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Why is the sky blue? Any 
scientist will answer this 
question with a statement of 

mechanism: Atmospheric gas scatters 
some wavelengths of light more than 
others. To answer with a statement of 
purpose—e.g., to say the sky is blue in 
order to make people happy—would 
not cross the scientifi c mind. Yet in 
biology we often pose “why” questions 
in which it is purpose, not mechanism, 
that interests us. The question “Why 
does the eye have a lens?” most often 
calls for the answer that the lens is 
there to focus light rays, and only rarely 
for the answer that the lens is there 
because lens cells are induced by the 
retina from overlying ectoderm. 

It is a legacy of evolution that 
teleology—the tendency to explain 
natural phenomena in terms of 
purposes—is deeply ingrained in 
biology, and not in other fi elds 
(Ayala 1999). Natural selection has 
so molded biological entities that 
nearly everything one looks at, from 
molecules to cells, from organ systems 
to ecosystems, has (at one time at least) 
been retained because it carries out 
a function that enhances fi tness. It is 
natural to equate such functions with 
purposes. Even if we can’t actually 
know why something evolved, we care 
about the useful things it does that 
could account for its evolution.

As a group, molecular biologists shy 
away from teleological matters, perhaps 
because early attitudes in molecular 
biology were shaped by physicists and 
chemists. Even geneticists rigorously 
defi ne function not in terms of the 
useful things a gene does, but by what 
happens when the gene is altered. 
Molecular biology and molecular 
genetics might continue to dodge 
teleological issues were it not for their 
fi elds’ remarkable recent successes. 
Mechanistic information about 
how a multitude of genes and gene 
products act and interact is now being 
gathered so rapidly that our inability 
to synthesize such information into a 
coherent whole is becoming more and 
more frustrating. Gene regulation, 
intracellular signaling pathways, 

metabolic networks, developmental 
programs—the current information 
deluge is revealing these systems to be 
so complex that molecular biologists 
are forced to wrestle with an overtly 
teleological question: What purpose 
does all this complexity serve?

In response to this situation, two 
strains have emerged in molecular 
biology, both of which are sometimes 
lumped under the heading “systems 
biology.” One strain, bioinformatics, 
champions the gathering of even larger 
amounts of new data, both descriptive 
and mechanistic, followed by computer-
based data “mining” to identify 
correlations from which insightful 
hypotheses are likely to emerge. The 
other strain, computational biology, 
begins with the complex interactions 
we already know about, and uses 
computer-aided mathematics to 
explore the consequences of those 
interactions. Of course, bioinformatics 
and computational biology are not 
entirely separable entities; they 
represent ends of a spectrum, differing 
in the degree of emphasis placed 
on large versus small data sets, and 
statistical versus deterministic analyses. 

Computational biology, in the sense 
used above, arouses some skepticism 
among scientists. To some, it recalls 
the “mathematical biology” that, 
starting from its heyday in the 1960s, 
provided some interesting insights, 
but also succeeded in elevating the 
term “modeling” to near-pejorative 
status among many biologists. For the 
most part, mathematical biologists 
sought to fi t biological data to relatively 
simple mathematical models, with the 
hope that fundamental laws might be 
recognized (Fox Keller 2002). This 
strategy works well in physics and 
chemistry, but in biology it is stymied 
by two problems. First, biological data 
are usually incomplete and extremely 
imprecise. As new measurements are 
made, today’s models rapidly join 
tomorrow’s trash heaps. Second, 
because biological phenomena are 
generated by large, complex networks 
of elements, there is little reason to 
expect to discern fundamental laws in 

them. To do so would be like expecting 
to discern the fundamental laws of 
electromagnetism in the output of a 
personal computer. 

Nowadays, many computational 
biologists avoid modeling-as-data-
fi tting, opting instead to create models 
in which networks are specifi ed in 
terms of elements and interactions (the 
network “topology”), but the numerical 
values that quantify those interactions 
(the parameters) are deliberately 
varied over wide ranges. As a result, 
the study of such networks focuses not 
on the exact values of outputs, but 
rather on qualitative behavior, e.g., 
whether the network acts as a “switch,” 
“fi lter,” “oscillator,” “dynamic range 
adjuster,” “producer of stripes,” etc. 
By investigating how such behaviors 
change for different parameter sets—
an exercise referred to as “exploring 
the parameter space”—one starts to 
assemble a comprehensive picture of 
all the kinds of behaviors a network 
can produce. If one such behavior 
seems useful (to the organism), it 
becomes a candidate for explaining 
why the network itself was selected, 
i.e., it is seen as a potential purpose 
for the network. If experiments 
subsequently support assignments of 
actual parameter values to the range 
of parameter space that produces such 
behavior, then the potential purpose 
becomes a likely one. 

For very simple networks (e.g., 
linear pathways with no delays or 
feedback and with constant inputs), 
possible global behaviors are usually 
limited, and computation rarely 
reveals more than one could have 
gleaned through intuition alone. 
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In contrast, when networks become 
even slightly complex, intuition often 
fails, sometimes spectacularly so, and 
computation becomes essential. 

For example, intuitive thinking 
about MAP kinase pathways led to 
the long-held view that the obligatory 
cascade of three sequential kinases 
serves to provide signal amplifi cation. 
In contrast, computational studies have 
suggested that the purpose of such a 
network is to achieve extreme positive 
cooperativity, so that the pathway 
behaves in a switch-like, rather than a 
graded, fashion (Huang and Ferrell 
1996). Another example comes from 
the study of morphogen gradient 
formation in animal development. 
Whereas intuitive interpretations of 
experiments led to the conclusion 
that simple diffusion is not adequate 
to transport most morphogens, 
computational analysis of the same 
experimental data yields the opposite 
conclusion (Lander et al. 2002). 

As the power of computation to 
identify possible functions of complex 
biological networks is increasingly 
recognized, purely (or largely) 
computational studies are becoming 
more common in biological journals. 
This raises an interesting question for 
the biology community: In a fi eld in 
which scientifi c contributions have 
long been judged in terms of the 
amount of new experimental data 
they contain, how does one judge 
work that is primarily focused on 
interpreting (albeit with great effort 
and sophistication) the experimental 
data of others? At the simplest level, 
this question poses a conundrum 
for journal editors. At a deeper 
level, it calls attention to the biology 
community’s diffi culty in defi ning 
what, exactly, constitutes “insight” (Fox 
Keller 2002).

In yesterday’s mathematical 
biology, a model’s utility could 
always be equated with its ability to 
generate testable predictions about 
new experimental outcomes. This 
approach works fi ne when one’s 
ambition is to build models that 
faithfully mimic particular biological 
phenomena. But when the goal 
is to identify all possible classes of 
biological phenomena that could arise 
from a given network topology, the 
connection to experimental verifi cation 
becomes blurred. This does not 
mean that computational studies of 

biological networks are disconnected 
from experimental reality, but rather 
that they tend, nowadays, to address 
questions of a higher level than 
simply whether a particular model fi ts 
particular data. 

The problem this creates for those 
of us who read computational biology 
papers is knowing how to judge when 
a study has made a contribution that 
is deep, comprehensive, or enduring 
enough to be worth our attention. 
We can observe the fi eld trying to sort 
out this issue in the recent literature. 
A good example can be found in an 
article by Nicholas Ingolia in this issue 
of PLoS Biology (Ignolia 2004), and 
an earlier study from Garrett Odell’s 
group, upon which Ingolia draws 
heavily (von Dassow et al. 2000).

Both articles deal with a classical 
problem in developmental biology, 
namely, how repeating patterns (such 
as stripes and segments) are laid down. 
In the early fruit fl y embryo, it is known 
that a network involving cell-to-cell 
signaling via the Wingless (Wg) and 
Hedgehog (Hh) pathways specifi es 
the formation and maintenance of 
alternating stripes of gene expression 
and cell identity. This network is clearly 
complex, in that Wg and Hh signals 
affect not only downstream genes, but 
also the expression and/or activity 
of the components of each other’s 
signaling machinery. 

Von Dassow et al. (2000) 
calculated the behaviors of various 
embodiments of this network over a 
wide range of parameter values and 
starting conditions. This was done 
by expressing the network in terms 
of coupled differential equations, 
picking parameters at random from 
within prespecifi ed ranges, solving the 
equation set numerically, then picking 
another random set of parameters and 
obtaining a new numerical solution, 
and so forth, until 240,000 cases were 
tried. The solutions were then sorted 
into groups based on the predicted 
output—in this case, spatial patterns of 
gene expression. 

When they used a network topology 
based only upon molecular and gene-
regulatory interactions that were 
fi rmly known to take place in the 
embryo, they were unable to produce 
the necessary output (stable stripes), 
but upon inclusion of two molecular 
events that were strongly suspected 
of taking place in the embryo, they 

produced the desired pattern easily. 
In fact, they produced it much more 
easily than expected. It appeared 
that a remarkably large fraction of 
random parameter values produced 
the very same stable stripes. This 
implied that the output of the network 
is extraordinarily robust, where 
robustness is meant in the engineering 
sense of the word, namely, a relative 
insensitivity of output to variations in 
parameter values. 

Because real organisms face 
changing parameter values 
constantly—whether as a result of 
unstable environmental conditions, or 
mutations leading to the inactivation 
of a single allele of a gene—robustness 
is an extremely valuable feature of 
biological networks, so much so 
that some have elevated it to a sort 
of sine qua non (Morohashi et al. 
2002). Indeed, the major message 
of the von Dassow article was that 
the authors had uncovered a “robust 
developmental module,” which could 
ensure the formation of an appropriate 
pattern even across distantly related 
insect species whose earliest steps of 
embryogenesis are quite different from 
one another (von Dassow et al. 2000). 

There is little doubt that von 
Dassow’s computational study extracted 
an extremely valuable insight from 
what might otherwise seem like a 
messy and ill-specifi ed system. But 
Ingolia now argues that something 
further is needed. He proposes that it 
is not enough to show that a network 
performs in a certain way; one should 
also fi nd out why it does so. 

Ingolia throws down the gauntlet 
with a simple hypothesis about why 
the von Dassow network is so robust. 
He argues that it can be ascribed 
entirely to the ability of two positive 
feedback loops within the system to 
make the network bistable. Bistability 
is the tendency for a system’s output 
to be drawn toward either one or 
the other of two stable states. For 
example, in excitable cells such 
as neurons, depolarization elicits 
sodium entry, which in turn elicits 
depolarization—a positive feedback 
loop. As a result, large depolarizations 
drive neurons to fully discharge their 
membrane potential, whereas small 
depolarizations decay back to a resting 
state. Thus, the neuron tends strongly 
toward one or the other of these two 
states. The stability of each state brings 
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with it a sort of intrinsic robustness—
i.e., once a cell is in one state, it takes a 
fairly large disturbance to move it into 
the other. This is the same principle 
that makes electronic equipment based 
on digital (i.e., binary) signals so much 
more resistant to noise than equipment 
based on analog circuitry.

Ingolia not only argues that 
robustness in the von Dassow model 
arises because positive feedback leads 
to network bistability, he further 
claims that such network bistability 
is a consequence of bistability at the 
single cell level. He strongly supports 
these claims through computational 
explorations of parameter space that 
are similar to those done by von Dassow 
et al., but which also use stripped-
down network topologies (to focus 
on individual cell behaviors), test 
specifi cally for bistability, correlate 
results with the patterns formed, 
and ultimately generate a set of 
mathematical rules that strongly 
predict those cases that succeed or fail 
at producing an appropriate pattern.

At fi rst glance, such a contribution 
might seem no more than a footnote to 
von Dassow’s paper, but a closer look 
shows that this is not the case. Without 
mechanistic information about why the 
von Dassow network does what it does, 
it is diffi cult to relate it to other work, 
or to modify it to accommodate new 
information or new demands. Ingolia 
demonstrates this by deftly improving 
on the network topology. He inserts 
some new data from the literature 
about the product of an additional 
gene, sloppy-paired, in Hh signaling, 
removes some of the more tenuous 
connections, and promptly recovers 
a biologically essential behavior that 
the original von Dassow network 
lacked: the ability to maintain a fi xed 

pattern of gene expression even in the 
face of cell division and growth. 

Taken as a pair, the von Dassow 
and Ingolia papers illustrate the value 
of complementary approaches in the 
analysis of complex biological systems. 
Whereas one emphasizes simulation (as 
embodied in the numerical solution 
of differential equations), the other 
emphasizes analysis (the mathematical 
analysis of the behavior of a set of 
equations). Whereas one emphasizes 
exploration (exploring a parameter 
space), the other emphasizes the 
testing of hypotheses (about the origins 
of robustness). The same themes can 
be seen in sets of papers on other 
topics. For example, in their analysis 
of bacterial chemotaxis, Leibler 
and colleagues (Barkai and Leibler 
1997) found a particular model to be 
extremely robust in the production of 
an important behavior (exact signal 
adaptation), and subsequently showed 
that bacteria do indeed exhibit such 
robust adaptation (Alon et al. 1999). 
Although Leibler and colleagues took 
signifi cant steps toward identifying and 
explaining how such robustness came 
about, it took a subsequent group (Yi 
et al. 2000) to show that robustness 
emerged as a consequence of a simple 
engineering design principle known as 
“integral feedback control.” That group 
also showed, through mathematical 
analysis, that integral feedback control 
is the only feedback strategy capable 
of achieving the requisite degree of 
robustness. 

From these and many other 
examples in the literature, one can 
begin to discern several of the elements 
that, when present together, elevate 
investigations in computational biology 
to a level at which ordinary biologists 
take serious notice. Such elements 

include network topologies anchored 
in experimental data, fi ne-grained 
explorations of large parameter 
spaces, identifi cation of “useful” 
network behaviors, and hypothesis-
driven analyses of the mathematical 
or statistical bases for such behaviors. 
These elements can be seen as the 
foundations of a new calculus of 
purpose, enabling biologists to take on 
the much-neglected teleological side of 
molecular biology. “What purpose does 
all this complexity serve?” may soon go 
from a question few biologists dare to 
pose, to one on everyone’s lips. �
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