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Magnetic resonance-guided radiation therapy (MRgRT) has drawn enormous clinical and 

research interests. The superior soft-tissue contrast of magnetic resonance imaging (MRI) 

compared with computed tomography (CT) allows more accurate tumor and organ-at-risk (OAR) 

segmentation for brain, prostate, and abdominal cancer. Additionally, real-time target tracking 

ability and high-quality daily MR images offered by the online MRgRT system could further 

minimize treatment delivery uncertainties. However, the current MRgRT workflow has several 

limitations including the need to acquire an additional CT for treatment planning, slow tumor 

and OAR recontouring in the adaptive workflow, and underdeveloped tools for predicting 
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treatment response and survival outcome. In this dissertation, we developed and investigated 

several deep learning (DL) methods to address these three limitations.  

 First, 2D and 3D convolutional neural networks (CNNs) were proposed to generate 

pelvic synthetic CT (sCT) images from 1.5T MR images. Second, conditional generative 

adversarial network (cGAN) and cycle-consistent generative adversarial network (cycleGAN) 

were investigated for abdominal sCT generation based on 0.35T MR images. Third, a novel 

multi-path 3D DenseNet was proposed for automatic glioblastoma multiforme (GBM) 

segmentation based on multi-modal MR images and compared with the corresponding single-

path DenseNet. For predicting neoadjuvant chemoradiation treatment (nCRT) response in 

patients with locally advanced rectal cancer (LARC), two logistic regression models were built 

using handcrafted radiomic features and DL-based radiomic features, respectively. These 

radiomic features were extracted from pre-treatment diffusion-weighted MR images based on 

manually delineated gross tumor volume. Additionally, an automatic radiomic workflow was 

proposed for GBM survival prediction based on multi-modal MR images. This workflow 

consisted of an automatic tumor segmentation CNN and a Cox regression model. 

 The proposed 3D CNN generated more accurate pelvic sCT images compared with the 

2D CNN. Abdominal sCT images generated by both GANs achieved accurate dose calculation 

for liver radiotherapy plans. The multi-path DenseNet achieved more accurate GBM 

segmentation compared with the single-path DenseNet. The logistic regression model 

constructed using DL-based features achieved significantly better classification performance in 

predicting nCRT response compared with the model constructed using handcrafted features. The 

proposed automatic workflow demonstrated the potential of improving patient stratification and 

survival prediction in GBM patients. 
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 The proposed DL methods could potentially address three limitations of the MRgRT 

workflow but were investigated across different cancer types due to limited data availability. 

Future work could be adapting these methods for one cancer type and conducting further 

investigation to translate them into clinics. 
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1 INTRODUCTION 

1.1 MR-guided radiation therapy and its limitations 

Radiation therapy uses ionizing radiation to kill cancer cells or slow their growth. It continues to 

be an essential component of effective cancer treatment. About 50% of cancer patients would 

receive radiation therapy for the treatment of localized disease, local control, and palliation1,2. 

Over the year, innovations in imaging guidance have been helping improve the precision of 

treatment delivery3.  

 Magnetic resonance imaging (MRI) has been integrated into radiation therapy treatment 

planning, particularly for tumors in regions like brain, pelvis, and abdomen3,4. This integration, 

also known as offline MR-guided radiation therapy (MRgRT), provides superior soft-tissue 

contrast for better tumor and organ-at-risk (OAR) delineation compared with conventional 

computed tomography (CT)-based radiation therapy5,6. Additionally, the ability to acquire MR 

functional images may help achieve accurate treatment outcome prediction7,8. The first 

commercially available online MRgRT system, MRIdian (ViewRay, OH), uses a low-field MRI 

and 3 Cobalt sources9. This system allows real-time target tracking to achieve more precise 
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treatment delivery within each treatment fraction10. Besides intra-fraction organ motion, inter-

fraction anatomy discrepancy may also lead to large uncertainties of treatment delivery. Online 

MRgRT system also allows the acquisition of high-quality daily MR images, which could 

achieve online adaptive MR-guided radiation therapy (oaMRgRT) for minimizing inter-fraction 

anatomy discrepancy. A phase I trial study showed that oaMRgRT increases target coverage and 

achieves better OAR sparing for abdominal cancer compared with non-adaptive radiation 

therapy11.  

 There are three major limitations in the current MRgRT workflow. First, both offline 

and online MRgRT requires the acquisition of a planning CT for treatment planning. This is 

because that MR images, unlike CTs, cannot be directly used to generate electron density maps 

for dose calculation. However, acquiring an additional CT increases unwanted radiation 

exposure, clinical workload, and financial cost12. Additionally, co-registering MR image and CT 

is required for transferring delineation structures from the MR image to the CT. This process 

introduces a systematic uncertainty, on the order of 2-5 mm depending on the anatomical site, 

that propagates throughout the treatment13. Second, Lamb et al. reported that recontouring target 

and OARs in the oaMRgRT took up to 22 minutes even with the help of the autosegmentation 

tool provided by the MRIdian system14. This slow recontouring process would decrease patient 

comfort, extend treatment time, and decrease the effectiveness of adapted plans due to possible 

anatomy change. Third, the methods for predicting treatment response and survival outcome 

based on MR images are currently underdeveloped.  
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1.2 Synthetic CT generation for MR-only radiation 

therapy 

Synthetic Hounsfield Unit (HU) maps, also known as synthetic CT (sCT) images, must be 

accurately generated from MR images to achieve MR-only radiation therapy. There are three 

types of methods developed for sCT generation: atlas-based, voxel-based, and hybrid methods. 

In atlas-based methods, one or multiple co-registered MR-CT images is deformably registered to 

a patient's MR image15–17. The resulting transformation can then be applied to the CT-atlas to 

generate the sCT. Atlas-based approaches can be time-consuming, especially when atlases are 

large. They may also easily fail if the patient has a very different anatomy from what is 

represented by the atlas. Voxel-based methods convert individual MR voxel intensities to HU 

values using bulk density assignments or machine learning models18–21. Bulk density 

assignments may lead to dose discrepancies and often have limited value in generating 

positioning reference images. Voxel-based machine learning methods are promising but the 

generation time is normally long. Hybrid methods combine elements of voxel-based and atlas-

based approaches. Recently, deep learning (DL) methods including convolutional neural 

networks (CNNs) and generative adversarial networks (GANs) achieved state-of-the-art 

performance in image-to-image translation22–25. DL methods could rapidly generate sCT images 

and be integrated into the oaMRgRT.  

1.3 CNNs for automatic tumor segmentation 

Fast and accurate automatic tumor segmentation can speed up online adaptive planning. It is also 

essential for diagnosis, disease monitoring, and tumor characterization. Manually delineation is 

not only time-consuming but also sensitive to intra-observer and inter-observer variations. 
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Developing automatic tumor segmentation methods, which can generate reproducible and 

accurate segmentation, has drawn great research interests. Recently, 2D CNNs have been 

proposed and achieved great performance in nature scene semantic segmentation26–29. Studies 

have shown that 3D CNNs have achieved better performance in medical image segmentation 

than the corresponding 2D CNNs23,30 

1.4 Radiomics for treatment outcome and survival 

prediction 

It is beneficial for disease management to develop methods for predicting treatment response and 

survival outcome. Radiomic features extracted from the tumor using advanced mathematical 

algorithms may uncover tumor characteristics that fail to be appreciated by the naked eye31,32. 

Recent studies show radiomic features can assist tumor grading without biopsy, treatment 

outcome prediction, and survival prediction32–35. Commonly used radiomic features are acquired 

by explicitly designed, or “handcrafted”, algorithm33. However, these handcrafted features are 

normally shallow and low-order image features and limited to the current human knowledge. 

Recent studies demonstrated that higher-order DL-based features, extracted using pre-trained 

CNNs, achieved better performance than handcrafted features for several classification tasks38,39.  

1.5 Specific aims 

The goal of this proposal is to address those three limitations of the MRgRT workflow using DL 

methods. We hypothesize that the proposed DL methods can generate accurate sCTs for 

treatment planning, achieve fast and accurate automatic tumor segmentation, and provide 

accurate predictions of treatment response and survival outcome. The following specific aims 
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focus on developing key methodologies to accomplish the goal. Due to limited data availability, 

we investigated a wide range of cancer types across different tasks. But the developed methods 

could be adapted to other cancer types with enough training data. 

• Specific aim 1 (SA1): Develop DL methods for generating pelvic and abdominal sCTs from 

MR images for MR-only radiation therapy. 

• Specific aim 2 (SA2): Develop a DL method for automatic glioblastoma multiforme (GBM) 

segmentation based on multi-modal MR images. 

• Specific aim 3 (SA2): Develop a machine learning method for predicting neoadjuvant 

chemoradiation treatment (nCRT) response in locally advanced rectal cancer (LARC) based 

on pre-treatment diffusion-weighted MR image.  

• Specific aim 4 (SA4): Develop an automatic radiomic workflow for GBM survival prediction 

based on multi-modal MR image. 

1.6 Overview 

Chapters 2 through 6 contain versions of manuscripts written based on the core projects of this 

dissertation. Four manuscripts have been published40–43, and one manuscript is currently under 

review44. Each chapter consists of an introduction section that thoroughly addresses the study 

motivation and background. 

 SA1 is addressed in Chapters 2 and 3. Chapter 2 describes a 3D CNN we proposed for 

generating pelvic sCT images from 1.5T T1-weighted MR images. When we started to work on 

abdominal sCT generation, we did a pilot study and found that a conditional GAN (cGAN) could 

generate more accurate abdominal sCT images compared with the corresponding CNN. So we 

investigated the cGAN and cycle-consistent GAN (cycleGAN) for generating abdominal sCT 
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images from 0.35T MR images in Chapter 3. Chapter 4 addresses SA2 and describes a novel 

multi-path 3D DenseNet that we proposed for automatic GBM segmentation. Chapter 5 and 

Chapter 6 address SA3 and SA4, respectively. They consist of two radiomic studies, one for 

early prediction of nCRT response in LARC, and the other for GBM survival prediction. Both 

radiomic studies compared DL-based radiomic features with conventional handcrafted radiomic 

features. The study on nCRT response prediction relied on manual tumor segmentation, while 

the GBM survival prediction study used an automatic segmentation model.  
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2 DEEP LEARNING APPROACHES 

USING 2D AND 3D 

CONVOLUTIONAL NEURAL 

NETWORKS FOR GENERATING 

MALE PELVIC SYNTHETIC CT 

FROM MRI40 

2.1 Introduction  

MRI is often integrated into radiation therapy treatment planning45, particularly for tumors in 

regions like the brain, head and neck, and prostate16. The superior soft-tissue contrast of MR 

images facilitates precise delineations of tumor and OARs5,6. MR images can also provide 

guidance for adaptive radiation therapy. MR images can also provide guidance for adaptive 

radiation therapy46,47. The standard MRgRT workflow includes acquisition of a planning CT 
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image. The CT HU map, essentially a scaled linear attenuation map, is used to generate both 

electron density maps for dose calculation and digital reconstructed radiographs for subsequent 

patient positioning. 

The need to acquire the CT image in MRgRT brings in several disadvantages. First, 

acquiring an additional CT scan increases unwanted radiation exposure, clinical workload, and 

financial cost. Second, co-registering CT and MR images is required for transferring delineation 

structures from the MR image to the CT image. This process introduces a systematic uncertainty, 

on the order of 2-5 mm depending on the anatomical site, that propagates throughout the 

treatment13. MR-only radiation therapy can avoid these pitfalls.  

To achieve MR-only radiation therapy, sCT images must be accurately generated from 

the MR images. To date, there are three types of methods developed for this: atlas-based, voxel-

based and hybrid13. In atlas-based methods, a set of one or multiple co-registered MR-CT images 

are deformably registered to a patient's MR image15,17,48. The resulting transformation can then 

be applied on the CT-atlas to generate the sCT image. Atlas-based approaches can be time-

consuming, particularly when the atlases are large, and often fail if the patient has very different 

anatomy from what is represented by the atlas.  

Voxel-based methods convert individual MR voxel intensities to HU values using bulk 

density assignments or machine learning models. Bulk density techniques assign the patient’s 

electron density either to water or to pre-defined electron densities within selected MR-

segmented tissue types18,49–51. These methods may lead to dose discrepancies and often have 

limited value in generating positioning reference images. Machine learning methods use paired 

MR-CT images to train models that associate MR intensities with HU values. It is challenging 

for models to distinguish air from bone in conventional MR images as both tissues exhibit weak 
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signals due to their small T2 values. Some learning methods required manual bone 

segmentation19,52 in conventional MR images  or require acquisition of specialized MR 

sequences like ultrashort echo time sequences20,53,54 for separating bone and air.  

Hybrid methods combine elements of voxel-based and atlas-based approaches55. A 

detailed summary of previous approaches can be found in the review paper by Karlsson et al 13.  

Recently, DL methods22 proposed to estimate sCT images from MR images have 

demonstrated promising results. Nie et al. presented a 3D CNN with three convolutional layers56. 

It was trained to convert 3D patches of pelvic MR images to corresponding 3D sCT patches. The 

sCT image was then generated by averaging the HU values of overlapping sCT patches. An 

updated model with an adversarial network was later proposed to improve the sCT quality57. 

Training on patches rather than whole volumes reduces the required number of CNN parameters 

and saves computational resources. However, using patches might miss larger scale (relative to 

patch size) image features. For example, the use of small patches could preclude the use of 

spatial context that could assist in differentiating between tissues with the similar appearance on 

MR image, but very different HU values (e.g., rib and lung tissues, or cortical bone and bowel 

gas). A 2D CNN with 27 convolutional layers was proposed by Han for brain sCT generation58. 

This more complex model could capture long-range information and generate brain sCTs slice 

by slice without dividing images into patches.  

3D CNNs may have better performance than their corresponding 2D CNNs because they 

use entire image volumes rather than individual slices, allowing the exploitation of more 

information (e.g. relationships between consecutive slices). However, 3D models have some 

disadvantages. 3D models contain more parameters, potentially requiring more training data to 

achieve robust performance. 3D models can also be more difficult to implement on commonly-
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available GPU cards due to their large memory consumption. It is reasonable to expect that a 3D 

model will have better performance when enough training data and sufficiently powerful 

computational hardware are available.  

In this study, we investigated the performance of generating sCT images using CNNs in 

the male pelvis, which has greater anatomic variation than the brain. Several studies have shown 

that prostate target definition is more accurate on MR images than CT images59–61. For this 

reason, MR images for prostate cancer treatment are routinely acquired in many clinics. 

Implementing an MR-only workflow for prostate cancer radiation therapy would provide the 

benefit of removing a CT, as discussed above. As prostate cancer is one of the diseases most 

commonly treated with radiation, removing the need for CTs could have a large impact. We built 

a 2D CNN based on Han’s 2D CNN, with three modifications implemented to save 

computational memory and prepare for the extension to 3D. The motivation for extending the 2D 

model to a 3D model is to test whether a small patient-cohort is enough to effectively train a 3D 

model. 2D and 3D model performances were compared with Han’s model. In the training stage, 

we incorporated on-the-fly data augmentation and a modified loss function to enhance model 

performance. All three models were trained from scratch without implementing transfer learning. 

Geometric and voxel-wise metrics and patient alignment tests were used to evaluate and compare 

model performances.  

This study contains a few novel elements. First, we proposed a 2D CNN that consumed 

less memory and achieved more accurate HU prediction than the state-of-art model proposed by 

Han. Second, to our knowledge, this is the first study that applies end-to-end 3D CNNs in sCT 

generation. While the previous study suggested that using a small dataset to train a 3D CNN may 

be infeasible due to overfitting58, we demonstrated that a 3D CNN can be trained to generate 
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accurate pelvic sCT images using a 16-patient dataset. Also, our results show that the proposed 

3D CNN achieved more accurate HU prediction than the corresponding 2D CNN or Han’s 

model. 

2.2 Materials and methods 

2.2.1 Dataset 

Retrospective analysis was performed using CT and MR images from 20 prostate cancer 

patients. Table 2-1 summarizes patient characteristics. All patients had intact prostates and no 

hip prosthesis. CT and MR images were acquired before radiation therapy. The CT images were 

acquired on a 64-slice CT scanner (Sensation, Siemens Medical Solutions, Erlangen, Germany) 

using the following settings: 120 kVp, 400 mA, and 1.5 mm or 3 mm slice thickness, with in-

plane spatial resolutions varying from 0.85 × 0.85 mm2 to 1.27 × 1.27 mm2. The in-plane 

dimensions of CT images are 512 × 512. For each patient, an MR image was acquired on the 

same day as the CT image with a non-contrast T1-weighted 2D turbo spin echo sequence (echo 

time: 12 ms or 13 ms, repetition time: 523 ms to 784 ms, flip angle: 150o) on a 1.5T MR scanner 

(Sonata, Siemens Healthcare, Erlangen, Germany). MR images had slice thickness of 5 mm and 

in-plane spatial resolutions ranging from 0.71 × 0.71 mm2 to 0.94 × 0.94 mm2.  The in-plane 

dimensions of MR images range from 384 × 348 to 448 × 448.Thirty slices covering the prostate 

region were extracted from MR images. 
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Characteristic Type No. of patient 

Age Mean ± std (range) 69 ± 6 (61-80) 

Prostate volume (cc) Mean ± std (range) 56 ± 23 (20-107) 

Cancer stage 

 

T1c 17 

T2a 3 

Table 2-1: Patient characteristics 

2.2.2 Image preprocessing   

Figure 2-1 (a) and (b) outline the image preprocessing and CNN training workflows, 

respectively. In the preprocessing stage, N4 bias field correction was applied on the MR images 

to remove inhomogeneity artifacts62. Histogram-based normalization was also performed to 

minimize the inter-patient MR intensity variation63. A body mask of each patient, which was 

used for restricting loss evaluation and sCT accuracy assessment, was generated from the bias-

corrected MR image using Otsu's thresholding64 followed by opening and closing morphological 

operations. To account for organ movement and patient setup variations between CT and MR 

images, the CT image was registered to the bias-corrected MR image using rigid and affine 

registrations, followed by a multi-resolution B-spline registration (Elastix9). Each deformed CT 

(dCT) was resampled to match the MR image resolution. An experienced clinical physicist 

reviewed the fusion of each dCT image with its paired MR image to ensure that there were no 

major qualitative errors in the registrations. The physicist assessed the alignment quality of 

pelvic bones and femurs in fused image displays. The Jacobian determinants of the deformation 

vector fields were also examined to confirm that all were greater than 0, and that no large local 

changes occurred. In the training stage, the sCT was generated by feeding the nMRI into the 

CNN. The loss was computed as the mean absolute error between the sCT and dCT within the 
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body mask and then minimized by updating variables of the CNN using backpropagation and 

stochastic gradient descent. 

Both MR and dCT slices were down-sampled to 256 × 256, with pixel sizes varying from 

1.25 × 1.11 mm2 to 1.41 × 1.41 mm2. Down-sampling reduces GPU memory consumption, 

enabling implementation on less expensive GPUs.  However, down-sampling could result in 

some information loss. The tradeoffs associated with down-sampling are addressed in the 

Discussion section. The down-sampled in-plane resolution used in this study is within the typical 

clinically acceptable range for dose calculation and patient positioning in prostate cancer 

radiation therapy. 

 

Figure 2-1: The overall workflow of sCT generation.  
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2.2.3 2D and 3D CNNs 

The proposed 2D model was built based on Han’s model and extended to 3D. 2D MR slices and 

3D MR volumes were fed into the corresponding CNNs which were trained to output 2D sCT 

slices and 3D sCT volumes, respectively. Figure 2-2 shows the architecture of the 2D model. The 

3D model shared the same architecture as the 2D model except that all 2D operations were 

replaced with their corresponding 3D counterparts. For example, all 3×3 2D convolution filters 

were replaced with 3×3×3 3D convolutional filters. 

 

Figure 2-2: The overall 2D CNN architecture. Each filled box represents a set of feature maps, 

the numbers and dimensions of which are shown.  
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The 2D model has encoder and decoder networks. The encoder network, consisting of 13 

convolutional layers, is identical to the convolutional layers in the VGG16 model65, except that 

filters in the first convolutional layer have a depth of 1 rather than 3, because of the scalar nature 

of MR and CT.  Each encoding convolutional layer performed convolution of its input with a set 

of 3 × 3 trainable filters at a stride of 1. Trainable filters have sets of trainable weights and biases 

that can be applied to input feature maps to produce deeper feature maps. Zero padding of 1 was 

used before convolution to ensure the produced deeper feature map had the same resolution as 

the input feature map. Feature maps were then normalized using instance normalization66 to 

reduce internal covariate shifts and then operated by the element-wise activation function 

max(0,x), termed the Rectified Linear Unit (ReLU). The feature maps were downsampled by 

applying a maxpooling layer with a 2×2 window and a stride of 2. The sequence of several 

convolutional layers and maxpooling layers act to extract local and global features and increase 

translation invariance. The decoder network, consisting of a hierarchy of decoders, was used to 

upsample low-resolution feature maps and gradually reconstruct the sCT. Each decoding 

convolutional layer corresponded to an encoding convolutional layer, except for the final 

convolutional layer that had a set of 1 × 1 trainable filters with a stride of 1. 

Three modifications to Han’s model were made to develop the proposed models. First, 

batch normalization layers67 were replaced with instance normalization layers66. Our tests, using 

all patients, showed that the model with instance normalization layers had better performance 

than the one with batch normalization layers when trained with a small batch size (which was 

limited by our GPU memory). Small batch sizes can cause less accurate mean and variance 

estimations, diminishing the effectiveness of batch normalization68. Second, the fractional-stride 

convolutional layers (also known as deconvolutional layers) were employed to replace the 
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unpooling layers. Unlike unpooling layers producing sparse feature maps, deconvolutional layers 

can be trained to produce dense feature maps27,69, which should help to generate better quality 

sCT images. This modification also saves computational memory, which is critical for building 

the 3D model, because unpooling layers require more memory to keep track of maxpooling 

indices. Lastly, inspired by ResNet70, U-Net skip connections71 were replaced with residual 

shortcuts to further save computational memory. A residual shortcut adds encoder feature maps 

to corresponding upsampled feature maps (leaving the number of feature maps unchanged), 

while a skip connection concatenates encoder feature maps with upsampled feature maps 

(doubling the number of feature maps). To investigate and compare the effectiveness of these 

two types of shortcuts, we trained the 2D models with: 1) residual shortcuts; 2) skip connections; 

and 3) neither. Our tests, using all patients, showed that the models with residual shortcuts or 

skip connections yielded better MAE results than the model with neither, and residual shortcuts 

resulted in the similar performance as skip connections. 

Weights and biases of trainable filters in the convolutional layers and deconvolutional 

layers were trained by minimizing a loss function. The loss function was defined as the mean 

absolute error (MAE) between the sCT and dCT within the body mask; 

𝑙𝑜𝑠𝑠 =
1

𝑁
∑|𝑠𝐶𝑇𝑖 − 𝑑𝐶𝑇𝑖| 

𝑁

𝑖=1

 

Equation 2-1 

where N was the number of voxels inside the body masks of MR images, and 𝑠𝐶𝑇𝑖  and 

𝑑𝐶𝑇𝑖 represented the HU values of the ith voxel in the sCT and dCT, respectively.  
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2.2.4 Model optimization 

The proposed models and Han’s model were implemented using Tensorflow packages72 (V1.3.0, 

Python 2.7, CUDA 8.0)  on Ubuntu 16.04 LTS system. All three models were trained with 

instance normalization and identical hyperparameters except for the batch size. At each iteration, 

a mini-batch of 2D images or 3D volumes was randomly selected from the training set. The 

batch size was limited by GPU memory. A mini-batch of 15 training slices was used to run the 

2D model on an 8 GB NVIDIA GeForce GTX 1080 GPU, and Han’s model on a 12 GB 

NVIDIA GeForce GTX Titan X GPU. The large memory GPU card was necessary for 

implementing Han’s model due to its greater memory consumption compared with the proposed 

2D model. The 3D model was run on a 12 GB Titan X GPU with a mini-batch of 1 training 

volume. The Adam stochastic gradient descent method73 with default parameters (𝛽1 = 0.9, 𝛽2 =

0.999, 𝜖 = 10−8), except for learning rate (0.01), was used for minimizing the loss function. On-

the-fly data augmentation (random shift and rotation) was performed on each set of MR images, 

body masks, and dCT images to reduce overfitting. For all three models, the random translation 

was up to 15 pixels in the x and y directions, and the random rotation around the z-axis was 

confined within ±5o. Rotations with random angles within ±2o around the y-axis and x-axis were 

applied to the 3D images. The rotation and translation ranges are intended to roughly match 

patient positioning uncertainties. Weights of all models were initialized using He initialization74, 

and the biases were initialized to 0. He initialization was selected based on literature reporting 

that it performs better than Xavier initialization for deep models with ReLu layers74. 
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2.2.5 Model evaluation 

Five-fold cross-validation was performed to evaluate model performance. The 20 patient-cohort 

was randomly divided into five groups. Each time validation was performed, four groups were 

used as the training set to train the model. The trained model was then used to generate sCT 

images of patients in the remaining group. For Han’s and the proposed 2D models (3D model), 

four groups of four patients provided 480 (16) training samples. Using the batch size of 15 (1), it 

took 32 (16) iterations to go over all samples in the training set, which was considered as one 

epoch.  

CNN accuracy was evaluated by using voxel-wise MAE between the sCT and dCT for 

three regions: 1) the whole body; 2) a soft tissue region generated by thresholding the dCT with a 

range [-100,150) HU; and 3) a bone region generated by thresholding the dCT at 150 HU, i.e. 

[150,+∞) HU.   

CNN accuracy was also evaluated by calculating geometric metrics, such as the dice 

similarity coefficient (DSC), recall, and precision for the bone region. They were defined as: 

𝐷𝑆𝐶 =
2(𝑉𝑠𝐶𝑇 ∩ 𝑉𝑑𝐶𝑇  )

𝑉𝑠𝐶𝑇 + 𝑉𝑑𝐶𝑇 
, 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑉𝑠𝐶𝑇 ∩ 𝑉𝑑𝐶𝑇  

𝑉𝑑𝐶𝑇 
, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑉𝑠𝐶𝑇 ∩ 𝑉𝑑𝐶𝑇  

𝑉𝑠𝐶𝑇 
  

Equation 2-2 

where V was the bone region volume generated by thresholding the dCT or sCT at 150 HU. 

The patient alignment tests based on bony structures were conducted to test whether 

generated sCT images can provide accurate patient positioning. To do this, for each patient, bone 

regions of sCT and dCT were rigidly aligned to the cone-beam CT (CBCT), acquired for 
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positioning in the first treatment fraction. The translation vector distances and absolute Euler 

angle differences were calculated for evaluation. 

With the assumption of normal distributions for MAE metrics and transformation vector 

differences, analysis of variance (ANOVA) for repeated measures was carried out to compare 

these metrics among the three sCT generation models (2D model, 3D model, and Han’s model). 

The normality assumption was imposed after assessing the data with quantile-quantile and 

frequency plots. A paired t-test was conducted as post-hoc analysis if a difference among three 

models was identified by ANOVA. While with assumption of non-normal distributions on bone 

geometric metrics, Friedman test for repeated measures was carried out to compare these metrics 

among the three models. A Wilcoxon signed-rank test75 was conducted when a difference 

between three models was identified by the Friedman test. A p-value of 0.05 was considered 

significant, and the Bonferroni correction was used when applicable.   

2.3 Results 

All models were trained for 200 epochs. This epoch number was selected based on training and 

validation loss tracking. It required approximately 2 (4) hours to train an individual cross-

validation 2D (3D) model. The time required for generating the whole sCT volume of a patient 

was approximately 5.5 s for both 2D and 3D models.   

Figure 2-3 shows transverse slices of sCT images generated by the all three models along 

with the corresponding slices of the normalized T1-weighted MR images and dCT images from 

three patients. More transverse slices showing the bladder or the corpus cavernosum from these 

three patients are presented in Figure 2-4. As shown in the difference maps, all three models 
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gave accurate HU value predictions for most regions, especially soft tissues, but had difficulty 

generating accurate HU values near the body contour and bone borders.  

 

Figure 2-3: Transverse slices of the normalized MR images, the dCT images, the 2D model sCT 

images, the 3D model sCT images, and Han’s model sCT images from three patients. The last 

three columns show the difference maps between the 2D model sCT images and the dCT images, 

and the difference maps between the 3D model sCT images and the dCT images, and the 

difference maps between Han’s model sCT images and the dCT images. The color bar is 

associated with all images except normalized MR images.   

 

Figure 2-4: Additional transverse slices showing different anatomical regions for the patients 

shown in Figure 2-3. 

The MAE, averaged across all patients, as a function of dCT values and relative 

frequency of CT HU values are shown in Figure 2-5 (a). The MAE was calculated in 25 HU 

bins.  Similarly, mean error (ME, sCT-dCT) curves are shown in Figure 2-5 (b). All three models 
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have similar MAE curves for most HU values except that the Han’s and the proposed 2D models 

yielded greater MAEs than the 3D model within (-650, -200) HU, and vice-versa within 

(850,1600) HU. ME curves suggest all three models underestimate absolute HU values.   

 

Figure 2-5: (a) Left axis:  MAE of voxels within body masks from all patients as a function of 

dCT values, calculated in 25 HU bins. Right axis: relative frequency of voxels within each HU 

bin. (b) ME of voxels within body masks from all patients as a function of dCT values, 

calculated in 25 HU bins. 

 Table 2-2 summarizes the voxel-wise metrics, geometric metrics, and transformation 

vector differences, averaged across all patients. Table 2-3 shows the average whole-body MAE 

of four patients in each cross-validation fold across five folds. No indication of overfitting was 

observed during training. The maximum MAEs within the body were 56.5 HU, 53.1 HU, and 

60.7 HU, for 2D, 3D and, Han’s models, respectively. The minimum bone region DSCs were 
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0.70, 0.72, and 0.66, for 2D, 3D, and Han’s models, respectively. The average translation vector 

distances are less than 0.6 mm for all three models. The average absolute differences of three 

Euler angles are less than 0.5° for all three models. Results of statistical tests are summarized in 

Table 2-4. Significant differences in MAEs for three regions and the bone precision were 

observed among three models. 

 2D model 3D model Han’s model 

MAE 

[HU] 

 

whole body 40.5±5.4 37.6±5.1 41.9±6.5 

soft tissue 28.9±4.7 26.2±4.5 29.9±5.8 

bone 159.7±22.5 154.3±22.3 165.0±26.9 

Bone DSC 0.81±0.04 0.82±0.04 0.80±0.05 

Bone recall 0.85±0.04 0.84±0.04 0.86±0.04 

Bone precision 0.77±0.09 0.80±0.08 0.76±0.10 

‖T⃗⃗ dCT − T⃗⃗ sCT‖2
[mm] 0.51±0.28 0.54±0.38 0.51±0.27 

|θx_dCT − θx_sCT| [°] 0.47±0.74 0.47±0.72 0.47±0.76 

|θy_dCT − θy_sCT| [°] 0.08±0.05 0.10±0.09 0.09±0.07 

|θz_dCT − θz_sCT|  [°] 0.08±0.09 0.07±0.07 0.09±0.10 

Table 2-2: Results of voxel-wise metrics, geometric metrics, and transformation vector 

differences for sCT images generated by all three models. Results were averaged across the 20-

patient cohort and shown in (mean ± SD) format. 

Fold # 1 2 3 4 5 

2D model 40.2 44.1 41.5 37.4 39.2 

3D model 38.5 39.2 38.6 34.5 37.4 

Han’s model 40.5 46.7 45.2 36.3 40.8 

Table 2-3: Results of single-fold-average MAEs for five cross-validation folds. Four patients are 

analyzed within each fold. 
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ANOVA 

Or 

Friedman Post-hoc analysis 

 p-value 

2D vs 3D 2D vs Han 3D vs Han 

95% CI 
p-

value 
95% CI 

p-

value 
95% CI p-value 

MAE 

 

whole 

body 
<0.001 (1.83,3.86) <0.001 

(-2.36,  

-0.48) 
0.005 

(-5.60, 

 -2.93) 
<0.001 

soft 

tissue 
<0.001 (1.88,3.57) <0.001 

(-1.95, 

 -0.12) 
0.03 

(-4.96, 

 -2.57) 
<0.001 

bone <0.001 (1.01,9.83) 0.02 
(-9.73,  

-0.81) 
0.02 

(-16.73, 

-4.65) 
0.002 

Bone DSC 0.09 NA NA NA NA NA NA 

Bone recall 0.35 NA NA NA NA NA NA 

Bone 

precision* 
<0.001 - <0.001 - 0.04 - <0.001 

‖𝐓⃗⃗ 𝐝𝐂𝐓

− 𝐓⃗⃗ 𝐬𝐂𝐓‖𝟐
 

0.71 NA NA NA NA NA NA 

|𝛉𝐱_𝐝𝐂𝐓

− 𝛉𝐱_𝐬𝐂𝐓| 
0.95 NA NA NA NA NA NA 

|𝛉𝐲_𝐝𝐂𝐓

− 𝛉𝐲_𝐬𝐂𝐓| 
0.70 NA NA NA NA NA NA 

|𝛉𝐳_𝐝𝐂𝐓

− 𝛉𝐳_𝐬𝐂𝐓| 
0.70 NA NA NA NA NA NA 

* Wilcoxon signed-rank test was used as post-hoc analysis for bone region precision. The values of mean 

differences were not reported here since this was not the aspect Wilcoxon signed rank test assessed. 

Table 2-4: Statistical test results for comparing the three sCT generation models. In ANOVA or 

Friedman test, a p-value of <0.05 is considered significant. In post-hoc analysis, a p-value of < 

0.0167 is considered significant as per the Bonferroni correction. 



 

24 

2.4 Discussion 

In this study, 2D and 3D CNNs were proposed to generate pelvic sCT images from T1-weighted 

MR images. Our trained models are fully automated for sCT generation, requiring no deformable 

registration or manual segmentation of bone. Deformable registration was only applied on CT 

images in the training stage. During inference, all preprocessing steps on MR images can be 

achieved automatically. As shown by sCT and dCT difference maps in Figure 2-3 and Figure 

2-4, the 2D and 3D CNNs generated accurate sCT images with HU values similar to their 

corresponding dCT images.  

MAE and ME curves shown in Figure 2-5 indicated that the proposed models could 

precisely estimate soft-tissue HU values but had larger errors in reproducing air and bone. 

Trained models underestimate voxel absolute HU values as shown by ME curves. There are a 

few possible reasons. First, air and bone are both barely visible in T1-weighted MR images due 

to weak signals, making their HU prediction challenging.  Second, registration errors between 

the MR and CT images would have more impact on the intensity mapping of end-of-range 

voxels than for soft tissue voxels. Misregistration can cause air- and bone-tissue boundaries to be 

shifted, introducing intensity mapping errors. As the total number of high absolute HU voxels is 

small, the proportion of misaligned labels is higher, which may introduce more perturbation. 

However, misregistration within the soft tissue itself does not have a large impact on the 

intensity mapping. Third, as suggested by the HU histogram in Figure 2-5 (a), most voxels 

within body contours have CT numbers in the low absolute HU range. This led to uneven 

sampling for training CNNs, which may result in the tendency of trained models to map voxels 

to the low absolute HU region in the testing stage. There are a few possible solutions for 

improving bone accuracy that may be worth future investigation. First, higher loss weights could 
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be assigned to bone structures for training. Second, we could develop a purpose-driven model 

(e.g, a model trained with bone-only images, so that only the accuracy of bone HU is 

considered). Such a model might be useful for generating images for bone-based patient 

alignment. 

The average MAEs within the body contour across all patients were 40.5±5.4 HU and 

37.6±5.1 HU for the 2D and 3D models, respectively. Our MAE results are comparable with 

published results presented in Table 2-5. Our CNN methods allow sCT to be generated quickly 

enough that it would be non-burdensome for most or all clinical tasks. The average bone region 

DSCs were 0.81±0.04 and 0.82±0.04 for the 2D and 3D models, respectively. Of the studies 

listed in Table 2-5, only Dowling et al. reported bone region DSC. This atlas-based method 

reported a bone region DSC of 0.91. However, they used a different method for computing bone 

region DSC. In their method, the DSC is calculated by comparing manually drawn MR bone 

contours and automatically computed bone contours, while we compared CT and sCT bone 

contours derived from HU thresholding. Considering the difference between ground truth images 

of two methods (manually drawn MR bone contours vs thresholded CT bone contours), a direct 

comparison between our DSC results is equivocal. A study conducted by Arabi et al. compared 

Han’s model with four atlas-based methods (including Dowling’s), showing that Han’s model 

achieved the smallest MAE and similar bone DSC 76. As shown in Table 2-2, sCT images 

generated by the proposed model can provide accurate patient positioning based on bony 

structures. ANOVA results shown in Table 2-4 indicated there is no significant difference in sCT 

patient positioning accuracy among three models. 
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Kim et 

al.77 

Dowling 

et al.17 

Andreasen 

et al.78 

Andreasen 

et al.79 

Siversson 

et al.55 Nie et al.57 

Method 

type 

Voxel-

based 

Atlas-

based 
Hybrid Voxel-based Hybrid 

Voxel-

based 

MAE [HU] 74.3±3.9 40.5±8.2 54.0±8.0 58.0±9.0 36.5±4.1 39.0±4.6 

Generation 

time [min] 

N.A. 

Requires 

bone 

contours 

N.A. 20.8 N.A. 50 to 80 N.A. 

Table 2-5: MAEs within the body contour published in previous pelvic sCT generation studies. 

 In assessing the clinical relevance of the results reported in Table 2-2, it may be useful to 

place the MAE results in the context of typical uncertainties observed in CT simulation images. 

While noise levels in CT images depend on numerous factors (imaging protocol, patient 

geometry, reconstruction algorithm, etc.), reported MAE results are beginning to approach 

typical HU variations observed during monthly or annual CT simulator QA (e.g., about ±15 HU 

for soft tissue, and about ±30 HU for bone). AAPM has recommended a tolerance of ±5 HU for 

field uniformity and for HU accuracy in water80. While these values leave some room for 

improvement in currently reported MAE results, improving sCT HU accuracies beyond the level 

of these other clinically acceptable uncertainties may not be practically useful. 

It was feasible to train the proposed 3D model with 16 image volumes from scratch. The 

proposed 3D model shows better performance in generating sCT images compared with Han’s 

and the proposed 2D models. Results of statistical tests shown in Table 4 demonstrated 

statistically significant improvements in MAEs for three regions and bone region precision of the 

3D model compared with 2D and Han’s model. Also, not only did the 2D model consume less 
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memory compared with Han’s model, it generated sCT with a smaller average MAE as shown by 

paired t-test results.  

There are a few factors that may affect model accuracy. First, MR intensities do not have 

a fixed tissue-specific numeric meaning. There is a large intensity variation across different 

subjects even with the same MR sequence and scanner. Although histogram-based intensity 

normalization was applied, the remaining variation might still be one of the largest error sources 

for training the mapping of MR intensities to CT HU values. Second, small training dataset size 

may limit the trained model to a small scope of anatomy variation. This potentially leads to large 

errors for abnormally large or small patients. As the number of training patients increases, CNN 

models are expected to be more robust and have better sCT generation performance. It should be 

noted that the dataset used in this study did not include patients with hip prostheses, radiation-

induced fistulas, prostatectomies, or other such abnormalities. The performance of sCT 

generation for such cases was not explored, and the development of sCT methods for such 

patients is an interesting area for future work. 

The MR and dCT slices were down-sampled to 256 x 256 so that the proposed models 

could be implemented on a single GPU (8 GB for 2D CNN or 12 GB for 3D CNN). Developing 

CNNs with smaller GPU memory consumption has several advantages for clinical 

implementation including easy model distribution/usage and better cost-effectiveness. While 

down-sampling can result in some information loss, sCT images generated in this study achieved 

accurate patient positioning and small MAEs.  

We directly down-sampled the MR images to keep their original fields of view, resulting 

in resampled images with different in-plane spatial resolutions ranging from 1.25 ×1.11 mm2 to 

1.41 ×1.41 mm2. To investigate the effect of small variation in spatial resolution, we down-
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sampled the MR and CT slices to the same spatial resolution (1.41×1.41 mm2) and the same 

dimension (256x256) with zero-padding, and re-retrained our models with updated images. No 

significant difference in MAE metrics was observed between the models trained with the same 

spatial resolution and the models trained with different spatial resolution. This suggests that our 

proposed models are robust to small resolution variations in our patient cohort. In our view, 

having small variations in the spatial resolution is comparable to having variations in the patient 

size. A robust model should be less sensitive to this type of variation.  

A number of techniques could be investigated for improving model performance.  

Multiple MR images acquired with different sequences, like Dixon and UTE sequences, could be 

fed into models to provide more information for distinguishing different tissues, particularly air 

and bone. Nie et al. showed that introducing an additional adversarial discriminator improved 

overall sCT quality57. The same approach could be adapted in our proposed 2D and 3D CNN 

models.  Non-rigid deformation could also be applied to both CT and MR images in the process 

of the on-the-fly data augmentation to produce more training pairs23. As more powerful 

computing hardware becomes more widely available, 3D models with deeper layers, larger 

training batch sizes, and images without down-sampling can be explored for possible model 

performance improvement. 

2.5 Conclusion 

We presented 2D and 3D CNNs for generating a pelvic sCT image from a T1-weighted MR 

image. In our study, both models successfully generated accurate sCT images for all 20 patients, 

with maximum MAEs of 56.5 HU and 53.1 HU for the 2D and 3D models, respectively. 

Statistical results of 20 patients showed that the 3D model generated sCT images with better 
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MAE and bone region precision compared with the 2D model and Han’s model. Patient 

alignment tests indicated sCT images generated by the proposed models can provide accurate 

patient positioning using cone-beam CT based alignment. The fast speed and accurate HU 

mapping of the proposed 2D and 3D CNNs make them promising tools for generating pelvic 

sCT images for MR-only radiation therapy. Future work on dose calculation comparisons 

between the CT and sCT images is required before clinical implementation. 
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3 GENERATION OF ABDOMINAL 

SYNTHETIC CTS FROM 0.35T 

MR IMAGES USING 

GENERATIVE ADVERSARIAL 

NETWORKS FOR MR-ONLY 

LIVER RADIATION THERAPY41   

3.1 Introduction  

The superior soft-tissue contrast of MRI, compared with that of CT, allows better tumor and 

healthy tissue differentiation in certain body areas, such as the brain, pelvis, and abdomen4,81. 

MR images are often acquired for tumor and OAR delineations in  treatment planning workflows 

for pelvic or abdominal cancer radiation therapy82–85. Since there is no direct relationship 

between MR intensity values and electron densities, the standard MRgRT workflow still requires 
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the acquisition of a CT image for dose calculation. However, registration between CT and MR 

images for transferring target delineations introduces systematic uncertainties that propagate 

throughout the treatment13. Acquiring an additional CT image also increases unwanted radiation 

exposure, clinical workload, and financial cost12. MR-only radiation therapy can avoid these 

downsides.  

A few methods have been proposed to generate sCT images from MR images. These 

methods include atlas-based methods, voxel-based methods, and hybrid methods13. In atlas-

based methods15,17, the target MR image was first deformably registered to atlas-MR images to 

acquire deformation vector fields. The acquired vector fields were then reversely applied on the 

atlas-CT images which were registered to atlas-MR images to generate the sCT image. Atlas-

based approaches may not only take a long time to generate the sCT image but also fail if the 

target patient has substantially different anatomy compared with atlas-patients. Voxel-based 

methods used machine learning methods that were trained to covert voxel intensities of a single 

or multiple MR images to CT HUs20,79. Hybrid methods combined elements of voxel-based and 

atlas-based approaches55,86.  

Recently, DL22, a subset of machine learning, has drawn great research interests for sCT 

generation mainly due to its fast generation speed and high accuracy. Han proposed a 2D CNN 

that achieved accurate brain sCT generation58. A study reported that the proposed 2D CNN 

generated the most accurate pelvic sCT images compared with four atlas-based methods76. Fu et 

al. proposed a 3D CNN40 that generated more accurate pelvic sCT images than Han’s 2D CNN. 

GANs were shown to have better performance in image-to-image translation tasks compared 

with the corresponding CNNs24,25. Two popular GANs, cGAN and cycleGAN, were investigated 

for generating pelvic and brain sCT images, respectively87,88. Results demonstrated that cGAN 



 

32 

could generate accurate pelvic images, and cycleGAN could generate brain sCT images. The 

pelvic sCT images generated by the cGAN achieved accurate dose calculation for pelvic 

radiation therapy88. A 3D patch-based dense cycleGAN proposed by Lei et al.89 could generate 

accurate brain and pelvic sCT images. Another study showed that this model could also generate 

accurate abdominal sCT images and demonstrated its potential for MR-only liver SRBT 

planning90. Unlike cGANs, which require co-registered MR-CT image pairs for training, 

cycleGANs can be trained in an unsupervised manner. This could potentially enlarge the amount 

of data available for training cycleGANs. So far, no direct comparison of cGAN and cycleGAN 

for abdominal sCT generation has been made.  

 Although most studies showed that DL methods achieved promising performance in 

generating brain and pelvic sCT images, few studies on the application of DL methods to 

abdominal sCT generation have been published. Larger intra-scan and inter-patient anatomical 

variations, compared with those in the brain or pelvis, introduce significant challenges in the task 

of abdominal sCT generation. Interest in low-field MRgRT has grown rapidly in recent years. 

However, to our knowledge, no DL methods have been investigated for generating sCT images 

from low-field MR images. Compared with high-field MR images, low-field MR images have 

lower signal-to-noise ratios and more image artifacts caused by lower magnetic field 

homogeneity. This may result in poor image quality of the sCT images generated by DL 

methods. 

This study provides the first investigation on applying DL methods for generating 

abdominal sCT images from low-field MR images in support of MR-only liver radiation therapy. 

We trained cGANs and cycleGANs to generate sCT images from 0.35 T abdominal MR images. 
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sCT HU accuracy was evaluated using voxel-based metrics. sCT-based dose calculation 

accuracy was also evaluated for liver cancer patients.    

3.2 Materials and methods 

3.2.1 Dataset 

This study was conducted using 12 abdominal cancer patients (8 liver and 4 non-liver) who 

underwent MRgRT. Table 3-1 summarizes the patient characteristics and prescribed doses. All 

patients had MR and CT images acquired before the treatment. The average absolute time 

difference between acquisitions of MR and CT images is 61 mins. MR images were acquired 

with a true fast imaging with steady-state precession (TrueFISP) sequence on a 0.35T MRI 

scanner of the MRIdian system (ViewRay, OH, USA) during 25 s breath hold. MR slice 

thickness was 3 mm and in-plane resolution was 1.5 × 1.5 mm2. Breath-hold CT images were 

acquired on a 16-slice CT scanner (Sensation Open, Siemens Medical Solutions, Erlangen, 

Germany) using 120 kVp and 360 mA. CT slice thickness was 1.5 mm and in-plane resolution 

was 0.98 × 0.98 mm2. The target and OARs were delineated by radiation oncologists and 

medical physicists on the MR images. CT images were deformably aligned to MR images in the 

MRIdian treatment planning system to create deformed CT (dCT) images for treatment planning. 

Experienced physicists assessed the quality of the deformable registration in fused image 

display. No large local changes of the Jacobian determinants were observed. 

3.2.2 GANs 

We implemented two GANs, cGAN and cycleGAN, for abdominal sCT generation. Figure 3-1 

shows the simplified architecture of the two networks.  
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Tumor location Age Gender Tumor 

volume [cc] 

Total dose 

[Gy] 

No. of 

fraction 

Liver 36 Female 23.6 45 3 

43 Male 44.1 60 3 

47 Female 1493.4 42 15 

54 Female 56.3 40 5 

54 Female 981.4 50 10 

55 Male 19.3 50 10 

58 Female 13.5 54 3 

71 Female 31.5 54 3 

Pancreas 64 Male 25.7 40 8 

Adrenal gland 71 Female 101.6 50 5 

Middle abdomen 60 Male 534.7 50.4 28 

70 Female 132.6 40 20 

Table 3-1: Patient characteristics and prescribed doses 

 

Figure 3-1: Simplified view of cGAN and cycleGAN architectures 
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The cGAN consisted of two DLs: a generator (G) and a discriminator (D). This network 

required paired MR and CT slices for training. G was trained to convert MR slices to sCT slices, 

while D was trained to distinguish the concatenated CT-MR slices from the concatenated sCT-

MR slices. The adversarial goal was to generate sCT slices which not only had small L1 distance 

from CT slices but also could fool D. The G and D were trained by minimizing the losses 

𝐿𝐺 = 𝜆𝑐𝐺𝐴𝑁𝔼𝑀𝑅,𝐶𝑇[∥ 𝐶𝑇 − 𝐺(𝑀𝑅) ∥1] − 𝔼𝑀𝑅[log𝐷(𝑀𝑅, 𝐺(𝑀𝑅))] and 

𝐿𝐷 = −𝔼𝑀𝑅,𝐶𝑇[log(𝐷(𝑀𝑅, 𝐶𝑇))] − 𝔼𝑀𝑅[log(1 −𝐷(𝑀𝑅,𝐺(𝑀𝑅)))]              

Equation 3-1 

, respectively. 𝜆𝑐𝐺𝐴𝑁 is the L1 loss regularization parameter. 

The cycleGAN consisted of four CNNs: two generators (GCT and GMR) and two 

discriminators (DCT and DMR). GCT (GMR) was trained to convert MR (CT) slices to sCT (sMR) 

slices, and convert generated sMR (sCT) slices back to cycleCT (cycleMR) slices. DCT (DMR) was 

trained to distinguish real CT (MR) slices from sCT (sMR) slices. Unlike the cGAN, the 

cycleGAN was designed for unsupervised learning, i.e. training with unpaired MR and CT slices 

in this case. As L1 distance between unpaired CT and sCT slices is not valid, the adversarial goal 

is to generate cycleCT (cycleMR) slices that had small L1 distance from CT (MR) slices. The 

generators and discriminators were trained by minimizing the losses 

𝐿𝐺𝐶𝑇
= 𝜆𝑐𝑦𝑐𝑙𝑒𝐺𝐴𝑁(𝔼𝑀𝑅[∥ 𝑀𝑅 − 𝑐𝑦𝑐𝑙𝑒𝑀𝑅 ∥1] + 𝔼𝐶𝑇[∥ 𝐶𝑇 − 𝑐𝑦𝑐𝑙𝑒𝐶𝑇 ∥1]) + 𝔼𝑀𝑅[(1 − 𝐷𝐶𝑇(𝑠𝐶𝑇))2], 

𝐿𝐺𝑀𝑅
= 𝜆𝑐𝑦𝑐𝑙𝑒𝐺𝐴𝑁(𝔼𝑀𝑅[∥ 𝑀𝑅 − 𝑐𝑦𝑐𝑙𝑒𝑀𝑅 ∥1] + 𝔼𝐶𝑇[∥ 𝐶𝑇 − 𝑐𝑦𝑐𝑙𝑒𝐶𝑇 ∥1) + 𝔼𝐶𝑇[(1 − 𝐷𝑀𝑅(𝑠𝑀𝑅))

2
], 

𝐿𝐷𝐶𝑇
= 𝔼𝐶𝑇[(1 − 𝐷𝐶𝑇(𝐶𝑇))2] + 𝔼𝑀𝑅[𝐷𝐶𝑇(𝑠𝐶𝑇)2], and 

𝐿𝐷𝑀𝑅
= 𝔼𝑀𝑅[(1 − 𝐷𝑀𝑅(𝑀𝑅))2] + 𝔼𝐶𝑇[𝐷𝑀𝑅(𝑠𝑀𝑅)2]. 
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Equation 3-2 

𝜆𝑐𝑦𝑐𝑙𝑒𝐺𝐴𝑁  is the L1 loss regularization parameter. 

Both cGAN and cycleGAN could be trained to convert MR slices to sCT slices. Since our 

main goal is to test the feasibility of generating abdominal sCT images using GANs, we 

implemented the same network architectures presented by Isola et al.24 and Zhu et al.25. The 

networks were modified to process and generate 16-bit single channel images.  

3.2.3 sCT generation 

N4 bias field correction was applied to all MR images to remove inhomogeneity artifacts62. 

Histogram-based intensity normalization was then performed to minimize the inter-patient MR 

intensity variation63. MR voxel intensities were clipped within the interval [0, 99th percentile], 

and dCT voxel intensities were clipped within the interval [-1000,1200] HU.  

Four-fold cross-validation testing was conducted to generate sCT images for all 12 

patients. The patient cohort was randomly divided into four groups. Three groups of 3 patients 

were used to train the network, the trained network was then applied on the MR images of the 

patients in the remaining group to generate their sCT images. The cGAN was trained with paired 

transverse MR and dCT slices, while the cycleGAN was trained with unpaired transverse MR 

and dCT slices. We adopted the same training protocols presented by Isola et al.24 and Zhu et 

al.25 for training cGAN and cycleGAN, respectively. Both models were implemented 

using Tensorflow packages72 (V1.3.0, Python 2.7, CUDA 8.0) on Ubuntu 16.04 LTS system, and 

trained for 200 epochs with a batch size of 1 on a GeForce GTX 1080 Ti GPU (NIVIDIA, 

California, USA). The L1 loss regularization parameters were set as 100 for training.  
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3.2.4 Model evaluation 

dCT and sCT image similarity was evaluated using mean absolute error (MAE) and peak-signal-

to-noise-ratio (PSNR) within the MR body contour. 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐼𝑠𝐶𝑇(𝑖) − 𝐼𝑑𝐶𝑇(𝑖)|

𝑁
𝑖=1  and 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10 
4095

√∑ (𝐼𝑠𝐶𝑇(𝑖)−𝐼𝑑𝐶𝑇(𝑖))
2𝑁

𝑖=1
𝑁

 , 

Equation 3-3 

where N is the number of voxels inside the MR body contour; 𝐼𝑠𝐶𝑇(𝑖) and 𝐼𝑑𝐶𝑇(𝑖)𝑖 represent the 

HU values of the ith voxel in the sCT and dCT, respectively; 4095, 212-1, is the maximum 

fluctuation in the 12-bit CT image. In general, lower MAE values and higher PSNR values 

indicate higher HU prediction accuracy.  

Dosimetric evaluation was conducted using clinical plans from 8 liver patients. All plans 

were optimized on the dCT images according to the clinical guideline using the MRIdian 

treatment planning system. Dose distributions were calculated using the planning system’s 

Monte Carlo algorithm with magnetic field corrections included. Clinical plans were copied to 

the corresponding sCT images, and the dose was recalculated using the same calculation 

protocol. dCT-based and sCT-based dose distributions were compared by gamma analysis91 at 

2%, 2mm and 3%, and 3mm within the volumes receiving at least 30%, 60%, and 90% of the 

prescribed dose. Mean dose and other clinically relevant dose-volume histogram (DVH) metrics 

were evaluated for the planning target volume (PTV) and OARs. Percentage differences 

(
𝐷𝑠𝐶𝑇−𝐷𝑑𝐶𝑇

𝐷_𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑
) between these metrics calculated with sCT and dCT plans were computed.  
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Wilcoxon signed-rank tests75 were conducted to test if the differences between evaluation 

metrics of cGAN and cycleGAN were significant. A p-value less than 0.05 was considered 

statistically significant. 

3.3 Results 

It took about 3 (15) hours to train an individual cross-validation cGAN (cycleGAN). On average, 

the time required for generating the sCT image of one patient was about 6 s using either model. 

Figure 3-2 shows the generated sCT slices along with corresponding MR and dCT slices from 3 

representative liver cancer patients. Visual inspection reveals that sCT images generated by the 

cycleGAN are sharper than those generated by the cGAN. Both models achieved adequate 

performance in predicting HU values of air pockets, vertebral bodies, and soft tissues but had 

difficulties in reproducing ribs.  

 

Figure 3-2: Transverse slices of the MR, dCT, sCTcGAN, and sCTcycleGAN images from 3 liver 

cancer patients. The gray scale bar indicates the HU scale of the CT slices.   
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For all 12 abdominal cancer patients, MAEs and PSNRs between dCT and sCT images 

were computed using Equation 3-3. The statistical results are summarized in Table 3-2. On 

average, cGAN achieved smaller MAE and higher PNSR compared with the cycleGAN. The 

small patient number resulted in large standard deviations. The p-values of the corresponding 

Wilcoxon signed-rank tests were greater than 0.05. 

 cGAN cycleGAN p-value 

MAE [HU] 89.8±18.7 94.1±30.0 0.97 

PSNR [dB] 27.4±1.6 27.2±2.2 0.62 

Table 3-2: Statistics of MAE and PNSR between dCT and sCT images generated by cGAN or 

cycleGAN. Results were averaged across all 12 patients and shown in (mean ± SD) format. The 

p-values of the Wilcoxon signed-rank tests are shown. 

For 8 liver cancer patients, the clinical plans optimized on dCT images were recalculated 

with the corresponding sCTcGAN and sCTcycleGAN images, respectively. Figure 3-3 shows 

transverse slices of the dCT-based, sCTcGAN-based, and sCTcycleGAN dose distributions along with 

corresponding difference maps for one liver patient. Both sCT images yielded dose distributions 

that were very similar to those calculated with the dCT image. The dCT-based and sCT-based 

dose distributions were compared using gamma analysis for the two models. As shown in Table 

3-3, the average gamma passing rates within all evaluated volumes (receiving the dose greater 

than 30%, 60%, and 90% of the prescribed dose) were above 95% using 2%, 2 mm criterion, and 

99% using a 3%, 3 mm criterion in both models. The sCTcGAN plan achieved higher average 

gamma passing rates using a 2%, 2m criterion than the sCTcycleGAN plan. The p-values of the 

corresponding Wilcoxon signed-rank tests were greater than 0.05. 
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Figure 3-3: Comparison of dCT-based, sCTcGAN-based, and sCTcycleGAN-based dose distribution. 

The first column shows the transverse slices of three dose distributions for one liver cancer 

patient, and the corresponding dose difference maps between sCT and CT are presented in the 

second column as the percentage of the prescribed dose (45 Gy).  

Gamma passing rate Volume of 

interest 

cGAN cycleGAN p-value 

𝜸𝟑%,𝟑𝒎𝒎  [%] D ≥ 30% 99.5±0.8 99.5±0.7 0.95 

D ≥ 60% 99.6±0.7 99.6±0.9 0.69 

D ≥ 90% 99.5±1.1 99.3±1.3 0.38 

𝜸𝟐%,𝟐𝒎𝒎  [%] 

 

 

D ≥ 30% 98.7±1.5 98.5±1.6 0.84 

D ≥ 60% 98.4±2.2 97.6±2.8 0.31 

D ≥ 90% 97.4±3.2 95.6±5.0 0.31 

Table 3-3: Statistics of gamma passing rates within the volumes of interest. Results were 

averaged across 8 liver cancer patients and shown in (mean ± SD) format. The p-values of the 

Wilcoxon signed-rank tests are shown. 

 Mean doses and clinically relevant DVH metrics for the PTV and OARs were computed 

for dCT and sCT plans. Deviations of these metrics between dCT and sCT plans are shown in  
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Table 3-4. In both models, the average deviations of all metrics were small, within ±0.6% for the 

PTV and within ±0.15% for all evaluated OARs. Figure 3-4 presents mean dose differences of 

the PTV and OARs for all 8 liver cancer patients. The maximum absolute differences of PTV 

mean doses were 0.4% for the cGAN and 1.0% for the cycleGAN. The cGAN achieved smaller 

deviation ranges (maximum-minimum) than the cycleGAN for all evaluated regions except the 

right kidney. The p-value of all Wilcoxon signed-rank tests are greater than 0.05, except the one 

for bowel mean dose. 

 

Figure 3-4: Box and whisker plot of deviations between sCT and CT mean dose within the PTV 

and OARs. The maximum (top line), 75% (top of box), median (central line), 25% (bottom of 

box), and minimum (bottom line) are shown. Outliers are drawn as red cross signs. cGAN and 

cycleGAN results are presented in yellow and cyan, respectively. 
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Regions Metric cGAN 

Deviation sCT vs dCT 

(% of prescribed dose 

or volume percentage 

difference) 

cycleGAN 

Deviation sCT vs dCT 

(% of prescribed dose 

or volume percentage 

difference) 

p-value 

PTV Mean -0.17±0.22 0.09±0.46 0.08 

D98% -0.30±0.31 -0.06±0.56 0.08 

D95% -0.51±0.52 -0.09±0.94 0.08 

 D50% -0.27±0.48 0.19±0.81 0.11 

 D2% -0.39±0.63 0.17±0.99 0.11 

Bowel Mean -0.05±0.05 0.00±0.06 0.04* 

V35Gy -0.05±0.15 -0.02±0.05 1.00 

Cord Mean 0.04±0.21 0.06±0.24 0.74 

 Max -0.03±0.29 0.01±0.17 0.84 

Liver Mean -0.01±0.10 0.03±0.15 0.31 

 D1000cc 0.02±0.08 0.06±0.12 0.16 

Left 

kidney 

Mean 0.02±0.05 0.02±0.05 0.55 

 Max -0.08±0.14 -0.03±0.20 0.20 

Right 

kidney 

Mean 0.00±0.08 0.01±0.07 0.84 

 Max -0.03±0.30 0.07±0.34 0.55 

Stomach Mean -0.01±0.03 0.05±0.12 0.20 

 V35Gy 0.03±0.09 0.15±0.43 1.00 

* indicates statistically significant. 

Table 3-4: Statistics of metric differences between between dCT and sCT plans. Differences are 

presented in percentage of prescribed dose (mean, maximum, D2%, D50%, D95%, D98%, D1000cc) or 

volume percentage difference (V35Gy). DVH metrics were chosen based on planning constraints 

for MR-guided stereotactic body radiation therapy (SBRT) requested by physicians. Results were 

averaged across 8 liver cancer patients and shown in (mean ± SD) format. The p-values of the 

Wilcoxon signed-rank tests are shown.  
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3.4 Discussion 

In this study, for the first time, DL methods have been applied for generating abdominal sCTs 

images from low-field MR images. We trained two DL methods, cGAN and cycleGAN, to 

generate sCT images from 0.35T MR images for 12 abdominal cancer patients. sCT HU 

accuracy was evaluated using voxel-wise metrics. To evaluate the sCT dose calculation accuracy 

for liver radiation therapy, we compared the dCT-based and sCT-based dose distributions for 8 

liver cancer patients. In both models, the average MAE between dCT and sCT images is of 

similar magnitude to that previously reported for sCT abdominal generation using high-field MR 

images90. The average gamma passing rates were above 99% using a 3%, 3 mm criterion in both 

models. Small deviations in the mean dose and clinically relevant DVH metrics between sCT- 

and dCT-based dose distributions were observed in both models as shown in  

Table 3-4. These results suggested that abdominal sCT images generated by either cGAN or 

cycleGAN achieved accurate dose calculation for liver radiotherapy planning in our patient 

cohort.  

Although small differences between CT and sCT images were visible as shown in Figure 

3-2, sCT images generated by both methods achieved accurate dose calculations. This may be 

caused by the relative insensitivity of photon dosimetry to small attenuation differences. Our 

results showed that sCTcGAN images had smaller average MAEs and higher average gamma 

passing rates (using a 2%, 2mm criterion) than sCTcycleGAN images. However, statistical tests 

suggested that no significant difference was observed between the two models in terms of all 

evaluation metrics except bowel mean dose. More patients are required to further compare the 

two models. Small dose calculation errors resulting from HU prediction errors, as shown in  
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Table 3-4, may be less significant compared with those introduced by other factors 

including patient setup errors and target delineation variations. 

Several factors may contribute to differences between CT and sCT images. First, the 

model performance was limited by the small training dataset. For example, a DL method trained 

with patients having only small inter-patient anatomical variations may have difficulty in 

providing accurate HU prediction for patients with atypical anatomies. A larger training dataset 

may lead to more accurate and robust model performance. Second, the imperfect registration 

between MR and dCT images might introduce voxel mismatch and hence intensity mapping 

errors, which led to the perturbation of training the cGAN. The cycleGAN would not be affected 

by these mapping errors as it was not trained with paired MR and dCT images. However, unlike 

the cGAN which was trained using the L1 loss and adversarial loss between paired dCT and sCT 

images, cycleGAN was trained using unsupervised scheme where only adversarial loss between 

unpaired dCT and sCT images was computed. This looser loss constraint on sCT images for 

model training may lead to degraded sCT quality.  

 The average sCT generation time is less than 10 s using either cGAN or cycleGAN. 

Generation time can be affected by several factors including image dimension and GPU model. 

A phase I trial study suggested that oaMRgRT allowed PTV dose escalation and simultaneous 

OAR sparing compared with non-adaptive treatment11. The fast sCT generation speed of cGAN 

and cycleGAN makes it possible to achieve MR-only online adaptive workflow without 

extensively elongating the time required to adapt.  

DL methods investigated in this work can also be trained to convert high-field MR 

images to sCT images. Using high-field MR images may result in better sCT quality since high-

field MR images have higher signal-to-noise ratios (SNRs) and fewer image artifacts related to 
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the low magnetic homogeneity than low-field MR images. Future work includes acquiring high-

field MR images and investigating the dose calculation accuracy of the sCT images generated 

from high-field MR images using other commercial treatment planning systems. 

3.5 Conclusion 

We implemented cGAN and cycleGAN to generate abdominal sCT images from 0.35T MR 

images. In this preliminary study, sCT images generated by both models enabled accurate dose 

calculations for liver radiotherapy planning. The fast generation speed and high dose calculation 

accuracy make both GANs promising tools for MR-only liver radiation therapy. More abdominal 

cancer patients will be enrolled in the future to further compare the dose calculation accuracy of 

the sCT images generated by cGAN and cycleGAN. 
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4 3D MULTI-PATH DENSENET 

FOR IMPROVING AUTOMATIC 

SEGMENTATION  OF 

GLIOBLASTOMA ON PRE-

OPERATIVE MULTI-MODAL MR 

IMAGES42 

4.1 Introduction  

Gliomas are tumors arising from glial cells, normally astrocytes and oligodendrocytes. Gliomas 

account for approximately 26% of all brain tumors and can be classified as grades I-IV based on 

histological characteristics92,93. GBMs, grade IV gliomas, are the most common malignant 

primary brain tumors with a median overall survival (OS) of only 15 months after diagnosis94,95. 

The gold standard treatment for GBM is a maximal safe resection followed by radiation therapy 
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with or without concurrent adjuvant chemotherapy96,97. As intensity-modulated radiation therapy 

(IMRT) and volumetric modulated arc therapy (VMAT) can deliver a high dose of radiation to 

the target, while providing better dose sparing of normal tissues compared with 3D conformal 

radiation therapy, they have been increasingly used for treating GBM.  

Accurate target delineation is critical for the IMRT and VMAT treatment planning 

because both techniques have sharp dose gradients between the target and normal tissues. The 

Radiation Therapy Oncology Group trial recommends using multi-modal MR images, including 

a T2-weighted (T2w) images or a fluid-attenuated inversion recovery (FLAIR) image and a 

contrast-enhancing T1-weighted (CE-T1w) image, for GBM target delineation98. Manual 

segmentation is not only time-consuming but also sensitive to intra-observer and inter-observer 

variabilities. Hence, it is essential to develop automatic segmentation methods that can perform 

highly reproducible and accurate GBM segmentation.  

Recently, many CNNs have achieved good performance in glioma segmentation based on 

multi-modal MR images. An ensemble method, called EMMA99, earned first place in the 2017 

Brain Tumor Segmentation (BraTS) challenge100–102. EMMA consisted of seven 3D CNNs 

including three 3D fully convolutional networks103, two 3D U-Nets23, and two DeepMedic 

models104. Every 3D CNN in the EMMA was built based on the encoder-decoder architecture 

and could achieve the end-to-end mapping from multi-model MR images to tumor contour. A 

novel 3D CNN with autoencoder regularization earned first place in the 2018 BraTS challenge 

and also had the encoder-decoder architecture105. Zhang et al. proposed a 3D DenseNet, the 3D 

CNN with several dense blocks, for acute ischemic stroke segmentation and showed it achieved 

better performance than a 3D U-Net with residual connections106. The dense block was proposed 

by Hung et al. to alleviate the vanishing-gradient problem, strengthen feature propagation, and 
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encourage feature reuse107. It could reduce the number of model parameters and achieved better 

performance on several object recognition tasks compared with the residual block70. However, 

all of these proposed 3D CNNs only employed a single-path architecture where the same 

encoding feature extraction filters were applied to the concatenation of multi-modal MR images. 

We hypothesized that a multi-path architecture, where each MR image has its own set of 

encoding filters, could achieve better segmentation performance than the single-path architecture 

by capturing the image-specific features.  

In this study, we proposed a 3D multi-path DenseNet for automatically generating the 

GBM tumor contour from four multi-modal MR images. A 3D single-path DenseNet was built 

for comparison. Both DenseNets were trained, validated, and tested using a total of 258 GBM 

patients. Several evaluation metrics were used to compare the ground truth and autosegmented 

contours. The model performance of the two DenseNets was compared using Wilcoxon signed-

rank tests75. 

4.2 Materials and methods 

4.2.1 Dataset 

The 2019 BraTS challenge training set, comprised of images from 259 GBM patients, was used 

in this study. Each patient had four pre-operative multi-modal MR images: T1w, CE-T1w, T2w, 

and FLAIR images. These images were acquired with different scanners and clinical protocols 

from multiple institutions. Preprocessing steps of co-registration and skull-stripping were applied 

to all MR images101. The image voxel size is 1.0 x 1.0 x 1.0 mm3, and the image matrix size is 

240 x 240 x 155. Labels of three tumor subregions (enhancing tumor core, non-enhancing tumor 

core, and edema) were manually delineated by one to four raters based on the same annotation 
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protocol. Manual delineations were approved by expert board-certified neuroradiologists to 

define the ground truth labels. One patient was removed because a portion of the FLAIR image 

was cut off, which resulted in a total number of 258 patients in this study. 

4.2.2 Image preprocessing 

The manual ground truth tumor contour of each patient was acquired by fusing three tumor 

subregion labels. The N4ITK algorithm was applied to all MR images, except the FLAIR image, 

to correct intensity inhomogeneity62. To save computational memory, all images and contours 

were cropped to exclude the background margin and resampled to have an isotropic voxel size of 

1.5 x 1.5 x 1.5 mm3. The final matrix size of the images and contours was 100 x 128 x 105. For 

each MR image, voxel intensity was normalized to z-score using the mean and standard 

deviation of the intensities of its brain voxels. Figure 4-1 shows the transverse slices of four 

preprocessed MR images along with the ground truth contour for one example patient. 

 

Figure 4-1: From left to right, transverse slices of the preprocessed T1w, CE-T1w, T2w, and 

FLAIR MR images, along with the ground truth tumor contour for one example patient. Z-score 

window [-4, 4] is used for image display. 
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4.2.3 3D CNNs 

4.2.3.1 3D single-path DenseNet 

Figure 4-2 shows the architecture of a 3-layer dense block used in the proposed 3D DenseNets. 

Each layer in the dense block contained one convolution layer with a filter size of 1 x 1 x 1 

followed by one convolutional layer with a filter size of 3 x 3 x 3. The number of output feature 

maps after each 1 x 1 x 1 convolutional layer is the growth rate of the dense block. Instance 

normalization layers were used to reduce internal covariate shifts and speed up model 

optimization108. 

 

Figure 4-2: The architecture of the dense block. IN, instance normalization layer; Conv, 

convolutional layers. Color figure can be viewed online. 

Figure 4-3 shows the architecture of the 3D single-path DenseNet for GBM 

segmentation. It contained 5 dense blocks forming an encoder-decoder architecture similar to a 

U-Net23. The encoder path extracted features from the concatenation of four MR images,  while 

the decoder path gradually reconstructed the contour from the extracted features. Since a 3D MR 

image was represented using a 5D tensor with the shape of (batch size, depth, height, width, 

channels), the concatenation of four MR images means joining a sequence of four 5D tensors 

along the last dimension. Averaging pooling layers and deconvolutional layers were used to 

downsample and upsample the feature maps, respectively. At the end of the model, one 
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convolutional layer with a filter size of 1 x 1 x 1 followed by the Softmax layer109 was used to 

generate the probability maps of background and tumor labels. The model can be trained to 

achieve an end-to-end mapping from the concatenation of four MR images to the autosegmented 

tumor contour.  

 

Figure 4-3: The architecture of the 3D single-path DenseNet. DB, dense block shown in Figure 

2; IN, instance normalization layer; Conv, convolutional layers; Deconv, deconvolutional layer. 

Color figure can be viewed online. 

4.2.3.2 3D multi-path DenseNet 

Figure 4-4 (A) shows the architecture of the 3D multi-path DenseNet. It also had encoder and 

decoder paths. In contrast to the single-path DenseNet, where four MR images were 

concatenated and fed into the single encoder path, each MR image has its own encoder path in 

the multi-path DenseNet. The encoded feature maps from four different paths were concatenated 

and then fused by squeeze-and-excitation blocks (SEB) as shown in Figure 4-4 (B).  Output 
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feature maps from the SEBs were fed into the same decoder path that was used in the single-path 

DenseNet. The SEB was proposed by Hu et al. to recalibrate the channel-wise feature response 

by modeling the inter-channel dependence110. Overall, the 3D multi-path DenseNet contains 14 

dense blocks. In each SEB, the number of output feature maps after the convolutional layer and 

the number of nodes in two fully connected layers were set the same as the growth rate of the 

dense block.  

 

Figure 4-4: (a) The architecture of the 3D multi-path DenseNet. (b) The architecture of the 

squeeze-and-excitation blocks (SEB). DB, dense block shown in Figure 4-2; IN, instance 

normalization layer; Conv, convolutional layers; Deconv, deconvolutional layer; FC, fully 

connected layer. Color figure can be viewed online. 

The number of trainable model parameters only depended on the growth rate of the dense 

block used in the model. The growth rate of the multi-path DenseNet was set as 16 based on 
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GPU memory limitations. The growth rate of the single-path DenseNet was set as 30 so that both 

DenseNets have a similar number of trainable parameters (about 0.46 million). Since the 

complexity of DL methods is normally measured by the number of trainable parameters, both 

DenseNets have similar complexity. 

Tabel 4-1 and Table 4-2 show the layer configurations of the single-path DenseNet and 

multi-path DenseNet, respectively. 

Layers Details Output Size 

Convolution 3 x 3 x 3 conv, stride 1 128 x 105 x 100 x 30 

Pooling 2 x 2 x 2 average pool, stride 2 64 x 53 x 50 x 30 

DB1 [
1 x 1 x 1 conv, stride 1
3 x 3 x 3 conv, stride 1

] x 3 

1 x 1 x 1 conv, stride 1 

64 x 53 x 50 x 30 

Pooling 2 x 2 x 2 average pool, stride 2 32 x 27 x 25 x 30 

DB2 Same as DB1 32 x 27 x 25 x 30 

Pooling 2 x 2 x 2 average pool, stride 2 16 x 14 x 13 x 30 

DB3 Same as DB1 16 x 14 x 13 x 30 

Deconvolution 2 x 2x 2 Deconv, stride 1/2 32 x 27 x 25 x 30 

DB4 Same as DB1 32 x 27 x 25 x 30 

Deconvolution 2 x 2x 2 Deconv, stride 1/2 64 x 53 x 50 x 30 

DB5 Same as DB1 64 x 53 x 50 x 30 

Deconvolution 2 x 2x 2 Deconv, stride 1/2 128 x 105 x 100 x 30 

Convolution 3 x 3 x 3 conv, stride 1 128 x 105 x 100 x 30 

Classification 
1 x 1 x 1 Conv, stride 1 

Softmax 

128 x 105 x 100 x 2 

Table 4-1: Layer configuration for the single-path DenseNet. Each “conv” layer shown in the 

table corresponds to the sequence IN-ReLU-Conv. Note that concatenations were not shown.  
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Layers Details Output Size 

Convolution 3 x 3 x 3 conv, stride 1 128 x 105 x 100 x 16 (4 sets) 

SEB1 
3 x 3 x 3 conv, stride 1 

Global pool 

FC+ReLU 

FC+Sigmoid 

Scale 

128 x 105 x 100 x 16 

1 x 1 x 1 x 16 

16 

16 

128 x 105 x 100 x 16 

Pooling 2 x 2 x 2 average pool, stride 2 64 x 53 x 50 x 16 (4 sets) 

DB1, DB4, 

DB7, DB10 

[
1 x 1 x 1 conv, stride 1
3 x 3 x 3 conv, stride 1

] x 3 

1 x 1 x 1 conv, stride 1 

64 x 53 x 50 x 16 (4 sets) 

SEB2 Same as SEB1 64 x 53 x 50 x 16 

Pooling 2 x 2 x 2 average pool, stride 2 32 x 27 x 25 x 16 (4 sets) 

DB2, DB5, 

DB8, DB11 

Same as DB1 32 x 27 x 25 x 16 (4 sets) 

SEB3 Same as SEB1 32 x 27 x 25 x 16 

Pooling 2 x 2 x 2 average pool, stride 2 16 x 14 x 13 x 16 (4 sets) 

DB3, DB6, 

DB9, DB12 

Same as DB1 16 x 14 x 13 x 16 (4 sets) 

SEB4 Same as SEB1 16 x 14 x 13 x 16 

Deconvolution 2 x 2x 2 Deconv, stride 1/2 32 x 27 x 25 x 16 

DB13 Same as DB1 32 x 27 x 25 x 16 

Deconvolution 2 x 2x 2 Deconv, stride 1/2 64 x 53 x 50 x 16 

DB14 Same as DB1 64 x 53 x 50 x 16 

Deconvolution 2 x 2x 2 Deconv, stride 1/2 128 x 105 x 100 x 16 

Convolution 3 x 3 x 3 conv, stride 1 128 x 105 x 100 x 16 

Classification 
1 x 1 x 1 Conv, stride 1 

Softmax 

128 x 105 x 100 x 2 

Table 4-2: Layer configuration for the multi-path DenseNet. Each “conv” layer shown in the 

table corresponds to the sequence IN-ReLU-Conv. Note that concatenations were not shown. 
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4.2.4 Model training 

The patient cohort was randomly split into a training set of 180 patients, a validation set of 39 

patients, and a testing set of 39 patients. The Adam stochastic gradient descent method73 was 

used to minimize the loss function, 

𝑙𝑜𝑠𝑠 = 1 − ∑
2𝑃𝑖 × 𝐿𝑖

𝑃𝑖 + 𝐿𝑖

𝑁

𝑖=1

, 

Equation 4-1 

where N is the number of image voxels, 𝑃𝑖 is the Softmax probability109 of the voxel i being a 

tumor voxel, and 𝐿𝑖 is the ground truth tumor label (0: background, 1: tumor) of the voxel i.  

Both DenseNets were implemented using the Tensorflow package (V1.10.0, Python 

3.6.9, CUDA 10.0) and ran on an 11 GB GeForce GTX 1080 Ti. A batch size of 1 was used for 

training. The initial learning rate and the stopping epoch number were tuned using the validation 

set. For both DenseNets, the optimal initial learning rate and epoch number are 5x10-4 and 90, 

respectively. 

4.2.5 Model evaluation 

Trained models were applied to 39 testing patients to generate their autosegmented tumor 

contours. Model performance was evaluated using three metrics: DSC, average surface distance 

(ASD), and 95% Hausdorff distance (HD95%). These metrics are represented by the following 

equations: 

𝐷𝑆𝐶 =
2 (𝑉𝐺𝑇 ∩ 𝑉𝐴𝑢𝑡𝑜)

𝑉𝐺𝑇 ∪ 𝑉𝐴𝑢𝑡𝑜
, 
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𝐴𝑆𝐷 =
1

2
( 𝑚𝑖𝑛
𝑥∈𝑆𝐺𝑇

𝑑(𝑥, 𝑆𝐴𝑢𝑡𝑜)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑚𝑖𝑛
𝑥∈𝑆𝐴𝑢𝑡𝑜

𝑑(𝑥, 𝑆𝐺𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), 

𝐻𝐷95% =
1

2
(𝐾95 ( 𝑚𝑖𝑛

𝑥∈𝑆𝐺𝑇

𝑑(𝑥, 𝑆𝐴𝑢𝑡𝑜)) + 𝐾95 ( 𝑚𝑖𝑛
𝑥∈𝑆𝐴𝑢𝑡𝑜

𝑑(𝑥, 𝑆𝐺𝑇))), 

Equation 4-2 

where 𝑉𝐺𝑇  and 𝑉𝐴𝑢𝑡𝑜  refer to the volumes of the ground truth and autosegmented tumor contours, 

respectively; 𝑆𝐺𝑇 and 𝑆𝐴𝑢𝑡𝑜  refer to the surfaces of the ground truth and autosegmented tumor 

contours, respectively;  𝑚𝑖𝑛
𝑥∈𝑆𝐺𝑇

𝑑(𝑥, 𝑆𝐴𝑢𝑡𝑜) denotes the distance of the voxel x, on the tumor surface 

𝑆𝐺𝑇, to its closet voxel on the surface 𝑆𝐴𝑢𝑡𝑜 ; K95 refers to the 95th percentile of all distances. 

 Wilcoxon signed-rank tests75 were conducted to compare the performance of the 3D 

single-path and multi-path DenseNets.  

4.3 Results 

Figure 4-5 shows the ground truth and autosegmented tumor contours for the three example 

patients. Autosegmented tumor contours generated by both DenseNets were similar to the 

corresponding ground truth tumor contour based on visual inspection. In Figure 4-5, white 

arrows point to the regions where there are larger differences between the ground truth and 

Autosingle-path contours compared with those between ground truth and Automulti-path contours. 
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Figure 4-5: Ground truth tumor contours (left column) and the autosegmented tumor contours 

generated by the single-path DenseNet (middle column) and multi-path DenseNet (right 

columns) for the three example patients. 

Table 4-3 summarizes the statistics of the evaluation metrics for the single-path and 

multi-path DenseNets. The multi-path DenseNet achieved a larger mean DSC of 0.922, a smaller 

mean ASD of 1.1 mm, and a smaller HD95% of 3.9 mm compared with the single-path DenseNet. 

The p-values of all Wilcoxon signed-rank tests were less than 0.05, which indicates strong 

evidence against the null hypothesis that the median difference between the paired samples is 0. 

Figure 4-6 shows box and whisker plots of the three evaluation metrics. The multi-path 

DenseNet generated more robust GBM tumor contours compared with the single-path DenseNet 

in terms of smaller box ranges (max-min) of all evaluation metrics. 

 

 



 

58 

Metric Single-path DenseNet Multi-path DenseNet p-value 

DSC 0.911±0.060 0.922±0.041 <0.001 

ASD [mm] 1.3±0.7 1.1±0.5 0.002 

HD95% [mm] 5.2±7.1 3.9±3.3 0.046 

Table 4-3: Statistics of DSC, ASD, and HD95% between the ground truth contours and the 

autosegmented contours generated by the single-path DenseNet or multi-path DenseNet. Results 

were averaged across 39 testing patients and shown in (mean ± SD) format. The p-values of the 

Wilcoxon signed-rank tests are shown. 

 

Figure 4-6: Box and whisker plots of DSC, ASD, and HD95% for the single-path and multi-path 

DenseNets. The maximum (top line), 75th percentile (top of the box), median (central line), 25th 

percentile (bottom of the box), and minimum (bottom line) are shown. Outliers are drawn as 

diamond signs. 

4.4 Discussion 

In this study, we proposed a 3D multi-path DenseNet for generating the GBM tumor contour 

from four MR images. A 3D single-path DenseNet was also built for comparison. Both 

DenseNets were trained, validated, and tested using 180, 39, and 39 GBM patients, respectively. 

Autosegmented contours generated by both DenseNets were compared with the ground truth 

contours using DSC, ASD, and HD95%. 

The multi-path architecture achieved better performance in GBM segmentation than the 

corresponding single-path architecture. The multi-path DenseNet achieved a larger mean DSC, a 

smaller mean ASD, and a smaller mean HD95% compared with the single-path DenseNet. Results 
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of Wilcoxon signed-rank tests indicated significant differences in all three metrics. The 

autosegmented contours generated by the multi-path DenseNet were generally qualitatively more 

similar to the ground truth contours than those generated by the single-path DenseNet, as is 

illustrated by the examples in Figure 4-5. Figure 4-6 showed that the multi-path DenseNet 

achieved more robust segmentation compared with the single-path DenseNet. 

The multi-path DenseNet achieved a mean DSC of 0.922 averaged across 39 testing 

patients. The proposed DenseNet could also be trained to generate the labels of three tumor 

subregions by changing the output channel number in the last convolutional layer to 4. We 

trained the multi-path DenseNet using average Dice loss for tumor subregion segmentation. The 

trained model achieved a mean DSC of 0.833 for enhancing tumor core, 0.876 for tumor core 

(enhancing and non-enhancing tumor core), and 0.913 for the whole tumor. Another approach 

for subregion segmentation is to train the CNN three times. Each CNN is trained to generate the 

label of one subregion or one fused subregion (tumor core or whole tumor).     

The images and ground truth tumor contours were downsampled from the original voxel 

size of 1.0 x 1.0 x 1.0 mm3 to the voxel size of 1.5 x 1.5 x 1.5 mm3 to save computational 

memory. We upsampled the autosegmented contours generated by 3D DenseNets back to the 

original spatial resolution and compared them with original ground truth tumor contours. In this 

case, the single-path DenseNet achieved a mean DSC of 0.900, while the multi-path DenseNet 

achieved a mean DSC of 0.910 for GBM segmentation. The Wilcoxon signed-rank test 

suggested a significant difference (p-value<0.001). The EMMA achieved a mean DSC of 0.886 

in the 2017 BraTS challenge99. The 3D CNN with autoencoder regularization achieved a mean 

DSC of 0.884 in the 2018 BraTS challenge105. A two-stage cascaded U-Net achieved a mean 

DSC of 0.888 in the 2019 BraTS challenge111. These results were included for a rough 
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comparison. It should be noted that a direct quantitative comparison is not appropriate because 

these models were trained and evaluated using different datasets. 

We identified three outlier cases of the single-path model based on the DSC boxplot. 

After dropping these cases, the mean DSC results of the single-path and multi-path models are 

0.924 and 0.929, respectively. The p-value of the Wilcoxon sign rank test is 0.03, which still 

indicates a significant difference. Similarly, we identified four outlier cases of the multi-path 

model based on the DSC boxplot. After dropping these cases, the mean DSC results of the 

single-path and multi-path models are 0.925 and 0.933, respectively. The p-value of the 

Wilcoxon sign rank test is 0.005.  

The goal of our study was to test the hypothesis that the proposed 3D multi-path 

DenseNet could achieve better GBM segmentation than the corresponding 3D single-path 

DenseNet. Our proposed multi-path technique could be integrated into other 3D CNNs with 

different architectures for improving GBM segmentation. But this was not explored within the 

scope of this study. Also, our proposed multi-path technique may help achieve better 

performance in other image-transfer tasks, such as sCT generation and OAR segmentation from 

multi-modal MR images. The image output in the proposed DenseNets can be modified to a 

single channel for sCT generation, and multiple channels for OAR or tumor subregion 

segmentation. Future work will include integrating the multi-path technique into other 3D CNNs 

with different architectures to potentially improving GBM segmentation performance and 

investigating the performance of the multi-path technique in other image-transfer tasks. 
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4.5 Conclusion 

We proposed a 3D single-path DenseNet and a 3D multi-path DenseNet for automatically 

generating GBM tumor contours from four multi-modal MR images. Both DenseNets generated 

accurate tumor contours that were in good agreement with the manually segmented contours. 

The single-path and multi-path DenseNets achieved DSCs of 0.911±0.060 and 0.922±0.041, 

respectively. Our study showed that the multi-path DenseNet generated more accurate GBM 

tumor contours than the single-path DenseNet. 
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5 DEEP LEARNING-BASED 

RADIOMIC FEATURES FOR 

IMPROVING NEOADJUVANT 

CHEMORADIATION RESPONSE 

PREDICTION IN LOCALLY 

ADVANCED RECTAL 

CANCER43 

5.1 Introduction  

Colorectal cancer is the third most common cancer diagnosed and the second most common 

cause of cancer deaths in the US112. Rectal cancer accounts for about 30% of all colorectal 

cancer diagnoses112. Treatment for rectal cancer is based largely on the stage at diagnosis. LARC 

is commonly treated with nCRT followed by total mesorectal excision (TME) and adjuvant 
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chemotherapy113,114. Tumor response to nCRT is associated with recurrence and survival and can 

serve as a prognostic factor115,116. 15-27% of patients who undergo such treatment achieve 

pathologic complete response (pCR)117. TME is a highly invasive procedure with the potential 

risk of morbidity and functional complications. Achieving early prediction of tumor response 

using pre-treatment noninvasive approaches may allow for the design of individualized chemo-

radiation treatment and potential avoidance of TME following nCRT for patients.   

MRI is widely used in rectal cancer diagnosis and staging as it provides excellent soft-

tissue contrast for tissue characterization. Specifically, increasing evidence has shown that 

diffusion-weighted MR images (DWIs), providing tissue cellularity information, aids the 

assessment of rectal cancer response to neoadjuvant treatment118. DWI is recommended to be 

routinely acquired in clinical guidelines119. The interpretation of DWI has gradually shifted from 

qualitative evaluation to quantitative assessment. For example, the apparent diffusion coefficient 

(ADC) map was one major quantitative map calculated from DWI. However, several studies 

showed that the mean pretreatment tumor ADC value was not a reliable indicator for predicting 

treatment response120,121.   

 Radiomics is an emerging field of studies where a large number of medical image 

features are extracted in order to achieve better clinical diagnosis or decision support122. The 

conventional radiomic analysis typically involves extraction and analyzing quantitative imaging 

features from the previously defined region of interests (ROI) on one or multiple image 

modalities with the ultimate goal to obtain predictive or prognostic models. Previous studies 

showed that handcrafted, or explicitly designed, features extracted from the ADC ROI have 

predictive power for early nCRT response in LARC patients123,124. However, handcrafted 

features are lower-order image features and limited to current expert knowledge. Another type of 



 

64 

radiomic feature is DL-based extracted from the pre-trained CNNs via transfer learning22,125. 

Several studies have demonstrated that the DL-based features showed promising performance in 

breast cancer diagnosis, ovarian cancer recurrence prediction, and GBM survival 

prediction38,126,127. To our knowledge, no published study has investigated the DL-based features 

for managing LARC patients.  

In this work, we first aimed to construct radiomics classifiers based on the handcrafted 

and DL-based radiomic features extracted from pre-treatment DWIs. Then, we compared the 

performance of the two classifiers to predict post-nCRT response in patients with LARC.  

5.2 Materials and methods 

5.2.1 Dataset 

We identified forty-three consecutive patients with LARC treated from December 2015 to 

December 2016 at a single institution. All patients received concurrent capecitabine with a total 

prescription dose of 50 Gy in 25 fractions, followed by the TME surgery after 6-12 weeks of the 

nCRT completion. The resection specimens were evaluated by an expert pathologist. Patients 

were separated into good responders (GR) and non-GR groups based on the postoperative 

pathology report, MRI or colonoscopy. The GR group consisted of patients with either complete 

response (evaluated by pathology or MRI and colonoscopy) or partial response (assessed by 

pathology), and the non-GR group consisted of patients with stable disease (assessed by 

pathology) and progressive disease (confirmed by CT/MR). 

All patients underwent pre-treatment DWIs before the nCRT. The DWI images were 

acquired using the single-shot echo-planar imaging (ssEPI) sequence on two 3T MR scanners 

(Discovery MR750 and Signa HDxt, GE Healthcare). MR imaging parameters are summarized 
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in Table 5-1. For each patient, the ADC map was computed using the equation 𝐴𝐷𝐶 =

−
1

800
ln(

𝑆

𝑆0
), where S0 and S correspond to MR voxel intensities at b-values of 0 s/mm2 and 800 

s/mm2. Gross tumor volume (GTV) of the primary tumor was manually delineated on the DWI 

image with the b-value of 800 s/mm2 by a board-certified oncologist with 5-year experience. 

Scanner 

model 

Patient 

number 

TR/TE 

(ms) 

Matrix FOV 

(mm2) 

Transvers 

spatial 

resolution(mm2)  

Slice 

thickness 

(mm) 

b value 

(s/mm2) 

Discovery 

MR750 

36 2600/74 256×256 3802 or 

4002 

1.482  

or 1.562 

5 0,500, 

800,1000 

Signa 

HDxt 

7 4500-

6000/64 

-67 

256×256 3202  

- 4002 

1.252 - 1.562 5 or 6 0,800 

Table 5-1: MR imaging parameters 

5.2.2 Feature extraction 

5.2.2.1 Handcrafted features  

105 handcrafted features were extracted from the ADC map within the GTV contour for each 

patient using the PyRadiomics package128 (version 2.1.2). Extracted features consisted of 14 

shape-based features, 18 first-order statistic features, and 73 textural (second-order statistic) 

features. The methods used for extracting textural features were gray level co-occurrence matrix, 

gray-level size zone matrix, gray level run length matrix, gray level dependence matrix, and 

neighborhood gray-tone difference matrix. Shape-based features describe the shape 

characteristics of the GTV contour. First-order statistic features describe the distribution of voxel 

intensities within the GTV contour. Textural features describe the patterns or second-order 

spatial distributions of the voxel intensities. 
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5.2.2.2 DL-based features  

The publicly-available pre-trained CNN, VGG1965, was used to extract DL-based features. The 

network was trained using approximately 1.2 million images from the ImageNet database129 for 

classifying nature images into 1000 objects. As the natural objects used for training VGG19 

varied in their physical size, the extracted DL-based features using pre-trained VGG19 may be 

less sensitive to image spatial resolution (pixel size) compared with other factors like image 

gradients. Figure 5-1 shows the network architecture. It contained 16 convolutional layers 

followed by 3 fully-connected layers. 5 max-pooling layers were inserted across convolutional 

and fully-connected layers to reduce model parameter number for controlling overfitting and 

help achieve partial invariance to small translations. For each patient, a 2D square ROI was 

selected from the transverse slice that contains the largest tumor area. The ROI center was set as 

the center of the smallest bounding box covering the 2D tumor. The ROI size was set as the 

maximum dimension of the smallest bounding box. The ADC ROI was extrapolated to 224 by 

224 for matching the original VGG19 design. The intensities of the ROI were converted to the 

range [0, 255]. Resampled ROI was copied into a 3-channel image and then inputted into the pre-

trained model for feature extraction. We adopted the feature extraction method proposed by 

Antropova et al.38. As shown in Figure 5-1, five DL-based feature vectors were extracted by 

average-pooling the feature maps after max-pooling layers. Each feature vector was normalized 

with its Euclidean norm and then concatenated to one feature vector, which was normalized 

again to acquire the feature vector consisting of 1472 features. After extracting features for all 

patients, a cutoff on feature variance was used to pre-select 105 DL-based features out of 1472 

features with the highest variance to train the prediction models.  
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Figure 5-1: VGG19 architecture and feature extraction scheme. Feature maps and feature 

vectors, following each layer, are shown as cuboids and rectangles, respectively. The feature 

map depth and feature number are shown. For feature extraction, the network took an ADC ROI 

as input. 1472 DL-based features were extracted from max-pooling feature maps by average-

pooling along the spatial dimensions. Conv, convolutional layer. 

5.2.3 Classification and evaluation 

The least absolute shrinkage and selection operator (LASSO) penalized logistic regression130,131 

was used for classification using radiomic features (Python version 2.7.13). The LASSO 

regularization was selected to handle the high feature dimension. The handcrafted classifier and 

DL-based classifier were trained using handcrafted features and DL-based features, respectively. 

The regularization parameter was optimized by grid searching with repeated 20 times stratified 

4-fold cross-validation. For each cross-validation, stratified random sampling was used to split 

the patient cohort was into 4 folds, where 3 folds were used as the training set to train the 

classifier and the remaining one as the testing set for evaluation.   

The performances of the handcrafted and DL-based classifiers were evaluated using the 

average area under the receiver operating curve (AUC) of 20 cross-validation repetitions. The 



 

68 

corrected paired t-test132 was conducted to compare the AUC results for two classifiers. P-value 

<0.05 was considered to indicate a significant difference.  

5.3 Results 

Table 5-2 summarizes the clinical characteristics of our patient cohort. 22 (51.2%) patients 

achieved GR after nCRT. Among the 22 GR patients, there were 14 (63.6%) men and 8 (36.4%) 

women. Among 21 non-GR patients, there were 14 (66.7%) men and 7 (33.3%) women.  

Characteristic GR (n=22) nGR (n=21) Total (n=43) 

Gender (male/female) 14/8 14/7 28/15 

Age (mean, SD, in years) 53.7 (9.1) 54.9 (10.9) 54.3 (10.3) 

Pre-nCRT TNM staging    

T stage (2/3/4) 1/18/3 1/16/4 2/34/7 

N stage (0/1/2) 5/11/6 0/9/12 5/20/18 

Table 5-2: Patient clinical characteristics; GR, good responder, nGR, non-good responder, SD, 

standard deviation. 

Figure 5-2 shows the transverse slices of DWIs and ADC maps for the representative GR 

and non-GR patients. Both patients are male with rectal cancer at the same clinical stage of 

T3N1. No significant visual differences were observed.  
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Figure 5-2: Comparison of the DWI (b=0,800 s/mm2) slice and the ADC slice for the 

representative GR and non-GR patients. The GTV contours are demonstrated in red. The color 

bar of the ADC slices is shown.  

 Figure 5-3 (a) compares the boxplots of the mean AUC results of 20 cross-validation 

repetitions for two classifiers. Large deviations were observed due to the small sample size. The 

AUC of a single repetition varies from 0.51 to 0.73 for the handcrafted classifier, and from 0.58 

to 0.80 for the DL-based classifier. The average ROC curves of the two classifiers are shown in 

Figure 5-3 (b). The handcrafted classifier achieved the mean AUC of 0.64 (standard error [SE], 

0.08) using repeated 20 times 4-fold cross-validation, while the DL-based classifier achieved 

0.73 (SE, 0.05). The p-value of the corrected paired t-test was 0.049, suggesting a significant 

difference in the AUC results for the handcrafted classifier and DL-based classifier.  
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Figure 5-3: (a) Boxplots of the AUC results of 20 cross-validation repetitions for the 

handcrafted and DL-based classifiers. The minimum (bottom line), 25th percentile (bottom of the 

box), median (central line), 75th percentile (top of the box), and maximum (top line) are shown. 

An outlier is drawn as a diamond sign. (b) The ROC curves for two classifiers in predicting good 

response versus non-good response using repeated stratified 4-fold cross-validation. AUC results 

are averaged over 20×4 testing sets. 

5.4 Discussion 

In this study, we compared the performance of the classifiers built with the handcrafted and DL-

based features, extracted from pre-treatment DWI, for predicting the post-nCRT response for a 

cohort of LARC patients. To our knowledge, this is the first study investigating DL-based 

features for this application. Compared with the handcrafted features, the DL-based features 

consisted of more abstract high-level information extracted from DWI images. Our study 

indicated that the DL-based classifier achieved a significantly better predictive performance than 

the handcrafted classifier in predicting nCRT response for rectal cancer. Studies showed that the 

DL-based features achieved better performance in breast cancer diagnosis and GBM survival 

prediction than the handcrafted features38,127.  The DL-based features are expected to achieve 
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better performance and more generalizable results in diagnosis, recurrence and survival 

prediction for other sites as well.  

We conducted repeated 4-fold cross-validation for evaluating the model performance  as 

it stabilizes the accuracy estimation132,133. The handcrafted classifier achieved the mean AUC of 

0.64 for predicting GR vs non-GR, while the DL-based classifier achieved an improved mean 

AUC of 0.73. Additionally, a fused classifier was constructed by averaging prediction scores of 

two classifiers. The fused classifier achieved the mean AUC of 0.71, which is better than that for 

the handcrafted classifier. Nie et al. using a single run of 4-fold cross-validation, reported the 

mean AUC of 0.73 for GR and non-GR prediction using DWI handcrafted features on a similar 

size cohort of 48 patients123. The standard error of the mean AUC was not reported. To 

investigate the cross-validation variation caused by the different data partitions for a small 

dataset, we conducted 20 independent cross-validation trials using our dataset. It should be noted 

that 20 independent cross-validation trials are different from the repeated 20 cross-validation 

since each cross-validation trial has its own optimal hyperparameters, while all 20 cross-

validation repetitions need to have the same hyperparameters. The mean AUC of each cross-

validation trial ranged from 0.56 to 0.79 for the classifier built with the handcrafted features, and 

from 0.63 to 0.82 for the one built with the DL-based features. Given a relatively small patient 

size, a single run of cross-validation may have a large bias. Also, different classification models, 

evaluation protocols, patient number, and response label ratio may result in different prediction 

accuracy. 

We investigated the radiomic features extracted from a single imaging modality of DWI 

in this study. Several studies showed that including the handcrafted features from T2-weighted 

MR images and dynamic contrast-enhanced images improved predictive power123,124. The DL-
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based feature extraction scheme can be applied to other MR imaging modalities and may further 

help improve the prediction accuracy. Comparing the handcrafted and DL-based features 

extracted from multiparametric MR images for treatment response prediction would be an 

interesting study to work on in the future.  

The GTV contours used for feature extraction were manually delineated by a single 

radiation oncology. The effect of inter-observer delineation variabilities on the extracted features 

was not investigated in this work. Several studies suggested that the inter-observer delineation 

variability resulted in many unstable handcrafted radiomic features134,135 and hence possibly less 

robust prediction models. Such delineation uncertainty may also lead to unstable DL-based 

features. The robustness of prediction models generated from the handcrafted and DL-based 

features can be investigated and compared using the intraclass correlation coefficient (ICC). A 

higher ICC indicates a better reproducibility. A cutoff on ICC could be used to select stable 

handcrafted and DL-based features that may result in more robust models. Alternatively, 

automatic tumor segmentation methods may be utilized to establish robust prediction models by 

reducing delineation variability. 

The ROI used for extracting DL-based features was set based on tumor size, so the 

resampled ROIs would have different spatial resolutions across patients even if the spatial 

normalization was applied before the feature extraction. We believe it is unnecessary to conduct 

spatial normalization before extracting DL-based features in this study. To investigate the effect 

of the spatial normalization on handcrafted features, we resampled ADC maps to 1.56 x 1.56 x 

5.00 mm3 and re-extracted handcrafted features from the resampled ADC maps. The mean AUC 

achieved by the classifier trained using the updated handcrafted features was 0.65. Corrected 
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paired t-test showed that no significant difference in AUC was observed between the classifiers 

trained with original or updated handcrafted features (p=0.49). 

Our study has several limitations. First, the study sample is relatively small, which may 

lead to unstable estimation and suboptimal model performance. A repeated cross-validation 

method was utilized to reduce the bias, and LASSO regularization was implemented to reduce 

overfitting. In this work, we investigated DL-based features extracted via transfer learning. 

Another popular DL approach for response prediction is to train CNNs from scratch or using 

finetuning. However, overfitting may become a major issue in this method especially when 

patient size is small. Our results, in concordance with other studies127,136,137, showed that DL-

based features extracted via transfer learning achieved promising results in various prediction 

tasks in the medical field. Second, our dataset only contained 9 patients with  pCR. The pCR is 

defined as the absence of viable tumor cells in the primary and lymph nodes. The small number 

of pCR patients and unbalanced labels resulted in a large standard deviation on the AUCs using 

either handcrafted features or DL-based features for predicting pCR vs non-pCR. We chose to 

construct and evaluate the predictive model with the classification labels of GR and non-GR in 

this preliminary study. A larger dataset is desirable to provide a more reliable estimation for the 

AUC of pCR and non-pCR prediction. We expect to see better performance from the DL-based 

features than the handcrafted features in predicting pCR on a larger dataset. Lastly, the current 

study focused on the pre-treatment prediction of tumor response based on a single time point, 

due to the unavailability of during- and post-nCRT images for some patients. Given the primary 

focus of this work is mainly on comparing handcrafted features to DL-based features, we 

illustrated the earlier prediction for post-nCRT response, based on pre-treatment images, such 

early prediction will provide advantages for chemo-radiation treatment design and schedule. It 
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may be beneficial to assess the response by combining images at other time points, such as 

during- and post-nCRT images for higher prediction accuracy. We expect to see better 

performance from the DL-based features than the handcrafted features using other MR images 

acquired at different time points. 

5.5 Conclusion 

Our preliminary study showed that the DL-based radiomic features extracted via transfer 

learning from pretreatment DWIs achieved significantly better classification performance for 

predicting post-nCRT response in LARC patients, in comparison to the handcrafted radiomic 

features. Future work involves validation with a larger dataset and investigating the predictive 

power of the DL-based features extracted from multiparametric MR images (pre-, during-, and 

post-nCRT). 
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6 DL-BASED RADIOMIC 

FEATURES FOR IMPROVING 

GLIOBLASTOMA SURVIVAL 

PREDICTION IN AN AUTOMATIC 

WORKFLOW44 

6.1 Introduction  

Glioma is the most common type of primary brain tumor in adults. It arises from glial cells, 

normally astrocytes and oligodendrocytes. According to the World Health Organization 

guideline, glioma can be classified into grade I to IV based on the histological characteristics93. 

GBM is the most aggressive, grade IV, glioma. It accounts for 81% of malignant brain tumors138. 

Despite extensive efforts, GBM patient prognoses remain dismal. The median OS is only 15 

months after diagnosis. The 5-year survival rate is below 5%95. It is beneficial to build survival 

prediction models for assisting therapeutic decisions and disease management in GBM patients.  



 

76 

MRI is the preferred imaging modality for GBM diagnosis and monitoring. Radiomic 

features extracted from MR images using advanced mathematical algorithms may uncover tumor 

characteristics that fail to be appreciated by the naked eye. Many studies have investigated the 

association of MRI radiomic features with the survival outcomes of GBM patients127,139,140. 

However, radiomic features were extracted from the manually drawn tumor contours in these 

studies. Manual tumor segmentation is not only time consuming but also sensitive to intra-

observer and inter-observer variabilities. These segmentation variations could result in many 

inconsistent radiomic features134,135, which introduces more challenges in constructing robust 

prediction models.  

Developing an automatic GBM segmentation model could eliminate the manual contour 

variations and enable an automatic survival prediction workflow. CNNs have achieved state-of-

the-art performance in medical image segmentation. Particularly, U-Net71 and FCN141 have been 

widely adopted. Shboul et al. used an ensemble of the 2D U-Net and the 2D FCN for GBM 

segmentation followed by an XGBoost based regression model to achieve automatic GBM 

survival prediction142. However, this study only investigated the handcrafted radiomic features 

that were extracted using explicitly designed algorithms. These features are normally low-level 

image features that are limited to current human knowledge. Another type of radiomic feature 

can be extracted using a pre-trained CNN using a pre-trained CNN38,43,125. We refer to these 

features as DL-based features in this study. These high-level features may have higher prognostic 

power than the handcrafted features. 

 In this study, we proposed an automatic workflow for GBM survival prediction based 

on four pre-operative MR images. A novel 3D CNN, VGG-Seg, was proposed and trained for 

automatic GBM segmentation. The handcrafted and DL-based radiomic features were extracted 
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from the autosegmented contours generated by the VGG-Seg and used to construct two separate 

Cox regression models for survival prediction. The prognostic power of the constructed 

signatures was evaluated and compared for improving prediction performance. To our 

knowledge, this is the first paper that investigated the DL-based radiomic features for automatic 

GBM survival prediction. 

6.2 Materials and methods 

6.2.1 Dataset 

285 glioma patients were acquired from the BraTS 2018 challenge100–102. 210 patients had GBM, 

and the remaining 75 patients had low-grade (grade II-III) glioma (LGG). Each patient had four 

pre-operative MR images acquired. These included T1w, CE-T1w, T2w, and FLAIR MR 

images. Patient images were acquired with different clinical protocols and various scanners from 

multiple institutions. For each patient, MR images were co-registered, resampled to 1 mm3 

resolution using linear interpolation, and skull-stripped100,101. The final image dimension was 

240×240×155. All patients have three ground truth tumor subregion labels (edema, enhancing 

tumor, and necrotic and non-enhancing tumor core) approved by experienced neuro-radiologists. 

OS data was available for 163 GBM patients.  

 We applied the N4 bias correction algorithm on all images, except the FLAIR images, 

to remove low-frequency inhomogeneity62. Each MR image was normalized to have zero mean 

and unit standard deviation in the brain voxels. Figure 6-1 hows the transverse slice of four 

preprocessed MR images and the corresponding tumor labels.  
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Figure 6-1: Transverse slices of preprocessed T1w, CE-T1w, T2w, FLAIR images along with 

the corresponding ground truth labels for edema, enhancing tumor, and necrotic and non-

enhancing tumor core (NCR/NET) for a representative case. 

6.2.2 VGG-Seg for automatic GBM segmentation  

Figure 6-2 shows the architecture of the VGG-Seg proposed for automatic GBM segmentation. It 

contains 27 convolutional layers, forming an encoder and decoder architecture. The encoder 

network was constructed based on the VGG16 model65 that achieved accurate performance in 

object detection. Instance normalization layers66 and residual shortcuts70 are implemented to 

improve model performance. The VGG-Seg can be trained to perform an end-to-end mapping, 

converting the concatenation of four preprocessed images to four probability maps for three 

tumor subregion labels and background labels.  
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Figure 6-2: The overall VGG-Seg architecture. Each filled box represents a set of 4D feature 

maps, the numbers and dimensions of which are shown. The window size and the stride for 

convolutional, maxpooling, and deconvolutional layers are also presented. Conv, convolutional 

layer; IN, instance normalization layer; Maxpool, maxpooling layer; Deconv, deconvolutional 

layer. 

 In the model training stage, 122 patients without OS data were randomly split into a 

training set of 105 patients (75 LGG patients and 30 GBM patients) and a validation set of 17 

GBM patients. The Adam stochastic gradient descent method73 was used to minimize the multi-

Dice loss,  

loss =
1

4
∑(1 −

2 ∑ 𝑃𝑖𝑗 × 𝐿𝑖𝑗
𝑁
𝑗=1

∑ 𝑃𝑖𝑗 + ∑ 𝐿𝑖𝑗
𝑁
𝑗=1

𝑁
𝑗=1

)

4

𝑖=1

, 
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Equation 6-1 

where 𝑃𝑖𝑗 is the probability, after Softmax layers, of the voxel j being the label i; four labels are 

background label and three tumor subregion labels; Lij is the ground truth label, 0 or 1, of the 

voxel j being the label i; N is the voxel number. The validation set was used for tuning 

hyperparameters including the initial learning rate and the stopping epoch number and. A batch 

size of 1 was used for model training.  

The trained VGG-Seg was applied to the remaining 163 GBM patients (all of which have 

corresponding OS data) to generate their tumor subregion labels. The autosegmented tumor 

contour was acquired by merging the three predicted subregion labels. Model accuracy was 

evaluated using the Dice coefficient, 

𝐷𝑖𝑐𝑒 =
2(𝑉𝑔𝑟𝑜𝑢𝑛𝑑 ∩ 𝑉𝑎𝑢𝑡𝑜  )

𝑉𝑔𝑟𝑜𝑢𝑛𝑑 + 𝑉𝑎𝑢𝑡𝑜 
, 

Equation 6-2 

where 𝑉𝑔𝑟𝑜𝑢𝑛𝑑  and 𝑉𝑎𝑢𝑡𝑜 are the volumes of the ground truth tumor contour and autosegmented 

tumor contour, respectively. 

6.2.3 Radiomic feature extraction 

6.2.3.1 Handcrafted features 

1106 handcrafted features were extracted from four MR images using the PyRadiomics128 

package (version 2.1.2) for all 163 GBM patients. These features were extracted from the 

autosegmented tumor contour and contained 14 shape-based features, 72 first-order statistical 

features, 292 second-order statistical (textural) features, and 728 high-order statistical features. 

Shape-based features represented the shape characteristics of the tumor contour. First-order 
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statistical features represented the characteristics of the tumor intensity distribution. Textural 

features were extracted based on gray level co-occurrence, gray level size zone, gray level run 

length, gray level dependence, and neighborhood gray-tone difference matrices. They 

represented the characteristics of the spatial intensity distributions. High-order statistic features 

were extracted from the images filtered using Laplacian of Gaussian (LoG) filters.  

6.2.3.2 DL-based features 

1472 DL-based features were extracted using a pre-trained classification CNN, VGG19 model65, 

for all 163 GBM patients in the testing set. We used a pre-trained VGG19 that is available in the 

DL toolbox (Version 12.0) from MATLAB (Version 9.5, R2018b). It was trained on more than a 

million images from the ImageNet dataset143. Figure 6-3 shows the model architecture and 

feature extraction scheme. VGG19 contains 16 convolutional layers and 3 fully-connected 

layers. 5 max-pooling layers are used to achieve partial translational invariance, reduce model 

memory usage, and prevent overfitting. For each patient, we selected a square ROI from the 

transverse slice that had the largest tumor area. The size of the ROI was set as the maximum 

dimension of the tumor contour on the selected slice. We then resized the ROIs of FLAIR, T2w, 

and CE-T1w MR images to 224×224 using bilinear interpolation, mapped the pixel intensity to 

the range [0, 255], and concatenated them. The concatenation was input into the pre-trained 

VGG19 for feature extraction. As shown in Figure 6-3, DL-based features were extracted by 

average-pooling the 5 feature maps after max-pooling layers. Each feature map generated a 

vector after average-pooling. Five feature vectors were first normalized with their Euclidean 

norms and then concatenated to form a single feature vector. DL-based features were acquired by 

normalizing the single feature vector with its Euclidean norm. 
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Figure 6-3: DL-based feature extraction scheme using VGG19. The average-pooling layers were 

used for extracting DL-based features. Feature maps and feature vectors after every layer are 

shown as cuboids and rectangles, respectively. The feature map depth and feature number are 

shown. A concatenation of FLAIR, T2w, and CE-T1w ROIs was input into the pre-trained 

VGG19 for feature extraction. 1472 DL-based features were extracted from max-pooling feature 

maps by average-pooling along the spatial dimensions. Conv, convolutional layer. 

6.2.4 Survival prediction model 

The 163 GBM patients with available OS data were randomly split into a training set of 122 

patients and a testing set of 41 patients. Each feature was normalized using the mean and 

standard deviation of the training set. Since a large number of features may lead to overfitting, 

we pre-selected a subset of features having the highest univariate C-index. Higher C-index 

values indicate features with higher prognostic power. The Cox regression model with 

regularization was trained using the selected features to construct a radiomic signature for 

survival prediction in GBM patients. The radiomic signature is a linear combination of the 

features weighted by the Cox regression model coefficients. We tested three regularization 

techniques: Ridge, Elastic Net, and LASSO. The number of the pre-selected features, the 
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regularization technique, and the corresponding regularization parameters were chosen with 5-

fold cross-validation using the training set. Two Cox regression models were trained using either 

handcrafted features or DL-based features. The resulting radiomic signatures are referred to as 

the handcrafted signature and the DL-based signature, respectively.  

The prognostic power of the two constructed radiomic signatures was evaluated using the 

C-index. A paired t-test was conducted to test the significance of the differences in the C-index. 

A threshold on the radiomic signature can be set using the training set for patient stratification. 

We investigated two thresholds: one selected using the X-tile software144, and the other defined 

by the median signature value of the training patients. The X-tile software selected the optimal 

threshold by selecting the highest 𝑋2 value of the data divisions. The chosen thresholds were 

then used to stratify the testing patients into high-risk and low-risk groups. Log-rank tests were 

conducted to test the difference between the two risk groups for significance. 

6.3 Results 

6.3.1 OS statistics 

The median and mean (standard deviation) of OS were 367.0 days and 416.5 (329.2) days in the 

training set, and 362.0 days and 442.1 (408.6) days in the testing set, respectively. A Mann-

Whitney U test indicated that there was no significant difference in OS between two datasets (p-

value=0.83). 

6.3.2 Tumor segmentation 

The VGG-Seg was trained using an initial learning rate of 5x10-4 for 150 epochs. These 

hyperparameters resulted in the minimum validation loss. Figure 6-4 compares the ground truth 
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tumor contours and the autosegmented tumor contours generated by the trained VGG-Seg for 

three patients in the testing set. The autosegmented contours were smoother than the 

corresponding ground truth contours. Both contours had similar shapes based on visual 

inspection. 

The Dice coefficients of the whole tumor contours for the training, validation, and testing 

sets are summarized in Table 6-1. The autosegmented contours achieved the Dice coefficient of 

0.86±0.09 on the whole tumor contour for 163 GBM patients in the testing set.  

 

Figure 6-4: Ground truth contour (top) and autosegmented contour (bottom) for three GBM 

patients. 

Dice Training 

(75 LGG and 30 GBM) 

Validation 

(17 GBM) 

Testing 

(163 GBM) 

Whole tumor 0.92±0.03 0.90±0.07 0.86±0.09 

Table 6-1: Dice coefficients of the whole tumor contours for the training, validation, and testing 

sets. Results were averaged and showed in (mean ± SD) format. 

6.3.3 Survival prediction 

Table 6-2 shows the optimal pre-selected feature number, regularization technique, and 

regularization parameter that achieved the best cross-validation result for each feature set.  
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The handcrafted signature achieved a C-index of 0.64 (95% confidence intervals [CI]: 

0.55-0.73) on the testing set, while the DL-based signature achieved a C-index of 0.67 (95% CI: 

0.57-0.77). A paired t-test showed that there was no significant difference in the C-index (p-

value=0.27).  

 Number of pre-selected 

features 

Regularization 

technique 

Regularization 

parameter (λ) 

Handcrafted features 50 Ridge 3.439 

DL-based features 80 Ridge 1.813 

Table 6-2: Optimal regularization technique and hyperparameters that were selected by 5-fold 

cross-validation for each feature set. 

 We split the testing patients into high-risk and low-risk groups based on signature 

thresholds. Figure 6-5 shows the Kaplan-Meier survival curves of the two risk groups. There was 

no significant association between the risk groups, stratified by thresholding the handcrafted 

signature, and the patient OS. (X-tile: p-value=0.31, hazard ratio [HR]=1.44, 95% CI: 0.71-2.91; 

Median: p-value=0.20, HR=1.51, 95% CI: 0.80-2.87). On the other hand, thresholds on the DL-

based signature resulted in significant stratification of patients into two prognostically distinct 

groups (X-tile: p-value<0.01, HR=2.80, 95% CI: 1.26-6.24; Median: p-value=0.02, HR=2.16, 

95% CI: 1.12-4.17). 



 

86 

 

Figure 6-5: Kaplan-Meier survival curves of the testing patients. Patients were stratified into two 

risk groups based on thresholds of the handcrafted signature or the DL-based signature. The top 

row shows the stratification based on the threshold generated by X-tile software, and the bottom 

row shows the stratification based on the median signature value. p-values of the corresponding 

log-rank tests are shown. 

6.4 Discussion 

In this paper, we proposed an automatic workflow for GBM survival prediction based on four 

pre-operative MR images. The VGG-Seg was proposed and trained using 105 glioma patients for 

automatically generating GBM contours from four MR images. The trained VGG-Seg was 

applied to 163 GBM patients to generate their autosegmented tumor contours for survival 

analysis. We extracted handcrafted and DL-based radiomic features from the MR images using 
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the autosegmented contours for these patients. Two Cox regression models were trained using 

the extracted features to construct the handcrafted and DL-based signatures for survival 

prediction.  

The DL-based signature had a better association with GBM OS than the handcrafted 

signature in terms of higher C-index and significant patient stratification. The handcrafted 

signature achieved a C-index of 0.64, while the DL-based signature achieved a C-index of 0.67. 

The DL-based signature, unlike the handcrafted signature, resulted in prognostically distinct 

groups using either X-tile generated or median threshold. Shboul et al. did not report the C-index 

but the accuracy of 0.52 in classifying GBM patients into three survival outcome groups142. 

However, DL-based radiomic features were not investigated in this study. It is also difficult to 

know whether significant patient stratification was achieved for the testing GBM patients in this 

study since log-rank tests were not conducted. 

The VGG-Seg achieved accurate automatic GBM segmentation, with a mean Dice 

coefficient of 0.86 for the 163 GBM patients. A study showed that the mean Dice coefficient 

between the whole tumor contours drawn by two experts based on multi-modal MR images was 

0.86145. Recently, many studies have proposed novel 3D CNN architectures for improving 

glioma segmentation accuracy105,146. The goal of this study is not to benchmark the best 

segmentation model but to develop an automatic workflow that can achieve accurate GBM 

survival prediction. Other automatic segmentation methods can be integrated into the proposed 

workflow but were not explored within the scope of this study. Potential future work includes 

selecting the best segmentation model and investigating whether more accurate autosegmented 

contours may result in a better survival prediction model.  
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We included 75 LGG patients for training the VGG-Seg because we found that the VGG-

Seg trained with both 75 LGG patients and 30 GBM patients achieved better performance than 

the VGG-Seg trained with 30 GBM patients alone. This is expected as LGG and GBM have a 

similar appearance in MR images. The VGG-Seg could generate three tumor subregion labels. 

However, the accuracy of segmenting subregion labels using the VGG-Seg was low, with the 

mean Dice coefficients of the tumor subregions smaller than 0.75. Hence, we decided to use the 

whole tumor contours for feature extraction.   

 Our study has several limitations. First, the number of patients is limited so we only 

investigated the transfer learning method for survival prediction. A CNN trained from scratch for 

survival prediction could directly learn useful features from MR images. However, it could be 

easily overfitted and hence require more patient data to achieve robust performance. Other 

methods like training an autoencoder for feature extraction would also be valuable to explore. 

Second, the information provided by the MR images may be limited and not powerful enough for 

achieving more accurate models. Future work could be done to include genomic features and 

investigate whether the combination of genomic and radiomic features could improve prediction 

performance. 

6.5 Conclusion 

We proposed an automatic workflow for GBM survival prediction based on four pre-operative 

MR images. The proposed VGG-Seg generated accurate GBM contours. Our study showed that 

radiomic features, extracted from the autosegmented contours generated by the VGG-Seg, were 

associated with GBM OS. The DL-based radiomic signature resulted in a higher C-index than 

the handcrafted signature and helped achieve significant patient stratification. Our automatic 
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workflow based on DL-based radiomic features demonstrated the potential of improving patient 

stratification and survival prediction in GBM patients. 
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7 CONCLUSIONS 

7.1 Summary of work 

The studies presented in this dissertation provide solutions to address three major limitations in 

the current MRgRT workflow.  

 In Chapter 2, we investigated 2D and 3D CNNs to generate a male pelvic sCT using a 

T1-weighted MR image and compared their performance. A retrospective study was performed 

using CTs and T1-weighted MR images of 20 prostate cancer patients. Both models were trained 

and evaluated using a 5-fold cross-validation protocol. The average MAEs within the body 

contour were 40.5±5.4 HU (mean ± SD) and 37.6±5.1 HU for the 2D and 3D CNNs, 

respectively. For both CNNs, mean translation vector distances are less than 0.6 mm with mean 

absolute differences of Euler angles less than 0.5°. Our results showed that both models 

generated accurate pelvic sCTs for 20 patients. Statistical tests indicated that the proposed 3D 

CNN was able to generate sCTs with smaller MAE and higher bone region precision compared 

with the 2D CNN. Results of patient alignment tests suggested sCTs generated by the proposed 

CNNs can provide accurate patient positioning. 
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 In Chapter 3, we investigated whether cGAN and cycleGAN can generate accurate 

abdominal sCT images from 0.35T MR images for MR-only liver radiation therapy. A 

retrospective study was performed using CT images and 0.35T MR images of 12 patients with 

liver (n=8) and non-liver abdominal (n=4) cancer. Both models were trained and evaluated using 

a 4-fold cross-validation protocol. sCTcycleGAN achieved the average MAE of 94.1 HU, while 

sCTcGAN achieved 89.8 HU. In both GANs, the average gamma passing rates within all volumes 

of interest were higher than 95% using a 2%, 2 mm criterion, and 99% using a 3%, 3 mm 

criterion. The average differences in the mean dose and DVH metrics were within ±0.6% for the 

planning target volume and within ±0.15% for evaluated organs in both models. Our results 

demonstrated that abdominal sCT images generated by both models achieved accurate dose 

calculation for 8 liver radiation therapy plans. 

 Chapter 4 describes a novel 3D multi-path DenseNet for generating the accurate GBM 

tumor from four pre-operative multi-modal MR images. The corresponding 3D single-path 

DenseNet was also built for comparison.  258 GBM patients were included in this study. The 

patient cohort was randomly split into a training set of 180 patients, a validation set of 39 

patients, and a testing set of 39 patients. Both DenseNets generated GBM contours in good 

agreement with the manually segmented contours from multi-modal MR images. The single-path 

DenseNet achieved the DSC of 0.911±0.060, ASD of 1.3±0.7 mm, and HD95% of 5.2±7.1 mm, 

while the multi-path DenseNet achieved the DSC of 0.922±0.041, ASD of 1.1±0.5 mm, and 

HD95% of 3.9±3.3 mm. The p-values of all Wilcoxon signed-rank tests were less than 0.05. The 

multi-path DenseNet achieved more accurate tumor segmentation than the single-path DenseNet.  

 In Chapter 5, we compared the handcrafted and DL-based radiomic features extracted 

from pre-treatment DWIs for predicting nCRT response in patients with LARC. 43 patients 
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receiving nCRT were included. The patient-cohort was split into the GR group (n=22) and nGR 

group (n=21) based on the post-nCRT response assessed by postoperative pathology. LASSO-

logistic regression models were constructed using extracted features for predicting treatment 

response. The model performance was evaluated with repeated 20 times stratified 4-fold cross-

validation. The model built with handcrafted features achieved the mean AUC of 0.64, while the 

one built with DL-based features yielded the mean AUC of 0.73. The corrected paired t-test on 

AUC showed P-value < 0.05. Our results showed that DL-based features achieved significantly 

better classification performance compared with handcrafted features for predicting nCRT 

response in patients with LARC.  

 Chapter 6 presents an automatic workflow for GBM survival prediction based on four 

pre-operative multi-modal MR images. 285 glioma (210 GBM and 75 low-grade glioma) 

patients were included. 163 of the GBM patients had OS data. A 3D CNN, VGG-Seg, was 

trained and validated using 122 glioma patients for automatic GBM segmentation. The trained 

VGG-Seg was applied to the remaining 163 GBM patients to generate their autosegmented 

tumor contours. The handcrafted and DL-based radiomic features were extracted from the 

autosegmented contours for these 163 patients who were randomly split into training (n=122) 

and testing (n=41) sets for survival analysis. Cox regression models were trained to construct the 

handcrafted and DL-based signatures. The handcrafted signature achieved a C-index of 0.64 

(95% CI: 0.55-0.73), while the DL-based signature achieved a C-index of 0.67 (95% CI: 0.57-

0.77). Unlike the handcrafted signature, the DL-based signature successfully stratified testing 

patients into two prognostically distinct groups. Our results showed that the DL-based signature 

resulted in better GBM survival prediction, in terms of higher C-index and significant patient 

stratification, than the handcrafted signature.  
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7.2 Future directions 

The future work of each study was presented in the corresponding Discussion section. Besides 

those, there are a few other directions that are worthy of investigation.  

First, we only trained 3D DenseNets for tumor segmentation in Chapter 4. However, 

OAR segmentation is more time-consuming than target segmentation in an online adaptive 

workflow. It would be meaningful to investigate the performance of DenseNets for OAR 

segmentation.  

Second, the automatic radiomic workflow presented in Chapter 6 used the VGG-Seg that 

has worse GBM segmentation performance compared with the multi-path 3D DenseNet 

described in Chapter 4. The future work could be integrating the 3D DenseNet into the automatic 

radiomic workflow and re-evaluate its performance of GBM survival prediction.  

Third, we had to study different cancer types in this dissertation due to the limited data 

availability. In future work, we could adapt the proposed methodologies for one cancer type, for 

example, hepatocellular carcinoma (HCC).  

More than 800,000 new cases of liver cancer are diagnosed each year worldwide147,148. 

HCC is the most common type of primary liver cancer, accounting for about 75% of all liver 

cancers worldwide. As one of the leading causes of cancer-related mortality, HCC poses a 

significant economic burden on healthcare. The principal treatment for HCC is surgical resection 

or liver transplantation. However, more than 80% of patients are not eligible for surgical 

interventions149. For these patients, recommended curative treatments include percutaneous 

ethanol injection and radiofrequency ablation. SBRT allows the delivery of high doses in few 

fractions to the tumor. It has become an emerging treatment for inoperable HCC, particularly for 
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tumor down-staging before surgical procedures150,151. A study showed that MR-guided SBRT is 

a feasible and safe treatment option for HCC treatment.  

We showed that GANs could generate accurate sCT images for MR-only liver SBRT in 

Chapter 3. However, more HCC patients should be enrolled to evaluate the feasibility of using 

GANs for MR-only SBRT in HCC. Most CNN-based segmentation models mainly focus on 

stable organs such as the brain and liver. Very few have been studied for liver tumor 

segmentation based on MR images. DenseNets proposed in Chapter 4 could be adapted for this 

in the future. A few studies suggested that standard image-based response assessment criteria, 

such as modified response evaluation criteria in solid tumors (mRECIST) and European 

association for the study of liver diseases (EASL), could lead to inaccurate evaluations of SBRT 

response in HCC152,153 . Up to now, no study has been conducted to build an early treatment 

response prediction model for HCC treated with MR-guided SBRT. The radiomic workflow 

proposed in Chapter 6 could be adapted for this in the future. 
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