efficiency 

(Hardy and Singleton, 2009). Studies have shown that complex-trait associated variants 

overlap with eQTL, a variant of GWAS that associate SNPs with the expression level of a 

certain gene (Emilsson et al., 2008; Nica et al., 2010; Stranger et al., 2011). A recent 

study also reported that on a global scale, the trait-associated SNPs are highly  likely to be 

eQTL SNPs (eSNPs) (Nicolae et al., 2010). Thus, many scientists in the field have 

envisioned the prospect of using eQTL data to prioritize the GWAS SNPs and interpret 

GWAS results (Emilsson et al, 2008; Cookson et al., 2009; Mackay et al., 2009). 

Recently, there have been numerous attempts to combine GWAS data with eQTL data in 

order to leverage the information in these datasets. Many have produced promising 

results (Levy et al., 2009; Hsu et al., 2010; Speliotes et al., 2010; Sille et al., 2012).  

However, none of these studies provided a systematic method to relate eQTL to GWAS. 

As a result, much useful information could have been missed by these studies regardless 

of the costly and time-consuming production of GWAS data. 

My colleagues in Dr Hao Li’s lab, Dr. Xin He and a PhD candidate Christopher 

Fuller, have developed a Bayesian statistical method that matches GWAS signals with 

eQTL signals. Figure 1 (page 45) illustrates the basic idea of this method. The model is 
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built upon the notion that a genetic variation affecting the expression of a disease-causing 

gene must also affect the disease. Therefore, the set of SNPs of a disease-causing gene 

should overlap with that of the disease itself. It  assesses the p-values of an overlapping 

SNP between GWAS and eQTL datasets, and returns a score (a Bayesian Factor) for each 

SNP. The score of a gene is the sum of the scores for each overlapping SNP. This method 

can also be considered as an alignment. For every gene, one can perform an alignment 

between the GWAS signals and the eQTL signals along the genome. The more the strong 

signals match up, the more likely it is a causal gene. The profiling can technically be 

done for every gene in the genome. 

In addition to directly assessing the likelihood of a causal gene, this model comes 

with a great advantage to use the information in both the cis- and the trans- SNPs. Trans-

SNP signals are thought to be weaker than cis- signals (Dixon et al., 2007). However, due 

to the large quantity of trans-SNPs, the combined effect might be remarkable. He and 

Fuller have performed analysis on Crohn’s Disease, and have identified several novel 

candidate causal genes, most of which supported by existing literature evidence 

(manuscript in preparation). We believe that there is rich information embedded in the 

trans-SNPs, and that our method is one step ahead towards fully  understanding the 

GWAS results.

1.3 The Control of HIV-1

In my work, I based all of my analysis on the previous works on HIV-1. For the 

rest of my thesis, I refer to HIV-1 as HIV. 
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HIV affects human health by  hijacking the immune system. The major sites of 

HIV infection includes lymphocytes, in particular CD4+ T cells, macrophages and 

dendritic cells (Embretson et al., 1993). Once infected, the patient’s immune system is 

doomed with destruction, followed by  the onset  of AIDS. In the initial stage of HIV 

infection, there is a short but intense period of viral replication (Tindall and Cooper, 

1991). Possible symptoms of the this stage were reported to resemble that of an acute 

infectious-mononucleosis-like illness, such as fevers, sweats, malaise, pharyngitis, and so 

on (Cooper et al., 1985; Deeks and Walker, 2007). The outburst of HIV particles in the 

periphery blood cells is then followed by  a prolonged period of clinical latency (Pantaleo 

et al., 1993). The length of the latency varies depending on the individual and many other 

factors. The short extreme could be < 2 years and the long extreme could be > 15 years 

(van Manen et al., 2011). Despite the apparently low viral activity and the steady-state 

viral count, HIV undergoes active replication during this time (Pantaleo et al., 1993) in 

the potential HIV reservoirs including lymphoid tissue, bone marrow and brain (Chun 

and Fauci, 1999). By the end of the infection course, the patient’s immune system starts 

to fail. The CD4+ T cell count  drops precipitously  and the viral count  increases 

drastically. 

To uncover the factors that affect the length of HIV clinical latency  has a 

profound impact on the development of anti-HIV therapies. It has become a major anti-

HIV strategy  to protect patients from the progression of the infection, to maximize the 

length of the clinical latency, and to postpone the onset of AIDS (Deeks and Walker, 

2007). In the 1990s, many studies showed the correlation between the virologic setpoint, 
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the viral load in plasma during the clinical latency, and the disease progression rate (Ho, 

1996). In particular, Mellors et al. demonstrated that the virologic setpoint is directly 

related to the probability of developing AIDS in years (Mellors et al., 1996). These 

findings contributed to the initiation of the highly active antiretroviral therapy (HAART), 

which has remarkable efficacy to lower the setpoint and to lengthen the clinical latency, 

and has remained the major treatment for HIV till now. 

The success of HAART seems to suggest that controlling the viral load is the right 

approach to combat HIV. Just a few years after the introduction of HAART, studies found 

a small group of HARRT-naive patients with impressive ability  to control the viral load, 

and these patients also tended to have better prognosis than average people (Hubert et al., 

2000; Goudsmit et al., 2002). This group  of patients are termed “HIV controllers”, and 

can be divided into two subsets. One subset shows low plasma viremia (< 5000 HIV-

RNA copies/ml). They are termed long-term nonprogressors. People in the other subset 

are “elite controllers” or “natural controllers”, who have positive antibody tests, yet carry 

no measurable viral load (< 50 HIV-RNA copies/ml) (Deeks and Walker, 2007; Saksena 

et al., 2007). 

1.4 Previous Works 

HIV heavily  depends on the cellular machinery to replicate. Both of the clinical 

latency  and the onset of AIDS are results of an extremely  dynamic and complex interplay 

between HIV proteins and numerous host factors. To understand the variability  among 
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individuals, the immediate attempt is to look for potential HIV host factors (Fauci, 1996; 

Haynes et al., 1996). 

1.4.1 GWA Studies

The arrival of the genomic era advanced the HIV studies to a new stage. Recently 

there have been numerous GWAS conducted on HIV control (Fellay et al., 2007; Fellay 

et al., 2009; International HIV Controllers Study et al., 2010; Pelak et al., 2010; van 

Manen et al., 2011). These studies have not produced consistent results, but they  agree 

unanimously on HLA genes (HLA-B and HLA-C in particular) being the strongest 

determinant for virologic set point. 

HLA complex, or major histocompatibility  complex (MHC), is a gene cluster 

located on Chromosome 6. It spans over 3.6 megabases, approximately from 29,000,000 

to 33,000,000 bp from the pter (O’Brien et al., 2001). The HLA complex contains more 

than 200 genes, some of which, according to the HLA nomenclature website, have 

extremely large number of alleles (http://hla.alleles.org/nomenclature/stats.html). This 

highly  complex structure of HLA cluster hinders our understanding of its roles in HIV 

control. Not all of these genes are related to immunity. The ones that are consist of two 

classes (class I and class II), both of which are expressed on the surface of cells and 

function in antigen presentation. 

Class I molecules include HLA-A, HLA-B and HLA-C and are expressed on most 

somatic cells in the body. They bind to endogenous peptides, which are the product of 

proteasome degradation, on the luminal surface of endoplasmic reticulum (ER). These 
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include viral peptides if the cell is infected. Class I molecules present the antigen to CD8 

receptors on the cytotoxic T cells (CD8+ T cells). Numerous GWA studies confirmed 

them as one of the major determinants of HIV control. In Caucasian population, HLA-

B*5701 and HLA-B27 are closely associated with long survival time (Migueles et al., 

2000; Gao et al., 2005; Fellay et al., 2007; Navis et al., 2007), whereas HLA-B35 is 

associated with accelerated progression to AIDS (Carrington and O’Brien, 2003; van 

Manen et al., 2011). In African American population, HLA-B*5703 is associated with 

delayed onset of AIDS. Class II molecules include many more genes. In contrast to class 

I molecules, they are mainly  expressed on B cells, activated T cells, macrophages, and 

dendritic cells. They bind to exogenous peptides degraded in the lysosome, and present 

them to CD4+ T cells (Klein and Sato, 2000). 

1.4.2 RNAi Screens

HIV relies heavily on the host factors. There have been several RNAi screens on 

the HIV host factors (Brass et al., 2008; Konig et al., 2008; Zhou et al., 2008; Yeung et 

al., 2009). In these studies, researchers firstly knock down cellular genes with small 

interfering RNAs (siRNAs). Then, the cells are infected by engineered reporter HIV 

virus, which signifies successful infection (Brass et al., 2008; Konig et al., 2008; Zhou et 

al., 2008). Another way to evaluate infectivity is to measure cell proliferation, assuming 

that HIV infection will lead to cell death (Yeung et al., 2009). However, these results 

have not been reproducible. Not a single gene is in common across all four studies. The 

result by Yeung et al. seems to agree the least with the rest, possibly due to the different 
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way to assess infectivity. MED6, MED7, and RELA are the common genes between 

Brass et al.’s, Zhou et al.’s and Konig et al.’s results. The following shows the pairwise 

intersection between these four studies. 

Brass et al. with Zhou et al.: AKT1, CD4, CXCR4, DDX3X, JAK1, MED28, 

MED4, MED6, MED7, NUP155, RAB28, RELA, RNF26, TCEB3, WNK1. 

Brass et al. with Konig et al.: CTDP1, DMXL1, IDH1, MAP4, MED6, MED7, 

MID1IP1, NUP153, RANBP2, RELA, TNPO3, TRIM55. 

Brass et al. with Yeung et al.: EXOSC5, MR1, ZNF354A. 

Zhou et al. with Konig et al.: ADRBK1, ANAPC2, CHST1, MED19, MED6, 

MED7, MRE11A, PRDM10, RELA. 

Zhou et al. with Yeung et al.: CKLF, NFKB1.

Konig et al. with Yeung et al.: AES, DLGAP4, EPAS1.

1.4.3 Interactome Studies

The monumental work in Dr. Nevan Krogan’s lab presents a systematic 

characterization of the pairwise interactions between HIV proteins and host proteins 

(Jager et al., 2011). Jager et  al. developed a computational method (MiST) to evaluate the 

interactions. Only interactions with sufficient reproducibility, specificity  and abundance 

could pass the criteria. This study  identified 435 host factors from HEK293 cells and 

Jurkat cells. Among the 435 proteins, 55 overlap  with the proteins found in the four 

RNAi screens combined, with a hypergeometric p-value of 2.7 × 10-10. 
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1.4.4 CCR5 and CXCR4

CCR5 and CXCR4 are chemokine receptors mainly expressed on subsets of 

hematopoietic cell. Besides their functions in directing leukocyte migration in 

inflammation, CCR5 and CXCR4 are well-known facilitators of HIV infection by acting 

as a co-receptor (Springer, 1994; Mackay, 1996). So far, they are the only host  factors 

identified with profuse experimental evidence. 

In a mature HIV particle, the HIV genome is enclosed in a protein core, which is 

further protected by a lipid bilayer envelope. The envelope is acquired from the host cell 

membrane as the virion buds from the cell (Ganser-Pornillos et al., 2008). Embedded in 

the lipid envelope is the viral glycoprotein gp120/gp41. Gp120 needs to bind to both 

CD4, an HIV receptor expressed on the surface of leukocytes such as CD4+ T cells, 

monocytes, macrophages and dendritic cells, and its co-receptor CCR5 (in some cases 

CXCR4). With the present of gp41, this interaction induces the fusion between the host 

cell membrane and the viral envelope. Hence, the intact CCR5 or CXCR4 is necessary 

for the viral entry  (Choe et  al., 1996; Bleul et al., 1997; Chan et al., 1997; Gallo et al., 

2003). 

The mid 1990s witnessed a breakthrough that a 32-bp deletion allele of CCR5 

(CCR5Δ32) confers resistance to HIV infection. Dean et al. found that the CCR5Δ32 

homozygotes were antibody-negative when exposed with HIV, and that the heterozygotes 

displayed slower progression to AIDS (Dean et al., 1996). Chemokine receptor 

antagonists such as (AOP)-RANTES and TAK-779 were immediately  explored about 

their potential as anti-HIV therapy  (Simmons et al., 1997; Baba et al., 1999). Various 
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other methods have also been tried, including siRNA and intracellular immunization 

against CCR5 (Steinberger et al., 2000; Qin et al., 2003). 

1.5 Objectives

In my study, I aim to apply the computational method developed in my  lab to look 

for potential genes that might  be associated with the control of HIV progression. The 

study will be particularly  valuable if any  gene outside of HLA complex can be implicated 

and supported with strong literature evidence. I will also compare my result with previous 

host factor screenings and assess if my method is more productive and accurate.
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Chapter Two: Analysis and Results

In order for the program to produce the most accurate result, I select a GWAS 

study and an eQTL study with best quality. Based on these two datasets, a list  of genes, 

ranked by their likelihood of being a causal gene associated with the HIV controller 

phenotype, is generated by the program. I then compare my result with two datasets. One 

is the interactome data using mass spectroscopy (Jager et al., 2011), and the other is a 

combination of four RNAi results (Brass et  al., 2008; Konig et al., 2008; Zhou et al., 

2008; Yeung et al., 2009). I perform hypergeometric tests and rank-sum tests to assess 

how much the results agree. For the top ten genes on my  list and the intersect of the three 

datasets, I conduct extensive literature search for its biological function. 

2.1 Careful Choosing of the GWAS and eQTL Datasets

Both GWAS and eQTL datasets are required to run the program. In order for the 

program to reach maximum accuracy, the complete result of the GWAS (i.e. the p-values 

of every single SNP tested in the entire genome) is required. Despite numerous GWAS 

studies on HIV control, I only  find one study that publishes its complete GWAS result 

(Fellay et al., 2007). In addition, I am fortunate to obtain the complete result of the study 

by The International HIV Controllers Study et al. from my colleague Dr. Xin He. In my 

analysis, I choose to use the latter GWAS result because it has greater population size 

(974 controllers and 2648 progressors) and has data on ~ 1,300,000 SNPs. All of the 

human subjects in this study are treatment naive. The controllers are defined by three 

consecutive measurement of plasma viral load with < 2000 RNA copies/ml. The median 
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viral load of controllers is 241 RNA copies/ml, and that of the progressors is 61,698 RNA 

copies/ml. 

An ideal eQTL dataset for this analysis would have the same population structure 

as the GWAS and is derived from a disease-related tissue. Among the six eQTL datasets 

that I have access to (Dixon et al., 2007; Myers et  al., 2007; Duan et al., 2008; Schadt et 

al., 2008; Webster et  al., 2009; Zeller et al., 2010), the study  conducted by Duan et al., 

which contains 9830 genes, is the best for two reasons. Firstly, this study is one of the 

two studies (Dixon et al., 2007; Duan et al., 2008) performed on the lymphoblastoid cell 

line. It is the immortalized precursor of lymphocytes, which is mainly constituted of T 

lymphocytes and B lymphocytes. T lymphocyte is one of the major infection sites of HIV. 

Therefore, lymphoblastoid cell line is a tissue type that  matches well with HIV infection. 

Secondly, Among the studies by Duan et al. and Dixon et al., the latter uses individuals 

from families associated with asthma. This might cause the genetic network to be rewired 

and hence a biased result.

2.2 Producing the List of Target Genes

The parameters of the program are adjusted accordingly to the size of the GWAS 

and eQTL datasets. Table 1 (page 38) shows the specific parameters I used to produce the 

results. 

The top 10 genes, starting from the highest likelihood, returned by the program 

are: CCHCR1, FAM20B, MOBKL2B (MOB3B), HLA-C, ATP5O, DPM3, HLA-B, 

MICA, MICB, SENP8. Among them, (Table 2 page 38) five are located within HLA 
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region. Amidst the other half, FAM20B, ATP5O, DPM3, and SENP8 all have the most 

significant GWAS SNP in HLA (Table 3 page 39). Though this result confirms the critical 

role of HLA genes in HIV infection, it is not  particularly interesting because it  does not 

reveal any gene that has both a specific biological function and a close connection to 

HIV infection that bodes well for a great potential target. 

HLA related genes have been known to be ubiquitously involved in various 

immune diseases. The significant GWAS signals almost exclusively reside within HLA. 

When the HLA region, as well as CCR5, a known player in HIV control, is excised, the 

Q-Q plot of the p-values overlaps with null (International HIV Controllers Study et al., 

2010). Given the dense signal, an immediate question is to distinguish real signals versus 

noises. Consider a single strong SNP in an intergenic region. There might be two genes in 

close proximity. Even more genes might be associated with it on the expression level. 

Therefore, the high density of GWAS signals in HLA makes it difficult to pinpoint the 

specific gene involved in HIV control. This could lead to the discovery of false causal 

genes simply because they are next to a strong signal. If this is the case, the false genes 

are likely to have no significant SNP support except for a few in the HLA region on 

Chromosome 6. FAM20B, ATP5O, DPM3, and SENP8 all satisfy this criterion.

2.3 Brief Summary of the Top Ten Genes Produced in 2.2

HLA-C / HLA-B. Both of HLA-C and HLA-B are Class I HLA genes and have 

critical roles in antigen presentation. Many studies have confirmed their association with 

the control of HIV as discussed in Chapter One.
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MICA / MICB. MICA and MICB are the human MHC (HLA) I chain-related 

(MIC) proteins. They do not belong to class I or II of HLA genes. These MIC proteins are 

normally expressed on the surface of gastrointestinal epithelium cells. They  are ligands of 

an activating receptor NKG2D on the surface of natural killer (NK) cells. Different from 

HLA proteins, the MIC proteins do not present antigens. Their major function is to 

respond to the stress condition of cells by binding to NKG2D, which in turn activates the 

NK cells (Steinle et al., 2001; Stephens, 2001). In the GWAS done by the International 

HIV Controllers Study et al., MICA is suggested to be a potential target. A study in 2006 

showed that the Nef protein of HIV down-regulates the cell-surface expression of MICA, 

hindering the activation of NK cells (Cerboni et al., 2007). 

CCHCR1. CCHCR1 is closely associated with psoriasis, a skin disease due to an 

autoimmune disorder (Bowcock and Krueger, 2005). It is not uncommon for HIV 

infected patients to develop psoriasis (Morar et al., 2010). Psoriasis is thought of as a 

symptom of HIV by some patients. Interestingly enough, study has suggested that genetic 

variants which predispose patients to psoriasis might increase resistance against HIV 

(Chen et al., 2012). In the GWAS literature published by the International HIV 

Controllers Study et  al., the authors point out that PSORS1C3, another gene implicated in 

psoriasis, can be a potential target associated with HIV control (International HIV 

Controllers Study et al., 2010). These information seem to suggest a loose connection 

between CCHCR1 and the control of HIV. However, no evidence could be found to rule 

out the possibility  that CCHCR1 is inferred by the program simply because it is next to a 

strong SNP signal, given that the only strong signals are from within the HLA region.
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In the rest of the top ten genes, FAM20B is a kinase that phosphorylates xylose at 

the 2-O position (Koike et al., 2009). MOBKL2B stands for MOB kinase activator 3B 

that has a role in MOB kinase regulation. ATP5O is a subunit of the ATP synthase. 

DPM3’s function is to stabilize the dolichol-phosphate-mannose synthase complex. No 

literature evidence could be found to support the association between these genes and the 

control of HIV.

2.4 Pruning the GWAS Dataset and Producing a Second List of Target Genes

In order to shield the interference from the strong signals and to uncover any 

target gene outside of the HLA cluster, I acquire the chromosome coordinate for every 

SNP of the GWA study from the dbSNP database, and remove any SNP that falls within 

28,000,000 and 34,000,000 on Chromosome 6.

I re-run the program using the same settings. The top genes, starting from the 

highest likelihood, are MOBKL2B, PRKCH, ANKDD1A, NAPRT1, TMPRSS3, CD151, 

LBX2, MED28, LAD1, and SEPN1 (Table 4, page 40). None of the top ten genes are 

from Chromosome 6. Out  of the ten genes, six are entirely  supported by  trans-SNPs. The 

other four are ANKDD1A, NAPRT1, CD151, and LAD1. Interestingly, the signals of the 

cis-SNPs are weak. It  would have been impossible to infer these genes based on their cis-

SNPs alone due to their low GWAS significance (Table 5, page 41). For instance, 

rs5030780 and rs1108991 are the only two cis-SNPs for CD151. The chromosome 

coordinates of them are 838110 and 1537517 on Chromosome 11 (Genome Build: 37.3, 

Assembly: GRCh37.p5), with rs5030780 falling right within CD151. The GWAS p-
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values are 0.167773 and 0.00633979 respectively, and are not the strongest signals for 

CD151 (rs518063 has a GWAS p-value of 0.00183253). It is a great manifestation of our 

philosophy that the supporting signals can be spread and divided into multiple SNPs, and 

that the significance adds up  within the collection of SNPs. Literature search reveals that 

CD151 is involved in inhibiting HIV entry, which I will discuss in detail in the next 

section.

2.5 Brief Summary of the Top Ten Genes Produced in 2.4

MED28. All SNPs for MED28 are trans-SNPs. The most strong GWAS signal is 

rs489105, with a GWAS p-value of 0.00106469. It  is a perfect example of a gene that 

could easily have been missed by only looking at top GWAS signals and search for genes 

in cis. MED28 is a member of the multi-subunit mediator complex. The complex plays an 

active role in regulating the transcription activity by interacting with RNA pol II and the 

general transcription factors (Kornberg, 2005; Taatjes, 2010). Recently, the mediator 

complex has been implicated by many studies to be HIV dependency factors (Brass et al., 

2008; Konig et al., 2008; Zhou et al., 2008). In Brass et al.’s study, the silencing of 

MED28 shows robust inhibitory effect on the early stage of HIV infection. Moreover, 

MED28 seems to be specific to HIV since the silencing of MED28 does not affect 

Murine Leukemia Virus (MLV) infection. Another two subunits are also worth 

mentioning. MED6 and MED7 have shown up  in three studies on HIV host factors (Brass 

et al., 2008; Konig et al., 2008; Zhou et al., 2008). Brass et al. and Zhou et al. suggest that 

MED28, along with MED6 and MED7, directly  mediate the interaction between 
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transcription factors and RNA pol II. The depletion of these mediator subunits inhibits 

HIV infection by affecting transcription activity. Konig et al.’s study seems to suggest 

MED7’s role in reverse transcription. In conclusion, MED28 is a host factor with decent 

amount of literature evidence and has turned out to be one of the top candidate genes on 

my list. It is worth investigating with more follow-up studies.

CD151. CD151 is a member of the tetraspanins, a family of small transmembrane 

proteins that  regulate cell migration, fusion and signaling events. Particularly, CD151 

interacts with integrins and modulate cell fusion, integrin-dependent cell morphology and 

cell migration (Hemler, 2005). CD151’s role in cell fusion could be extended to the 

inhibition of HIV entry. Several studies have implicated CD151’s role in HIV infection, 

though the results have not been consistent (Pelchen-Matthews et al., 2003; Gordon-

Alonso et al., 2006; Ho et al., 2006). Pelchen-Matthews et al. precipitated small amount 

of HIV particles with anti-CD151 antibody, suggesting that some virions incorporate this 

molecule into their envelopes. An siRNA study by Gordon-Alonso et al. showed that the 

interference of CD151 partially inhibited membrane fusion, but they did not detect  an 

inhibitory effect on HIV entry. Ho et al. fused the extracellular domain of CD151 with 

glutathione S-transferase (GST) into a soluble chimeric protein. The study  demonstrated 

a completely inhibited HIV infection of macrophages by  the chimeric protein, suggesting 

that the infection of macrophage might involve some interaction between HIV and 

CD151. 

SEPN1. SEPN1 is a selenoprotein that incorporates selenium. Although there is 

no direct evidence that SEPN1 is related to HIV control, selenium and selenoprotein have 
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been suggested to delay the progression of HIV infection. Some studies suggest that the 

oxidative stress could promote viral replication or activation from the proviral state. 

Thus, it  is assumed that selenoprotein, an antioxidant, may inhibit the progression of 

HIV (Schwarz, 1996; Moghadaszadeh and Beggs, 2006). 

PRKCH. PRKCH stands for protein kinase C eta (PKCη), an isoform of PKC. 

There has been no report on PRKCH being an HIV host factor or involved in HIV 

control, but some studies claim that  a motif in the HIV protein gp41 demonstrates 

immunosuppressive capability by inhibiting the PKC-dependent T cell activation (Ruegg 

and Strand, 1991; Chen et al., 1995).

MOBKL2B has occurred in the top ten genes before the pruning. This MOB 

kinase activator 3B has not  been shown to be related to HIV. The literature of the other 

half of the top ten genes cannot be found.

In addition to the top ten genes, A4GALT is also a notably  interesting gene. 

A4GALT encodes for alpha 1,4-galactosyltransferase. It is the synthase of Gb3, a type of 

glycosphingolipid. Although it ranks the 11th on the list, with a bayesian factor of 164 

(5.1039 on the natural log scale), it is observed that individuals with accumulated 

expression of Gb3 due to a mutation demonstrate increased resistance to HIV infection 

(Lund et al., 2009; Branch, 2010). Moreover, the introduction of exogenous Gb3 in Gb3-

devoid Jurkat cells increases the resistance against HIV infection (Lund et al., 2009).
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2.6 Overlap Studies

I examine the overlap  between the interactome study (Jager et al., 2011), the 

RNAi screen results (Brass et al., 2008; Konig et al., 2008; Zhou et  al., 2008; Yeung et 

al., 2009) and my result. I evaluate the significance of the overlap with hypergeometric 

test, and assess whether the overlaps concentrate more on the top of my result list. At the 

end, I discuss some overlap genes with interesting literature evidence

2.6.1 Significance of Overlap

Both of HLA-B and HLA-C have confirmed involvement in HIV control. After 

pruning, the rank of HLA-B on my result list  is 872 and that  of HLA-C is 210. I thus 

define a list of the top  872 genes and assess its enrichment of genes identified in 

interactome data and RNAi screen. 438 genes were identified in the interactome study 

and 1035 genes in the pooled RNAi studies. All genes in the three datasets are 

represented in HUGO gene names. Those that  do not have a HUGO gene name have been 

discarded.

33 genes are in common between my result and the interactome data:

Assume there are 22,000 genes in the human genome, and that all the genes (438 in total) 

from the interactome study are true target genes, the significance of the hypergeometric 

test for the overlap is p = 0.000161. Similarly, 74 genes are in common between my 

result and the RNAi screen data:

COX5A   FOXC1   SUMF2   ANAPC2  QARS    XPO5    G3BP1   MRPS35  CSDE1   HLA-C   RER1    
CUL4A   COPS8   TMEM43  COPS6   EXOC4   TMED4   CCDC47  WDR61   COPS4   DAGLB   RNF7    
VAPA    ACBD3   EIF3M   GPS2    PRKCSH  ATL3    TBC1D15 MRPL11  DDX49   HARS2   HLA-B.
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The significance of the overlap  is 3.33 × 10-7. A4GALT, mentioned above, is also within 

this intersection. Both p-values are sufficiently  low to rule out the possibility  of random 

overlap, indicating that genes in my result are more likely  to also occur as result in other 

studies. 

  

2.6.2 Rank-sum Test of the Overlap Genes

Another question is whether this computational method can effectively rank the 

target genes. If it does, the top genes should have a higher likelihood of being a target. 

Figure 2 (page 46) shows that for both datasets, the frequency of the rank does not show a 

decreasing trend, indicating that the top of the list is no more enriched.

I assess this aspect by Mann-Whitney rank-sum test. Two vectors are required to 

perform the test. One is the rank of the overlap genes in my result. I construct the other 

vector with the exact same range and the number of elements as the rank, but the 

elements are uniformly  distributed. For instance, the rank of the overlap between my 

result and the interactome data is: 42, 74, 75, 114, 131, ..., 9603, 9641, 9680, 9729, 9821. 

This is tested against the constructed vector: 42, 68, 95, 121, 148, ..., 9714, 9741, 9767, 

9794, 9821. Neither the overlap with the interactome (p-value = 0.5211) nor that of the 

RNAi screen (p-value = 0.7515) appears to be shifted upwards the top on the result list. 

PRKCH   MED28    A4GALT  SSU72   NRAS    ZNF436  CYBB    TOMM70A PRCC     PSMA2   CFLAR    
IFRD2   ANAPC2   CDC16   MAP3K14 RPP40   CDH22   SHCBP1  MRPL44  NUDT4    MAP3K7  PSMA5    
BAHD1   GCLM     ETHE1   ETF1    USP39   PRMT3   DCBLD1  BTBD1   MRPL24   MRE11A  ATG5     
UBE2L3  SPAST    GBAS    CEP68   TPR     SAMM50  ADAM10  FAM118A SSR1     OCIAD1  NUMBL    
KHDRBS1 SPEN     USP20   PIGY    RAD21   BTN3A3  ANKFY1  EIF2B5  BCR      INTS12  CLNS1A   
PKN2    STARD3NL IL1A    MED17   AMDHD2  PIP5K1C TOM1    KLF5    TBC1D10A PIK3CB  NEU1     
NUP50   CSPP1    WNK1    DDX49   CHAF1A  LIN7C   PHF12   ACADSB.
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2.6.3 Overlap Between the Interactome, the RNAi, and My Result

There are 55 overlapping genes between the interactome study and the RNAi 

screens. In these 55 genes, two also appear in my result: ANAPC2 and DDX49, the rank 

of which are 114 and 816 respectively. 

ANAPC2 encodes for anaphase promoting complex subunit 2. This gene was 

firstly  proposed by Konig et al. in their RNAi study due to the reduced viral DNA 

integration accompanying the knock down of this gene. Konig et al. noted that the cell’s 

entering into mitosis might be associated with HIV viral DNA integration. Since 

ANAPC2 promotes the entrance in anaphase, it is reasonable to hypothesize a 

relationship  between ANAPC2 and HIV infection (Konig et al., 2008). A later study 

following up  on ANAPC2 confirms that knocking down ANAPC2 decreases viral 

integration, and that ANAPC2 is likely to be HIV specific (Ocwieja et al., 2011). So far 

there are few studies on the association between ANAPC2 and HIV infection. Yet this 

gene occurs in all three genome-wide gene screens, which I think promises a great 

potential to uncover a new aspect of this virus.

The other gene is DDX49, which encodes for one of the 42 identified DEAD-box 

RNA helicases. Proteins in the DDX family share 9 motifs, none of which is missing in 

DDX49 (Umate et al., 2011). There has been no specific studies on the relationship 

between DDX49 and HIV, but two other members of the DDX family, DDX1 and DDX3, 

have been implicated as co-factors of HIV Rev. Rev is an HIV accessory protein that 

targets any  viral mRNA containing the Rev response element (RRE), and helps to export 

them from the nucleus to the cytoplasm for translation or packaging (Pollard and Malim, 
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1998). It is shown that DDX1 is associated with nuclear / cytoplasmic distribution of Rev 

in astrocytes, the most abundant  cells in the brain (Fang et al., 2005). 

Coimmunoprecipitation studies suggest that in Jurkat cells and MT4 cells, DDX3 forms 

complex with REV and CRM1 and is required in the nuclear transportation performed by 

the viral protein REV (Yedavalli et al., 2004). This is later supported by an RNAi study  in 

HEK 293T cells (Ishaq et al., 2008). 

23



Chapter Three: Discussion and Self Assessment

3.1 New Ways to Interpret GWAS May Lead to the Discovery of New Genes

It is worth noting that our method is not limited to eQTL, but is able to leverage 

information in essentially any type of genomic data, such as various DNA methylation, 

acetylation and protein interaction data. In fact, the idea of combining different types of 

genomic data has existed for years, and many attempts have been made, including meta-

analysis of multiple studies and conceiving new algorithms to infer genetic interaction 

from GWAS and protein complex data, the latter of which is particularly a forerunner of 

transforming the interpretation of GWAS (Bushman et al., 2009; Hannum et al., 2009). 

With our method, we hope to resolve the ambiguities in GWAS and to ultimately  enables 

researchers to predict causal genes.

Comparing to RNAi screens, immunoprecipitation, or mass spectroscopy, GWAS 

has been less successful in identifying HIV related host genes. The old way to identify 

causal genes has failed because the signals outside HLA are generally weak, dwarfed by 

the HLA complex with extremely noisy and strong signals (International HIV Controllers 

Study et al., 2010). If one naively  sets a threshold and picks some top SNPs to 

investigate, he or she is sure to only focus on the HLA and overlook the information that 

is not  concentrated in certain regions but spread along the entire genome. Moreover, a 

highly  signal-rich region does not make gene identification any easier. The noises 

decrease the resolution within HLA and make it difficult to pinpoint any causal gene. 

Essentially  all GWA studies with concentrated strong signals are faced with this 

challenge. 

24



Our new computational method partially  solves these problems by combining 

GWAS with eQTL. The extra information in eQTL dataset lends the ability  to integrate 

the information spread along the genome. As a result, genes outside of HLA complex 

(FAM20B, MOBKL2B, ATP5O, DPM3, SENP8) start to appear as top candidates. 

Pruning the GWAS data removes the strongest SNP signals and completely removes the 

HLA genes from the top of the result, enabling other interesting candidates to be 

revealed. In my result, both of MED28 and A4GALT are solely supported by  weak trans-

SNPs. They  have never been identified in any GWA studies despite solid experimental 

evidences. In this study, the two genes are computational identified for the first time.

3.2 Multiple GWAS Datasets and eQTL Datasets Will Improve the Accuracy

This study is solely based on one pair of GWAS-eQTL datasets, which limits the 

accuracy. Multiple GWAS and eQTL datasets are highly desired. There are several 

benefits. Firstly, multiple GWAS datasets enables one to perform meta-analysis, greatly 

improving the statistical power. Secondly, single GWAS is prone to false positives and 

false negatives. Using multiple GWAS may eliminate bias and produce more robust 

results. Thirdly, multiple GWA studies make it possible to do population stratification 

while maintaining a relatively large sample size. Unfortunately, most GWA studies do not 

publish their complete results, leading to a very limited selection range for my study. I 

believe that the value of GWAS is far beyond the top SNP signals. Sharing the complete 

results for each GWA study grant researchers with access to much richer information and 

fuller view of human genetics.

25



Access to various eQTL studies is also important. Ideally, the tissue type of the 

eQTL study should match the major phenotype. For example, an ideal eQTL employed in 

this study  would have been conducted with CD4+ T cells, or macrophages. In different 

tissues, similar phenotypes may  be caused by different genes. The DEAD-box RNA 

helicases are perfect examples. Both of DDX1 and DDX3 are proposed to be HIV co-

factors, but they function in brian tissue and T cells respectively. To push this study to 

even better accuracy, the GWAS and eQTL should be performed on individuals in the 

same developmental stage, as gene expression changes not only spatially  but also 

temporally. 

3.3 Critiques About This Work and Future Direction

Careful self-assessment revealed several weaknesses, according to which I 

suggest a few possible future directions.

Firstly, although this study has brought up some genes worth attention, it fails to 

identify some of the well-recognized HIV co-factors. CD4 is required for HIV entry. It is 

not present in Duan et al.’s study, and is thus missed by my study. Similarly, I cannot find 

CCR5 in the eQTL data. CXCR4 is identified in my study, but only ranks the 1735th out 

of the 9830 genes. APOBEC3G, a non-HIV-specific antiviral factor that is normally 

suppressed by Vif in HIV-infected T cells, only ranks the 5896th (Stopak et al., 2003). 

Table 6 (page 44) shows the SNP support for the two genes. They both have relatively 

fewer SNP supports. Since the bayesian factor (BF) of a gene is the sum of the BFs of all 

its SNP supports, the BF of a gene is very  sensitive to the number of its supporting SNPs. 
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It is likely that the gene’s rank is influenced by artifacts in eQTL studies, leading to 

reduced number of SNP supports. It is also likely that the expression of the genes is not 

directly  associated with SNPs, but  is regulated by  epigenetic factors. Therefore, one of 

the future direction could possibly be to incorporate epigenetic markers, such as DNA 

methylation and various histone code, into this algorithm.

Secondly, with a high mutation rate, there exist many strains of HIV. Using study 

results from different HIV strains could affect host factor detection. For instance, there 

are R5 and X4 HIVs, which utilizes CCR5 and CXCR4 for cell entry respectively. The 

HIV that uses CCR5 as co-receptors usually infects macrophages (Wu et al., 1997). There 

is also evidence that blocking CXCR4 reduces the infection of T cell lines (Murakami et 

al., 1997). This might explain the absence of CCR5 and the presence of CXCR4 in my 

result, as lymphoblastoid cell line are immortalized precursors of T cells. On the one 

hand, these strain information of HIV will not be available in GWA studies since the virus 

in the human body constitutes of multiple strains. On the other hand, some genes, like 

CCR5 and CXCR4, interact with specific HIV strains. This conflict is a big challenge to 

identifying genes associated with HIV control.

Thirdly, pruning the GWAS data seems to be effective in focusing on novel non-

HLA complex and unveiling some interesting genes. Though my work shows a 

significant overlap  between previous studies and my result  after pruning, demonstrating 

non-significant overlap before pruning will be a solid proof that  pruning is an effective 

method. Another future direction is to assess which genes have moved up  or down the list 

after the pruning, and how much have the genes moved. This study will contribute to the 
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systematic understanding of this method, which may be used in similar cases in the 

future.
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Appendix

Table 1

eQTL parameterseQTL parameterseQTL parameters
N_expr 176 sample size of the eQTL data (need to change for any eQTL dataset)

cis_expr_prior 1.00E-03 the prior of a cis-eSNP
trans_expr_prior 5.00E-05 the prior of a trans-eSNP

sigma_a_expr 0.5 the effect size prior of an expression QTL

GWAS parametersGWAS parametersGWAS parameters
is_pheno_binary 1 whether the phenotypic trait is binary or quantitative

N_pheno 3622 sample size of the GWAS data
phi 0.27 the proportion of cases in the GWAS
K 0.01 the disease prevalance

pheno_prior 1.00E-04 the prior of a phenotypic trait locus
sigma_a_pheno 0.2 the effect size prior of a phenotypic trait locus

Table 2

The chromosome coordinate information in this table is obtained based on 

genome build 37.3.

Gene Description log(BF) Chromosome Start (bp from 
pter)

End (bp from 
pter)

CCHCR1 coiled-coil alpha-helical rod 
protein 1 13.5958 6 31,110,216 31,126,015

FAM20B family with sequence similarity 
20, member B 9.40828 1 178,995,074 179,045,702

MOBKL2B MOB kinase activator 3B 9.25255 9 27,325,207 27,529,850

HLA-C m a j o r h i s t o c o m p a t i b i l i t y 
complex, class I, C 8.99442 6 31,236,526 31,239,913

ATP5O ATP synthase, H+ transporting, 
mitochondrial F1 complex, O 8.26566 21 35,275,757 35,288,158

DPM3
d o l i c h y l - p h o s p h a t e 
mannosyltransferase polypeptide 
3

8.03168 1 155,112,367 155,112,996

HLA-B m a j o r h i s t o c o m p a t i b i l i t y 
complex, class I, B 7.75934 6 31,321,649 31,324,989

MICA MHC class I polypeptide-related 
sequence A 7.7352 6 31,367,561 31,383,090

MICB MHC class I polypeptide-related 
sequence B 7.73257 6 31,465,855 31,478,901
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SENP8 SUMO/sentrin specific peptidase 
family member 8 7.36874 15 72,406,599 72,433,311

Table 3

Due to space limitation, only SNPs with log(BF) > 0.05 are listed.

The chromosome coordinate information in this table is obtained based on 

genome build 36.3.

Gene SNPs Chromosome Coordinate cis / trans log(BF) of SNPs
FAM20B  log(BF) = 9.0104FAM20B  log(BF) = 9.0104FAM20B  log(BF) = 9.0104FAM20B  log(BF) = 9.0104FAM20B  log(BF) = 9.0104FAM20B  log(BF) = 9.0104

FAM20B rs300278 1 54807936 trans 0.059916
FAM20B rs12075898 1 164097717 trans 0.0416094
FAM20B rs6757018 2 199038919 trans 0.290194
FAM20B rs163541 3 6815697 trans 0.0593867
FAM20B rs6780762 3 24972516 trans 0.0467571
FAM20B rs10804694 3 145620760 trans 0.0606078
FAM20B rs1499807 3 178918446 trans 0.0863446
FAM20B rs1011495 4 97159210 trans 0.307039
FAM20B rs10032098 4 177379770 trans 0.394049
FAM20B rs2169095 5 113811888 trans 0.0481513
FAM20B rs1100580 6 22484054 trans 0.231732
FAM20B rs3094208 6 31198651 trans 5.95951
FAM20B rs9381530 6 47304549 trans 0.202839
FAM20B rs6939322 6 114228177 trans 0.0468737
FAM20B rs17061433 6 132922472 trans 0.0543157
FAM20B rs7806365 7 2956535 trans 0.244419
FAM20B rs6950340 7 12831783 trans 0.842979
FAM20B rs11763159 7 57249189 trans 0.030444
FAM20B rs7802743 7 81996518 trans 0.280295
FAM20B rs1821892 9 6606648 trans 0.0941377
FAM20B rs1940247 9 112562853 trans 0.0709472
FAM20B rs129889 9 135532689 trans 0.670612
FAM20B rs9299574 10 59089117 trans 0.580641
FAM20B rs557309 11 60716712 trans 0.328257
FAM20B rs3802893 11 84219051 trans 0.0947974
FAM20B rs9572108 13 68671752 trans 0.0706718
FAM20B rs1481420 14 84229253 trans 0.0544086
FAM20B rs11071167 15 53192545 trans 3.05853
FAM20B rs2671666 17 44891520 trans 0.110063
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FAM20B rs10502421 18 13454437 trans 0.0495132
FAM20B rs6512158 19 16982533 trans 0.3009
FAM20B rs10426205 19 21765001 trans 0.267686
FAM20B rs3844453 19 59049576 trans 0.0540084
FAM20B rs6048024 20 22256842 trans 0.0643483
FAM20B rs735455 22 20743793 trans 0.066166

ATP5O log(BF) = 7.95662ATP5O log(BF) = 7.95662ATP5O log(BF) = 7.95662ATP5O log(BF) = 7.95662ATP5O log(BF) = 7.95662ATP5O log(BF) = 7.95662
ATP5O rs1264420 6 30683582 trans 7.17177
ATP5O rs16897785 6 165719948 trans 0.754585
ATP5O rs1616483 13 27291672 trans 0.524064

DPM3 log(BF) = 7.44053DPM3 log(BF) = 7.44053DPM3 log(BF) = 7.44053DPM3 log(BF) = 7.44053DPM3 log(BF) = 7.44053DPM3 log(BF) = 7.44053
DPM3 rs3132488 6 31350674 trans 6.77716
DPM3 rs9938060 16 85022070 trans 0.63187
DPM3 rs1403528 17 44600805 trans 0.0310129
DPM3 rs200766 20 15561056 trans 0.110495

SENP8 log(BF) = 7.08848SENP8 log(BF) = 7.08848SENP8 log(BF) = 7.08848SENP8 log(BF) = 7.08848SENP8 log(BF) = 7.08848SENP8 log(BF) = 7.08848
SENP8 rs13437088 6 31463098 trans 7.20186
SENP8 rs6939322 6 114228177 trans 0.0533025
SENP8 rs6470789 8 131084458 trans 0.0352814

Table 4

The chromosome coordinate information in this table is obtained based on 

genome build 37.3.

Gene Description log(BF) Chromosome Start(bp from 
pter)

End (bp from 
pter)

MOBKL2B MOB kinase activator 3B 9.25255 9 27,325,207 27,529,850
PRKCH Protein kinase C, eta 6.63506 14 61,788,515 62,017,698

ANKDD1A ankyrin repeat and death domain 
containing 1A 6.62846 15 65,204,101 65,251,042

NAPRT1
N i c o t i n a t e 
p h o s p h o r i b o s y l t r a n s f e r a s e 
domain containing 1

5.9829 8 144,656,955 144,660,513

TMPRSS3 transmembrane protease, serine 3 5.53317 21 43,791,996 43,816,955

CD151 CD151 molecule (Raph blood 
group) 5.49685 11 832,952 838,835

LBX2 ladybird homeobox 2 5.39866 2 74,724,644 74,730,443
MED28 mediator complex subunit 28 5.38231 4 17,616,273 17,626,160
LAD1 ladinin 1 5.21392 1 201,349,966 201,368,669
SEPN1 selenoprotein N, 1 5.1874 1 26,126,667 26,144,713
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Table 5

Due to space limitation, only SNPs with log(BF) > 0.05 are listed, except for 

rs5030780, which is specifically discussed in §2.4. All of the SNPs filtered out are trans-

SNPs, except for rs6998917 (for NAPRT1 with a log(BF) of -0.32955).

The chromosome coordinate information in this table is obtained based on 

genome build 36.3.

Gene SNPs Chromosome Coordinate cis / trans log(BF) of SNPs
MOBKL2B log(BF) = 9.25255MOBKL2B log(BF) = 9.25255MOBKL2B log(BF) = 9.25255MOBKL2B log(BF) = 9.25255MOBKL2B log(BF) = 9.25255MOBKL2B log(BF) = 9.25255

MOBKL2B rs13024819 2 129615846 trans 7.01888
MOBKL2B rs7079148 10 115320376 trans 0.0548581
MOBKL2B rs713974 22 25540691 trans 2.03702
MOBKL2B rs4821089 22 31448165 trans 0.057498

PRKCH log(BF) = 6.63506PRKCH log(BF) = 6.63506PRKCH log(BF) = 6.63506PRKCH log(BF) = 6.63506PRKCH log(BF) = 6.63506PRKCH log(BF) = 6.63506
PRKCH rs2801178 1 15080799 trans 0.108415
PRKCH rs3806187 1 158017253 trans 0.362164
PRKCH rs9821993 3 39264607 trans 0.163898
PRKCH rs7650998 3 46582259 trans 0.580038
PRKCH rs7666932 4 143478755 trans 0.0927929
PRKCH rs11778620 8 3925428 trans 0.168607
PRKCH rs1930144 10 55943558 trans 0.0945184
PRKCH rs4943750 13 39736899 trans 1.59968
PRKCH rs2296316 14 64589999 trans 1.64584
PRKCH rs934537 15 53212148 trans 2.91533

ANKDD1A log(BF) = 6.62846ANKDD1A log(BF) = 6.62846ANKDD1A log(BF) = 6.62846ANKDD1A log(BF) = 6.62846ANKDD1A log(BF) = 6.62846ANKDD1A log(BF) = 6.62846
ANKDD1A rs6683133 1 44906148 trans 0.328271
ANKDD1A rs10427335 2 14572045 trans 1.15259
ANKDD1A rs2664095 3 9074653 trans 0.382531
ANKDD1A rs7657630 4 90246443 trans 0.277017
ANKDD1A rs17608937 6 12195974 trans 0.100787
ANKDD1A rs1228412 10 125392451 trans 0.489565
ANKDD1A rs11025102 11 19307344 trans 1.33793
ANKDD1A rs1421566 11 99522626 trans 1.59316
ANKDD1A rs1385951 15 63003010 cis 0.137471
ANKDD1A rs8108252 19 55135873 trans 1.14917
ANKDD1A rs2830437 21 27014160 trans 0.481143
ANKDD1A rs13046217 21 46267004 trans 0.432625

NAPRT1 log(BF) = 5.9829NAPRT1 log(BF) = 5.9829NAPRT1 log(BF) = 5.9829NAPRT1 log(BF) = 5.9829NAPRT1 log(BF) = 5.9829NAPRT1 log(BF) = 5.9829
NAPRT1 rs11131170 3 984495 trans 0.102164
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NAPRT1 rs653316 3 184354656 trans 0.08354
NAPRT1 rs7631503 3 186512797 trans 0.130147
NAPRT1 rs2279525 4 23403350 trans 0.0888101
NAPRT1 rs91315 5 1908301 trans 0.417698
NAPRT1 rs17077288 5 173650577 trans 1.47139
NAPRT1 rs2429216 7 139605013 trans 0.0799407
NAPRT1 rs7932859 11 78872747 trans 0.783579
NAPRT1 rs7102251 11 120753111 trans 2.19781
NAPRT1 rs746690 12 14675065 trans 0.317195
NAPRT1 rs10860309 12 97136051 trans 0.0733323
NAPRT1 rs12825698 12 113470092 trans 0.237646
NAPRT1 rs17252387 15 66398543 trans 1.87507
NAPRT1 rs1468191 17 13076821 trans 0.229263
NAPRT1 rs6134639 20 12627627 trans 0.173953
NAPRT1 rs12053796 22 41944043 trans 0.232996

TMPRSS3 log(BF) = 5.53317TMPRSS3 log(BF) = 5.53317TMPRSS3 log(BF) = 5.53317TMPRSS3 log(BF) = 5.53317TMPRSS3 log(BF) = 5.53317TMPRSS3 log(BF) = 5.53317
TMPRSS3 rs7552599 1 30386259 trans 0.0958183
TMPRSS3 rs6334 1 155112857 trans 0.192863
TMPRSS3 rs6426551 1 224608672 trans 0.877136
TMPRSS3 rs40997 2 8016854 trans 0.0558463
TMPRSS3 rs10164749 2 20336328 trans 0.0867924
TMPRSS3 rs3900566 2 145445159 trans 0.0584469
TMPRSS3 rs3769931 2 165864479 trans 0.312595
TMPRSS3 rs10202550 2 173127236 trans 0.0886694
TMPRSS3 rs3138373 3 130631711 trans 0.158538
TMPRSS3 rs10007960 4 40114171 trans 0.158417
TMPRSS3 rs12513607 5 5036619 trans 1.14367
TMPRSS3 rs2287904 5 64617808 trans 0.0585229
TMPRSS3 rs7734266 5 163340895 trans 0.647947
TMPRSS3 rs6929735 6 1020055 trans 0.190189
TMPRSS3 rs2227234 6 103582559 trans 0.178188
TMPRSS3 rs17248900 7 7137460 trans 0.487562
TMPRSS3 rs2948929 7 152170108 trans 0.254564
TMPRSS3 rs434645 10 8161457 trans 0.112013
TMPRSS3 rs399593 10 30952036 trans 0.367894
TMPRSS3 rs2488647 10 86353619 trans 0.253093
TMPRSS3 rs17833422 14 58494680 trans 0.0726075
TMPRSS3 rs3736054 15 41109405 trans 0.533459
TMPRSS3 rs9928327 16 2190234 trans 3.08546
TMPRSS3 rs238142 18 3472786 trans 0.076077
TMPRSS3 rs9630890 19 2600218 trans 0.393992
TMPRSS3 rs1545117 20 53983182 trans 0.175123
TMPRSS3 rs4819596 22 16370606 trans 0.360458
TMPRSS3 rs5768034 22 46603224 trans 0.915409
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CD151 log(BF) = 5.49685CD151 log(BF) = 5.49685CD151 log(BF) = 5.49685CD151 log(BF) = 5.49685CD151 log(BF) = 5.49685CD151 log(BF) = 5.49685
CD151 rs518063 1 47775708 trans 1.83833
CD151 rs6672824 1 232194894 trans 0.289559
CD151 rs10184722 2 143470773 trans 0.0517988
CD151 rs9289218 3 124547521 trans 0.122067
CD151 rs7806065 7 139879676 trans 0.343708
CD151 rs12543567 8 110096523 trans 0.974944
CD151 rs7069690 10 27298646 trans 0.0904704
CD151 rs5030780 11 828110 cis 0.042543
CD151 rs1108991 11 1494093 cis 1.96222
CD151 rs10521320 16 54133662 trans 0.630982
CD151 rs6025653 20 55613969 trans 0.292126

LBX2 log(BF) = 5.39866LBX2 log(BF) = 5.39866LBX2 log(BF) = 5.39866LBX2 log(BF) = 5.39866LBX2 log(BF) = 5.39866LBX2 log(BF) = 5.39866
LBX2 rs891898 5 146600275 trans 3.92373
LBX2 rs9458808 6 163675242 trans 0.28768
LBX2 rs6942887 7 37154023 trans 0.122181
LBX2 rs13276508 8 72848378 trans 0.0859322
LBX2 rs2720972 10 129008874 trans 1.65381

MED28 log(BF) = 5.38231MED28 log(BF) = 5.38231MED28 log(BF) = 5.38231MED28 log(BF) = 5.38231MED28 log(BF) = 5.38231MED28 log(BF) = 5.38231
MED28 rs1373287 1 112319067 trans 0.141767
MED28 rs9871964 3 179856789 trans 0.331383
MED28 rs3800027 6 55486273 trans 0.224717
MED28 rs11196301 10 84624827 trans 1.30597
MED28 rs17119973 14 83982864 trans 0.163289
MED28 rs489105 15 53183925 trans 3.55254

LAD1 log(BF) = 5.21392LAD1 log(BF) = 5.21392LAD1 log(BF) = 5.21392LAD1 log(BF) = 5.21392LAD1 log(BF) = 5.21392LAD1 log(BF) = 5.21392
LAD1 rs498795 1 4298856 trans 0.219071
LAD1 rs675508 1 199723677 cis 2.92835
LAD1 rs3011631 10 22402416 trans 1.4036
LAD1 rs670848 11 124846513 trans 0.707541
LAD1 rs1875051 13 62095838 trans 0.164085
LAD1 rs10152049 14 77865046 trans 0.118763
LAD1 rs7257503 19 55108776 trans 0.311779

SEPN1 log(BF) = 5.1874SEPN1 log(BF) = 5.1874SEPN1 log(BF) = 5.1874SEPN1 log(BF) = 5.1874SEPN1 log(BF) = 5.1874SEPN1 log(BF) = 5.1874
SEPN1 rs12023823 1 202312571 trans 1.2508
SEPN1 rs17045065 2 53731055 trans 0.0722753
SEPN1 rs1371238 4 44226286 trans 0.719195
SEPN1 rs2526977 7 105423382 trans 0.583362
SEPN1 rs2884594 12 4376087 trans 0.704122
SEPN1 rs9514497 13 105569397 trans 2.84168
SEPN1 rs1872159 14 22017743 trans 0.0579029
SEPN1 rs238142 18 3472786 trans 0.30284
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Table 6

The chromosome coordinate information in this table is obtained based on 

genome build 36.3.

Gene SNPs Chromosome Coordinate cis / trans log(BF) of SNPs
CXCR4 log(BF) = 0.834994CXCR4 log(BF) = 0.834994CXCR4 log(BF) = 0.834994CXCR4 log(BF) = 0.834994CXCR4 log(BF) = 0.834994CXCR4 log(BF) = 0.834994

CXCR4 rs2372565 2 216066837 trans -0.057943
CXCR4 rs12520069 5 168589997 trans 0.875323
CXCR4 rs10814443 9 36744763 trans 0.118574
CXCR4 rs1752156 9 125574333 trans -0.0492948
CXCR4 rs7908645 10 112846415 trans -0.00892216
CXCR4 rs2759303 13 36237281 trans -0.0427429

APOBEC3G log(BF) = -0.043849APOBEC3G log(BF) = -0.043849APOBEC3G log(BF) = -0.043849APOBEC3G log(BF) = -0.043849APOBEC3G log(BF) = -0.043849APOBEC3G log(BF) = -0.043849
APOBEC3G rs11192130 10 106349130 trans -0.00215559
APOBEC3G rs4802561 19 54308942 trans -0.0416935
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Figure 1

eQTL connects the variation of gene expression to SNPs, which is related to 

disease susceptibility by  GWAS. The relationship we are trying to infer is represented by 

the red arrow. Bayesian statistics indicates that given the strengths of the eQTL 

relationship  and the GWAS relationship (in teal blue), one can estimate the likelihood of 

the causal relationship between a gene and the disease (in red).
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Figure 2

The histograms show the overlap counts of my result with the interactome data 

and the RNAi data. The horizontal axis represents the rank of the overlapping genes. The 

plots demonstrate that the overlapping of the genes does not seem to be more 

concentrated in the area with higher scores.
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