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ABSTRACT OF THE DISSERTATION 

 

Buckling of Columns and Films: from Fundamental Mechanics to Functional Materials 

 

by 

 

Yuzhen Chen 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2021 

Professor Lihua Jin, Chair 

 

Buckling instabilities are traditionally regarded as failure modes. However, they can also 

be exploited to design functional materials. This dissertation focuses on investigating the buckling 

of columns and films, and on harnessing these buckling instabilities to design pneumatically 

actuated pattern-transforming metamaterials, design reusable energy-absorbing architected 

materials, and achieve complex 3D morphing of LCE thin films. Four major contributions are 

made: 

 First, we propose a pneumatically actuated pattern-transforming metamaterials and reveal 

the mechanism of the pattern transformation. Metamaterials are carefully structured materials that 

exhibit unusual properties relying primarily on their geometries rather than their constitutive 
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materials. The proposed metamaterial is composed of an elastomer with periodic circular holes 

sealed by elastomeric membranes. Subjected to negative pressures, it can undergo pattern 

transformation, yielding large transformation strains. Such pattern transformation is triggered by 

a buckling instability and can be broadly tuned by the geometry of the metamaterial. Here we 

numerically, analytically and experimentally investigate the effects of geometry on the pattern 

transformation. Our finite element simulations indicate that the thickness of the slenderest wall 

and the pattern of the holes play key roles in determining the critical load for the pattern 

transformation, the transformation strain, and the transformation type. To quantify the effects of 

these geometric parameters, we further analytically model the pattern transformation of the 

metamaterial by simplifying it to a network of rigid rectangles linked by deformable beams. Finally, 

we experimentally characterize the pattern transformation of the metamaterials with different 

geometric parameters. The experimental, numerical, and analytical results are in good agreement. 

Our work provides design guidelines for this metamaterial. 

 Secondly, we numerically show that a straight hyperelastic column under axial 

compression exhibits complex buckling behavior. As its width-to-length ratio increases, the 

column can undergo transitions from continuous buckling, like the Euler buckling, to snapping-

through buckling, and eventually to snapping-back buckling. In particular, we numerically and 

experimentally identify a new snapping-back mode of column buckling. We develop an analytical 

discrete model to reveal that snapping-back buckling results from strong coupling between 

stretching and bending. Besides, we analytically determine the critical width-to-length ratios for 

the transitions of buckling modes using a general continuum mechanics-based asymptotic post-

buckling analysis in the framework of finite elasticity. A phase diagram is constructed to demarcate 

the different buckling modes of axially compressed columns. 
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 Thirdly, by harnessing the newly discovered snapping-back buckling, we design a new 

class of reusable energy-absorbing architected material. Subjected to an axial compression, a wide 

hyperelastic column can discontinuously buckle, snapping from one stable equilibrium state to 

another, leading to energy dissipation, while upon unloading, it can completely recover its 

undeformed state. Making use of this property, we design an energy-absorbing architected material 

by stacking layers of wide hyperelastic columns, and fabricating it by multi-material 3D printing 

and sacrificial molding. Characterized by quasi-static and drop tests, the material shows the 

capability of energy dissipation and impact force mitigation in a reusable, self-recoverable, and 

rate-independent manner. A theory is established to predict the energy-absorbing performance of 

the material and the influence of the column geometry and layer number. Wide tunability of the 

peak force, energy dissipation and stability of the material is further demonstrated. Our work 

provides new design strategies for developing reusable energy-absorbing materials and opens new 

opportunities for improving their energy dissipation capacities. 

 Finally, we achieve well-defined 3D shapes by buckling flat liquid crystal elastomer (LCE) 

thin sheets subjected to in-plane nonuniform stresses. Shape morphing of flat thin sheets to well-

defined 3D shapes is an effective method of fabricating complex 3D structures, and LCEs are an 

attractive platform for shape morphing due to their ability to rapidly undergo large deformations. 

Here we model the buckling-induced 3D shape formation from a thin LCE sheet with prescribed 

in-plane stretch profiles. The sheet is modeled as a non-Euclidean plate, in which the prescribed 

metric tensor cannot be realized in a flat configuration and thus no stress-free configuration exists 

even in the absence of external loads or constraints. Under the thin plate limit, when the stretching 

energy dominates, we solve both the forward and inverse problems, i.e. determine the 3D shapes 

under prescribed stretch profiles, and determine the stretch profiles for desired 3D shapes, 
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respectively. In the condition of a finite thickness of the sheet, the resulting 3D shapes are 

determined by the interplay between both the stretching and the bending energies. For a sheet with 

a small but finite thickness, we predict the 3D shapes for prescribed stretch profiles, and identify 

the critical thicknesses at which the transition from the flat to buckled configurations occurs. The 

theoretical predicted 3D shapes agree closely with the ones from both finite element simulations 

and experiments. Our analysis sheds light on the design of the shape morphing of LCE sheets, and 

provide quantitative predictions on the 3D shapes of programmed LCE sheets upon stimuli for 

various applications. 
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Chapter 1 Background 

Buckling instability is traditionally regarded as failure mode. However, they can also be 

harnessed to design functional materials. Researchers have incorporated buckling instabilities into 

soft materials capable of large deformations to achieve advanced functionalities. By harnessing 

the sudden and repeatable deformations triggered by buckling instabilities, fast locomotion in soft 

robotics, tunability in mechanical metamaterials, and complex shape morphing have been achieved. 

Herein, we first introduce the buckling instabilities of flexible structures such as columns and thin 

films, which play a key role in functional materials. Then we review the different applications 

exploiting buckling instabilities in soft robotics, mechanical metamaterials, and shape morphing.  

1.1 Buckling Instability 

Buckling instability is the sudden change in deformations of a structure under loads. It is 

regarded as failure modes for many engineering structures made of rigid materials, since the 

buckling-induced large strains usually exceed the yielding limit of the constitutive materials, 

leading to plastic deformations or even fractures. However, soft elastomeric materials can undergo 

large deformations, which enables the buckling instability to be exploited for new functionalities. 

In general, the buckling instability is governed primarily by the structural geometry rather than the 

material properties. Based on the force-displacement relations, the buckling instability can be of 

three types: continuous (Figure 1.1a), snapping-through (Figure 1.1b), and snapping-back (Figure 

1.1c) buckling.  

Figure 1.1a shows the schematic of the force-displacement relation for continuous buckling, 

in which the force increases with the displacement after the buckling occurs at a rate much lower 

than that prior to the buckling. Thus, it allows for large deformations with a slight increase in 
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external loads. However, the structures exhibiting the continuous buckling have no snap motion 

when loaded under either force or displacement controls, since the stable equilibrium paths are 

continuous. This buckling type can be seen in axially-loaded slender elastic beams with various 

end constraints [1]. 

 

Figure 1.1 Buckling instabilities of different types : (a) continuous buckling, (b) snapping-through 

buckling, and (c) snapping-back buckling. Unlike the continuous buckling exhibiting a 

monotonic force-displacement relation, the snapping-through buckling has a force-displacement 

curve featuring a negative stiffness regime lying between two positive stiffness regimes, as shown 

in Figure 1.1b. When loaded in a force-controlled manner, the structures exhibiting snapping-

through buckling will snap rapidly between two stable equilibrium states after the buckling point, 

leading to a sudden change in deformations while keeping its prescribed force constant. This snap 

motion enables very high actuation speeds, and the hysteresis area in a complete loading cycle 

enables energy dissipations. Many structures can exhibit this snapping-through buckling, such as 

tilted or curved beams [2–5], shallow shells [6–8], and von Mises trusses [1]. The judicious design 

of these structures can lead to bistable systems. 
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 The third type of buckling instability is snapping-back buckling, which exhibits more 

complex force-displacement relation than the first two types. Figure 1.1c shows a schematic of the 

force-displacement curve for snapping-back buckling, in which both force and displacement 

decrease after the buckling point, forming a post-buckling regime with a positive stiffness. This 

type of buckling instability can result in snap motion when loaded under either force or 

displacement control, which enables fast actuation and energy dissipation under more types of 

loading conditions compared to snapping-through buckling. This snapping-back buckling is 

commonly observed in perfect cylindrical shells [9] and shallow arches [10]. 

1.2 Buckling of Thin Films Induced by Residual Stresses 

 The buckling instability is usually induced by external forces or confinements. However, 

natural bodies often undergo buckling instability without any external forces or confinements, 

leading to a wide range of 3D shapes, such as Acetabularia acetabulum [11], blooming lily [12], 

chiral seed pods [13,14], and aquatic plant leaves [15] (Figure 1.2). This buckling instability is 

induced by residual stress, which is caused by in-plane differential growth due to nonuniform cell 

elongation and proliferation. Inspired by nature, researchers have developed many synthetic 

materials [16–21] which can generate controllable distribution of residual stresses upon activation 

and buckle into well-designed 3D shapes (Figure 1.3).  
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Figure 1.2 Buckling-driven morphogenesis of natural bodies. (a) Acetabularia acetabulum [11], (b) 

blooming lily [12], (c) chiral seed pods [13,14], (d) aquatic plant leaves [15]. 

 

Figure 1.3 Buckling of synthetic materials induced by residual stresses. (a) A gel disk with in-

plane radial gradient in swelling ratios buckles into a dome-like shape [16]. (b) A gel disk with 

complex patterns of in-plane swelling ratios buckles into a spherical shape [17]. (c) A bistrip 

composed of two strips with different swelling ratios adopts a rolling shape [18]. (d) A sheet 

composed of different responsive materials can buckle into different 3D shapes in response to 

applied stimuli [19]. 

 The residual stress-induced buckling shapes can be captured by non-Euclidean plate theory 

[22–25], which addresses the modeling of elastic plates with residual stresses. Since no stress-free 

configuration can be used as a reference configuration, the strains are defined by metric tensors 

rather than by configurations. The metric tensor 𝑔𝑔 of a sheet quantifies the local distances between 
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the adjacent points on the surface of the sheet. By prescribing the in-plane stretch profiles, a 

reference metric tensor 𝑔̅𝑔  can be programmed, which may not be immersible into a flat 

configuration. The actual metric tensor 𝑔𝑔 of the sheet deviates from the prescribed reference metric 

𝑔̅𝑔, generating residual stresses that buckle the sheet. The deviation of the actual metric from the 

reference metric costs stretching energy, and the nonzero curvature metric costs bending energy. 

The total elastic energy [22–25] is the combination of the stretching and the bending energies 

 𝑤𝑤 = 1
8
𝐸𝐸ℎ(𝑔𝑔 − 𝑔̅𝑔)2 + 1

2
𝐸𝐸ℎ3𝜅𝜅2, (1.1) 

where 𝐸𝐸  represents the Young’s modulus, ℎ  denotes the thickness of the sheet, and 𝜅𝜅  is the 

curvature tensor. The buckled shapes triggered by residual stresses can be determined by 

minimizing the total elastic energy. 

1.3 Mechanical Metamaterials 

Metamaterials are man-made materials with a tailored, architected structure, designed to 

achieve properties that cannot be realized in conventional materials. They derive their properties 

not from their constitutive materials, but from their carefully designed structures. They are usually 

arranged in repeating pattern and are fabricated at scales that are smaller than the wavelength of 

the phenomena they influence. Some novel but unusual photonic [26] and acoustic [27] properties 

have been achieved, and possible applications such as phononic transistor-like device [27] have 

been demonstrated. 

As a more recent branch of metamaterials, mechanical metamaterials exhibit some unique 

mechanical properties. An early example [28] of mechanical metamaterials is auxetic materials 

that feature negative Poisson's ratio. Figure 1.4 shows the auxetic behaviors of a rubber sheet 

patterned with a square array of circular holes under uniaxial loads. Although individual rubber 
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filaments become thicker when subjected to compression, the overall structure does not expand 

laterally, achieving negative Poisson’s ratio. This example illustrates how the behavior of 

mechanical metamaterials is controlled by their structure rather than their composition. More 

recently, the developments in the field of mechanical metamaterials involves elastic instabilities 

and large deformations to create soft mechanical metamaterials, which have achieved more 

complex functionalities such as pattern and shape transformation [2,29–41], programmable 

mechanical responses [2,5,42,43] and reproduction of phenomena seen in crystallographic systems 

[41,44]. 

 

Figure 1.4 Auxetic metamaterials. (a) Sample in the initial unstrained configuration. (b) Sample 

under uniaxial compression of ε = -0.25. (c) Poisson’s ratio as a function of the applied axial 

nominal strain [28]. 

1.3.1 Pattern and shape transformation 

Some soft mechanical metamaterials can undergo sudden but well-controlled pattern 

switch shape shifting ranging from 2D [2,30–38,40,41,45] to 3D [29,39,46]. Their functionality 

depends on their special structures consisting of stiffer elements linked by slender and flexible 
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elements as hinges. Under precisely designable loading conditions, the slender elements can 

undergo buckling instabilities, which trigger reversible pattern transformations. The simplest 

example of such metamaterials [31,33–36,40,41,45] is a square array of circular holes patterned in 

an elastomeric sheet [28,35]. When the structure is subjected to uniaxial compression, buckling of 

the beam-like ligaments creates large deformations and triggers a sudden pattern transformation. 

As shown in Figure 1.5, the circular holes pattern is replaced by a strikingly different pattern of 

alternating mutually orthogonal ellipses. Moreover, it has been proved that both the symmetry of 

the lattices [34] and the shape of the voids [31] play important roles in determining pattern 

transformations (Figure 1.6 and Figure 1.7). 

 

Figure 1.5 A mechanical metamaterials patterned with circular holes undergoes a reversible pattern 

transformation triggered by buckling instabilities [28,35]. 

 

Experiments 

Simulations 

(a) (b) (c) 
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Figure 1.6 Experimental (top) and numerical (bottom) deformed images for (a) square lattices of 

circular voids, (b) rectangular lattices of elliptical voids, and (c) oblique lattices of circular voids 

[34]. 

 

Figure 1.7 Experimental images of three periodic structures with different pore shapes under 

uniaxial compression [31]. 

The development of fabrication techniques broadens the structural complexity of soft 

mechanical metamaterials. Additive manufacturing makes it possible to fabricate various unit cells 

and mix them to achieve aperiodic structures, which exhibit inhomogeneous pattern 

transformations. One example [40] of such hybrid structure is porous elastomeric surfaces whose 

perforations feature varying shape and spacing (Figure 1.8). Another example [39] is so called 

Voxelated mechanical metamaterials (Figure 1.19), where the cubicle unit cell can deform into 

two different shapes that fit together in several ways. The sample shown in Figure 1.9 is composed 

of 10x10x10 unit cells, arranged differently in such a way that a smiley patterned texture appears 

on one of the faces under uniaxial compression. 

(a) (b) (c) 

ε22 = 0 

ε22 = -0.125 
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All these examples mentioned above illustrate that the architecture of the mechanical 

metamaterials is crucial for their properties and functionalities, and that pattern switch can be 

“programmed” into their structural design. Furthermore, the structures recover their initial shape 

when unloaded. 

 

Figure 1.8 Inhomogeneous pattern transformation exhibited by the hybrid structures. From top to 

bottom, both the shape and spacing of the perforations are proportionally varied [40]. 

 

Figure 1.9 A metacube consisting of 10x10x10 unit cells reveals smiley texture under uniaxial 

compression [39]. 
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1.3.2 Programmable mechanical responses 

The mechanical responses under uniaxial load can also be programmed by structural design. 

One example [42,43] exhibiting such programmable mechanical responses is a quasi-2D elastic 

sheet patterned by a regular array of large and small holes, as shown in Figure 1.10. The inequality 

in hole sizes creates two different polarizations of the hole pattern, determined by whether x 

compression or y compression is dominant. By constraining this metamaterial in the x direction, 

and then compressing it in the y direction, the material undergoes a polarization switch from an x-

polarized to a y polarized state, as illustrated in Figure 1.10(a). Depending on the magnitude of the 

x confinement, this polarization switch can be either smooth or discontinuous, and the force-

displacement curves can be tuned from monotonic to nonmonotonic and eventually display 

hysteresis, as shown in Figure 1.10(b). 

 

Figure 1.10 Mechanical metamaterials exhibiting tunable mechanical response under uniaxial 

compression [42,43]. (a) The structure characterized by alternating large and small holes, and 

polarizations switch caused by the competition between x confinement and y compression. (b) The 

vertical force F as a function of the vertical compression. 

(a) (b) 

x 

y 

x-polarized y-polarized 
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Another example [5] is a snapping metamaterial composed of a periodic arrangement of 

snapping units, as shown in Figure 1.11(b). Their design is inspired by a bistable mechanism, 

where two curved beams are centrally clamped, as illustrated in Figure 1.11(a). A normal force 

applied in the middle of the double-beam mechanism can prompt it to snap through to its second 

stable state (shown as dashed line in Figure 1.11(a)). When compressed along its axis of symmetry, 

each row of the entire structure snaps through, and exhibits a pattern switch from a wavy-shaped 

structure to a diamond-like configuration. Depending on the geometries of the curved segments, 

this transition can be either smooth or discontinuous, and the mechanical responses can be tuned 

to be monotonic, S-shaped, plateau, and non-monotonic. As illustrated in Figure 1.11(c)~(e), for 

small a/l, the response is smooth without snap-through instabilities, whereas for larger values of 

a/l, the metamaterial snaps sequentially and exhibits a long-serrated plateau. 

 

Figure 1.11 Snapping metamaterials under tension. (a) Bistable mechanism of double curved 

beams under a vertical force applied in the middle. (b) The geometries of the unit cell composed 

(a) 

(b) 

(c) (d) 

(e) (f) 
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of load bearing and snapping segments. (c)~(e) Nominal stress-strain responses from experiments 

and FEA simulations for different geometries: (c) a/l = 0.2, (d) a/l = 0.3, and (e) a/l = 0.4. (f) 

Mechanical response of a single unit cell for selected a/l ratios [5]. 

In both examples mentioned above, the mechanical behavior in response to uniaxial load 

can be precisely programmed by structural designs. By varying boundary conditions or geometries 

or both, the mechanical metamaterials exhibit monotonic, nonmonotonic, and hysteretic behaviors, 

which underlie their programmability. 

1.3.3 Reproduction of phenomena seen in crystallographic systems 

Some mechanical metamaterials [41,44] can macroscopically reproduce the phenomena 

that occur in crystallographic systems. One example [41] is phase-transforming and switchable 

metamaterials that can generate a shape-memory effect [47] similar to that exhibited by ferroelastic 

materials (Figure 1.12). The mechanism of shape-memory effects in ferroelastic materials is 

illustrated in Figure 1.12(a). When cooled below a certain temperature, the microscopic structures 

of ferroelastic materials are transformed from cubes into tetragonal unit cells whose long axis 

points at different directions. Here, different orientations refer to different “variants”. The switch 

between variants can be triggered by macroscopic external stresses. As a result, the bulk material 

is molded into different macroscopic shapes depending on its history of loading. When heated 

above a certain temperature, the microscopic structures recover cubes, and the material returns to 

its original shape. Similarly, the phase-transforming and switchable metamaterials shown in Figure 

1.12(b) can change its unit cell shape from square to rectangle by controlling the external pressures, 

reminiscent of microscopic structure transition under temperature changes in ferroelastic materials. 

Moreover, the switch between variants can also be achieved through a uniaxial compression (from 
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tall rectangle to wide rectangle, Figure 1.12(c)), like the variant switch in ferroelastic materials by 

external load. Finally, the shape-memory effect can be observed when the shapes of the unit cells 

recover square under initial external pressures. 

 

Figure 1.12 Phase-transforming and switchable metamaterials analogue to ferroelastic materials. 

(a) The mechanism of shape-memory effects in ferroelastic materials. (b) Schematic of the phase 

transition, variant switching and shape-memory effects in metamaterials. (c) By applying a 

compressive load in the long axis, the rectangular sample switches from a tall rectangle to a wide 

rectangle [41]. 

Another example is given by flexible origami metamaterials [44] (Figure 1.13). Each unit 

cell of the metamaterials is mechanically bistable. By switching between states, that is by “popping 

through” some of the folds, the metamaterials exhibit crystallographic structures, such as vacancies 

(Figure 1.13(a)), dislocations (Figure 1.13(b)), and grain boundaries (Figure 1.13(c)). 

(b) 

(a) (c) 
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Figure 1.13 Flexible origami metamaterials exhibiting crystallographic structures. (a) 3D 

reconstruction with a centrally located pop-through defect. The red region can be recognized as a 

lattice vacancy. (b)~(c) Photographs with complex defect structures: (b) Column of lattice 

vacancies generate an edge dislocation; (c) Column of edge dislocations generate a grain boundary 

[44]. 

Given the scale-free geometric character in the two examples above, the ideas for 

metamaterial design can be directly transferred to milli-, micro-, and nanometer-size systems. This 

is of significance for two reasons. First, it provides an efficient way of preparing microstructured 

materials with targeted mechanical and optical properties. Secondly, it offers a new approach to 

study at a macroscopic scale the microscopic interactions in crystallographic systems.  

1.4 Buckling-induced Functionalities 

In this section, we will provide several representative examples of exploiting buckling 

instabilities in soft robotics, mechanical metamaterials, and shape morphing, illustrating how 

buckling instabilities can be harnessed to design functional materials. 

(a) (b) (c) 
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1.4.1 Enhancing actuations in soft robotics 

Compared to conventional rigid robots, soft robots have significant advantages on 

adaptability to uncertain environment, and safety to humans and fragile objects. However, soft 

materials of which soft robots are made lead to low actuation speed and small actuation forces, 

limiting the power that soft robots can output. To overcome these power limitations, people have 

developed many strategies by harnessing the snapping-through buckling, since this type of 

buckling can enable rapid and large movements with low energy inputs, which can effectively 

amplify the actuation forces in soft robotics.  

Here we show three examples in which the snapping-through buckling are exploited to 

design soft actuators with fast actuations. Inspired from Venus flytrap, a soft gripper [48] (Figure 

1.14a) is developed that can achieve very fast gripping speed. This gripper consists of a 

pneumatically actuated bistable trigger sandwiched by two bistable curved layers. Upon pneumatic 

actuations, each bistable curved layer can suddenly transition between its convex and concave 

states, leading to fast open or close of the gripper. Another example is a swimming soft robot [49]  

(Figure 1.14b) in which its proportion force comes from the snap motion of a bistable beam. This 

snap motion is triggered by the shape-memory polymer attached to the bistable beam in response 

to surrounding temperature changes. Depending on the number of bistable beams and how they 

are interconnected, the swimming soft robot can achieve different sequential motions. Using 

similar mechanisms, a crawling soft robot with bistable actuators can achieve relatively high 

speeds with low actuation frequencies [50] (Figure 1.14c). All the three examples above 

demonstrate how snapping-through instability provides soft robots with rapid and tunable motions. 
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Figure 1.14 Fast motions leveraging snapping-through instability. (a) Venus flytrap-inspired soft 

gripper that can close in around 50ms [48]. (b) Swimming soft robot driven by bistable elements 

[49]. (c) Cheetah-like galloping crawler with bistable actuators that can achieve relatively high 

speeds with low actuation frequencies [50]. 

1.4.2 Reusable energy-absorbing architected materials 

Energy-absorbing materials are ubiquitously used to protect humans and objects from 

impacts or collisions, examples including football helmets, car bumpers, and packaging of delicate 

goods. The essence of an energy-absorbing material is the capability of absorbing mechanical 

shock energy while keeping the peak force below the safety threshold. Besides, energy dissipation 

is required to mitigate rebounds [51]. Among various energy dissipation mechanisms, plastic 

deformation or fracture of metals, ceramics and composites [52,53] is often utilized to dissipate a 

large amount of energy by means of dislocation motion or bond breakage. However, these energy-

absorbing materials are typically only good for one-time usage, since they undergo irreversible 

deformation or are permanently damaged during an impact. Materials with the energy dissipation 

mechanisms of viscous flow [54] and viscoelasticity [55–57] can be used repeatedly, but they are 
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highly rate-dependent with slow recovery to the undeformed states upon unloading. Friction [58–

60] between particles in granular materials also permits reusability, but the collapsed materials are 

usually not self-recoverable. 

 

Figure 1.15 Reusable energy-absorbing architected materials harnessing snapping-through 

buckling. (a) Multistable architected materials for energy trapping [4]. (a1) A bistable tilted beam 

can trap part of input energy into the material. (a2) Samples with different scales before and after 

the impact. (a3) Mechanical response of the samples under different loading rates. (b) Light-weight 

microlattices shock absorbers [3]. (b1) Schematic force-displacement curve for a single (n = 1) 

monostable snapping-through element and for multiple (n = 2 and 12) elements connecting in 

series. The gray area is the energy dissipated in one loading and unloading cycle. (b2) Schematic 
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of a single element exhibiting monostable snapping-through buckling and the electron image of a 

sample. (b3) Force-displacement curves for different loading rates. 

To achieve a reusable, rate-independent and self-recoverable energy-absorbing material, a 

novel design strategy of harnessing the snapping-through instability of tilted or curved beams in 

architected materials has been proposed [2–5,38,61–73] (Figure 1.15). These beams are stacked 

into a multi-layered structure, and buckle sequentially one layer after another under compression, 

resulting in a nearly constant force as the displacement proceeds. The impact energy can be either 

trapped in the material due to bistability (Figure 1.15a), or damped into heat due to snapping 

motions (Figure 1.15b). Since the material only deforms elastically, it is reusable and rate-

independent. However, when the constituent beams are bistable [2,4,38,61–63,66,68,69] (Figure 

1.15a), the architected material stays in the deformed configuration after compression, without 

self-recovering its undeformed state. On the other hand, when the constituent beams are 

monostable, although the formed energy-absorbing architected material is self-recoverable upon 

unloading, a large number of layers connecting in series are required to achieve energy dissipation 

[3,64,74] (Figure 1.15b), making the structure thick and heavy.  

1.4.3 Shape morphing in Liquid Crystal Elastomers (LCEs) 

Liquid Crystal Elastomer (LCE) [75] is combination between liquid crystals (mesogens) 

and lightly crosslinked polymer networks. Upon external activations such as heat [76] and light 

[77,78], these mesogens can undergo phase transitions between the nematic (aligned in the same 

direction which is the director direction) and isotropic (oriented randomly) phases, leading to fast, 

large, anisotropic and reversible deformations (Figure 1.16). Due to these special properties, LCE 

has been widely and deeply studied and shown great potentials in the applications of artificial 
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muscles [79,80] and soft robotics [81]. It is also an attractive platform for shape morphing [82–

90].  

 

Figure 1.16 Spontaneous deformation of liquid crystal elastomers due to phase transition [75]. 

Polymers with mesogens on the main chains undergo spontaneous deformation in response to 

temperature changes as mesogens transition between the isotropic (I) and nematic (N) states. 

 To achieve desired target shapes, one needs to prescribe ununiform stretches within the 

LCE sheets. Recent work focuses on programming the director orientation to achieve the variations 

in stretches. Figure 1.17 illustrate an optical patterning system in which the polarization of laser is 

used to manipulate the alignment of mesogens on a local surface as small as 0.01 mm2 [91]. 

Arbitrary and spatially complex patterns can be programmed using this method, leading to many 

complex 3D shapes upon activations. The director orientation can also be controlled by 

microchannels fabricated by photolithography [88,89] (Figure 1.18). Using this patterning method, 

a more complex 3D shapes such as a face are generated from flat LCE sheets. With recent 

development of additive manufacturing, the director orientation can be programmed through direct 

ink writing 3D printing techniques (Figure 1.19). As the ink is extruded from the nozzle, the 

mesogens are aligned along the printing paths due to the shear forces. By carefully patterning the 

printing pathway, complex 3D shapes can be easily achieved (Figure 1.19b-c). 
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Figure 1.17 Patterns of director orientation controlled by an optical patterning system [91]. (a) 

Schematic of the optical patterning system. The local surface alignment of mesogens is controlled 

by the light polarization. (b) The LCE film with nine patches in which the director orientation 

varies azimuthally. (c) Upon heating, the flat LCE film reversibly transforms into the 3D shape 

with nine cones. 

 

Figure 1.18 Patterns of director orientation programmed by the patterns of microchannels [88,89]. 

(a) Mesogens are aligned on patterned microchannels. (b) a leaf-shaped surface and (c) a face 

shape are obtained by programming the director fields.  
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Figure 1.19 Patterning of direction orientation using direct ink writing [92]. (a) Schematic 

illustration of direct ink writing 3D print head for the LCE ink. Cone shape (b) and saddle shape 

(c) obtained by programming the alignment of mesogens in a circular disk. 

 

Figure 1.20 Photopatterning the in-plane stretch variations in a monodomain LCE sheet [93]. Gold 

nanoparticles are spatially embedded into the monodomain LCE sheet by photoreduction upon UV 

light. When visible light is shone on the surface, the ununiform heat generation leads to ununiform 

in-plane stretch gradients, which buckles the flat sheet into a prescribed 3D shape. 

 Other than spatially varying director orientation, another strategy of embedding stretch 

variations in the LCEs is programming the magnitude of deformation in a uniform director field. 

Figure 1.20 illustrates that arbitrary in-plane stretch profiles can be embedded into monodomain 

LCEs by programming the photothermal heat generations controlled by gold nanocomposite 
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distributions [93]. The spatially ununiform stretch profiles can trigger buckling of films, resulting 

in predictable 3D shapes. Compared to patterning the director orientations, this method has a 

simpler fabrication process, and can be widely generalized to all LCE systems. 

1.5 Outline of the Dissertation 

In this dissertation, we will focus on the buckling instabilities of columns and thin films, 

and on harnessing these buckling instabilities to design pneumatically actuated pattern-

transforming metamaterials, design reusable energy-absorbing architected materials, and achieve 

complex 3D morphing of LCE thin films. The main points of each chapter are summarized as 

follows: 

In Chapter 2, we propose a class of pneumatically actuated pattern-transforming 

metamaterials in which the pattern transformation is caused by beam buckling. We combine finite 

element method, analytical solutions, and experiments to reveal the mechanism of its pattern 

transformation and investigate the geometric effects on the pattern transformation. Our analytical 

model reveals the mechanics of the pattern transformation and shows good agreement with the 

finite element analysis. The experimental results confirm our theoretical predictions.  

In Chapter 3, we numerically show that an axially loaded hyperelastic column can exhibit 

complex buckling behaviors, and discover a new buckling mode for straight columns with high 

width-to-length ratios under axial compression: snapping-back buckling mode. To understand the 

mechanism of snapping-back buckling, we have established an analytical discrete model, and 

unraveled that snapping-back buckling results from strong coupling between stretching and 

bending, similar to that of snapping-back buckling in shells. A phase diagram is constructed to 

demarcate the different buckling modes of axially compressed columns.  
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In Chapter 4, we analytically show that for a straight hyperelastic column, the increase of 

its width-to-length ratio can fundamentally alter its buckling mode, from continuous to snapping-

through, and to snapping-back. Correspondingly, the initial post-buckling slope flips its sign from 

positive to negative, and eventually back to positive.  

In Chapter 5, we develop a reusable energy-absorbing architected material harnessing the 

snapping-back buckling of wide hyperelastic columns. The quasi-static cyclic loading tests 

confirm that the proposed material is capable of dissipating energy while keeping the force nearly 

constant with a long working distance in a reusable, self-recoverable, and highly predictable 

manner, while the drop tests at high strain rates show the feature of rate-independency and the 

capability of force attenuation in a broad range of input energy.  

In Chapter 6, we demonstrate a method combining experiments, FEM simulations, and 

analytical modeling to program photoactive shape morphing from monodomain LCE sheets with 

a unidirectional director by spatially controlling photothermal heat generation. Discontinuous 

metrics introduced via localized photothermal inclusions are shown to drive buckling into many 

complex 3D shapes. Furthermore, we established an analytical model based on the non-Euclidean 

plate theory to encode smoothly-varying stretch profiles to rationally approach the design of 

targeted shapes.  

In Chapter 7, we summarize all the findings presented in this dissertation. 
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Chapter 2 Pneumatically Actuated Pattern-transforming 

Metamaterials 

When a metamaterial, composed of an elastomer with periodic circular holes sealed by 

elastomeric membranes, is subject to a compressive load, it can undergo a pattern transformation, 

yielding a large transformation strain. Such pattern transformation is triggered by the buckling 

instabilities, and can be broadly tuned by changing the geometric parameters of the metamaterial. 

In this chapter, we numerically, analytically and experimentally reveal the mechanism of the 

pattern transformation in a pneumatically-actuated pattern-transforming metamaterial. Besides, we 

will survey the design space of the geometric parameters, and investigate their effects on the 

pattern transformation. Our finite element simulations indicate that the slenderest wall thickness 

and the pattern of the holes play key roles in determining the critical load for the pattern 

transformation, the transformation strain, and the transformation type. To quantify the effects of 

these geometric parameters, we further analytically model the pattern transformation of the 

metamaterial by simplifying it to a network of rigid rectangles linked by deformable beams. Finally, 

we experimentally characterize the pattern transformation of the metamaterials with different 

geometric parameters. The experimental, numerical, and analytical results are in good agreement 

with each other. Our work provides design guidelines for this metamaterial. 

2.1 Introduction 

Mechanical metamaterials are materials with micro-architectures, which bring in unusual 

mechanical properties that are difficult to achieve in conventional materials [94,95]. Mechanical 

metamaterials with micro-/nano- lattice structures have reached unprecedentedly high stiffness and 

strength at an extremely low density [96,97]. Pentamode lattices have shown vanishing shear 
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moduli [98–100]. Negative Poisson’s ratio is found in auxetic metamaterials with various re-

entrant structures [28,29,101–107]. In additional to the elastic constants, the whole nonlinear 

stress-strain relations of metamaterials are open to design. Introducing bistable structures into the 

micro-architectures enables pattern transformations of the metamaterials and non-monotonic 

stress-strain curves [2,5,38]. Making use of chiral lattice structures, a metamaterial can twist under 

a uniaxial compression [108]. 

 Recently, a new class of mechanical metamaterials, each consisting of a rubber slab with 

periodic holes, has emerged [28,31,34–36,41–43,109–111]. These metamaterials can undergo a 

pattern transformation when subject to a compressive load. By harnessing the geometric 

nonlinearity and the pattern transformation of the metamaterials, researchers have shown a variety 

of unique functions of them, such as negative Poisson’s ratio [28], tunable acoustic properties 

[111,112] and inducing torsional motions [110]. When the holes are alternatingly large and small, 

the stress-strain curves of the metamaterials change the monotonicity under different transverse 

constraints [42,43]. More interestingly, since the large and small holes collapse in two 

perpendicular directions, a high-symmetry square lattice of holes can transform into a low-

symmetry rectangular lattice, with two energetically equivalent variants [41]. This phenomenon is 

analogue to the phase transformation in shape memory alloys. Indeed, the shape memory effort 

has been demonstrated in this kind of metamaterials [41].  

The advantage of metamaterials is that their properties can be tuned by their micro-

architectures [28,31,34,35,41–43]. In the metamaterials with periodic holes, the shape of the holes 

has been shown to tune the stiffness, Poisson’s ratio, and critical condition for the pattern 

transformation [28,31]. The sizes of the large and small holes determine the transition between the 

monotonic and non-monotonic stress-strain responses [42,43]. To understand the effect of 
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geometry on the critical condition for the pattern transformation, finite element simulations 

[28,31,34–36,41,42,113,114]and analytical models [113,114] have been developed for the 

metamaterials with uniform-sized holes. These analytical models can predict the critical condition 

for the pattern transformation based on buckling analysis of the slender ligaments. However, they 

fail to predict the transformation strains due to the lack of post-buckling analysis. For the 

metamaterials with alternatingly large and small holes, an analytical model has been proposed to 

understand the programmable monotonicity of the stress-strain curves [43]. However, this model 

is simple and unable to capture the geometric effects.  

 

Figure 2.1 Overview of the pneumatically actuated pattern-transforming metamaterials. (a) A 

schematic of the fabrication. The metamaterial is an elastomeric slab containing an array of holes. 

All the holes are sealed by two elastic membranes, isolating the inner air from the atmosphere. The 

air chambers formed by the holes are connected via the grooves (two of which are outlined in red). 

The metamaterial is actuated by a source of vacuum, such as a syringe or a pump. (b) When 

actuated, the metamaterial is subjected to an external and internal pressure difference and 
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undergoes a pattern transformation. (c) When the holes are uniform-sized, the square lattice keeps 

square and the transformation strain is equibiaxial. (d) When the holes are alternatingly large and 

small, the square lattice transits to a rectangular shape and the transformation strain is non-

equibiaxial.  

In this chapter, combining finite element analysis, experiments and analytical modeling, 

we aim to establish quantitative understanding and a predictable theory to unravel the effects of 

geometry on the mechanical behavior of the metamaterials with arbitrary sizes of the alternatingly 

large and small holes. In experiments, to better control the deformation, we design and fabricate 

pneumatically actuated metamaterials, as illustrated in Figure 2.1a, where an elastomeric slab 

patterned with a square array of holes is sealed by two thin elastomeric membranes. Narrow and 

shallow grooves are used to connect all the holes so that air can flow freely throughout the whole 

structures. The holes are further linked to an external source of vacuum via a tube (Figure 2.1b). 

At a critical pressure Δpcr, the metamaterial undergoes a pattern transformation with the circular 

holes altering their shapes into ellipses orthogonal to their neighbors, yielding a large 

transformation strain (Figure 2.1c-d). The pattern transformation, and therefore the corresponding 

transformation strain, is widely tunable: the pattern of uniform-sized holes leads to an equibiaxial 

contraction (Figure 2.1c), whereas the pattern of alternatingly large and small holes leads to a non-

equibiaxial contraction (Figure 2.1d). We will numerically and experimentally characterize the 

pattern transformation as a function of the pressure Δp, and explore the effect of a wide range of 

geometric parameters. We will further provide an analytical model to explain how the geometry 

affects the pattern transformation of the metamaterials. 
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The chapter is organized as follows. In Sec. 2.2, we perform finite element simulations to 

investigate the tunable pattern transformation of the metamaterial by surveying the design space 

of the geometric parameters. In Sec. 2.3, we develop an analytical model to understand the effect 

of geometry on the critical condition for the pattern transformation, the transformation strain and 

the transformation type. Finally, we conduct experiments in Sec. 2.4 to demonstrate the tunable 

pattern transformation of the metamaterials and verify the results of the finite element simulations 

and the analytical model. Sec. 2.5 will conclude this chapter. 

2.2 Finite Element Analysis 

In this section, we systematically investigate the role of geometry in determining the 

critical pressure, transformation strain and the transformation type using finite element simulations 

in Abaqus (version 6.14).  

 

Figure 2.2 The setup of the finite element simulations. (a) A schematic of an elastomeric slab 

composed of an array of holes. (b) The unit cell used for the finite element simulations. A unit cell 

is identified here as the smallest geometric unit that can build up the whole system by mirroring 

and patterning itself. This unit cell is constrained by the symmetric boundary conditions, and is 

subjected to a pressure Δp, defined as the difference between the external pressure pext and the 

internal pressures pint (Δp = pext - pint). The geometric parameters include the two radii R and r, and 
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the lattice size L, which define two dimensionless geometric parameters. (c) The deformation of 

this unit cell is measured by changes in length of the lattice in the x and y directions between 

undeformed state (light blue) and deformed state (dark blue). 

 We perform simulations in a unit cell of an elastomeric slab (Figure 2.2a), which is selected 

as the smallest geometric unit that can build up the whole system by mirroring and patterning itself 

[115]. Symmetric boundary conditions are applied to the unit cell, i.e., on the bottom and left 

boundaries displacement is only allowed in the horizontal and vertical directions, respectively, and 

the top and right boundaries are constrained to maintain horizontal and vertical, respectively 

(Figure 2.2b). Although these boundary conditions are not periodic, the 2 x 2 cell, by mirroring 

the current unit cell horizontally and vertically, is equivalent to the smallest repeated structure for 

the periodic boundary condition. Besides, the unit cell is subjected to a pressure Δp, defined as the 

difference between the external and internal pressures, Δp = pext - pint, on all the surfaces of the 

holes. The geometric parameters of the unit cell include the two radii R and r, and the lattice size 

L, the subtraction of which defines the thickness of the slenderest wall, t = L – R – r. We normalize 

the geometric parameters by the lattice size L and obtain two independent dimensionless 

parameters: R/L and r/L. We model the elastomer as an incompressible neo-Hookean continuum 

solid, whose strain energy density function W is given as [116,117] 

 𝑊𝑊 = 𝜇𝜇
2

(𝑡𝑡𝑡𝑡(𝐅𝐅𝐅𝐅T) − 3), (2.1) 

where μ is the shear modulus, and F is the deformation gradient tensor with the constraint det(F) 

= 1. We use eight-node, quadratic, hybrid, plane strain elements (ABAQUS element type CPE8H), 

and perform mesh refinement study to ascertain the accuracy of simulations. To break the 

symmetry, small imperfections with amplitude ~t/1000 are introduced to the initial coordinates of 
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the nodes. We simulate the deformation of the unit cell under the pressure based on the Riks 

method, and calculate the strains εx and εy, defined as the changes in length of the lattice with 

respect to the original length in the x and y directions (Figure 2.2c).  

 

Figure 2.3 The results of the finite element simulations for three metamaterials with different 

geometric parameters. The dependence of the strains in the (a) x and (b) y directions on the pressure. 

(c) - (e) The deformed shapes of four unit cells of the three metamaterials: (c) uniformly large 

holes (r/L = R/L = 0.475, t/L = 0.05), (d) uniformly small holes (r/L = R/L = 0.450, t/L = 0.10), and 

(e) alternatingly large and small holes (r/L = 0.350, R/L = 0.550, t/L = 0.10). For each case, the 

states of the deformation correspond to the four selected points on its strain-pressure curves. 
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Figure 2.3 shows the simulation results of the strain-pressure relations (Figure 2.3a, b) and 

the shape evolution of four unit cells of the three metamaterials with different geometric 

parameters: uniformly large holes (Figure 2.3c), uniformly small holes (Figure 2.3d), and 

alternatingly large and small holes (Figure 2.3e). For all cases, when the pressure is small, both 

strains εx (Figure 2.3a) and εy (Figure 2.3b) only slightly decrease as the pressure increases. After 

the pressure reaches a critical value, the strains sharply drop, indicating a pattern transformation 

occurs. The deformed shapes of the metamaterials under different pressures shown in Figure 2.3c-

e correspond to the points marked on the strain-pressure curves in Figure 2.3a, b. The strain-

pressure curves reach another almost flat stage when the metamaterials form internal contact 

(Figure 2.3c4-e4).  

Apart from these common features, we observe that the geometry can significantly affect 

the critical pressure and the transformation strains. Smaller holes, and therefore a larger wall 

thickness, lead to a higher critical pressure (r/L = R/L = 0.475, t/L = 0.05 for Figure 2.3c, and r/L 

= R/L = 0.450, t/L = 0.10 for Figure 2.3d). Interestingly, although the pattern of the holes in Figure 

2.3e (r/L = 0.350, R/L = 0.550, t/L = 0.10) is different from that in Figure 2.3d, the two cases have 

the same critical pressure due to the same wall thickness. When the holes are uniform-sized (r = 

R), the transformation strain is equibiaxial, i.e. εx = εy, and the square lattice keeps a square shape. 

In contrast, when the holes are alternatingly large and small (r ≠ R), the transformation strain is 

non-equibiaxial, i.e. εx and εy bifurcate from each other after the pressure reaches its critical value, 

and the square lattice transits to a rectangular shape. The three cases discussed have shown the fact 

that the pattern transformation of these metamaterials can be tuned by varying the wall thickness 

and the pattern of the holes. 
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Figure 2.4 The dependence of the strainson the pressure for fourteen sets of geometric parameters 

in the (a) x and (b) y directions. The critical pressure for the onset of pattern transformation is 

shown to be governed by the wall thickness t/L. 

Next, we survey the space of the geometric parameters and demonstrate the wide tunability 

of the pattern transformation. Figure 2.4 presents the strain-pressure curves for fourteen sets of 

geometric parameters. These sets can be sorted into four groups according to the value of the wall 

thickness: t/L = 0.05, t/L = 0.10, t/L = 0.15, and t/L = 0.20, represented by four different types of 

lines. These curves clearly show that the wall thickness determines the critical pressure, no matter 

whether the neighboring holes have the same size or not, and the critical pressure increases with 

the wall thickness. We also observe that the pattern of the holes determines the biaxiality of the 

transformation strain. As the ratio of the small radius to the large radius, r/R, decreases, the 

transformation strain deviates more from an equibiaxial contraction. When r/L = 0.3 and R/L = 

0.65 (the black solid curve in Figure 2.4), the transformation strain is almost uniaxial with εy over 

0.52 and εx less than 0.003 when the internal contact occurs. Note that the εx-pressure curves for 

metamaterials with alternatingly large and small holes always have overshoots (Figure 2.4a), i.e. 

εx becomes positive prior to the sharp drop during the pattern transformation, while these 

(a) (b)
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overshoots do not occur for metamaterials with uniform holes. These overshoots are caused by the 

competition between the extension in the x direction when the unit cells tilt down and the 

contraction in the x direction in response to the pressure, occurring in metamaterials with unequal 

radii of neighboring holes. At the beginning of the pattern transformation, the extension caused by 

rotation of the unit cells dominates the change in strain εx. As the pressure increases, the contraction 

wins, and εx sharply decreases. For the metamaterials with uniform holes, however, no overshoot 

exists. This is because their unit cells are enclosed in the inscribed circle of the initial lattice, and 

thus the unit cells are unable to exceed the boundary of the initial lattice while tilting down. Instead, 

they are compressed into a smaller lattice under an increasing pressure, leading to a monotonic 

decrease in both strains εx and εy during the pattern transformation. Moreover, as the wall thickness 

t/L increases, the transformation type varies from a continuous second-order transition to a 

discontinuous first-order transition. When the wall thickness is small (t/L = 0.05, 0.10, or 0.15), 

the strains continuously, although sharply, drop with the pressure during the pattern transformation. 

However, when the wall thickness is large (t/L = 0.20), the slopes of the pressure-strain curves 

become positive (corresponding to negative slopes of the stress-strain curves) at the critical 

pressure, which indicates a discontinuous drop of the strains. 

 In this section, we have performed finite element simulations for a wide range of geometric 

parameters. From the results, we conclude that the pattern transformation of these metamaterials 

can be tuned by their geometry. To understand the role of the geometric parameters in governing 

the mechanics of the pattern transformation, an analytical model is proposed in the next section. 
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2.3 Analytical Model 

2.3.1 Formulation of the analytical model 

 

Figure 2.5 Sketches of the simplified structure and the equivalent one-dimensional beam model. 

The contour plot (a) of the maximal principal logarithmic strain for a metamaterial with geometric 

parameters t/L = 0.05, r/L = 0.350, and R/L = 0.600 at loading Δp/μ = 0.0246 shows that the 

deformation mainly concentrates in the slender regions. Thus, we proposed (b) a simplified 

structure consisting of rigid rectangles (blue) linked by deformable beams (red). The black solid 

line denotes the outlines of the holes, to which the edges of the blue parts are tangent. (c) To 

analytically determine the pattern transformation of this simplified structure, we solve the buckling 

and post-buckling behavior of an equivalent one-dimensional model composed of a deformable 

beam fixed to two rigid bars subject to an axial compressive stress Δp. 

 Figure 2.5a is a typical contour plot of the maximal principle logarithmic strain in four unit 

cells of a metamaterial (t/L = 0.05, r/L = 0.350, and R/L = 0.600) under a pressure Δp/μ = 0.0246 

larger than the critical pressure for the pattern transformation. The result shows that the 

deformation is mainly concentrated in the slender regions, whereas the rest regions (shown in blue) 

only deform by less than 2%. Therefore, we propose to simplify the slender regions as deformable 
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beams, and the nearly undeformed regions as rigid rectangles [113], yielding a simplified structure 

as sketched in Figure 2.5b. By modeling the buckling and post-buckling of this simplified structure, 

we are able to analytically calculate the strain-pressure relations of the metamaterials. 

 The unit cell in the simplified structure is characterized by the dimension of the rigid 

rectangles (a × b) and the dimension of the deformable beams (2h × w) (Figure 2.5b). We set the 

boundaries of the rigid rectangles tangent to the neighboring circular holes, and set the thickness 

w of the deformable beams equal to the wall thickness t. To smoothly transit from the rigid 

rectangles to the deformable beams, the length of the deformable beams 2h is chosen to be longer 

than the distance between the two corners of the rigid rectangles by w, which takes into account 

the boundary effect of the bending of the slender regions on the rectangles (Figure 2.5b). As a 

result, we can relate the geometric parameters of the metamaterials to those of the simplified 

structures: 

 𝑎𝑎 = √2𝐿𝐿 − 2𝑟𝑟, (2.2) 

 𝑏𝑏 = √2𝐿𝐿 − 2𝑅𝑅, (2.3) 

 𝑤𝑤 = 𝑡𝑡, (2.4) 

 ℎ = 𝐿𝐿
2
− √2

4
𝑎𝑎 − √2

4
𝑏𝑏 + 𝑡𝑡

2
= √2−1

2
(𝐿𝐿 − 𝑡𝑡), (2.5) 

where we have used 𝐿𝐿 = 𝑟𝑟 + 𝑅𝑅 + 𝑡𝑡. Eq. (2.5) means that the length of the deformable beams, h/L, 

depends solely on the wall thickness t/L. With Eqs. (2.1)-(2.5), we can convert the metamaterial 

into a simplified structure, which maintain the main features of pattern transformation (See 

verification by finite element analysis in Appendix Figure 1.1). 

 Next, we will analytically quantify the pattern transformation of this simplified structure. 

We will solve its buckling condition, which gives rise to the critical pressure for the pattern 
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transformation. By further formulating its post-buckling process, we will analytically determine 

the strain-pressure relations during the pattern transformation.  

The buckling and post-buckling of this simplified structure can be determined in an 

equivalent one-dimensional model composed of a beam with length ls = 2h fixed to two rigid bars 

with length lr = (L - ls)/2 subject to an axial compressive stress Δp, as shown in the right of Figure 

2.5c. In a unit cell of a metamaterial with alternatingly large and small holes, although the two 

vertical loads offset by a distance, creating a moment about the center C of the rigid rectangle, the 

moment is balanced by that created by the two horizontal loads. Thus, shifting the deformable 

beams to the vertical and horizontal lines past the center C does not change their buckling and 

post-buckling behavior (Figure 2.5c). Moreover, since the rigid rectangles are free to rotate and 

translate during the pattern transformation, the equivalent beam model is restrained by a pin-roller 

support.  

 

Figure 2.6 Buckling and post-buckling analysis of the one-dimensional beam model. (a) The model 

consists of a beam (red) of length ls = 2h fixed to two rigid bars (blue) of length lr = (L - ls)/2. The 



37 
 

whole structure is simply supported at the two ends, and is subject to an axial load N. When the 

load exceeds a critical value, the beam buckles, deviating from its initial straight position (dashed 

line), with the deflection 𝑣𝑣(𝑥𝑥) and bending angle 𝜑𝜑(𝑥𝑥). (b) To verify our analytical buckling and 

post-buckling solutions, we perform finite element analysis (FEA) using solid elements. (c) The 

pressure-displacement relations for different width-to-length ratios w/L from the analytical 

solutions and the FEA using solid elements show good agreement. 

 The buckling and post-buckling behavior of this beam model (Figure 2.5c, Figure 2.6a) 

under the plane strain condition are solved analytically based on Euler’s elastica and the theory of 

elastic stability [118] (see the derivation in Appendix A1.2). The beam is assumed to be linearly 

elastic with the Young’s modulus E, Poisson’s ratio 𝜈𝜈� = 0.5, and shear modulus  𝜇𝜇 = 𝐸𝐸/3. It is 

considered inextensible in the buckling and post-buckling analysis, because the compressive strain 

in response to the axial load is negligible compared to the displacement caused by the buckling. 

The beam buckles when the axial compressive force N=Δpw reaches its critical value Ncr, which 

can be obtained by solving the following equation: 

 2𝑘𝑘𝑐𝑐𝑐𝑐𝑙𝑙𝑟𝑟 cos 𝑘𝑘𝑙𝑙𝑠𝑠 = (𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2 − 1) sin 𝑘𝑘𝑐𝑐𝑐𝑐𝑙𝑙𝑠𝑠, (2.6) 

where 𝑘𝑘𝑐𝑐𝑐𝑐 = �𝑁𝑁𝑐𝑐𝑐𝑐/𝐾𝐾  and 𝐾𝐾 = 𝐸𝐸𝑤𝑤3 [12(1 − 𝜈𝜈�2)]⁄  is the bending stiffness of the beam in the 

plain strain condition. Note that the critical force Ncr recovers that of a simply supported beam 

when lr=0. The existence of the rigid bars (non-zero lr) can significantly reduce the critical 

buckling force of this beam model with a beam fixed to two rigid bars. 

As the load N slightly exceeds the critical value Ncr, the beam buckles, and its deflection v 

is given by 
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 𝑣𝑣(𝑥𝑥) = 𝑎𝑎 sin(𝑘𝑘𝑐𝑐𝑐𝑐𝑥𝑥 + 𝛾𝛾), (2.7) 

where the coordinate x is chosen to be along the tangential direction of the beam (Figure 

2.6a), tan 𝛾𝛾 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑙𝑙𝑟𝑟, and the amplitude a as a function of N is given by  

 
𝑎𝑎 = 1

2𝑘𝑘𝑐𝑐𝑐𝑐
�𝑁𝑁−𝑁𝑁𝑐𝑐𝑐𝑐

𝑁𝑁𝑐𝑐𝑐𝑐

32𝑙𝑙𝑠𝑠�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�
2
+64𝑙𝑙𝑟𝑟�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�

𝑙𝑙𝑠𝑠�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�
2
+2𝑙𝑙𝑟𝑟�1−𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�

. (2.8) 

The bending angle φ(x) is solved as 

 𝜑𝜑(𝑥𝑥) = sin−1�𝑣𝑣′(𝑥𝑥)� = sin−1(𝑎𝑎𝑘𝑘𝑐𝑐𝑐𝑐 cos(𝑘𝑘𝑐𝑐𝑐𝑐𝑥𝑥 + 𝛾𝛾)). (2.9) 

Using the assumption of the inextensible beam, we obtain the axial shortening of the beam Δ𝑙𝑙𝑠𝑠, 

 ∆𝑙𝑙𝑠𝑠 = ∫ �1 −�1 − 𝑣𝑣′2� 𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠
0 ≈ ∫ 1

2
𝑣𝑣′2𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠

0 = 𝑎𝑎2𝑘𝑘𝑐𝑐𝑐𝑐2 �𝑙𝑙𝑠𝑠+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2𝑙𝑙𝑠𝑠−2𝑙𝑙𝑟𝑟�
4�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�

. (2.10) 

The length change of the whole structure ΔL involves the contributions from the beam and the 

rigid bars, which yields 

 ∆𝐿𝐿 = ∆𝑙𝑙𝑠𝑠 + 2𝑙𝑙𝑟𝑟 �1 −�1 − 𝑣𝑣′(0)2�. (2.11) 

To verify the above analytical buckling and post-buckling solutions of the beam model, we 

perform finite element analysis using solid elements (Abaqus element type CPE8H) with the load 

and boundary conditions sketched in Figure 2.6b. The results are compared with the analytical 

solutions for different width-to-length ratios w/L (Figure 2.6c). Note that according to Eq. (2.5), 

w/L uniquely determines h/L, and therefore ls/L and lr/L. As a result, the critical displacements 

from the analytical solutions and the simulations are in good agreement, which verifies our 

analytical solutions. The critical load from the finite element simulations is slightly higher than 

that from the analytical solutions, because in the simulations the rigid bars constrain the lateral 
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expansion of the beam near their interfaces, increasing the effective stiffness of the beam, which 

is not accounted in the analytical beam model.  

 With this equivalent beam model, we are able to determine the pattern transformation of 

the simplified structure. The critical Δpcr for the pattern transformation is given by 

 ∆p𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑐𝑐𝑐𝑐
𝑤𝑤

, (2.12) 

where Ncr is the buckling load for the beam in Eq. (2.6). The critical pressure Δpcr only depends 

on the thickness of the slenderest wall t/L, since t/L uniquely determines the lengths of the beam 

ls/L = 2h/L and the rigid bars lr/L. When Δp is lower than the critical stress Δpcr, the orientation of 

the rigid rectangle θ (Figure 2.5c) keeps 45° without a rotation, and the contraction of the unit cell 

is purely due to the deformation of the elastic beams. Consequently, the strains and the coordinates 

of the center point C (xc, yc) are given by 

 

⎩
⎪
⎨

⎪
⎧𝜖𝜖𝑥𝑥 = −

2(1 − 𝑣𝑣�2)ℎ
3𝐿𝐿

∆p
𝜇𝜇

,

𝜖𝜖𝑦𝑦 = −
2(1 − 𝑣𝑣�2)ℎ

3𝐿𝐿
∆p
𝜇𝜇

,
     �

𝑥𝑥𝑐𝑐 =
𝐿𝐿
2

(1 + 𝜖𝜖𝑥𝑥),

𝑦𝑦𝑐𝑐 =
𝐿𝐿
2
�1 + 𝜖𝜖𝑦𝑦�,

 (2.13) 

where the origin is taken as the bottom left corner point of the unit cell (Figure 2.5c). When Δp 

exceeds the critical stress Δpcr, all the beams in a unit cell buckle clockwise (or counter-clockwise) 

due to the constraint of the rigid rectangle. The rigid rectangle rotates following the buckled beams 

with the orientation decreases (or increases) by Δθ equal to the bending angle of the beams at the 

ends φ(0) determined in Eq. (2.9). Considering the current orientation angle of the rigid rectangle 

𝜃𝜃 = 45° − 𝜑𝜑(0), and the axial displacement of the beam Δls in Eq. (2.10), we can derive the strains 

of the unit cell and the coordinate of the center C (xc, yc) as functions of Δp as following 
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�
𝑥𝑥𝑐𝑐 = ℎ −

∆𝑙𝑙𝑠𝑠
2

+
𝑎𝑎
2

cos 𝜃𝜃 +
𝑏𝑏
2

sin𝜃𝜃 −
𝑤𝑤
2

cos𝜑𝜑(0) ,
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∆𝑙𝑙𝑠𝑠
2

+
𝑎𝑎
2

sin𝜃𝜃 +
𝑏𝑏
2

cos𝜃𝜃 −
𝑤𝑤
2

cos𝜑𝜑(0) ,
       �

𝜀𝜀𝑥𝑥 =
2
𝐿𝐿
𝑥𝑥𝑐𝑐 − 1,

𝜀𝜀𝑦𝑦 =
2
𝐿𝐿
𝑦𝑦𝑐𝑐 − 1,

 (2.14) 

where the first two terms of the coordinate xc or yc represent the half length of a beam in the x or y 

direction respectively, and the last three terms of the coordinate xc or yc represent the contribution 

of the rigid rectangle in the x or y direction respectively (Figure 2.5c). The evolution of the pattern 

transformation slows down when the beams form contact with each other. The contact occurs when 

the bottom beam sketched in the unit cell in Figure 2.5c reaches the y axis or the right beam reaches 

the x axis, yielding correspondingly 

 

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑐𝑐 −

𝑎𝑎
2

cos 𝜃𝜃 +
𝑏𝑏
2

sin𝜃𝜃 +
𝑤𝑤
2

sin𝜑𝜑(0) − �𝑣𝑣(ℎ) − 𝑣𝑣(0)� −
𝑤𝑤
2

= 0,
𝑂𝑂𝑂𝑂

𝑦𝑦𝑐𝑐 +
𝑎𝑎
2

sin𝜃𝜃 −
𝑏𝑏
2

cos𝜃𝜃 +
𝑤𝑤
2

sin𝜑𝜑(0) − �𝑣𝑣(ℎ) − 𝑣𝑣(0)� −
𝑤𝑤
2

= 0,

 (2.15) 

where the first four terms in the first or second equation are the x or y coordinate of the end of the 

bottom or the right beam where it connects to the rigid rectangle, the fifth term in the parentheses 

is the relative deflection at the midpoint of the beam with respect to its end, and the last term 

defines the distances between the neutral axis and the surface of the beam. The deflections v of the 

buckled beam as a function of Δp is given by Eqs. (2.7) and (2.8). Eq. (2.15) determines the critical 

Δp when the contact forms, and the corresponding strains can be calculated by Eq. (2.14). 

Combining Eqs. (2.12)-(2.15), we can analytically obtain the pattern transformation of the 

simplified structure with different geometric parameters. 
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2.3.2 Results of the analytical model 

 

Figure 2.7 The prediction of the pattern transformation based on the analytical model for 

metamaterials with three different sets geometric parameters same as those in Fig. 3. The 

dependence of the strains in the (a) x and (b) y directions on the pressure. (c)-(e) The deformed 

shapes of four unit cells of the three metamaterials: (c) uniformly large holes (r/L = R/L = 0.475, 

t/L = 0.05), (d) uniformly small holes (r/L = R/L = 0.450, t/L = 0.10), and (e) alternatingly large 

and small holes (r/L = 0.350, R/L = 0.550, t/L = 0.10). For each case, the states of deformation 

correspond to the four selected points on its strain-pressure curves. The red dashed frames denote 
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the initial boundaries of the lattice, whereas the black dashed frames represent the current 

boundaries of the lattice. 

 Figure 2.7 shows the prediction of the pattern transformation based on the analytical model 

for metamaterials with three sets of geometric parameters same as those in Figure 2.3 (case 1, 

uniformly large holes; case 2, uniformly small holes; and case 3, alternatingly large and small 

holes). The results of our analytical model agree with those from the finite element simulations in 

Figure 2.3. When the pressure is small, the strains in the x and y directions, εx (Figure 2.7a) and εy 

(Figure 2.7b), do not change significantly as the pressure increases. When the pressure Δp reaches 

a critical value Δpcr, the beams buckle and initiate the pattern transformation (Figure 2.7c1-e1). 

Since the case 1 has thinner beams, its pattern transformation initiates earlier than those of the 

cases 2 and 3. With the equal beam thickness, the pattern transformations in the cases 2 and 3 

initiate at the same critical pressure, governed by the buckling condition of the beams. As the 

pressure further increases, the transformation strains sharply drop in all the three cases (Figure 

2.7a, b). When the holes are uniform-sized (r = R), the transformation strain is equibiaxial (Figure 

2.7a, b), and the square lattice remains a square shape (Figure 2.7c-d), whereas when the holes are 

alternatingly large and small (r ≠ R), the transformation strain is non-equibiaxial (Figure 2.7a, b), 

and the square lattice transits to a rectangular shape (Figure 2.7e). (See Appendix Video 1.1-

Appendix Video 1.3) 
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Figure 2.8 The dependence of the strains on the pressure in the (a) x and (b) y directions obtained 

by the analytical model for eleven sets of the geometric parameters. The critical pressure for the 

onset of the pattern transformation is shown to be governed by the wall thickness. 

 We now apply our analytical model to metamaterials with other geometric parameters. We 

restrict ourselves to thin beams (t/L ≤ 0.15) because Euler’s elastica fails to capture the post-

buckling behavior for wide beams [119]. In particular, when the width-to-length ratio is high, the 

slope of the pressure-displacement curve (Figure 2.6c) has been shown to be negative, which is 

consistent with our finite element prediction that the pattern transformation becomes discontinuous 

when the wall thickness is large (Figure 2.4). In Figure 2.8, we plot the strain-pressure curves for 

eleven sets of geometric parameters. Our analytical model can capture all the features observed in 

the finite element simulations. (i) The critical pressure Δpcr is governed by and increases with the 

wall thickness. (ii) The patterns of the holes control the biaxiality of the transformation strain. (iii) 

When the holes are alternatingly large and small, an overshoot exists in the εx - Δp curves, i.e. εx 
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first increases and then decreases as Δp increases at the onset of the pattern transformation, 

whereas no overshoot exists when the holes are uniform-sized. 

2.4 Experimental Results 

 

Figure 2.9 The setup of the experiments. (a) Top view of the experimental setup. By controlling 

the amount of air withdrawn from the metamaterials, the internal pressure of the metamaterial can 

be tuned continuously and measured by a manometer. (b) A camera records the displacement of 

the markers on the sample to acquire the strains of the metamaterial via imaging analysis. Markers 

are labeled far away from the boundaries to avoid the boundary effect. 

 To experimentally verify the role of the geometric parameters on the pattern transformation 

of the metamaterials, we fabricated metamaterials with different geometric parameters and 

measured the strains as functions of the external and internal pressure difference. The samples, 

each with lateral dimensions of 50 mm by 50 mm and thickness of 25 mm, were made of Ecoflex 

00-30 (shear modulus μ = 30KPa [120]) and fabricated by casting the elastomer precursor into a 

3D printed mold. We used the same Ecoflex as a glue to seal the holes with two thin membranes 

on the front and back sides of the slab (Figure 2.1a). Shallow groove structures were designed into 
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the metamaterials so that all the sealed holes are connected (Figure 2.1a). A syringe pump was 

further connected to the sample as a source of vacuum (Figure 2.9a). To measure the pressure in 

the metamaterials, a manometer (accuracy: ±0.01kPa) was linked to the syringe via a ‘T-shape’ 

connector (Figure 2.9a). The deformation of the metamaterials was recorded by a camera and the 

strains were measured (resolution: 0.01 mm) by tracking the position of the four markers via 

imaging analysis (Figure 2.9b) with the chessboard serving as a reference (Figure 2.9a). During 

the pressure loading, the samples was put on a glass sheet covered by soap water to reduce friction. 

 

Figure 2.10 Experimental results for three metamaterials with geometric parameters exactly same 

as those shown in Fig. 3 and Fig. 7. (a) The strain-pressure curves for the case 1 and case 2. (b) 

The strain-pressure curves for the case 2 and case 3.  

 Figure 2.10 shows the strain-pressure relations for the metamaterials with three sets of 

geometric parameters same as those in both Figure 2.3 and Figure 2.7: t/L = 0.05, r/L = 0.475, R/L 

= 0.475 for the case 1, t/L = 0.10, r/L = 0.450, R/L = 0.450 for the case 2, and t/L = 0.10, r/L = 

0.35, R/L = 0.55 for the case 3. The experimental results of the critical pressure and the 

transformation strains show good agreement with those of the simulations (Figure 2.3a and b) and 

the analytical model (Figure 2.7a and b). They verify the conclusion that the wall thickness governs 
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the critical pressure, and the critical pressure increases with the wall thickness. Although the case 

3 has a different pattern of holes from that of the case 2, the critical pressures for the two cases are 

similar since the wall thicknesses are the same (Figure 2.10b). The experiments also confirm that 

the pattern of holes controls the transformation strain. The metamaterials with uniform-sized holes 

in the case 1 and 2 undergo an equibiaxial contraction (Figure 2.10a), while the metamaterial with 

alternatively large and small holes in the case 3 undergoes a non-equibiaxial contraction (Figure 

2.10b). Moreover, an overshoot in εx - Δp curve was also observed in the experiment of the case 3 

(Figure 2.10b), consistent with the simulation (Figure 2.3a) and analytical results (Figure 2.7a). 

Note that there are some discrepancies in the strain-pressure curves between the experiments and 

the simulations (Appendix Figure 1.3). Particularly, in the experiment the strain drops at a lower 

strain than the critical condition for the pattern transformation in the simulation, potentially due to 

imperfections in the samples, and the strain does not drop as sharply as that in the simulations 

during the pattern transformation, resulting from the frictions between the metamaterials and the 

glass sheet.  

2.5 Summary 

In summary, we numerically, analytically, and experimentally investigate the role of the 

geometric parameters on the pattern transformation of the metamaterials. We find that the critical 

pressure for the onset of the pattern transformation is governed by the slenderest wall thickness of 

the metamaterial, and that the transformation strain is controlled by the pattern of the holes. Our 

analytical model reveals the mechanics of the pattern transformation and shows good agreement 

with the finite element analysis. Experimentally, we have achieved pneumatic actuation of the 

metamaterials and characterized their pattern transformation. The experimental results confirm our 



47 
 

theoretical predictions. This study provides design guidelines for the metamaterial and facilitates 

its real-world applications. 
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Chapter 3 Snapping-back Buckling of Wide Hyperelastic Columns 

The mechanical instability of columns with a low width-to-length ratio under axial 

compression has been studied for more than 260 years, known as the Euler buckling. Such columns 

buckle at a critical strain on the order of 1%, after which the compressive load continuously 

increases with the displacement. Recently, in the advance of soft robotics and mechanical 

metamaterials, researchers have harnessed buckling of high width-to-length ratio columns to 

achieve new functions. However, buckling and post-buckling of these columns are not well studied. 

In this chapter, we show hyperelastic columns, depending on their width-to-length ratio, can 

undergo continuous, snapping-through, or snapping-back buckling. In particular, we identify a 

new snapping-back mode of column buckling, in which beyond the onset of buckling, a column 

bends to form a sub-critical crease. Our analytical discrete model reveals that snapping-back 

buckling results from strong coupling between stretching and bending. A phase diagram is 

constructed to demarcate the different buckling modes of axially compressed columns. 

3.1 Introduction 

The widely exploited strategy of designing mechanical metamaterials 

[2,4,5,39,41,43,108,121–123] and soft robots [110,124,125] leverages hollowed structures, in 

which slender parts enable large deformation and buckling instability, leading to various advanced 

functions, such as pattern transformations [2,39,41,121–123], tunable nonlinear responses [43,108] 

and multi-stability [2,4,5]. Although buckling instabilities of slender structures have been well 

harnessed, post-buckling behavior of hyperelastic columns remains largely unexplored, especially 

for ones with high width-to-length ratios. It has been observed that columns with a width-to-length 

ratio greater than 0.12 exhibit a negative slope in the post-buckling regime of their force-
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displacement curves [119,126]. However, columns with much higher width-to-length ratios, where 

the effect of the geometric nonlinearity becomes decisive, could show a distinctive buckling mode. 

Besides, post-buckling behavior of columns has mainly been studied in the vicinity of the buckling 

point, but the regimes far beyond the buckling point are still unknown.  

When a column is bent, a crease [127–133], which is a localized self-contacting fold, can 

form on its compressed side where the critical compressive strain is reached. Thus, a crease can 

also form in a bent column due to buckling, and the post-buckling behavior will be inevitably 

affected by the crease. However, the influence of creasing on the post-buckling path remains 

unclear. It has been known that crease forming on a homogeneously compressed slab can be either 

a super-critical [131,133] or sub-critical [131] bifurcation, dependent on the lateral constraints. 

Here we show that varying the width-to-length ratio of a column can be another way to adjust a 

creasing bifurcation from super-critical to sub-critical in post-buckling. The formation of creases 

is scale-free. In an incompressible neo-Hookean material, creases form at a critical compressive 

strain of 0.354 [129], independent of geometries. In this study, we find that buckling facilitates 

formation of creases so that a crease sets in at an external compressive strain much lower than 

0.354, and the crease onset strain varies with the width-to-length ratio of the column. 
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3.2 Four Post-buckling Modes 

 

Figure 3.1 Four buckling modes of axially compressed columns with different width-to-length 

ratios. (A) A 2D hyperelastic column with width-to-length ratio w/L is subjected to a compressive 

force F or a displacement Δl that eventually results in buckling of the column. (B) Due to symmetry, 

only the top half of the column in (A) is selected for finite element simulations, where the bottom 

side is constrained by a symmetric boundary condition and the mid-point of the top side is 

restricted to moving vertically to eliminate rigid-body motions. A very small displacement defect 

Δd in the horizontal direction is introduced to the bottom side of the half column in its stress-free 

state (light blue) to trigger buckling. A quarter of a circle with a small radius r is introduced as a 
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defect to trigger the initiation of a crease at both the bottom right and top left corners of the half 

column. A rigid frictionless surface (dashed line) abuts one of the quarter-circle defects to form a 

self-contacting fold. (C) The relations between normalized compressive force F/(wμ) and 

displacement Δl/L for columns with different w/L. Inset: the deformed shape of the columns in 

post-buckling from the finite element simulations. The color indicates the level of minimum 

principle logarithmic strain. (D and E) Normalized free energy difference between the buckled 

state and flat state (with subscript 0) as a function of applied displacement Δl/L (D) and force 

F/(wμ) (E). The dashed lines indicate unstable equilibrium path. ((C-E) share the same legend). 

 We first identify four different post-buckling modes of axially compressed columns with 

different width-to-length ratios w/L (Figure 3.1) using finite element simulations (see Appendix 

A2.1 and Figure 3.1A). Due to symmetry, only half of a column is simulated. A horizontal 

perturbation Δd and a quarter of a circle with a very small radius r are introduced to trigger 

buckling and creasing instabilities (Figure 3.1B). The incompressible neo-Hookean model, with 

the shear modulus μ as the only material parameter, is adopted in the simulations to represent a 

generic hyperelastic material. When w/L is low (w/L = 0.10 in Figure 3.1C), the column exhibits 

continuous buckling: the force F  increases with the displacement l∆  after the onset of the 

buckling, which matches the prediction of Euler’s elastica. As the column becomes thick (w/L = 

0.20 in Figure 3.1C), the force-displacement curve first shows a negative slope in the post-buckling 

and then the force starts increasing significantly when the column is fully folded, forming 

snapping-through buckling. Besides, a crease appears on the compressed side of the thick column 

(w/L = 0.20) after the onset of the buckling, whereas the compressed side of the thin column (w/L 

= 0.10) remains smooth, even though the column has been compressed far beyond the onset of the 

buckling (See the insets of Figure 3.1C). For an even thicker column (w/L = 0.28 in Figure 3.1C), 
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a striking snapping-back buckling mode emerges, in which both the force and displacement 

decrease after the onset of the buckling, retaining a positive post-buckling slope of the force-

displacement relation. Although snapping-back buckling is commonly observed in rods with 

kinematically controlled ends [134,135], perfect cylindrical shells [9] and shallow arches [10], it 

has neither been reported in column buckling, nor predicted by existing 1D beam models 

[126,136,137]. When w/L goes beyond a threshold at which the corresponding critical strain for 

buckling equals the critical strain for creasing (w/L = 0.38 in Figure 3.1C), although the column 

exhibits a snapping-back force-displacement curve, its post-bifurcation is solely determined by 

creasing instead of buckling. Under displacement-controlled loading, the buckled state of the 

snapping-back case has a higher free energy U  than that of the flat state 0U  in certain 

displacement region, which corresponds to unstable equilibria (the dashed lines in Figure 3.1C). 

In contrast, under force-controlled loading, unstable equilibria exist in both the snapping-through 

and snapping-back cases, indicated by a higher free energy in the buckled state Π  than that of the 

flat state 0Π  (the dashed lines in Figure 3.1E). 
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3.3 Transition from Snapping-through to Snapping-back Buckling 

 

Figure 3.2 Transition from snapping-through buckling to snapping-back buckling mode as the 

width-to-length ratio w/L increases. (A) The normalized force-displacement relations as w/L 

increases from 0.20 to 0.34 with an increment 0.02. Inset (from left to right): the enlarged view in 

the vicinity of the buckling point when w/L = 0.24; a typical force-displacement curve for 
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snapping-back buckling that defines the critical strain Δlbuckle/L and critical force Fbuckle/wμ for 

buckling, snapping-backward force F
bF wµ , and snapping-backward strain L

bl L∆ . (B) The 

normalized crease depth as a function of displacement (the same color code as that in (A)). Inset 

(from left to right): the definition of the crease depth d, which is the length of the self-contact 

region when a crease forms; a typical depth-displacement curve for a subcritical crease that defines 

the critical strain for creasing Δlcrease/L and snapping-backward strain L
bl L∆ . (C and D) The 

normalized free energy difference between the buckled state and flat state (with subscript 0) as a 

function of the displacement (C) or force (D) (the same color code as that in (A)). Inset (from left 

to right): the enlarged view in the vicinity of the buckling point when w/L = 0.24; the Maxwell 

point. (E) The critical strain for buckling Δlbuckle/L (red dots), critical strain for creasing Δlcrease/L 

(blue squares) and snapping-backward strain L
bl L∆  (purple pentagons) as functions of w/L. The 

solid black line represents the analytical result of the critical strain for buckling, whereas the 

dashed black horizontal line denotes the critical strain for the onset of creasing on a 

homogeneously compressed slab. These two lines intersect at w/L = 0.368. (F) The critical force 

for buckling Fbuckle/wμ (red dots) and snapping-backward force F
bF wµ  (purple pentagons) as 

functions of w/L. The solid black line represents the analytical result of the critical force for 

buckling. (G) The critical strain Δlbuckle/L and critical force Fbuckle/wμ for buckling as functions of 

the imperfection Δd/w when w/L = 0.28 and r/w =0.001. 

We then investigate the transition from snapping-through to snapping-back buckling with 

respect to the width-to-length ratio w/L, and identify the boundary between the two buckling modes. 

From the force-displacement curves for different w/L ranging from 0.20 to 0.34 (Figure 3.2A), we 

note that the buckling mode transitions smoothly from snapping-through to snapping-back as w/L 
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increases. Correspondingly, the bifurcation diagram of normalized crease depth (defined in the 

inset of Figure 3.2B) and displacement shows a transition from a super-critical to a sub-critical 

bifurcation (Figure 3.2B). When w/L equals 0.24, the force-displacement curve has a nearly infinite 

slope after the onset of the buckling (left inset in Figure 3.2A), which indicates w/L = 0.24 is the 

boundary between negative and positive post-buckling slopes in the vicinity of the buckling point. 

Soon after the onset of the buckling, a sub-critical crease sets in (left inset in Figure 3.2A), and the 

force-displacement curve starts to snap backward. Therefore, the boundary between snapping-

through and snapping-back buckling is slightly lower than w/L = 0.24. 

 We can see the boundary between the snapping-through and snapping-back buckling 

modes clearer in energy diagrams. The snapping-back buckling mode occurs when a Maxwell 

point, where the free energy of the buckled state equals that of the flat state, can be identified in 

both the free energy-displacement diagram (Figure 3.2C) and the free energy-force diagram 

(Figure 3.2D), while the snapping-through buckling mode occurs when a Maxwell point can only 

be identified in the free energy-force diagram, but not the free energy-displacement diagram. We 

find the transition point from snapping-through to snapping-back mode is in the range of w/L = 

0.22 to 0.24. One can also identify the boundary between the continuous and snapping-through 

buckling modes by checking when the Maxwell point appears in the free energy-force diagram 

(not shown here). 

 To quantitively describe the snapping-back buckling mode, we define some key instability 

conditions (inset in Figure 3.2A, B) and study how they vary with width-to-length ratio w/L. The 

critical strain for buckling Δlbuckle/L (red dots in Figure 3.2E) and its corresponding force Fbuckle/wμ 

(red dots in Figure 3.2F) increase with w/L and perfectly match the analytical results (solid black 

line in Figure 3.2E and F; see Appendix A2.2 for details). In Figure 3.2E, the analytical result of 
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the critical strain for buckling intersects a horizontal dashed line, which indicates the critical strain 

for crease forming on a homogeneously compressed slab Δl/L = 0.354, at w/L = 0.368. When w/L 

< 0.368, a crease sets in (blue squares in Figure 3.2E) on the compressed side of the column after 

the onset of buckling, which indicates bending induced by buckling facilitates the formation of 

creases. When w/L ranges from 0.26 to 0.368, the crease occurs immediately after the onset of 

buckling so that the blues squares almost overlap the red dots. When w/L > 0.368, a crease sets in 

first and no buckling occurs after the onset of the creasing. The increasing gap between the critical 

strain for buckling Δlbuckle/L and snapping-backward strain ΔlbL/L (purple pentagons in Figure 3.2E) 

indicates Δl/L snaps backward more as w/L increases. Likewise, F/wμ also snaps backward more 

as w/L increases, since the difference between the critical force for buckling Fbuckle/wμ and 

snapping-backward force FbF/wμ (purple pentagons in Figure 3.2F) grows with w/L. Besides, we 

find the snapping-back buckling mode is very sensitive to the imperfection Δd (Figure 3.1B): the 

increase of Δd reduces Δlbuckle/L and Fbuckle/wμ dramatically (Figure 3.2G). However, the 

imperfection r used to trigger creases (Figure 3.1B) has a limited impact on the critical condition 

of buckling (see Appendix Figure 2.3). 
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3.4 Experimental Results 

 

Figure 3.3 Experiment results to confirm the snapping-back buckling mode.Two identical columns 

with a width-to-length ratio w/L = 0.28 (width w = 14.6 mm, length L = 52.0 mm, depth b =30.0 

mm) are loaded separately under (A) displacement control and (B) force control. (A) Relation 

between normalized force F/(wbμ) and displacement Δl/L as Δl/L varies at a ±0.1/min rate. The 

snapshots show the shapes of the column before snap-downward (1), after snap-downward (2) and 

at the end of the loading (3) (scale bar, 10.0 mm). (B) Normalized force-displacement relations as 

F/(wbμ) varies at a ±0.2/min rate. The dots on the curves are the measured data points. The small 

number of the data points during the snap-forward and snap-backward implies a rapid change in 

displacement. The insets in (A) and (B) show the expected loading and unloading paths for the 

snapping-back buckling mode. The dashed line represents unstable equilibrium paths that cannot 

be reached in the experiments (See Appendix A2.4, Appendix Video 2.1, and Appendix Video 2.2 

for details). 

We next conduct experiments to confirm the snapping-back buckling mode. We prepared 

two identical elastomeric columns with a width-to-length ratio w/L = 0.28, which are expected to 

exhibit snapping-back buckling. The depth of the columns was around two times of the width. 
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Although this dimension deviates from the plane strain condition assumed in the simulations, 

observation of snapping-back buckling in such columns can further show robustness of the 

phenomenon. These two columns were loaded separately under displacement and force control 

using an Instron machine, and the measured force-displacement relations after normalization are 

plotted in Figure 3.3 (see Appendix A2.4, Appendix Video 2.1, and Appendix Video 2.2 for 

details). Under displacement control, the measured force for snapping-back buckling is supposed 

to snap downward at the critical buckling strain from the bifurcation point a1 to the point a2 during 

loading, and to snap upward at the snapping-backward strain from the tangent point a3 to the point 

a4 during unloading (inset in Figure 3.3A). In the experiment (Figure 3.3A), we observed a sharp 

drop from point 1 to point 2, which meets the expectation of the snap-downward. The fact that the 

snap-upward is not obvious is mainly due to viscoelasticity of the elastomer and the adhesion 

between the self-contacting surfaces of the crease [138]. Under force control, the measured 

displacement for snapping-back buckling is expected to snap forward at the critical buckling force 

from the bifurcation point b1 to the point b2 during loading and snap backward at the snapping-

backward force from the tangent point b3 to the point b4 during unloading (inset in Figure 3.3B). 

In the experiment (Figure 3.3B), we capture both the snap-forward and snap-backward, despite a 

slight drop in force during the snap-forward, which is because the motor of the machine reacts not 

fast enough to keep pace with the changes in force. As a comparison, a column with w/L = 0.20 

was tested under displacement control. Instead of experiencing a sharp drop, the force decreases 

gently as the displacement increases, which implies a snapping-through buckling mode (see 

Appendix Figure 2.4 and Appendix Video 2.3).  
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3.5 Phase Diagram 

 

Figure 3.4 Phase diagram of buckling modes. Different colors separate continuous buckling (light 

gray), snapping-through buckling (light blue), snapping-back buckling (light magenta), and 

creasing (light red). Dashed lines mark the boundaries between positive and negative post-buckling 

slopes of the force-displacement curve in the vicinity of the buckling point. 

Having numerically and experimentally explored the different buckling modes, we further 

construct a phase diagram to illustrate variation of the buckling modes across a wide range of 

width-to-length ratio w/L (Figure 3.4). When w/L < 0.12, the column exhibits continuous buckling 

(light gray in Figure 3.4) and its post-buckling slope of the force-displacement curve is positive. 

When w/L is above 0.12 but below 0.24, the post-buckling slope in the vicinity of the buckling 

point is negative. We have also analytically determined the boundary between the positive and 

negative post-buckling slopes as 0.237, based on post-buckling analysis [118,139,140], the details 

of which will be presented in the next chapter. The boundary between snapping-through (light blue 

in Figure 3.4) and snapping-back (light magenta in Figure 3.4) buckling occurs slightly earlier than 

w/L = 0.24, which is governed by a transition from super-critical to sub-critical creasing. When 

w/L exceeds 0.24, a column displays snapping-back buckling (light magenta in Figure 3.4) and its 

initial post-buckling slope turns into positive. After w/L crosses 0.368, the force-displacement 
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relation shows snapping-back features, which is purely determined by creasing [131] (light red in 

Figure 3.4). 

3.6 Discrete Model 

 

Figure 3.5 Discrete model that captures all three buckling modes. (A) The discrete model consists 

of a rigid bar of length L/2 supported by an extensional spring with a stiffness Kc and a rotational 

spring with a stiffness Kb. The rigid bar has two degrees of freedom: the vertical displacements qc 

at its base and the inclination qb, and is loaded vertically by a force F. (B) As w/L varies from 0.10 

to 0.34 with an increment 0.02, the force-displacement curves show transitions from the 

continuous, snapping-through to snapping-back buckling modes. 

 To understand the transitions from the continuous, snapping-through to snapping-back 

buckling mode as the width-to-length ratio w/L rises, we develop a discrete model [1,141,142] 

(Figure 3.5A). We simplify half of a column as a rigid bar supported by an extensional spring and 

a rotational spring, which account for stretching and bending of the column, respectively, with qc 

representing the vertical displacement at the base of the rigid bar, and qb the inclination angle of 

the rigid bar. Since the compressive strain required for buckling is large when w/L is high (Figure 

3.2E), the coupling effect between stretching and bending due to geometric nonlinearity cannot be 
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neglected [126]. The vertical displacement 2l∆  at the top of the rigid bar in response to a vertical 

load F can be solved by extremizing the following potential energy 

 ( )221 1
2 2 2c c b b b c

lK q K q q q Fξ ∆
Π = + + − , (3.1) 

where the elastic energy due to stretching is stored in the linear extensional spring of stiffness 

2cK EA L= , the elastic energy due to bending is stored in the rotational spring of stiffness

2bK EI L= , and ξ represents the coefficient of the coupling between stretching and bending (see 

Appendix A2.6 for details). The width-to-length ratio w/L affects the behavior of the discrete 

model through changing the stiffnesses of the two springs. As w/L varies from 0.10 to 0.34, the 

discrete model initially exhibits continuous buckling, then evolves into snapping-through buckling, 

and ends with snapping-back buckling (Figure 3.5B). The coefficient ξ is determined to be 12/L, 

so that the critical w/L for the transitions between different buckling modes in the discrete model 

agree with those in the phase diagram shown in Figure 3.4. If ξ is set to be zero, meaning that no 

coupling exists between stretching and bending, the discrete model can only yield continuous 

buckling mode for any w/L, as predicted under the simplified assumption of Euler’s elastica. By 

comparing the coupling energy with the other energy components in the discrete model for 

different w/L, we can conclude that the strong coupling between stretching and bending due to 

geometric nonlinearity is the dominant factor for snapping-back buckling (Appendix Figure 2.5). 

3.7 Summary 

 Here we reveal post-buckling behavior of columns with different width-to-length ratios, 

and particularly identify a new buckling mode, snapping-back buckling, in wide columns. Column 

structures are widely adopted to design mechanical metamaterials and soft robots in the form of 
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flexible hinges or ligaments, where nonlinear responses of columns, such as buckling, are the 

foundation of functionalities. Our discovery of column buckling behavior can be exploited to 

achieve new and advanced functionalities in mechanical metamaterials and soft robotics. Utilizing 

the bistability of snapping-through and snapping-back buckling, we could create metamaterials 

with multi-stable states, and soft robots with fast snapping responses. The large hysteresis 

underneath the force-displacement curve in snapping-back buckling could be used to build energy-

absorbing structures. To understand the mechanism of snapping-back buckling, we have 

established an analytical discrete model, and unraveled that snapping-back buckling results from 

strong coupling between stretching and bending, similar to that of snapping-back buckling in shells. 

However, different from a shell, where the initial curvature significantly contributes to large 

stretching, a wide column has a zero initial curvature, but buckles at a large compression due to its 

high width-to-length ratio. We believe snapping-back modes can also occur in other instabilities 

of soft materials, such as buckling of thick hyperelastic plates, and buckling of metamaterials. 
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Chapter 4 Post-buckling Analysis for Hyperelastic Columns under 

Axial Compression 

In the last chapter, we numerically show that a straight hyperelastic column under axial 

compression exhibits complex buckling behavior. As its width-to-length ratio increases, the 

column can undergo transitions from continuous buckling, like the Euler buckling, to snapping-

through buckling, and eventually to snapping-back buckling. In this chapter, we will analytically 

determine the critical width-to-length ratios for the transitions of buckling modes using a general 

continuum mechanics-based asymptotic post-buckling analysis in the framework of finite 

elasticity. The effect of material compressibility on the buckling modes and their transitions is 

further investigated. Our study provides new insights into column buckling. 

4.1 Introduction 

 Column buckling is traditionally viewed as a way of material failure. However, it has 

recently been harnessed to design functional mechanical metamaterials [143], in which column 

buckling lays the foundation of many advanced functionalities, such as tunable Poisson’s ratios 

[28], programmable nonlinear responses [43], shape morphing [5,21,29,35,39,41,121,122,144–

146], and multi-stability [2,4,5]. The behaviors of these metamaterials are strongly influenced by 

the buckling and post-buckling of columns. 

 The simplest description of column buckling is Euler’s elastica, in which columns are 

modeled as linear elastic rods undergoing small deformation. This model predicts that a straight 

column subjected to a compressive force F or strain 𝜀𝜀 buckles at a critical condition 𝐹𝐹cr or 𝜀𝜀cr, and 

that the post-buckling slope S defined in (𝐹𝐹 − 𝐹𝐹cr) 𝐹𝐹cr⁄ = 𝑆𝑆(𝜀𝜀 − 𝜀𝜀cr) is a positive constant 1/2, 

independent of geometries and boundary conditions [118,119]. This excellently predicts the 
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buckling behavior of slender columns. However, as columns become wide, their post-buckling 

behavior alters dramatically, since the critical strains for column buckling become large and thus 

both material and geometric nonlinearities start to play key roles in the post-buckling regimes. In 

the last chapter, we showed that as the width-to-length ratio increases, the buckling mode of a 

straight hyperelastic column under axial compression switches from continuous, snapping-through, 

to snapping-back. Correspondingly, the initial post-buckling slope changes from positive to 

negative and eventually back to positive. To predict bending and buckling behaviors of wide 

columns, various beam models have been proposed to extend Euler’s elastica 

[126,136,137,147,148]. However, no existing one-dimensional beam models can capture the 

transition between snapping-through and snapping-back modes with respect to the width-to-length 

ratio. The beam models in refs. [136,147,148] consider axial and shear deformations but still keep 

the constitutive material linear. These beam models can predict that the initial post-buckling slope 

decreases from 1/2 as the width-to-length ratio increases, yet remains positive. A recent effort [126] 

was made to incorporate material nonlinearity while keep the beam extensible and shearable. The 

proposed beam model can capture that the initial post-buckling slope changes its sign from positive 

to negative as the width-to-length ratio increases, but never flips its sign back to positive if the 

width-to-length ratio further increases. This failure is because the high-order strain terms from 

geometric nonlinearity, which become non-trivial in the post-buckling regime of wide columns, 

are omitted in the model, as shown in the last chapter. Moreover, the kinematic assumption [149] 

adopted in these beam models, where the cross sections of beams are assumed to remain plane and 

undistorted in the deformed configuration, no longer holds for wide columns.  

 Compared to one-dimensional beam models, a two-dimensional continuum mechanics-

based bifurcation analysis, which takes into account both material and geometric nonlinearities, 
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can accurately capture the buckling and post-buckling behavior of axially compressed columns. 

The onset of buckling for axially compressed columns has been thoroughly studied in the literature 

[150–155] by solving an incremental boundary value problem. To determine the post-buckling 

equilibrium paths and their stability, a general asymptotic technique is developed by Koiter [118], 

and is widely utilized to find the post-buckling solutions for a compressed half-space of neo-

Hokkean material [156], for a thin hyperelastic layer under compression [157], for a hyperelastic 

tube under axial compression [158], and for a growing elastic rod attached to an elastic foundation 

[159]. In particular, Ref. [140] addresses the post-buckling problem using this asymptotic method 

for a two-dimensional rectangular block with various constitutive laws, and finds that a stubby 

column under displacement-controlled compression can exhibit an unstable post-buckling 

equilibrium path, which corresponds to the snapping-back buckling mode. However, the whole 

spectrum of buckling modes for axially compressed columns with respect to the width-to-length 

ratio has not been analytically determined, which motivates our current work.  

In this chapter, we aim to analytically solve the initial post-buckling slope of a straight 

hyperelastic column under axial compression using a general asymptotic post-buckling analysis in 

the framework of finite elasticity, and capture the complete transitions of buckling modes from 

continuous, snapping-through, to snapping back with respect to the width-to-length ratio. Our 

results will be verified by finite element analysis (FEA). In Section 2, we expand our previous 

numerical findings to show that a two-dimensional hyperelastic column under axial compression 

can exhibit three different buckling modes as its width-to-length ratio varies. In Section 3, we 

conduct a continuum mechanics-based asymptotic analysis including both material and geometric 

nonlinearities in the model to determine the initial post-buckling slope as a function of the width-

to-length ratio. Furthermore, the critical width-to-length ratios for the transitions of buckling 
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modes are determined, and the effect of material compressibility on the critical values is 

investigated. The prediction on post-buckling response is in excellent agreement with finite 

element simulations. Summary are presented in Section 4.  

4.2 Transition of Buckling Modes 

We first conduct FEA using the commercial software Abaqus/Standard to identify the three 

buckling modes of a straight hyperelastic column under axial compression as the width-to-length 

ratio varies. The constitutive relation used in FEA is the compressible neo-Hookean material law 

with the following elastic energy density 

 𝑊𝑊 = 𝜇𝜇
2
�𝐽𝐽−2 3⁄ tr(𝐅𝐅𝐅𝐅T) − 2� + 𝐾𝐾

2
(𝐽𝐽 − 1)2, (4.1) 

where F is the deformation gradient (F𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑢𝑢𝑖𝑖 𝜕𝜕𝑋𝑋𝑗𝑗⁄ + 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝑢𝑢𝑖𝑖  denotes the displacement in 𝑋𝑋𝑖𝑖 

direction and 𝛿𝛿𝑖𝑖𝑖𝑖 denotes the Kronecker delta), J is the determinant of F, µ and K are the shear and 

bulk moduli, respectively. With the factor 𝐽𝐽−2 3⁄ , the first term in the strain energy W in Eq. (4.1) 

is due to deviatoric deformation, while the second term is due to volumetric deformation. When K 

approaches infinite, the model represents an incompressible neo-Hookean material, which is 

adopted in the simulations in Figure 4.2 to represent a generic hyperelastic material. We carry out 

two-dimensional plane strain simulations (Abaqus element type CPE8H) for columns with a width 

w and length L under an axial displacement Δl using the Riks method, and the compressive reaction 

force F is computed Figure 4.1. Both ends of the columns are allowed to slide freely along the 

horizontal direction but maintained flat. We assume reflection symmetry about the X1 axis, and 

thus only half of this column is simulated. Imperfections are introduced into the initial geometry 

to trigger buckling and creasing instabilities (see Figure 3.1 for further details). 
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Figure 4.1 Schematic representation of a two-dimensional hyperelastic column (left) subjected to 

a compressive force F or a displacement Δl. Due to symmetry, only the top half of this column 

(right) is selected for simulations and modeling. 

We summarize the numerical results in Figure 4.2 to show the three buckling modes for 

straight hyperelastic columns with different width-to-length ratios w/L under axial compression. 

We define the strain ε as Δl/L, which is the displacement Δl between the two ends of the column 

divided by the initial length L. We plot the normalized force-strain F/wµ-ε curves along the 

equilibrium paths (the 2nd column of Figure 4.2), and show the deformed shapes at three 

representative positions on the F/wµ-ε curves: the onset of column buckling (Point 1, the 3rd 

column of Figure 4.2), the onset of creasing [127–129,160], which is a scale-free, localized self-

contacting fold, on the surface of the compressive side of the columns (Point 2, the 4th column of 

Figure 4.2), and the rebound of the reaction forces (Point 3, the 5th column of Figure 4.2). When 

w/L is low (w/L = 0.10, the 2nd row of Figure 4.2), although the slope of the F/wµ -ε curve 

decreases dramatically after buckling, it remains positive. We call this buckling mode as 

continuous buckling, since the post-buckling solution is stable, and the force and strain increase 

continuously. As w/L increases, the buckling behavior becomes discontinuous. When w/L = 0.20 

(the 3rd row of Figure 4.2), the force decreases while the strain increases after the buckling point 



68 
 

(Point 1), leading to a negative initial post-buckling slope, which eventually increases sharply due 

to self-contact. This buckling mode with a negative initial post-buckling slope is called snapping-

through buckling, which is commonly observed in shallow arches [1]. When w/L = 0.28 (the 4th 

row in Figure 4.2), both the force and strain decrease after the buckling point (Point 1), forming a 

positive initial post-buckling slope. This buckling mode with such a force-strain relation resembles 

shell buckling [9], and is called snapping-back buckling. In sum, as w/L increases, the buckling 

mode undergoes a transition from continuous to snapping-through, and eventually to snapping-

back. Correspondingly, the initial post-buckling slope switches from positive to negative, and ends 

up with positive.  

Our previous numerical results (Figure 3.2) show that the critical w/L for the buckling mode 

transition from snapping-through to snapping-back for an incompressible neo-Hookean material 

is around 0.24, which has not been predicted by any existing beam model [126,136,137,147,148]. 

In the next section, we will analytically determine the initial post-buckling slope as a function of 

w/L and capture the transitions of buckling modes.  

 



69 
 

 

Figure 4.2 Three modes of column buckling under axial compression: continuous (the 2nd row), 

snapping-through (the 3rd row), and snapping-back (the 4th row). The normalized compressive 

force F/(wµ) and strain ε relations are plotted in the 2nd column. The 3rd to 5th columns show 

how the shapes of the columns evolve as the compressive strain increases. The color indicates the 

level of minimum principle logarithmic strain. The shear-to-bulk modulus ratio µ/K adopted in 

FEA is 0. 

4.3 Continuum Mechanics-based Asymptotic Analysis 

 In this section, we conduct a continuum mechanics-based asymptotic analysis 

[118,139,140] to investigate the buckling and post-buckling behavior of axially compressed 

columns. Ref. [140] has studied the stability of the post-buckling path of axially compressed 
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columns. Here we further extend the analysis to determine the initial post-buckling slope, and 

investigate the transitions of buckling modes from continuous to snapping-back.  

4.3.1 Bifurcation analysis 

 The potential energy for planar deformation of the half column shown in Figure 4.1 is 

 Π[𝐮𝐮; 𝜀𝜀] = ∫ 𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴 = ∫ ∫ �𝜇𝜇
2
�𝐽𝐽−2 3⁄ tr(𝐅𝐅𝐅𝐅T) − 2� + 𝐾𝐾

2
(𝐽𝐽 − 1)2� 𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2

𝑤𝑤
2
−𝑤𝑤2

𝐿𝐿
2
0 , (4.2) 

where u denotes the displacement field, W is the elastic energy density function given by Eq. (4.1). 

The variational equation of equilibrium can be obtained by applying the principle of stationary 

potential energy, i.e. 

 Π′[𝐮𝐮; 𝜀𝜀]𝛿𝛿𝐮𝐮 = 0, (4.3) 

where Π′ denotes the first-order functional derivative of Π with respect to 𝐮𝐮. 

 There exists a fundamental solution to Eq. (4.3), which is denoted as 𝐮𝐮
0

. This solution 

corresponds to homogeneous deformation and can be expressed in terms of the principle stretches  

 
𝐮𝐮
0

= �𝑢𝑢
0
1

𝑢𝑢
0
2

� = �
(𝜆𝜆1 − 1)𝑋𝑋1
(𝜆𝜆2 − 1)𝑋𝑋2

�, (4.4) 

where 𝜆𝜆1 and 𝜆𝜆2 are the two principle stretches in the X1 and X2 directions, and can be determined 

by 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆1

= 0, 𝜆𝜆2 = 1 − 𝜀𝜀. (4.5) 

The first equation in Eq. (4.5) indicates that the first Piola-Kirchhoff stress vanishes in the X1 

direction.  
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 The fundamental solution 𝐮𝐮
0
 in Eq. (4.4) is stable until 𝜀𝜀 reaches 𝜀𝜀cr, where another solution 

to Eq. (4.3) corresponding to column buckling emerges. The critical strain 𝜀𝜀cr for column buckling 

can be analytically determined by solving the following eigenvalue problem [118,139,140] 

 Π′′ �𝐮𝐮
0

(𝜀𝜀cr); 𝜀𝜀cr� 𝐮𝐮
1
𝛿𝛿𝐮𝐮 = 0 (4.6) 

for all admissible displacement fields 𝛿𝛿𝐮𝐮, where Πʹʹ is the second-order functional derivative of Π 

with respect to 𝐮𝐮, 𝐮𝐮
0

(𝜀𝜀cr) is the fundamental solution at 𝜀𝜀cr, and 𝐮𝐮
1
 is the buckling mode.  

 Substituting Eq. (4.2) into Eq. (4.6), we have 

 
Π′′ �𝐮𝐮

0
(𝜀𝜀cr); 𝜀𝜀cr� 𝐮𝐮

1
𝛿𝛿𝐮𝐮 = ∫ ∫

𝜕𝜕2𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙𝜕𝜕𝑢𝑢𝑖𝑖,𝑗𝑗
𝑢𝑢
1
𝑖𝑖,𝑗𝑗𝛿𝛿𝑢𝑢𝑘𝑘,𝑙𝑙𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2

𝑤𝑤
2
−𝑤𝑤2

𝐿𝐿
2
0 = 0, (4.7) 

where 𝑢𝑢𝑖𝑖 and 𝑢𝑢
1
𝑖𝑖 are the components of u and 𝐮𝐮

1
 in the Xi direction, respectively, and ( ),𝑗𝑗 equals 

𝜕𝜕( ) 𝜕𝜕𝑋𝑋𝑗𝑗⁄ . Integration by parts yields the Euler-Lagrange differential equations for 𝐮𝐮
1
  

 𝜕𝜕2𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙𝜕𝜕𝑢𝑢𝑖𝑖,𝑗𝑗
𝑢𝑢
1
𝑖𝑖,𝑗𝑗𝑗𝑗 = 0, (4.8) 

and the corresponding boundary conditions 

 𝜕𝜕2𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢𝑘𝑘,1𝜕𝜕𝑢𝑢𝑖𝑖,𝑗𝑗
𝑢𝑢
1
𝑖𝑖,𝑗𝑗 = 0 at 𝑋𝑋1 = ±𝑤𝑤

2
, (4.9) 

 
𝛿𝛿𝑢𝑢2 = 0 and 

𝜕𝜕2𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢1,2𝜕𝜕𝑢𝑢𝑖𝑖,𝑗𝑗
𝑢𝑢
1
𝑖𝑖,𝑗𝑗 = 0 at 𝑋𝑋2 = 0 and 𝐿𝐿 2⁄ , (4.10) 

where ( ),𝑗𝑗𝑗𝑗  equals 𝜕𝜕2( ) 𝜕𝜕𝑋𝑋𝑗𝑗𝜕𝜕𝑋𝑋𝑙𝑙� . Eq. (4.10) holds automatically. The solutions to Eq. (4.8) can 

be written in the following form 
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�
𝑢𝑢
1
1 = (𝛼𝛼1 cosh 𝑧𝑧1𝑋𝑋1 + 𝛼𝛼2 cosh 𝑧𝑧2𝑋𝑋1) cos 2𝜋𝜋𝑋𝑋2

𝐿𝐿

𝑢𝑢
1
2 = (𝛼𝛼3 sinh 𝑧𝑧1𝑋𝑋1 + 𝛼𝛼4 sinh 𝑧𝑧2𝑋𝑋1) sin 2𝜋𝜋𝑋𝑋2

𝐿𝐿

, (4.11) 

where z1 and z2 are the two positive roots of the characteristic polynomial for Eq. (4.8). Substituting 

Eq. (4.11) into Eqs. (4.8) and (4.9), we then obtain 

 
𝐀𝐀 �

𝛼𝛼1
𝛼𝛼2
𝛼𝛼3
𝛼𝛼4

� = 0. (4.12) 

A nontrivial solution to Eq. (4.12) exists when the determinant of the coefficient matrix 𝐀𝐀 vanishes, 

from which we can solve 𝜀𝜀cr. With Eq. (4.12) and 

 〈𝐮𝐮
1

,𝐮𝐮
1
〉 = 2

𝐿𝐿𝐿𝐿 ∫ ∫ 𝑢𝑢
1
𝑖𝑖𝑢𝑢

1
𝑖𝑖𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2

𝑤𝑤
2
−𝑤𝑤2

𝐿𝐿
2
0 = 1, (4.13) 

we can determine the coefficients 𝛼𝛼1~𝛼𝛼4 that lead to the buckling mode 𝐮𝐮
1
 with a unit amplitude. 

 The critical strain for the onset of column buckling 𝜀𝜀cr  depends on the shear-to-bulk 

modulus ratio µ/K and width-to-length ratio w/L. Figure 4.3 plots 𝜀𝜀cr for column buckling as a 

function of w/L under three different µ/K. Under a given µ/K, the critical strain 𝜀𝜀cr  increases 

monotonically from zero with the increase of w/L. Similar results have been reported in ref. [140]. 

However, the dependence of 𝜀𝜀cr on µ/K is non-monotonic. For thick columns, w/L > 0.35, the case 

with an intermediate µ/K (the red curve in Figure 4.3) has the lowest 𝜀𝜀cr. Once the critical strain 

for the onset of buckling surpasses that of creasing for sufficiently a high w/L, creasing occurs 

prior to buckling at a constant critical strain 𝜀𝜀cr (horizontal dotted lines) [129,160]. The critical 

strain for the onset of creasing under a plane strain condition is 0.354 for incompressible neo-

Hookean material (µ/K = 0) [129,160] and varies non-monotonically as µ/K increases [161]. The 
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intersection between the critical conditions of buckling and creasing determines the critical w/L, 

below which buckling occurs first and above which creasing occurs first.  

 

Figure 4.3 Critical strain εcr for the onset of column instability as a function of the width-to-length 

ratio w/L under different shear-to-bulk modulus ratios µ/K. The curves represent the critical strain 

for column buckling, while the horizontal dotted lines indicate the critical strain for creasing in a 

homogeneously compressed slab. They intersect at a critical w/L, below which buckling occurs 

first and above which creasing occurs first. 

4.3.2 Post-buckling analysis 

 Having determined the critical strain 𝜀𝜀cr for the onset of buckling and the corresponding 

eigenmode 𝐮𝐮
1
, we asymptotically expand [118,139,140] the displacement field u and compressive 

strain ε in the vicinity of the buckling point along the equilibrium path of column buckling 

 𝐮𝐮 = 𝐮𝐮
0

(𝜀𝜀) + 𝜉𝜉𝐮𝐮
1

+ 𝜉𝜉2𝐮𝐮
2

+ 𝑜𝑜(𝜉𝜉3), (4.14) 

 𝜀𝜀 = 𝜀𝜀cr + 𝜉𝜉2𝜀𝜀2 + 𝑜𝑜(𝜉𝜉4), (4.15) 

where 𝜉𝜉 represents the amplitude of the buckling mode 𝐮𝐮
1

. Due to symmetry, only even power 

terms of 𝜉𝜉 are involved in Eq. (4.15) so that the sign of 𝜉𝜉 has no effect on 𝜀𝜀. Since 𝐮𝐮 and 𝜀𝜀 given 



74 
 

by Eq. (4.14) and (4.15) must satisfy equilibrium Π′[𝐮𝐮; 𝜀𝜀]𝛿𝛿𝐮𝐮 = 0, a Taylor-series expansion about 

the buckling point gives 

 �Πcr′′ 𝐮𝐮
2

+ 1
2
Πcr′′′𝐮𝐮

12� 𝛿𝛿𝐮𝐮𝜉𝜉2 + �𝜀𝜀2Π̇cr′′ 𝐮𝐮
1

+ Πcr′′′𝐮𝐮
1
𝐮𝐮
2

+ 1
6
Πcr

(𝑖𝑖𝑖𝑖)𝐮𝐮
13� 𝛿𝛿𝐮𝐮𝜉𝜉3 + 𝑜𝑜(𝜉𝜉4) = 0, (4.16) 

where Πcr
(𝑛𝑛) is the nth-order functional derivative of Π at the buckling point, i.e. Π(𝑛𝑛) �𝐮𝐮

0
(𝜀𝜀cr); 𝜀𝜀cr�, 

and ( )̇ is the first derivative with respect to 𝜀𝜀. The coefficients of 𝜉𝜉2 and 𝜉𝜉3 in Eq. (4.16) must 

vanish independently, which yields a variational equation for 𝐮𝐮
2
 

 Πcr′′ 𝐮𝐮
2
𝛿𝛿𝐮𝐮 + 𝟏𝟏

𝟐𝟐
Πcr′′′𝐮𝐮

12𝛿𝛿𝐮𝐮 = 0, (4.17) 

and an expression for 𝜀𝜀2 by setting 𝛿𝛿𝐮𝐮 = 𝐮𝐮
1
 

 
𝜀𝜀2 = −

Πcr′′′𝐮𝐮
12𝐮𝐮

2
+16Πcr

(𝑖𝑖𝑖𝑖)𝐮𝐮
14

Π̇cr′′ 𝐮𝐮
12

. (4.18) 

 Substituting Eq. (4.2) into Eq. (4.17), we have 

 
∫ ∫ �

𝜕𝜕2𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢𝑖𝑖,𝑗𝑗𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙
𝑢𝑢
2
𝑘𝑘,𝑙𝑙 + 1

2

𝜕𝜕3𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢𝑖𝑖,𝑗𝑗𝜕𝜕𝑢𝑢𝑚𝑚,𝑛𝑛𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙
𝑢𝑢
1
𝑘𝑘,𝑙𝑙𝑢𝑢

1
𝑚𝑚,𝑛𝑛� 𝛿𝛿𝑢𝑢𝑖𝑖,𝑗𝑗𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2

𝑤𝑤
2
−𝑤𝑤2

𝐿𝐿
2
0 = 0. (4.19) 

Integration by parts yields Euler-Lagrange differential equations for 𝐮𝐮
2
  

 𝜕𝜕2𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢𝑖𝑖,𝑗𝑗𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙
𝑢𝑢
2
𝑘𝑘,𝑙𝑙𝑙𝑙 + 1

2

𝜕𝜕3𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢𝑖𝑖,𝑗𝑗𝜕𝜕𝑢𝑢𝑚𝑚,𝑛𝑛𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙
�𝑢𝑢

1
𝑘𝑘,𝑙𝑙𝑙𝑙𝑢𝑢

1
𝑚𝑚,𝑛𝑛 + 𝑢𝑢

1
𝑘𝑘,𝑙𝑙𝑢𝑢

1
𝑚𝑚,𝑛𝑛𝑛𝑛� = 0, (4.20) 

and the corresponding boundary conditions 

 𝜕𝜕2𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢𝑖𝑖,1𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙
𝑢𝑢
2
𝑘𝑘,𝑙𝑙 + 1

2

𝜕𝜕3𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢𝑖𝑖,1𝜕𝜕𝑢𝑢𝑚𝑚,𝑛𝑛𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙
𝑢𝑢
1
𝑘𝑘,𝑙𝑙𝑢𝑢

1
𝑚𝑚,𝑛𝑛 = 0 at 𝑋𝑋1 = ±𝑤𝑤

2
, (4.21) 
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𝛿𝛿𝑢𝑢2 = 0 and 

𝜕𝜕2𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢1,2𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙
𝑢𝑢
2
𝑘𝑘,𝑙𝑙 + 1

2

𝜕𝜕3𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�

𝜕𝜕𝑢𝑢1,2𝜕𝜕𝑢𝑢𝑚𝑚,𝑛𝑛𝜕𝜕𝑢𝑢𝑘𝑘,𝑙𝑙
𝑢𝑢
1
𝑘𝑘,𝑙𝑙𝑢𝑢

1
𝑚𝑚,𝑛𝑛 = 0 at 𝑋𝑋2 =

0 and 𝐿𝐿 2⁄ . 

(4.22) 

Eq. (4.22) is satisfied automatically. With the orthogonality between 𝐮𝐮
1
 and 𝐮𝐮

2
  

 〈𝐮𝐮
1

,𝐮𝐮
2
〉 = 2

𝐿𝐿𝐿𝐿 ∫ ∫ 𝑢𝑢
1
𝑖𝑖𝑢𝑢

2
𝑖𝑖𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2

𝑤𝑤
2
−𝑤𝑤2

𝐿𝐿
2
0 = 0, (4.23) 

the solutions to Eq. (4.20) can be written in the following form 

 
�
𝑢𝑢
2
1 = 𝐵𝐵1(𝑋𝑋1) cos 4𝜋𝜋𝑋𝑋2

𝐿𝐿
+ 𝐶𝐶1(𝑋𝑋1)

𝑢𝑢
2
2 = 𝐵𝐵2(𝑋𝑋1) sin 4𝜋𝜋𝑋𝑋2

𝐿𝐿

. (4.24) 

Substituting Eq. (4.24) into Eqs. (4.20) and (4.21) , we can obtain 𝐮𝐮
2
. Then 𝜀𝜀2 can be calculated by 

substituting 𝐮𝐮
2
 and Eq. (4.2) into Eq. (4.18)  

 𝜀𝜀2 =

−
∫ ∫

𝜕𝜕3𝑊𝑊�𝐮𝐮
0

(𝜀𝜀cr)�
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𝑘𝑘,𝑙𝑙𝑢𝑢
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𝑖𝑖,𝑗𝑗𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2

𝑤𝑤
2
−𝑤𝑤2

𝐿𝐿
2
0 +16∫ ∫
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0
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𝑢𝑢
1
𝑝𝑝,𝑞𝑞𝑢𝑢

1
𝑚𝑚,𝑛𝑛𝑢𝑢

1
𝑘𝑘,𝑙𝑙𝑢𝑢

1
𝑖𝑖,𝑗𝑗𝑑𝑑𝑋𝑋1𝑑𝑑𝑋𝑋2

𝑤𝑤
2
−𝑤𝑤2
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2
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��
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𝑢𝑢
1
𝑘𝑘,𝑙𝑙𝑢𝑢

1
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𝑤𝑤
2
−𝑤𝑤2

𝐿𝐿
2
0

. 
(4.25) 

 Given a specified compressive strain 𝜀𝜀, we can obtain the displacement field u on the 

equilibrium path of column buckling using Eqs. (4.14) and (4.15). The applied force 𝐹𝐹 

corresponding to 𝜀𝜀 can then be calculated by 

 𝐹𝐹 = −∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢1,1

�
𝑋𝑋2=𝐿𝐿 2⁄

𝑑𝑑𝑋𝑋1
𝑤𝑤
2
−𝑤𝑤2

= 𝐹𝐹cr + 𝜉𝜉2𝐹𝐹2 + 𝑜𝑜(𝜉𝜉4), (4.26) 
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where 𝐹𝐹cr  is the critical force for column buckling. Combining Eq. (4.15) and Eq. (4.26) and 

eliminating the intermediate variable 𝜉𝜉2, we can write the relation between force F and strain ε in 

the following form 

 (𝐹𝐹 − 𝐹𝐹cr) 𝐹𝐹cr⁄ = 𝑆𝑆(𝜀𝜀 − 𝜀𝜀cr) + 𝑜𝑜[(𝜀𝜀 − 𝜀𝜀cr)2], (4.27) 

where S is the post-buckling slope in the vicinity of the buckling point 

 𝑆𝑆 = 𝐹𝐹2
𝜀𝜀2𝐹𝐹cr

. (4.28) 

To verify this post-buckling analysis, we compare the post-buckling paths predicted by Eq. 

(4.27) with FEA under µ/K = 0.005 (nearly incompressible neo-Hookean materials) (Figure 4.4). 

We select three values of w/L representing the three column buckling modes: w/L = 0.10 

(continuous), w/L = 0.20 (snapping-through), and w/L = 0.30 (snapping-back). In each case, the 

strain 𝜀𝜀 in the post-buckling regime is restricted to 1% higher (continuous and snapping-through) 

or lower (snapping-back) than the corresponding critical strain 𝜀𝜀cr such that Eq. (4.27) with only 

linear order term of (𝜀𝜀 − 𝜀𝜀cr) can provide an accurate approximation of the force F. The post-

buckling slope S defined in Eq. (4.27) for different w/L can be calculated using Eq. (4.28), yielding 

0.02974 for w/L = 0.10, −5.788 for w/L = 0.20 and 12.06 for w/L = 0.28. As a result, the post-

buckling paths predicted by Eq. (4.27) (the blue solid lines) and by FEA (the red circles) are in 

excellent agreement (percent error < 0.02%) (Figure 4.4). Even if the strain 𝜀𝜀 in the post-buckling 

regime increases (continuous and snapping-through) or decreases (snapping-back) from the critical 

strain 𝜀𝜀cr by 5%, the predictions made by Eq. (4.27) on the post-buckling paths are still reasonably 

accurate (percent error < 0.3%). 
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Figure 4.4 Comparison between the post-buckling paths predicted by the asymptotic analysis (the 

solid lines) and FEA (the dots) under µ/K = 0.005 for the three column buckling modes: (a) 

continuous (w/L = 0.10), (b) snapping-through (w/L = 0.20), and (c) snapping-back (w/L = 0.28). 

 

Figure 4.5 Comparison of the buckled shapes in the asymptotic analysis and FEA under µ/K = 

0.005 for the three column buckling modes: (a) continuous (w/L = 0.10), (b) snapping-through 

(w/L = 0.20), and (c) snapping-back (w/L = 0.28). The black lattices denote the initial shapes, 

whereas the red and green lattices denote the buckled shapes predicted by the asymptotic analysis 

and FEA, respectively, under a strain 𝜀𝜀 5% higher (continuous and snapping-through) or lower 

(snapping-back) than the critical strain 𝜀𝜀cr.  

We further compare the buckled shapes predicted by the asymptotic analysis and FEA 

when the strain 𝜀𝜀 in the post-buckling regime reaches 1.05𝜀𝜀cr (continuous and snapping-through) 
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or 0.95𝜀𝜀cr (snapping-back) (Figure 4.5). The buckled shapes predicted by our theory are in good 

agreement with FEA for all the three buckling modes. Note that when w/L is large, especially for 

the snapping-back case, the columns undergo large shear deformation, as assumed in the 

Timoshenko beam theory [136,147–149] Moreover, the initially flat cross sections do not remain 

flat after buckling, which is violated in the Timoshenko’s assumption and the other existing beam 

models adopting the Timoshenko’s assumption [126,136,137,147,148]. 

To study how the initial post-buckling slope S varies with w/L, we first investigate the two 

factors determining S in Eq. (4.28), F2 and ε2. We plot the normalized F2/Fcr (Figure 4.6a) and ε2/εcr 

(Figure 4.6b) as a function of w/L under different µ/K, and find that both F2 and ε2 monotonically 

decrease with w/L from a positive value and pass zero at certain w/L. The condition F2 = 0 given 

a positive ε2 indicates that S changes its sign from positive to negative, whereas ε2 = 0 given a 

negative F2 indicates that S changes from negative infinite to positive infinite. 

 

Figure 4.6 Normalized second-order terms in the asymptotic expansions of (a) the compressive 

force F and (b) compressive strain ε as a function of the width-to-length ratio w/L under different 

shear-to-bulk modulus ratios µ/K. The inset of (a) magnifies the region where the force changes 

from positive to negative. 
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We then plot S as a function of w/L under different µ/K (Figure 4.7). For all the µ/K values, 

the slope S starts with 0.5 when the column is extremely slender (𝑤𝑤 𝐿𝐿⁄ ≪ 1), which agrees with 

the prediction of Euler’s elastica. For an almost incompressible material with µ/K = 0.005, as the 

column becomes thicker (w/L increases), the slope S decreases but remains positive until w/L = 

0.103, at which the buckling mode transitions from continuous to snapping-through. The sign of S 

flips again at w/L = 0.238 from negative to positive, indicating the transition of the buckling mode 

from snapping-through to snapping-back. This critical w/L = 0.238 perfectly matches our previous 

numerical result in the last chapter. When µ/K is larger, corresponding to a more compressible 

material, the sign of S also flips twice, but the critical w/L for the transitions of buckling modes 

increase.  

 

Figure 4.7 Post-buckling slope S as a function of the width-to-length ratio w/L under different 

shear-to-bulk modulus ratios µ/K. (a) is a zoom-in view of (b) in the region where S changes from 

positive to negative. 

 To thoroughly investigate the effect of shear-to-bulk modulus ratio µ/K on the transitions 

of buckling modes, we plot a phase diagram (Figure 4.8a) to demarcate the boundaries between 

the three buckling modes in the w/L-µ/K space. It is found that µ/K can significantly postpone the 
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transition between snapping-through and snapping-back to a higher w/L, whereas the transition 

between continuous and snapping-through is much less affected by µ/K. This increasingly strong 

influence of µ/K on the post-buckling paths as w/L increases can be seen more clearly in Figure 

4.8b-d, in which the slopes of the F/wµ-ε curves in the post-buckling regime under different µ/K 

are nearly equal under a low w/L (Figure 4.8b), whereas they differ markedly from each other 

under a high w/L (Figure 4.8c-d). 

 

Figure 4.8 Effect of the shear-to-bulk modulus ratio µ/K on the transitions of buckling modes. (a) 

Phase diagram of the buckling modes with respect to the shear-to-bulk modulus ratio µ/K and 

width-to-length ratio w/L. The black solid lines denote the boundaries between the buckling modes. 

(b-d) Normalized force-strain F/wµ-ε curves under different µ/K from the asymptotic analysis 

when (b) w/L = 0.10, (c) w/L = 0.24 and (d) w/L = 0.34.  
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4.4 Summary 

 Buckling of straight columns under axial compression has been extensively studied for 

centuries. Although the buckling behavior of slender columns are well predicted, the post-buckling 

response of wide columns with high width-to-length ratios, where material and geometric 

nonlinearities become crucial, remains largely unexplored. In this paper, we analytically show that 

for a straight hyperelastic column, the increase of its width-to-length ratio can fundamentally alter 

its buckling mode, from continuous to snapping-through, and to snapping-back. Correspondingly, 

the initial post-buckling slope flips its sign from positive to negative, and eventually back to 

positive. By applying a continuum mechanics-based asymptotic analysis, we determine the initial 

post-buckling slope as a function of the width-to-length ratio, and then identify the critical width-

to-length ratios for the transitions of the buckling modes, which perfectly match the FEA results. 

Furthermore, we find that as the shear-to-bulk modulus ratio, which represents the material 

compressibility, increases, the transition between snapping-through and snapping-back buckling 

is postponed to a higher critical width-to-length ratio. A phase diagram of the buckling modes with 

respect to the width-to-length ratio and shear-to-bulk modulus ratio is constructed. Although our 

analysis is based on a specific neo-Hookean material model (Eq. (4.1)), other forms of neo-

Hookean models yield similar results. The framework proposed in this paper can be applied to 

other constitutive laws to study the effect of different material nonlinearities on post-buckling 

behavior. We believe that our study provides new insights into column buckling and our findings 

could be of benefit to the design of mechanical metamaterials that rely on column buckling for 

their functionalities. 
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Chapter 5 Reusable Energy-absorbing Architected Materials 

Harnessing Snapping-back Buckling of Wide Hyperelastic Columns 

In Chapter 3 and 4, we discover a new buckling mode for axially-loaded wide hyperelastic 

columns: snapping-back buckling mode, which can be used for energy dissipation. In this chapter, 

we propose a new class of reusable energy-absorbing architected material harnessing the snapping-

back buckling of wide hyperelastic columns. Subjected to an axial compression, a wide 

hyperelastic column can discontinuously buckle, snapping from one stable equilibrium state to 

another, leading to energy dissipation, while upon unloading, it can completely recover its 

undeformed state. Making use of this property, we design an energy-absorbing architected material 

by stacking layers of wide hyperelastic columns, and fabricate it by multi-material 3D printing and 

sacrificial molding. Characterized by quasi-static and drop tests, the material shows the capability 

of energy dissipation and impact force mitigation in a reusable, self-recoverable, and rate-

independent manner. A theory is established to predict the energy-absorbing performance of the 

material and the influence of the column geometry and layer number. Wide tunability of the peak 

force, energy dissipation and stability of the material is further demonstrated. Our work provides 

new design strategies for developing reusable energy-absorbing materials and opens new 

opportunities for improving their energy dissipation capacities. 

5.1 Introduction 

Energy-absorbing materials are ubiquitously used to protect humans and objects from 

impacts or collisions, examples including football helmets, car bumpers, and packaging of delicate 

goods. The essence of an energy-absorbing material is the capability of absorbing mechanical 

shock energy while keeping the peak force below the safety threshold. Besides, energy dissipation 
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is required to mitigate rebounds [51]. Among various energy dissipation mechanisms, plastic 

deformation or fracture of metals, ceramics and composites [52,53] is often utilized to dissipate a 

large amount of energy by means of dislocation motion or bond breakage. However, these energy-

absorbing materials are typically only good for one-time usage, since they undergo irreversible 

deformation or are permanently damaged during an impact. Materials with the energy dissipation 

mechanisms of viscous flow [54] and viscoelasticity [55–57] can be used repeatedly, but they are 

highly rate-dependent with slow recovery to the undeformed states upon unloading. Friction [58–

60] between particles in granular materials also permits reusability, but the collapsed materials are 

usually not self-recoverable. 

To achieve a reusable, rate-independent and self-recoverable energy-absorbing material, a 

novel design strategy of harnessing the snapping-through instability of tilted or curved beams in 

architected materials has been proposed [2–5,38,61–73]. These beams are stacked into a multi-

layered structure, and buckle sequentially one layer after another under compression, resulting in 

a nearly constant force as the displacement proceeds. The impact energy can be either trapped in 

the material due to bistability, or damped into heat due to snapping motions. Since the material 

only deforms elastically, it is reusable and rate-independent. However, when the constituent beams 

are bistable [2,4,38,61–63,66,68,69], the architected material stays in the deformed configuration 

after compression, without self-recovering its undeformed state. On the other hand, when the 

constituent beams are monostable, although the formed energy-absorbing architected material is 

self-recoverable upon unloading, a large number of layers connecting in series are required to 

achieve energy dissipation [3,64,74], making the structure thick and heavy. Connecting a single 

curved beam with a tailored elastic element allows energy dissipation without building a multi-
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layered structure [162], but the complex design and the large volume of the elastic element make 

it unsuitable for practical applications. 

In this chapter, we report a new class of reusable, rate-independent, and self-recoverable 

energy-absorbing architected material harnessing the snapping-back buckling of wide hyperelastic 

columns. The last two chapters show that an axially-loaded column (Figure 5.1A) can exhibit 

continuous, snapping-through and snapping-back buckling modes as the width-to-length ratio of 

the column increases (Figure 5.1B). In particular, the snapping-back buckling is a new mode of 

column buckling, where the force-displacement relation is discontinuous under not only force-

controlled, but also displacement-controlled loading. When axially compressed, the column can 

snap between different stable equilibrium states, leading to energy dissipation. Upon unloading, 

the column instantaneously and completely recovers its undeformed state. Similar to tilted or 

curved beams that exhibiting the snapping-through buckling, the wide hyperelastic column is 

reusable and rate-independent. However, compared to a tilted or curved beam, the wide column of 

the same geometry has a higher critical strain for buckling, and thus has a higher energy-absorption 

capacity. Moreover, due to the nature of the snapping-back buckling mode, the dissipated energy 

for the wide column stacked in series increases faster with the layer number than that for the tilted 

or curved beam. The strategy of harnessing the snapping-back buckling of wide hyperelastic 

columns opens new opportunities for designing light-weight reusable energy-absorbing materials. 

In this chapter, we first develop a theory to precisely predict the quasi-static force-

displacement response of a multi-layered column structure, unveiling the influence of the geometry 

of the columns and the number of layers on the energy-absorbing performance, and highlighting 

the high energy dissipation capacity of a multi-layered structure composed of wide columns 

exhibiting the snapping-back buckling. Next, we fabricate the multi-layered energy-absorbing 
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architected materials by multi-material 3D printing and sacrificial molding. The wide columns are 

made of a silicone elastomer, a typical hyperelastic material that can undergo reversible large 

deformation in a rate-independent manner. We conduct static and drop tests to verify that the 

proposed architected materials are capable of absorbing impact energy while keeping the peak 

force below a safety threshold. Finally, we demonstrate that their mechanical responses can be 

widely tuned by the geometry and preloads. 

 

Figure 5.1 Energy dissipation mechanism of wide hyperelastic columns. (A) Schematic drawing 

of a straight hyperelastic column with a width-to-length ratio w/l subjected to axial compression 

and the clamped-clamped boundary condition. The column buckles under a critical load or 

displacement. (B) Normalized compressive force-displacement curves for three different values of 

w/l. The shaded areas indicate the normalized energy dissipation in one force-controlled loading 

and unloading cycle, which is also the maximum dissipated energy for the columns under 

displacement-controlled loading, 𝐸𝐸disMax 𝜇𝜇𝜇𝜇𝜇𝜇⁄ . (C) 𝐸𝐸disMax 𝜇𝜇𝜇𝜇𝜇𝜇⁄  as a function of w/l. The regions of 

different colors indicate the different buckling modes of the column. 
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5.2 Theory 

The energy-absorbing of our proposed architected material is based on the snapping-back 

buckling of wide hyperelastic columns (Figure 5.1), which ensures that the proposed material is 

reusable and its energy-absorbing performance is rate-independent. When subjected to an axial 

displacement Δl or force F (Figure 5.1A), a column of an initial shear modulus 𝜇𝜇, a width-to-length 

ratio w/l, constrained by the clamped-clamped boundary condition buckles at a critical loading 

condition. Using finite element (FE) analysis, we found that the buckling mode transitions from 

continuous, snapping-through to snapping-back as w/l increases (Figure 5.1B) (for details on the 

FE modeling, see Appendix A3.1). For a column exhibiting the continuous buckling mode, both 

the force and displacement increase after the buckling point (the black curve in Figure 5.1B), so 

there is no hysteresis, and thus no energy dissipation, between the loading and unloading paths 

under both displacement-controlled and force-controlled loading. The columns exhibiting the 

snapping-through (the blue curve in Figure 5.1B) and snapping-back buckling modes (the red 

curve in Figure 5.1B) show a decreased and subsequently increased force after the buckling points, 

resulting in a hysteresis under force-controlled loading (shaded regions in Figure 5.1B). The 

enclosed area quantifies the normalized dissipated energy after a complete force-controlled loading 

and unloading cycle, which is also the maximum dissipated energy a column could achieve under 

displacement-controlled loading, 𝐸𝐸disMax, when an infinite number of such columns are connected 

in series [2,3,74,162,163]. Clearly, 𝐸𝐸disMax  depends on the width-to-length ratio, and thereby 

buckling mode (Figure 5.1C). Although 𝐸𝐸disMax changes non-monotonically as w/l increases, the 

snapping-back buckling mode (0.24 < w/l < 0.36) leads to a higher 𝐸𝐸disMax than the snapping-through 

buckling mode (0.10 < w/l < 0.24). The decrease in 𝐸𝐸disMax after w/l = 0.32 is due to the fact that the 
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increase in the height of the hysteresis area becomes slower than the decrease in its width 

(Appendix Figure 3.2). 

We next establish a theory to quantitatively predict the dissipated energy 𝐸𝐸dis  of an 

architected material composed of n layers of axially-loaded columns exhibiting the snapping-

through or snapping-back buckling mode, assuming that the structure can be simplified to n 

number of the same columns connected in series (Figure 5.2A). For such a column chain, the 

external force F equals the force Fi acting on each column, 𝐹𝐹 = 𝐹𝐹𝑖𝑖, while the external displacement 

ΔL equals the sum of the displacement Δli of all the columns, ∆𝐿𝐿 = ∑ ∆𝑙𝑙𝑖𝑖𝑛𝑛
𝑖𝑖=1 . Each column can 

buckle independently, with the force Fi – displacement Δli relation predicted by FE analysis as 

shown in Figure 5.1B. For a given force F, a column exhibiting snapping-through or snapping-

back mode has at most three possible displacements Δli. A column chain composed of n number 

of this identical column connected in series can thus have C𝑛𝑛+22 =  (𝑛𝑛 + 1)(𝑛𝑛 + 2) 2⁄  number of 

equilibrium F–ΔL branches (Appendix A3.5). 
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Figure 5.2 Energy dissipation of columns stacked in series. (A) Schematic of n number of identical 

columns stacked in series. The whole structure is subjected to a compressive force F or a 

displacement ΔL. The force and displacement of each individual column are Fi and Δli, 

respectively. (B) Definition of the energy dissipation efficiency η, as the ratio of the normalized 

dissipated energy for a n-column chain system under displacement control, 𝐸𝐸dis 𝜇𝜇𝜇𝜇𝜇𝜇⁄ , to the 
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maximum normalized energy that the same single column can dissipate, 𝐸𝐸disMax/𝜇𝜇𝜇𝜇𝜇𝜇.  (C) The 

contour plot of η with respect to the number of columns n and the width-to-length ratio w/l of the 

columns. The two red dashed lines indicate the boundaries between the regions η = 0 and 0 < η ≤ 

0.99, and between the regions 0 < η ≤ 0.99 and η > 0.99, respectively. (D-I) The normalized force-

displacement stable equilibrium paths (black), the snap-down (red) and snap-up (blue) paths under 

displacement control with the enclosed areas characterizing the dissipated energy (gray) for a n-

column chain system containing columns with w/l = 0.30 (D, E and F) and 0.20 (G, H and I). 

Note that not every equilibrium branch is stable when the displacement ΔL is controlled 

externally. For a column chain composed of columns exhibiting the snapping-through buckling 

mode, its equilibrium branches are stable if either (i) no column is in its negative-stiffness region 

(the negative slope part of its force-displacement curve), or (ii) there is exactly one column in its 

negative-stiffness region while the overall force-displacement curve of the column chain has a 

negative slope [74,163]. Otherwise, the equilibrium branches are unstable. For a column chain 

composed of columns exhibiting the snapping-back buckling mode, its stable equilibrium branches 

can be determined by the following steps. Because a force-displacement curve featuring the 

snapping-back buckling is equivalent to the superposition of a monotonic force-displacement 

curve and a force-displacement curve featuring the snapping-through buckling (Appendix Figure 

3.4), we can view a column exhibiting the snapping-back buckling mode as a serial combination 

of a nonlinear elastic spring and a snapping-through element. we can then conceptually reorganize 

the column chain containing n snapping-back columns into n elastic springs and n snapping-

through elements connected in series. We further replace the n elastic springs by a single spring 

with the equivalent force-displacement behavior. Therefore, the original column chain can be 

represented by a snapping-through element chain connected in series to a nonlinear elastic spring. 
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Since the spring does not affect the stability, the stable equilibrium branches of this column chain 

can be identified using the same way as the column chain composed of columns exhibiting the 

snapping-through buckling mode (Appendix A3.5).  

After the stable equilibrium branches are identified, the quasi-static loading and unloading 

F–ΔL relation under displacement control can be constructed. We plot the stable equilibrium F–

ΔL paths of column chains composed of columns with w/l = 0.30 (Figure 5.2D-F) and 0.20 (Figure 

5.2G-I), which exhibit the snapping-back and snapping-through buckling modes, respectively, and 

find that the paths are not always continuous. When the stable equilibrium paths are discontinuous 

(Figure 5.2D-F and I), i.e. neighboring stable branches do not intersect, the column chain must 

snap rapidly down (red lines) or up (blue lines) to the neighboring stable equilibrium branch as 

one branch ends. The energy dissipated during a cycle of displacement-controlled loading is equal 

to the hysteresis area enclosed by the loading and unloading paths (grey areas), which is denoted 

by 𝐸𝐸dis. If the stable equilibrium paths F–ΔL are continuous (Figure 5.2G and H), the force F 

varies smoothly along the paths as the column chain is loaded or unloaded under controlled ΔL, 

leading to zero energy dissipation. 

To evaluate the performance of the energy dissipation for a column chain containing n 

number of columns under displacement-controlled loading, we define the energy dissipation 

efficiency η as the ratio of its normalized energy dissipation 𝐸𝐸dis 𝜇𝜇𝜇𝜇𝜇𝜇⁄  (Figure 5.2B left) to the 

normalized maximum energy dissipation that one column in this column chain can achieve 

𝐸𝐸disMax/𝜇𝜇𝜇𝜇𝜇𝜇 (Figure 5.2B right) such that η ranges from 0 to 1. We plot the contour of η with respect 

to the number n and the width-to-length ratio w/l of the columns (Figure 5.2C). When w/l is low 

(corresponding to the snapping-through buckling mode), η equals zero before n reaches a threshold 
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value (the lower red dashed line in Figure 5.2C), increases slowly with n beyond the threshold, 

and approaches 1 as n increases to a very large number (upper red dashed line in Figure 5.2C). To 

achieve a given η value, the number of layers n needed dramatically decreases with w/l. In 

particular, when w/l is high (corresponding to the snapping-back buckling mode), only less than 

10 layers are needed to achieve η above 0.8, while tens of or even hundreds of layers are needed 

to reach the same η when w/l is low and in the snapping-through region. For example, η is nonzero 

when n = 1 (Figure 5.2D), equals 0.45 when n = 3 (Figure 5.2E), and reaches 0.82 when n = 10 

(Figure 5.2F) for w/l = 0.30, whereas η remains zero when n = 1 (Figure 5.2G) and n = 3 (Figure 

5.2H), and reaches merely 0.22 when n = 10 (Figure 5.2I) for w/l = 0.20. We further compare the 

energy dissipation of our material composed of wide columns to that of curved beams. We find 

that a wide column with w/l = 0.30 has maximum normalized dissipated energy 𝐸𝐸disMax 𝜇𝜇𝜇𝜇𝜇𝜇⁄  one 

order of magnitude higher than that of a curved beam with the optimal geometry [3] (0.3015 for 

the wide beam shown in Appendix Figure 3.2A, and 0.0266 for the curved beam shown in 

Appendix Figure 3.5A, B). Moreover, the energy dissipation efficiency of a multi-layered structure 

composed of the wide columns is higher than that of the curved beam with the same number of 

layers (Appendix Figure 3.5C). Therefore, compared to both the columns and the curved beams 

exhibiting a snapping-through buckling mode, those wide columns exhibiting the snapping-back 

buckling mode are better candidates for energy-absorbing elements, since not only a single column 

has a higher maximum energy dissipation, but also less layers are needed to achieve the maximum 

energy dissipation. 
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5.3 Experiment 

5.3.1 Fabrication and characterization 

We fabricated the multi-layered energy-absorbing architected materials composed of wide 

columns with required constraints to prevent shearing of the columns using multi-material 3D 

printing and sacrificial molding (Figure 5.3A). We 3D printed a mold, which consists of a stiff 

frame made of polylactic acid (PLA) and sacrificial parts made of polyvinyl alcohol (PVA) by 

using a dual-extruder fused deposition modeling (FDM) printer (Ultimaker S5). A pre-cured 

silicone elastomer was poured into the mold for curing, yielding elastomeric columns with an 

initial shear modulus µ = 16.46 KPa (Appendix A3.2 and A3.6). To maintain the integrity of the 

material subjected to large compression, the columns are designed to be interconnected by wide 

flanges embedded into the frames (see the cross-section view in Figure 5.3A). Subsequently, the 

mold was placed in water to dissolve the sacrificial parts. 3D printed hinges made of PLA were 

assembled to the structure to ensure that the columns exhibit the desired buckling mode when the 

material is loaded axially. Figure 5.3B shows a sample of an 8-layered architected material with 5 

× 5 identical columns of a width-to-length ratio w/l = 0.30 in each layer. Each column has a width 

w = 3 mm, length l = 10 mm, and the out-of-plane thickness b = 9 mm. Upon a critical compression, 

the columns buckle and bend toward the width direction, exhibiting the snapping-back buckling 

modes (Figure 5.3C).  
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Figure 5.3 Fabrication process and mechanical responses of the proposed architected materials. (A) 

Fabrication process of the proposed architected materials through multi-material 3D printing and 

sacrificial molding. (B) A fabricated 8-layered architected material with 5 × 5 identical wide 

columns of a width-to-length ratio w/l = 0.30 in each layer. Each column has a width w = 3 mm, 

length l = 10 mm and out-of-plane thickness b = 9 mm. (C) Schematics of the initial and buckled 

states of the architected material when subjected to a compressive force F or a displacement ΔL. 

(D and E) The displacement-controlled force-displacement response of the sample shown in (B) 

from the experiment (D) with the loading/unloading strain rate ±0.2/min and the theory (E). The 

force is normalized by µA, with A the total area of all the columns 25wb, while the displacement 

is normalized by L. The red curve denotes the loading path, whereas the blue curve denotes the 

unloading curve. The shaded area enclosed by the loading and unloading curves equals the 

normalized dissipated energy 𝐸𝐸dis 𝜇𝜇𝜇𝜇𝜇𝜇⁄ , while the shaded area underneath the unloading curve 

equals the normalized energy returned to the load head 𝐸𝐸ret 𝜇𝜇𝜇𝜇𝜇𝜇⁄ . 
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We conducted displacement-controlled loading and unloading tests (Appendix A3.3) for 

the sample shown in Figure 5.3B, and plotted the normalized loading and unloading force-

displacement curves (Figure 5.3D). During loading, the layers buckle sequentially, which results 

in eight peaks in the loading path (the red curve in Figure 5.3D), each corresponding to the onset 

of buckling of one layer (Appendix Video 3.1). The force at each peak is the critical force for 

buckling of each layer Fcr. These peaks form a long and flat plateau of force, indicating large 

energy absorption at a near-constant load. Upon unloading, the layers recover sequentially, leading 

to eight peaks on the unloading path (the blue curve in Figure 5.3D, Appendix Video 3.1), prior to 

fully recovering its initial configuration. The area enclosed by the loading and unloading curves in 

Figure 5.3D is the normalized dissipated energy 𝐸𝐸dis 𝜇𝜇𝜇𝜇𝜇𝜇⁄ , with A the total area of all the columns 

25wb, while the area underneath the unloading curve is the normalized energy returned to the load 

head  𝐸𝐸ret 𝜇𝜇𝜇𝜇𝜇𝜇⁄ . We also found that the loading rates and the number of loading cycles have 

negligible effects on the energy dissipation due to the hyperelastic nature of the constitutive 

material (Appendix Figure 3.7). Hence, the proposed architected material is reusable, rate-

independent, and self-recoverable. The experimental result agrees well with the theoretical 

prediction on the number of force peaks and the width of the force plateau on both the loading and 

unloading curves, the normalized plateau force on the unloading curve, and the returned energy 

(Figure 5.3E). However, the experimental result shows a lower Fcr for each layer, which is caused 

by unavoidable imperfections in the architected material. Besides, the bottom layers buckle at 

slightly lower Fcr than those of the top layers due to the preloads caused by gravity, leading to a 

slight increase in the force across the plateau as the displacement increases. The good agreement 

between the experiment (Figure 5.3D) and theory (Figure 5.3E) indicates that the behavior of the 

proposed material is highly predictable. 
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We further examined the performance of the proposed architected material during an 

impact by drop tests (Appendix A3.4). We simulate the situations where the protected object is 

placed at the top of the material whereas the impact occurs at its bottom. The peak force acting on 

the protected object is expected to be restrained below the safety threshold when certain level of 

impact energy is applied. We dropped an 8-layered sample containing columns of a width-to-

length ratio w/l = 0.30, same as shown in Figure 5.3B, from different heights h, while measured 

the acceleration at its top surface using a piezoelectric accelerometer, and converted it to the force 

by multiplying the acceleration a by the mass of the top plate (m = 0.156 kg). To achieve a high 

input energy Einp with a small height, we increased the total dropped weight by attaching some 

steel plates to the bottom of the sample (Appendix Figure 3.8). As a result, we obtained Einp up to 

2.5 J within a height of 20 cm. We find that the peak force Fpeak acting on the top plate remains 

almost a plateau in a broad range of Einp, forming a force mitigation regime (Figure 5.4A). The 

force at this plateau matches the critical force measured in the static compression test, Fcr (ranging 

from 15.65 N at the first peak to 18.37 N at the eighth peak in Figure 5.3D), even though the strain 

rate in the drop test is 2 × 104 times higher than that in the static test (Appendix A3.3). This 

remarkable agreement indicates that the proposed energy-absorbing mechanism is rate-

independent. Besides, the force plateau occurs in the range of Einp from 0.6 J to 1.8 J, which is on 

the same order of magnitude as the absorbed energy underneath the plateau of the force-

displacement loading path in the static test (0.45 J, Figure 5.3D). The level of the force plateau and 

the corresponding range of Einp can be scaled up by increasing the modulus of the elastomer and 

the number of columns in each layer. Figure 5.4B shows the acceleration-time relation when an 

impact energy of Einp = 1.8 J (upper limit of the mitigation regime) is applied. During the impact, 

the columns buckle sequentially from the bottom layer to the top layer (Figure 5.4C1-C3 and 
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Appendix Video 3.2), limiting the impact force acting on the top layer to the critical force for 

column buckling. The drop tests confirm that the proposed architected materials are capable of 

restraining the impact force from exceeding the safety threshold for a wide scope of input energy 

at high strain rates by harnessing the snapping-back buckling.  

 

Figure 5.4 Drop tests for the proposed architected material. (A) The peak reaction force Fpeak on 

the top surface as a function of the input energy Einp from the bottom. The error bars indicate the 

standard deviations of 5 tests for a given Einp. The force remains nearly constant in a wide range 



97 
 

of Einp in the force mitigation regime. (B) Acceleration-time relation during the impact when Einp 

= 1.8 J. (C) Snapshots of the sample corresponding to the three time points in (B). C1 records the 

moment when the impact occurs. C2 shows that the lower layers have buckled whereas the upper 

layers remain unbuckled. C3 shows the deformation at the peak acceleration, where all layers have 

buckled. The measured accelerations at the top surface are labeled at the bottom of all the snapshots. 

The negative sign indicates that the direction of the acceleration is vertically downward. 

5.3.2 Programmable behavior of the architected material 

The performance of the proposed architected material can be programmed by the width-

to-length ratio w/l of the columns. According to Figure 5.2C, the materials with low w/l show no 

energy dissipation if the number of layers n is not large enough. We built an 8-layered architected 

material with 5 × 5 identical columns of w/l = 0.14 in each layer (Appendix A3.2 and A3.3). This 

material is expected to have zero energy dissipation based on our theory (Figure 5.5B). We 

conducted a displacement-controlled loading and unloading test for this sample (Appendix A3.2 

and A3.3), and found that the loading and unloading curves are very close, resulting in very small 

energy dissipation 𝐸𝐸dis 𝜇𝜇𝜇𝜇𝜇𝜇⁄ =  0.0087  (Figure 5.5A and Appendix Video 3.3). This energy 

dissipation is negligible compared to the energy dissipated in the 8-layered architected material 

with columns of w/l = 0.30 (Appendix Figure 3.9). The small energy dissipation observed is 

potentially caused by the adhesion in the self-contact region as the columns are fully folded.  

Besides, the critical force for buckling of each layer and the ratio of dissipated energy to 

returned energy can be tuned by preloads. We hung some weight balances to the sample shown in 

Figure 5.3B as a preload (Appendix Figure 3.10). As the preload increases, both the critical force 

and the returned energy are reduced, but the dissipated energy is maintained (Figure 5.5C, D and 

Appendix Video 3.4). Hence, the ratio of the dissipated energy to the returned energy is increased. 
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Remarkably, when the preload is large enough such that the unloading path is shifted below the 

zero force, this material can be transformed from monostable to bistable. As shown by our 

experiment and theory (Figure 5.5E, F), instead of recovering to its original configuration, this 

material retains its deformed but stable configuration after unloading (Appendix Video 3.5), 

resulting in part of input energy trapped in the material. 

 

Figure 5.5 Influence of the width-to-length ratio w/l and the preloads on the performance of the 

proposed architected material. (A and B) The displacement-controlled force-displacement 

response of an 8-layered architected material with columns of w/l = 0.14 from the experiment (A) 

and the theory (B). Each column has a width w = 1.4 mm, length l = 10 mm, and out-of-plane 

thickness b = 9 mm. (C-F) The displacement-controlled force-displacement response of the sample 

shown in Figure 2B with a preload 0.4Fcr (C and D) and preload 0.7Fcr (E and F), with Fcr 



99 
 

corresponding to the first peak force on the force-displacement loading curve when no preload is 

applied. The results from the experiments (A, C, E) and theory (B, D, F) agree well with each other.  

5.4 Summary 

In summary, we combine FE simulations, theoretical analysis and experiments to develop 

a reusable energy-absorbing architected material harnessing the snapping-back buckling of wide 

hyperelastic columns. The quasi-static cyclic loading tests confirm that the proposed material is 

capable of dissipating energy while keeping the force nearly constant with a long working distance 

in a reusable, self-recoverable, and highly predictable manner, while the drop tests at high strain 

rates show the feature of rate-independency and the capability of force attenuation in a broad range 

of input energy. Moreover, we have demonstrated that the mechanical responses of the proposed 

energy-absorbing material can be widely tuned by the geometry and preloads. Compared to a 

multi-layered material harnessing the snapping-through buckling, ours harnessing the snapping-

back buckling has higher maximum dissipation energy, and requires much less layers to achieve 

the maximum dissipation energy, which can dramatically reduce the volume and mass of the 

material for the same energy-absorbing performance. Due to the high local strain during the 

snapping-back buckling, our design of wide columns is limited to hyperelastic elastomers. Our 

findings broaden the design strategies for reusable energy-absorbing materials in applications 

including crashworthiness improvement of vehicles and aircrafts, protective packaging in goods 

transportation, and personal safety devices in sports. 
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Chapter 6 Blueprinting Photothermal Shape-Morphing of Liquid 

Crystal Elastomers 

Shape morphing of flat thin sheets to well-defined 3D shapes is an effective method to 

fabricate complex 3D structures, and Liquid crystal elastomers (LCEs) are an attractive platform 

for shape morphing due to their ability to rapidly undergo large deformations. While recent work 

has focused on patterning the director orientation field to achieve desired target shapes, this 

strategy cannot be generalized to material systems where high-resolution surface alignment is 

impractical. Instead of programming the local orientation of anisotropic deformation, we develop 

here an alternative strategy for prescribed shape morphing by programming the magnitude of 

stretch ratio in a thin LCE sheet with constant director orientation. By spatially patterning the 

concentration of gold nanoparticles (AuNPs), uniform illumination leads to gradients in 

photothermal heat generation and therefore spatially-nonuniform deformation profiles that drive 

out-of-plane buckling of planar films into predictable three-dimensional (3D) shapes. 

Experimentally realized shapes are shown to agree closely with both finite element simulations 

and theoretical predictions for systems with unidirectional variation in deformation magnitude.  

6.1 Introduction 

Shape transition from an initially flat sheet to a desired 3D shape triggered by a stimulus 

is an effective approach for the design of complex 3D structures with advanced functionalities. 

With numerous 2D patterning techniques (lithography, inkjet printing, laser cutting, etc.), 

researchers have introduced spatial inhomogeneity to many types of flat stimuli-responsive 

materials such as hydrogels [16,17,164,165], Liquid Crystal Elastomers (LCE) [89,91,93,166–

168], and Shape Memory Polymers (SMP) [169,170]. Upon activation by different stimuli, the 
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programmed flat active materials can deform into well-defined 3D shapes. This shape transitions 

from 2D to 3D shapes have been used in a wide range of applications including biomedical devices 

[171], soft actuators and sensors [172,173], and mechanical metamaterials [174,175]. 

To transition a flat sheet to a desired 3D shape, it is necessary to have spatially nonuniform 

stresses generated inside the material. There are two types of stress variation in space that can 

induce shape transition [176]: through-thickness variation and in-plane variation. The through-

thickness stress variation, which are caused by strain gradients along the thickness upon stimuli 

activation, generate out-of-plane bending moments and thus out-of-plane deformations. This 

bending-driven strategy of shape transition can only program Mean curvature but not Gaussian 

curvature, since change in Gaussian curvature requires nonuniform in-plane stretch or compression. 

The in-plane stress variation, which are caused by in-plane stretch gradients in response to stimuli, 

generate in-plane compressive forces, driving the out-of-plane buckling of the flat sheet into 3D 

shapes. This buckling-driven strategy of shape transition enables the access to programming both 

Mean and Gaussian curvature, broadening the 3D shapes achieved through the shape 

transformation from a flat sheet. 

Recently, we demonstrated a method [93] to prescribe in-plane stretch profile on a flat LCE 

sheet with constant director orientation by spatially patterning the concentration of gold 

nanoparticles. Under uniform illumination, the nonuniform distribution of gold nanoparticles 

causes gradients in photothermal heat generation and therefore nonuniform in-plane stretches, 

yielding out-of-plane buckling of the flat sheet. Compared to spatially programming the director 

orientation [88,89,91,177–179] on a flat LCE sheets, this method can be widely generalized to all 

LCE systems with simple fabrication process. The shape transition of a flat LCE sheet with 

prescribed in-plane stretch profile can be predicted by non-Euclidean plate theory [22,23] which, 



102 
 

like the Föppl-von Kármán (FvK) theory [180], takes into account both bending and stretching 

energies. The strains in this theory are measured with respect to the reference metric tensor, which 

is defined by the prescribed in-plane stretch profile and is not necessarily immersible in 3D 

Euclidean space.  

In this chapter, we explore the utility of this method to blueprint shape changes of thin LCE 

nanocomposite (LCENC) sheets with unidirectional in-plane director fields in response to flood 

illumination. Specifically, we show that discrete patterns of photothermal inclusions can generate 

a rich array of dynamic shape changes due to buckling driven by nearly discontinuous changes of 

in-plane deformation. Furthermore, smooth variations in deformation can be programmed via 

grayscale patterning of AuNP absorbance to yield more complex shape changes. Finite element 

method (FEM) simulations are used to help understand the shapes selected by these materials, in 

concert with an analytical model based on the non-Euclidean plate theory [22,23] that provides a 

general approach to the design of axisymmetric shapes through unidirectionally varying stretch 

profiles. 

6.2 Theory 

 In this section, we will analytically link the in-plane strain distributions to the 3D shapes 

transitioned from a flat LCE thin sheet. We start with a general model which considers both 

stretching and bending energies. We then simplify this model by neglecting the stretching energy 

for a LCE sheet with a very small thickness. This simplified model enables us to solve an inverse 

problem, in which we obtain the required in-plane strain distributions for a targeted 3D shape. In 

the end, we address the shape morphing of LCE sheets with finite thicknesses, in which the final 

3D shape is determined by the interplay between the stretching and bending energies. 
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6.2.1 Modeling of LCE thin sheets 

We model a rectangular LCE thin sheet with length L, width w, and thickness h using the 

reduced 2D non-Euclidean plate theory [22,23], in which the sheet is represented by its mid-

surface and the intrinsic metric tensor 𝒂𝒂� of this mid-surface may not be immersible in the 3D 

Euclidean space. The intrinsic metric tensor 𝒂𝒂�  of the sheet is determined by the following 

prescribed in-plane stretch profiles, 

 
𝒂𝒂� = �𝜆𝜆𝑢𝑢

2 0
0 𝜆𝜆𝑣𝑣2

�, (6.1) 

where u and v are the two curvilinear coordinates of the mid-surface, and 𝜆𝜆𝑢𝑢  and 𝜆𝜆𝑣𝑣  are the 

prescribed in-plane stretches in the u and v directions, respectively. Here we limit ourselves to the 

stretch distributions that are only functions of v. For incompressible LCE sheets, the 𝜆𝜆𝑣𝑣 can be 

obtained by 

 𝜆𝜆𝑣𝑣 = 1
�𝜆𝜆𝑢𝑢

. (6.2) 

 The elastic energy of the LCE sheet is given by 

 𝐸𝐸total = 𝐸𝐸stretch + 𝐸𝐸bend, (6.3) 

where 𝐸𝐸stretch is the stretching energy, 

 𝐸𝐸stretch = 𝜇𝜇ℎ
4 ∫ ∫ �𝑎𝑎�𝛼𝛼𝛼𝛼𝑎𝑎�𝛾𝛾𝛾𝛾 + 𝑎𝑎�𝛼𝛼𝛼𝛼𝑎𝑎�𝛽𝛽𝛽𝛽�(𝑎𝑎 − 𝑎𝑎�)𝛼𝛼𝛼𝛼(𝑎𝑎 − 𝑎𝑎�)𝛾𝛾𝛾𝛾

𝑤𝑤
0 �|𝒂𝒂�|𝑑𝑑𝑑𝑑𝐿𝐿

0 𝑑𝑑𝑑𝑑, (6.4) 

and 𝐸𝐸bend is the bending energy 

 𝐸𝐸bend = 𝜇𝜇ℎ3

12 ∫ ∫ �𝑎𝑎�𝛼𝛼𝛼𝛼𝑎𝑎�𝛾𝛾𝛾𝛾 + 𝑎𝑎�𝛼𝛼𝛼𝛼𝑎𝑎�𝛽𝛽𝛽𝛽�𝑏𝑏𝛼𝛼𝛼𝛼𝑏𝑏𝛾𝛾𝛾𝛾
𝑤𝑤
0 �|𝒂𝒂�|𝑑𝑑𝑑𝑑𝐿𝐿

0 𝑑𝑑𝑑𝑑. (6.5) 

In Equations (6.4) and (6.5), 𝒂𝒂 is the first fundamental form or metric tensor of the mid-surface 

and 𝒃𝒃 is the second fundamental form or curvature tensor of the mid-surface. The stretching energy 
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in Equation (6.4) is associated with changes of distances in the mid-surface from its intrinsic metric 

tensor 𝒂𝒂�, and the bending energy in Equation (6.5) is associated with changes of curvatures from 

the flat configuration. Once the two fundamental forms are obtained, the mid-surface of the sheet 

can be uniquely determined.  

Note that the stretching energy scales linearly with h, whereas the bending energy scales 

with h3. When the sheet is extremely thin, it prefers obeying its intrinsic metric tensor 𝒂𝒂� such that 

the stretching energy equals zero and all the energies go with bending energy. We call this 

condition as thin limit or isometric immersion. When the sheet is extremely thick, it prefers being 

flat such that the bending energy equals zero and all the energies go with stretching energy. We 

call this condition as thick limit. Within these two limits, the 3D shape of the sheet is determined 

by the interplay between the stretching energy and the bending energy.  

6.2.2 Thin limit 

We consider an extremely thin LCE sheet and predict its 3D shape produced by the intrinsic 

metric tensor shown in Equation (6.1). The Gaussian curvature K of this surface can be computed 

by [181] 

 −𝐸𝐸𝐸𝐸 = (Γ122 ),𝑢𝑢 − (Γ112 ),𝑣𝑣 + Γ121 Γ112 + Γ122 Γ122 − Γ112 Γ222 − Γ111 Γ122 , (6.6) 

where 𝐸𝐸 = 𝑔𝑔11 = 𝜆𝜆2 , ( ),𝑢𝑢  and ( ),𝑣𝑣  are partial derivatives with respect to u and v, Γ𝛽𝛽𝛽𝛽𝛼𝛼  

(𝛼𝛼,𝛽𝛽, 𝛾𝛾 = 1, 2) are the Christoffel symbols, which equal 

 Γ111 = 0, Γ121 = Γ211 = 𝜆𝜆′ 𝜆𝜆⁄ , Γ221 = 0, Γ112 = −𝜆𝜆2𝜆𝜆′, Γ122 = Γ212 = 0, Γ222 =

−1
2
𝜆𝜆′ 𝜆𝜆⁄ . 

(6.7) 
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Here ( )′ denotes differentiation with respect to 𝑣𝑣. With Equations (6.6) and (6.7), we can obtain 

the dependence of Gaussian curvature K on stretch profile λ(v), as shown below 

 𝐾𝐾 =  − 1
√𝜆𝜆
�√𝜆𝜆𝜆𝜆′�

′
= − 2

3√𝜆𝜆
�𝜆𝜆3 2⁄ �′′. (6.8) 

 We assume that the 3D shape is axisymmetric about the v axis and thus the map χ: 𝜔𝜔 ⊂

ℝ2 ⟶ 𝜔𝜔� ⊂ 𝑬𝑬3 is given by 

 
𝝌𝝌(𝑢𝑢, 𝑣𝑣) = �𝑟𝑟(𝑣𝑣) cos� 𝑢𝑢

𝑅𝑅0
+ 𝜓𝜓(𝑣𝑣)� 𝑟𝑟(𝑣𝑣) sin� 𝑢𝑢

𝑅𝑅0
+ 𝜓𝜓(𝑣𝑣)� 𝑧𝑧(𝑣𝑣)� ,𝑢𝑢 ∈

[0, 𝑙𝑙], 𝑣𝑣 ∈ [0,𝑤𝑤], 

(6.9) 

where functions 𝑟𝑟, 𝜓𝜓 and 𝑧𝑧 depend only on 𝑣𝑣, and R0 is a positive constant that will be determined 

later. The metric tensor of the surface 𝜔𝜔� is given by 

 
𝒈𝒈𝜔𝜔� = 𝛁𝛁𝝌𝝌T𝛁𝛁𝝌𝝌 = �

� 𝑟𝑟
𝑅𝑅0
�
2 𝑟𝑟2𝜓𝜓′

𝑅𝑅0
𝑟𝑟2𝜓𝜓′
𝑅𝑅0

𝑟𝑟′2 + 𝑧𝑧′2 + 𝑟𝑟2𝜓𝜓′2
�. (6.10) 

Since the LCE sheets are very thin, it is reasonable to assume that their final configurations are 

essentially stress-free and their metric tensors given by Equation (6.10) match the target metric 

tensor shown in Equation (6.1), i.e. 

 
�
� 𝑟𝑟
𝑅𝑅0
�
2 𝑟𝑟2𝜓𝜓′

𝑅𝑅0
𝑟𝑟2𝜓𝜓′
𝑅𝑅0

𝑟𝑟′2 + 𝑧𝑧′2 + 𝑟𝑟2𝜓𝜓′2
� = �

𝜆𝜆(𝑣𝑣)2 0
0 1

𝜆𝜆(𝑣𝑣)
�. (6.11) 

From the equation above, we obtain 

 𝑟𝑟(𝑣𝑣) = 𝜆𝜆(𝑣𝑣)𝑅𝑅0, (6.12) 
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𝑧𝑧′(𝑣𝑣) = ± 1

�𝜆𝜆(𝑣𝑣)
�1 − �𝑅𝑅0�𝜆𝜆(𝑣𝑣)𝜆𝜆′(𝑣𝑣)�

2
,𝑅𝑅0 ≤

1
�𝜆𝜆(𝑣𝑣)|𝜆𝜆′(𝑣𝑣)|

. (6.14) 

Given a stretch profile 𝜆𝜆(𝑣𝑣),we can obtain 𝑟𝑟(𝑣𝑣) from Equation (6.12) and 𝑧𝑧(𝑣𝑣) by evaluating 

numerically the integral on the right-hand side of Equation (6.14). In addition, we set 𝜓𝜓 = 0. The 

3D shape for this stretch profile can then be determined by Equation (6.9) with an appropriate R0, 

which is selected such that the following bending energy is minimized 

 𝐸𝐸𝑏𝑏 = ∫ ∫ (4𝐻𝐻2 − 𝐾𝐾)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤
0

𝑙𝑙
0 , (6.15) 

where H and K denote mean and Gaussian curvatures of the surface 𝜔𝜔�, respectively. 

6.2.3 Finite thicknesses 

When the thickness of the sheet is finite, the actual metric tensor 𝒂𝒂 will deviate from the 

prescribed intrinsic metric tensor 𝒂𝒂� , leading to non-zero stretching energy. Thus, minimizing 

solely the bending energy is not enough. The final 3D shape is determined by minimizing the total 

elastic energy. 

Since the prescribed intrinsic metric tensor 𝒂𝒂� is a diagonal matrix and depends solely on v, 

it is reasonable to assume that the two fundamental forms 𝒂𝒂 and 𝒃𝒃 are functions of v and their off-

diagonal terms are zero: 

 𝒂𝒂 = �𝐸𝐸(𝑣𝑣) 0
0 𝐺𝐺(𝑣𝑣)� ,𝒃𝒃 = �𝑒𝑒

(𝑣𝑣) 0
0 𝑔𝑔(𝑣𝑣)�. (6.16) 

Based on the Gauss formula and Mainardi-Codazzi equations [181,182], the terms 𝑒𝑒(𝑣𝑣) and 𝑔𝑔(𝑣𝑣) 

in 𝒃𝒃 can be expressed in terms of 𝐸𝐸(𝑣𝑣) and 𝐺𝐺(𝑣𝑣): 

 𝜓𝜓′(𝑣𝑣) = 0, (6.13) 
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 𝑒𝑒2 = 𝑐𝑐𝑐𝑐 − 𝐸𝐸′2

4𝐺𝐺
, (6.17) 

 𝑔𝑔2 = �𝐸𝐸′2𝐺𝐺+𝐸𝐸𝐸𝐸′𝐺𝐺′−2𝐸𝐸𝐸𝐸′′𝐺𝐺�
2

4𝐸𝐸2𝐺𝐺(4𝑐𝑐𝑐𝑐𝑐𝑐−𝐸𝐸′2) . (6.18) 

where ( )′ denotes the derivative of ( ) with respect to v, and 𝑐𝑐 is the integration constant.  

 To determine the shape of the mid-surface, we need to find the 𝐸𝐸(𝑣𝑣), 𝐺𝐺(𝑣𝑣), and 𝑐𝑐 such that 

the total elastic energy in Equation (6.3) is minimized. The process of the minimization is as 

follows. First, we uniformly discretize the domain of v into m points. Then 𝐸𝐸(𝑣𝑣), 𝐺𝐺(𝑣𝑣), 𝑒𝑒(𝑣𝑣), and 

𝑔𝑔(𝑣𝑣) are also discretized. We use 𝐸𝐸𝑖𝑖, 𝐺𝐺𝑖𝑖, 𝑒𝑒𝑖𝑖, and 𝑔𝑔𝑖𝑖 (𝑖𝑖 = 1, … ,𝑚𝑚) to represent their values at point 

𝑣𝑣𝑖𝑖 (0 ≤ 𝑣𝑣𝑖𝑖 ≤ 𝑤𝑤), respectively. The discretized version of the stretching and bending energy can 

be written as 

 𝐸𝐸stretch = 𝜇𝜇ℎ𝐿𝐿
2
∑ �𝜆𝜆𝑢𝑢−2(𝑣𝑣𝑖𝑖)�𝐸𝐸𝑖𝑖 − 𝜆𝜆𝑢𝑢(𝑣𝑣𝑖𝑖)�

2 + 𝜆𝜆𝑣𝑣−2(𝑣𝑣𝑖𝑖)�𝐺𝐺𝑖𝑖 − 𝜆𝜆𝑣𝑣(𝑣𝑣𝑖𝑖)�
2 +𝑚𝑚

𝑖𝑖=1

𝜆𝜆𝑢𝑢−1(𝑣𝑣𝑖𝑖)𝜆𝜆𝑣𝑣−1(𝑣𝑣𝑖𝑖)�𝐸𝐸𝑖𝑖 − 𝜆𝜆𝑢𝑢(𝑣𝑣𝑖𝑖)��𝐺𝐺𝑖𝑖 − 𝜆𝜆𝑣𝑣(𝑣𝑣𝑖𝑖)��, 
(6.19) 

 𝐸𝐸bend = 𝜇𝜇ℎ3𝐿𝐿
6
∑ [𝜆𝜆𝑢𝑢−2(𝑣𝑣𝑖𝑖)𝑒𝑒𝑖𝑖2 + 𝜆𝜆𝑣𝑣−2(𝑣𝑣𝑖𝑖)𝑔𝑔𝑖𝑖2 + 𝜆𝜆𝑢𝑢−1(𝑣𝑣𝑖𝑖)𝜆𝜆𝑣𝑣−1(𝑣𝑣𝑖𝑖)𝑒𝑒𝑖𝑖𝑔𝑔𝑖𝑖]𝑚𝑚
𝑖𝑖=1 . (6.20) 

Second, we express the 𝑒𝑒𝑖𝑖, and 𝑔𝑔𝑖𝑖 in terms of 𝐸𝐸𝑖𝑖, 𝐺𝐺𝑖𝑖, and 𝑐𝑐 using Equations (6.17) and (6.18), in 

which the derivative terms are approximated by the finite difference. Third, we use fminunc in 

Matlab to solve the following minimization problem 

 min
𝐸𝐸𝑖𝑖,𝐺𝐺𝑖𝑖,𝑐𝑐 

𝐸𝐸total , (𝑖𝑖 = 1, … ,𝑚𝑚), (6.21) 

where 𝐸𝐸𝑖𝑖, 𝐺𝐺𝑖𝑖, and 𝑐𝑐 are to be determined. This minimization problem is solved iteratively, with 

increments in thicknesses ℎ 𝑤𝑤⁄ . We start from the case with an extremely small thickness: ℎ 𝑤𝑤⁄ =

10−6, and use the solution of isometric immersion as the initial try, in which the first fundamental 

form fully obeys the intrinsic metric tensor and the second fundamental form is determined by 
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minimizing the bending energy. We gradually increase the thickness and use the solution of the 

previous step as an initial try of the current step. This iteration stops as the bending energy becomes 

negligible (𝐸𝐸bend 𝐸𝐸total⁄ ≤ 0.001). 

6.3 Experimental Setup 

The fabrication of monodomain LCEs and the patterning of nanocomposites have been 

discussed in [93]. We summarize them in this section. The monodomain LCEs are synthesized 

following the work of Ahn and co-workers [183]. To incorporate photo-responsiveness into the 

LCEs, gold nanoparticles (AuNPs) are produced by photoreduction [184]. Because the degree of 

gold reduction is controlled by the dose of UV light, the distribution of the AuNP can be spatially 

programmed using grayscale photomasks [185]. Since the amount of AuNP determines the 

magnitude of temperature change upon photothermal heating, the transparency of the photomasks 

can be used to systematically program the resulting photothermal deformations. The stretch 𝜆𝜆 due 

to photothermal heating can be programmed from 0.77 – 0.92 by controlling the transparency of 

the photomask to UV light from 0% black (nearly transparent to UV light) and 100% black (nearly 

opaque) during patterning. This introduces the possibility to locally control in-plane photothermal 

strains and thus the shape morphing. 

6.4 Finite element modeling 

To numerically connect the patterned photothermal heat generation to shape morphing, we 

develop FEM simulations. In the FEM simulations, LCE sheets are modeled using the neo-

classical free energy density [186,187] implemented into Abaqus as a user subroutine UMAT. A 

stretch-temperature relation, fit to the experimental measurement, is introduced into the free 

energy to describe the temperature-dependent anisotropy of LCEs (Appendix A4.1). Once a 
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temperature field corresponding to a specific design of photothermal patterning is prescribed, the 

equilibrium shape is solved by FEM in Abaqus. 

6.5 Results 

Using this patterning method, we first try discretely patterned deformation profiles to show 

how wide variety of 3D shapes we can obtain. Then we address the forward and inverse problems 

for the sheets with continuous in-plane stretch profiles under thin limit. Finally, we study the 

influence of thickness of the sheets with bistrip pattern on the shape morphing. 

6.5.1 Discrete patterns 

To probe the utility of this method to program a wider variety of shapes, a series of 

additional patterns are investigated. For example, illumination of a square sheet with a centered 

rectangular inclusion with the long axis oriented parallel to the director results in a saddle-like 

shape that is symmetric about the axes parallel and perpendicular to the director that bisect the 

center of the film (Figure 6.1A). Placement of a photothermal region in one quadrant of the film 

drives bending about an axis diagonally bisecting the sheet, resulting in a wrinkled hyperbolic 

surface (Figure 6.1B). Finally, inclusion of a large square in the center of the sheet drives rolling 

about an axis perpendicular to the director and wrinkling along the edges of the sheet (Figure 6.1C). 

These deformations are similar to those observed in nematic sheets with polydomain inclusions 

[188] and isotropic gels with local photothermal inclusions [189] and again result from a balance 

of stretching and bending energies as the films attempt to accommodate the discontinuous target 

metric. 
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Figure 6.1 Shape transformation via localized photothermal inclusions. Buckling into different 

shapes in response to (A) rectangular and (B, C) square inclusion are demonstrated experimentally 

and the resulting shapes are predicted via FEM. 

6.5.2 Continuous patterns under thin limit 

Next, we explore the utility of smoothly-varying spatial gradients in absorption to introduce 

continuous in-plane stretch profiles into nematic sheets, which provides opportunities to program 

shapes with arbitrary Gaussian curvatures. As a proof-of-concept, we first investigate the ‘forward’ 

problem, i.e. defining a stretch profile and evaluating the match between experiments, FEM 

simulations, and geometric predictions for the resulting 3D shape. As a convenient test case, we 

use stretch profiles of the following form to program square sheets: 

 𝜆𝜆(𝜉𝜉) =  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 + (𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚)exp �− 1
2
�2𝜉𝜉−1

𝑑𝑑
�
2
�, (6.22) 
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where 𝜉𝜉 = 𝑣𝑣
𝑤𝑤
∈ [0,1], 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum experimentally accessible 

stretches, respectively, and 𝑑𝑑  is a dimensionless parameter that controls the spatial extent of 

variations in 𝜆𝜆 (Figure 6.2A). Indeed, as predicted by Equation (6.8), as 𝑑𝑑 is reduced, the resulting 

curvature increases in magnitude and becomes concentrated in a smaller region. Using the 

corresponding metric tensor, given by Equation (6.1), theory and FEM (Figure 6.2B-D) predict 

buckling into candy wrapper-like shapes, with a ridge of positive Gaussian curvature in the middle 

of the sheet that smoothly progresses along v to valley regions of negative Gaussian curvature that 

evolve to zero Gaussian curvature at the edges. To investigate these shape transformations 

experimentally, samples are patterned using photomasks generated in Matlab from a calibration 

curve of stretch versus percent black. Experimental results (Figure 6.2E,Appendix Figure 4.1) 

match the predicted deformations, with greater curvature and a tighter characteristic radius of 

curvature of the ridge as d decreases. We find that the Gaussian curvatures observed by FEM 

(Figure 6.2B) are in very good agreement with the ones predicted by Equation (6.8), and 

furthermore that the realized 3D shapes correspond closely to those from geometric predictions 

(see (Figure 6.2C)). This striking agreement demonstrates the robustness of the shape morphing 

concept developed here and suggests its potential for generalization to other chemistries and 

materials. 
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Figure 6.2 Patterning smoothly curved sheets with Gaussian stretch profiles. (A) Stretch profiles λ 

for different values of d for w = l (inset). (B) Prescribed and FEM Gaussian curvature as a function 

of v at u/w = 0.5. (C) Shape prediction of d = 0.2 by theory (left) and comparison of theory to FEM 

simulations (right) for different values of d. (D) Shape prediction of d = 0.2 by FEM. (E) 

Experimental result for d = 0.2 demonstrates buckling into a candy wrapper-like shape due to 

regions of highly localized Gaussian curvature that closely matches the predicted shape by theory 

and FEM. Results for d = 0.3 and 0.4 are provided in the Supporting Information. 

To truly program shape transformation, the inverse problem – i.e., computing the stretch 

profile λ(v) that leads to a desired 3D shape upon actuation – needs to be solved. While the 

corresponding differential geometry has been developed for isotropic gels with differential 

swelling [16,17,24] and nematic sheets with varying director orientation [88,177], we are not 

aware of previous solutions for the anisotropic case of varying stretch magnitude with a 
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homogenous director orientation. As a first step, we focus here on shapes with constant negative 

and positive Gaussian curvature, with the appropriate stretch functions obtained by numerically 

solving Equation (6.8) within the constraint of the stretches achievable in our system and 

constructing a polynomial fit to the solution. The target negative and positive curvature, calculated 

stretch profiles, and simulated curvature generated by FEM are shown in Figure 6.3A, D. The 

calculated stretch profiles prescribe high deformation in the center of the sheet and low 

deformation at the edges parallel to the director field in the case of constant negative Gaussian 

curvature and the opposite – low deformation in the middle and high deformation at the edges – 

for the case of constant positive Gaussian curvature. The simulated curvatures from FEM match 

the target constant curvatures quite well in the center portions of the films but deviate at the edges, 

presumably reflecting an elastic ‘boundary layer’ [23] that lowers the bending energy for a non-

zero thickness sheet. The corresponding samples are prepared using photomasks generated from 

the calculated stretch profiles and experiments show buckling of LCE sheets into a saddle-like 

shape and a shallow spherical cap-like shape for negative and positive Gaussian curvature, 

respectively, matching the predictions of the accompanying FEM simulations and geometric 

models (Figure 6.3B-C, E-F and Appendix Figure 4.2). Interestingly, FEM predicts that a non-

axisymmetric saddle shape should be lower energy than the observed axisymmetric shape in the 

case of constant negative Gaussian curvature (Appendix Figure 4.3). However, the non-

axisymmetric shape is not observed experimentally, possibly due to imperfections in sample 

fabrication or kinetic selection of the axisymmetric shape. We note that the observed shapes are 

analogous to those experimentally realized in LCEs with patterned axisymmetric director fields 

about a +1 defect [179]. 
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Figure 6.3 Programmed constant negative and positive Gaussian curvature via ninth-order 

polynomial stretch profiles. (A) Prescribed and predicted Gaussian curvature, (B) FEM simulation 

(top) and theory (bottom) and (C) experiment for negative Gaussian curvature. (D) Prescribed and 

predicted Gaussian curvature, (E) FEM simulation and (F) experiment for positive Gaussian 

curvature. White and black lines are drawn as guides to the eyes, with black and white denoting 

positive and negative curvature, respectively. 

6.5.3 Bistrip patterns with finite thicknesses 

In this section, we will study the effect of the thickness on the shape programming of the 

LCE sheets. We choose a very simple geometry called “bistrip”, where a rectangular sheet is 

divided into two strips: the photoactive strip and non-photoactive strip. The photoactive strip 

containing gold nanoparticles can generate more photothermal heats upon illumination than the 
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non-photoactive strip which contains no gold nanoparticles, leading to a single step change in 

temperature (Figure 6.4A) and thus a discretely patterned in-plane stretch profile. We found in 

both experiment (Figure 6.4B) and Finite Element (FE) simulation (Figure 6.4C) that upon 

illumination the bistrip deforms into a rolling shape, which consists of two nearly cylindrical 

regions smoothly connected via a transitional region.  

 

Figure 6.4 Rolling shape formation of LCE bistrips induced by discretely patterned in-plane strain 

profiles. (A) An initially flat rectangular LCE thin sheet is equally divided into photoactive and 

non-photoactive strips. Upon illumination, a rolling shape is observed in experiments (B) and 

predicted by FE simulation (C). The contour in (C) denotes the distribution of normalized Gaussian 

curvatures. The initial director is parallel (left) or orthogonal (right) to the interface between the 

photoactive and non-photoactive regions. 
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 To demonstrate the process of minimizing the total elastic energy, we take the bistrip with 

𝐿𝐿 𝑤𝑤⁄ = 2.0  and the initial director parallel to the interface between photoactive and non-

photoactive region as an example. In this example, the stretch distribution in u direction 𝜆𝜆𝑢𝑢 is given 

by 

 𝜆𝜆𝑢𝑢(𝑣𝑣) = 0.92 − Δ

1+𝑒𝑒
−𝑣𝑣 𝑤𝑤⁄ −𝜌𝜌

𝛿𝛿 𝑤𝑤⁄
, (6.23) 

where Δ = 0.15, 𝜌𝜌 = 0.5, and 𝛿𝛿 𝑤𝑤⁄ = 0.02 (Figure 6.5A). the stretch distribution in v direction 

𝜆𝜆𝑣𝑣 can be obtained based on incompressibility. In Figure 6.5B and C, we plot the total elastic 

energy 𝐸𝐸total ℎ⁄  (black dots), bending energy 𝐸𝐸bend ℎ⁄  (blue dots), and stretching energy 

𝐸𝐸stretch ℎ⁄  (red dots) as functions of thickness ℎ 𝑤𝑤⁄ . When the thickness ℎ 𝑤𝑤⁄  is very small, the 

majority of the total elastic energy is the bending energy. As the thickness ℎ 𝑤𝑤⁄  increases, the 

bending energy first increases and then reduces to nearly zero, whereas the stretching energy 

increases monotonically and becomes dominant. After the thickness is beyond its critical threshold 

ℎcr 𝑤𝑤⁄  , the stretching energy merges into the total energy, indicating no out-of-plane buckling of 

the bistrips. This is because the stretching energy scales with ℎ and the bending energy scales with 

ℎ3. For the thin bistrips, the bending energy is less inexpensive, and thus the metric tensor 𝒂𝒂 tends 

to obey the intrinsic metric tensor 𝒂𝒂�, leading to nearly zero stretching energy. For the thick bistrips, 

the stretching energy is less inexpensive, thus the curvature tensor 𝒃𝒃 tends to be zero, leading to 

nearly zero bending energy.  

 Figure 6.5C shows the following scaling relations when the thickness ℎ 𝑤𝑤⁄  is very small, 

 𝐸𝐸stretch ℎ⁄ ~ℎ4,𝐸𝐸bend ℎ⁄ ~ℎ2. (6.24) 
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Equation (6.4) shows that the 𝐸𝐸stretch ℎ⁄  is quadratic in the differences between the metric tensor 

𝒂𝒂 and the intrinsic metric tensor 𝒂𝒂�. In Figure 6.5D, we plot the distributions of metric differences 

in u (Figure 6.5 up) and v (Figure 6.5 down) directions for the bistrips with very small thicknesses. 

We find that the metric tensor 𝒂𝒂 obey the intrinsic metric tensor 𝒂𝒂� except the transition regions, 

and that the range of non-zero metric difference is unaffected by the thicknesses. In Figure 6.5E, 

we also plot the maximum magnitude of the metric differences in both u and v directions as the 

thickness increases, and find that this magnitude scales with ℎ2 when the thickness ℎ 𝑤𝑤⁄  is very 

small. Therefore, the increase of the thicknesses has no effect on the range of non-zero metric 

differences, but can quadratically increase the magnitude of the metric differences, resulting in the 

fourth power of scaling law between 𝐸𝐸stretch ℎ⁄  and ℎ. Equation (6.5) shows that the 𝐸𝐸bend ℎ⁄  is 

not only quadratic in the curvature tensor 𝒃𝒃, but also scales with ℎ2. In Figure 6.5F, we plot the 

distributions of curvature tensor in u (Figure 6.5F up) and v (Figure 6.5F down) directions for the 

bistrips with very small thicknesses, and find that the curvature tensor is independent of the 

thickness. Thus, the increase of the thickness can quadratically increase the 𝐸𝐸bend ℎ⁄ , leading to 

the second power of scaling law between 𝐸𝐸bend ℎ⁄  and ℎ.  
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Figure 6.5 Determination of the rolling shapes. (A) Schematic overview of the LCE bistrip system. 

An initially flat LCE sheet of thickness h, width w, and length L is divided into the photoactive 

and non-photoactive regions. The width of the photoactive region is ρw. u and v are the two 

curvilinear coordinates with u parallel to the interface between the two regions. (B and C) The 

dependence of energy on thickness in linear (B) and logarithmic (C) scales for the case with ρ = 

0.5, L = 2w, and initial director parallel to u. The dots in black, bule, and red colors represent the 

total, bending, and stretching elastic energies, respectively. (D) The distribution of the difference 

between the metric a and the reference metric ā in u (upper) and v (lower) directions when h/w = 

3x10-6 (blue), 5x10-6 (red), and 7x10-6 (magenta). (E) The relation between the maximum of a - ā 
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and h/w in u (blue) and v (red) directions. (F) The distribution of the normalized curvature tensor 

b in u (upper) and v (lower) directions when h/w = 3x10-6 (blue), 5x10-6 (red), and 7x10-6 (magenta). 

 

Figure 6.6 Quantitative Comparison between theory and FEA. (A-F) The rolling shapes obtained 

from theory (A-C) and FEA (D-F) when h/w = 0.005 (A and D), 0.015 (B and E), and 0.025 (C 

and F). (G and H) The profiles of the cross-section parallel (G) and orthogonal (H) to the 

photothermal interface. The circular dots represent theoretical results, whereas the solid lines 

represent the FEA results. The blue, red, and black colors denote h/w = 0.005, 0.015, and 0.025, 

respectively. 

 Once the two fundamental forms 𝒂𝒂 and 𝒃𝒃 are obtained from the process of minimization, 

the shape of the mid-surface of the bistrip is uniquely determined. In Figure 6.6, we plot the shapes 

of the mid-surfaces obtained from our model (Figure 6.6A-C) and compare them with the shapes 

obtained from FE simulations (Figure 6.6D-F) when ℎ 𝑤𝑤⁄  = 0.005 (A and D), 0.015 (B and E), and 

0.025 (C and F). Both theory and FE simulations show that the bistrips deform into rolling shapes, 

and that the radius of curvature increases with the thickness. In Figure 6.6G and H, we plot the 

profiles of the cross-section parallel (G) and orthogonal (H) to the photothermal interface, 
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indicating that the theory (circular dots) and the FE simulations (solid lines) are in a quantitative 

agreement. To further validate our theory, we change the value of 𝜌𝜌 from 0.2 to 0.8 for the bistrips 

with 𝐿𝐿 𝑤𝑤⁄ = 1.0, ℎ 𝑤𝑤⁄ = 0.005, and initial director parallel to the u direction, and plot the shapes 

obtained from theory, FE simulations and experiments, as shown in Figure 6.7. They agree with 

each other very well. 

 

Figure 6.7 Comparison among experiment, FEA, and theory as ρ varies. (A) Patterns with ρ = 0.2 

(1st column), 0.4 (2nd column), 0.5 (3rd column), and 0.8 (4th column). (B-D) The corresponding 

3D shapes obtained from experiment (B), FEA (C), and Theory (D). All the square LCE sheets 

have thickness h/w = 0.005 and initial director parallel to the photothermal interface. 
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6.6 Summary 

In summary, we have demonstrated a method combining experiments, FEM simulations, 

and theoretical predictions to program photoactive shape morphing from monodomain LCE sheets 

with a unidirectional director by spatially controlling photothermal heat generation. Discontinuous 

metrics introduced via localized photothermal inclusions are shown to drive buckling into many 

complex 3D shapes. Furthermore, we established an analytical model based on the non-Euclidean 

plate theory to encode smoothly-varying stretch profiles to rationally approach the design of 

targeted shapes. We anticipate that this fabrication method is generalizable to a variety of 

chemistries that are incompatible with methods to spatially pattern in-plane director fields, opening 

up new opportunities for shape morphing in a variety of liquid crystalline polymer materials. Our 

analysis provides an analytical tool for the design of shape morphing of LCE thin sheets. 
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Chapter 7 Conclusion and Outlook 

7.1 Conclusion 

In this dissertation, we have studied buckling instabilities of columns and thin films, and 

harnessed these buckling instabilities to design pneumatically actuated pattern-transforming 

metamaterials, design reusable energy-absorbing architected materials, and achieve complex 3D 

morphing of LCE thin films. The main results of each chapter are summarized as follows: 

In Chapter 2, we propose a class of pneumatically actuated pattern-transforming 

metamaterials. We reveal the mechanism of its pattern transformation and investigate the 

geometric effects on the pattern transformation numerically, analytically, and experimentally. We 

find that the critical pressure for the onset of the pattern transformation is governed by the 

slenderest wall thickness of the metamaterial, and that the transformation strain is controlled by 

the pattern of the holes. Our analytical model reveals the mechanics of the pattern transformation 

and shows good agreement with the finite element analysis. The experimental results confirm our 

theoretical predictions. This study provides design guidelines for the metamaterial and facilitates 

its real-world applications in soft actuators. 

In Chapter 3, we numerically discover a new buckling mode for straight columns with high 

width-to-length ratios under axial compression: snapping-back buckling mode. To understand the 

mechanism of snapping-back buckling, we have established an analytical discrete model, and 

unraveled that snapping-back buckling results from strong coupling between stretching and 

bending, similar to that of snapping-back buckling in shells. A phase diagram is constructed to 

demarcate the different buckling modes of axially compressed columns.  
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In Chapter 4, we analytically show that for a straight hyperelastic column, the increase of 

its width-to-length ratio can fundamentally alter its buckling mode, from continuous to snapping-

through, and to snapping-back. Correspondingly, the initial post-buckling slope flips its sign from 

positive to negative, and eventually back to positive. By applying a continuum mechanics-based 

asymptotic analysis, we determine the initial post-buckling slope as a function of the width-to-

length ratio, and then identify the critical width-to-length ratios for the transitions of the buckling 

modes, which perfectly match the FEA results. Furthermore, we find that as the shear-to-bulk 

modulus ratio, which represents the material compressibility, increases, the transition between 

snapping-through and snapping-back buckling is postponed to a higher critical width-to-length 

ratio. A phase diagram of the buckling modes with respect to the width-to-length ratio and shear-

to-bulk modulus ratio is constructed. The framework proposed in this chapter can be applied to 

other constitutive laws to study the effect of different material nonlinearities on post-buckling 

behavior.  

In Chapter 5, we develop a reusable energy-absorbing architected material harnessing the 

snapping-back buckling of wide hyperelastic columns. The quasi-static cyclic loading tests 

confirm that the proposed material is capable of dissipating energy while keeping the force nearly 

constant with a long working distance in a reusable, self-recoverable, and highly predictable 

manner, while the drop tests at high strain rates show the feature of rate-independency and the 

capability of force attenuation in a broad range of input energy. Moreover, we have demonstrated 

that the mechanical responses of the proposed energy-absorbing material can be widely tuned by 

the geometry and preloads. Compared to a multi-layered material harnessing the snapping-through 

buckling, ours harnessing the snapping-back buckling has higher maximum dissipation energy, 
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and requires much less layers to achieve the maximum dissipation energy, which can dramatically 

reduce the volume and mass of the material for the same energy-absorbing performance.  

In Chapter 6, we demonstrate a method combining experiments, FEM simulations, and 

analytical modeling to program photoactive shape morphing from monodomain LCE sheets with 

a unidirectional director by spatially controlling photothermal heat generation. Discontinuous 

metrics introduced via localized photothermal inclusions are shown to drive buckling into many 

complex 3D shapes. Furthermore, we established an analytical model based on the non-Euclidean 

plate theory to encode smoothly-varying stretch profiles to rationally approach the design of 

targeted shapes.  Our analysis opens up new opportunities for shape morphing in a variety of liquid 

crystalline polymer materials. 

7.2 Outlook 

There are still many exciting opportunities of finding new types of buckling instabilities 

and exploiting these buckling instabilities for function. Below are several possible extensions of 

the current work that may lead to novel functional materials. 

First, the design of pattern-transforming metamaterials could be extended from periodic to 

aperiodic structures, from perfect structures to structures with defects, which may result in 

complex pattern transformations like patterns with multiple domains. The rapid development in 

additive manufacturing allows us to fabricate amazingly intricate and precisely defined structures. 

How to achieve rational design of aperiodic structures or structures with purposely introduced 

defects is still an open question. We believe complexity in structures would open the door to more 

programmable pattern-transforming metamaterials. 
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Second, we can embed additional timescales into our pattern-transforming metamaterials, 

leading to time-dependent pattern transformations. For example, the air flow can be replaced by 

other flows with high viscosity. The interplay between buckling instabilities and viscous 

timescales may cause novel buckling modes related to loading rates, and spatial-temporal pattern 

transformations, potentially leading to functionalities such as logic gates or information storage 

and retrieval. 

Third, we have thoroughly studied the buckling behavior of columns made of a single 

hyperelastic material. More complex but controllable buckling behaviors could be obtained if we 

incorporate multiple materials with different properties into one column. For example, multi-

layered columns can potentially exhibit programmable wavelength and post-buckling behaviors 

by tuning the layer numbers and modulus ratios among different layers. Embedding stimuli-

responsive particles such as magnetic particles into parts of the columns can lead to buckling 

behaviors controlled by external stimuli. Those columns with peculiar but well-controlled buckling 

behaviors could be used as building blocks to design architected structures with advanced 

functionalities. 

Fourth, our current shape morphing in LCE thin sheets can be programmed to deform into 

a target geometry under activation, but the actuation paths are not considered. To achieve more 

complex 3D shapes without self-collisions, it is essential to program spatially-temporal shape 

morphing into the LCE flat thin sheets. How to encode different timescales into the sheet and how 

to achieve an inverse design for a targeted 3D shapes with prescribed shape evolution-time relation 

are still challenging. 
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Appendix 1 Supplementary Materials for Pneumatically Actuated 

Pattern-transforming Metamaterials 

A1.1 Verification of the Simplified Structures  

 Here we conduct finite element simulations to verify if the simplified structures shown in 

Figure 2.5b exhibit the similar pattern transformation and strain-pressure curves as their 

corresponding metamaterials. We convert the three metamaterials in Figure 2.3 into their 

simplified structures with the geometric parameters determined by Eqs. (2.2)-(2.5). We simulate 

the pattern transformation of the three simplified structures under the same pressure load and 

boundary conditions as shown in Figure 2.2b. We model both the deformable beams and rigid 

rectangles as linear elastic solids, and assign the modulus of the rigid rectangles five order of 

magnitudes higher than that of the deformable beams so that the deformation in the rigid rectangles 

is negligible. Eight-node, quadratic, hybrid, plane strain elements (ABAQUS element type CPE8H) 

are used for the simulation. The results shown in Appendix Figure 1.1 agree very well with those 

in Figure 2.3 on the critical pressure and the transformation strains.  
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Appendix Figure 1.1 The results of finite element simulations to verifying the simplified structures. 

The dependence of the strains in the (a) x and (b) y directions on the pressure. (c) - (e) The deformed 

shapes of four unit cells of the three metamaterials: (c) uniformly large holes (r/L = R/L = 0.475, 

t/L = 0.05), (d) uniformly small holes (r/L = R/L = 0.450, t/L = 0.10), and (e) alternatingly large 

and small holes (r/L = 0.350, R/L = 0.550, t/L = 0.10). For each case, the states of deformation 

correspond to the four selected points on its strain-pressure curves.  

A1.2 Buckling and Post-buckling Analysis of the Equivalent Beam Structure 

 Here we briefly derive the buckling condition and the post-buckling process of a beam 

fixed to two rigid bars under an axial load (Figure 2.6a), according to Euler’s elastica and the 
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theory of elastic stability [118]. Consider the beam to be inextensible and linearly elastic. The 

lengths of the beam and each rigid bar are respectively ls = 2h and lr = (L - ls)/2. The whole structure 

is simply supported at the two ends and axially compressed by a force N under the plane strain 

condition. When the force is large enough, the beam will buckle and deflect from its straight 

position. The potential energy of this system is given by 

 𝑃𝑃[𝑣𝑣;𝑁𝑁] = ∫ 1
2
𝐾𝐾𝜑𝜑′2𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠

0 − 𝑁𝑁∆𝐿𝐿 = ∫ 1
2
𝐾𝐾 𝑣𝑣′′2

1−𝑣𝑣′2
𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠

0 − 𝑁𝑁∆𝐿𝐿, (A1.1) 

where v denotes the deflection of the beam, φ denotes the bending angle, φ' denotes the curvature 

of the beam, ΔL denotes the length change of the whole structure in the vertical direction, and 

𝐾𝐾 = 𝐸𝐸𝑤𝑤3 [12(1 − 𝜈𝜈�2)]⁄  is the bending stiffness of the beam under the plain strain condition with 

E the Young’s modulus and 𝜈𝜈�  the Poisson’s ratio. The coordinate x is chosen to be along the 

tangential direction of the beam (Figure 2.6a), and v'=dv/dx and v''=d2v/dx2 are the first and second 

derivatives of v with respect to x. The length change of the whole structure in the vertical direction 

ΔL involves the contributions from the beam and the rigid bars, which yields 

 ∆𝐿𝐿 = ∫ �1 −�1 − 𝑣𝑣′2� 𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠
0 + 𝑙𝑙𝑟𝑟 �1 −�1 − 𝑣𝑣′(0)2� + 𝑙𝑙𝑟𝑟�1 −

�1 − 𝑣𝑣′(𝑙𝑙𝑠𝑠)2�. 

(A1.2) 

Taylor expanding Eq. (A1.1) and neglecting the higher-order terms, we may rewrite the equation 

as 

 𝑃𝑃[𝑣𝑣;𝑁𝑁] = 𝑃𝑃2[𝑣𝑣;𝑁𝑁] + 𝑃𝑃3[𝑣𝑣;𝑁𝑁] + 𝑃𝑃4[𝑣𝑣;𝑁𝑁], (A1.3) 

where 

 𝑃𝑃2[𝑣𝑣;𝑁𝑁] = ∫ �1
2
𝐾𝐾𝑣𝑣′′2 − 1

2
𝑁𝑁𝑣𝑣′2� 𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠

0 − 1
2
𝑁𝑁𝑙𝑙𝑟𝑟𝑣𝑣′(0)2 − 1

2
𝑁𝑁𝑙𝑙𝑟𝑟𝑣𝑣′(𝑙𝑙𝑠𝑠)2, (A1.4a) 
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 𝑃𝑃3[𝑣𝑣;𝑁𝑁] = 0, (A1.4b) 

 𝑃𝑃4[𝑣𝑣;𝑁𝑁] = ∫ �1
2
𝐾𝐾𝑣𝑣′′2𝑣𝑣′2 − 1

8
𝑁𝑁𝑣𝑣′4� 𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠

0 − 1
8
𝑁𝑁𝑙𝑙𝑟𝑟𝑣𝑣′(0)4 − 1

8
𝑁𝑁𝑙𝑙𝑟𝑟𝑣𝑣′(𝑙𝑙𝑠𝑠)4, (A1.4c) 

are the second, third and fourth order terms, respectively. 

 To establish the governing equations of buckling behavior, the total potential energy P [v; 

N] must be minimized under the given boundary conditions. It is usually sufficient to minimize 

only P2 [v; N]. Computing the first variation of P2 [v; N] and setting δP2 = 0 yields 

 𝛿𝛿𝑃𝑃2 = 0 = ∫ (𝐾𝐾𝑣𝑣′′𝛿𝛿𝑣𝑣′′ − 𝑁𝑁𝑣𝑣′𝛿𝛿𝑣𝑣′)𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠
0 − 𝑁𝑁𝑙𝑙𝑟𝑟�𝑣𝑣′(0)𝛿𝛿𝑣𝑣′(0) +

𝑣𝑣′(𝑙𝑙𝑠𝑠)𝛿𝛿𝑣𝑣′(𝑙𝑙𝑠𝑠)�. 

(A1.5) 

Integration by parts yields 

 ∫ �𝐾𝐾𝑣𝑣(𝑖𝑖𝑖𝑖) + 𝑁𝑁𝑣𝑣′′�𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑙𝑙𝑠𝑠
0 + 𝐾𝐾𝑣𝑣′′𝛿𝛿𝑣𝑣′ �𝑙𝑙𝑠𝑠0 − (𝐾𝐾𝑣𝑣′′′ + 𝑁𝑁𝑣𝑣′)𝛿𝛿𝛿𝛿 �𝑙𝑙𝑠𝑠0 − 𝑁𝑁𝑙𝑙𝑟𝑟�𝑣𝑣′(0)𝛿𝛿𝑣𝑣′(0) +

𝑣𝑣′(𝑙𝑙𝑠𝑠)𝛿𝛿𝑣𝑣′(𝑙𝑙𝑠𝑠)� = 0, 

(A1.6) 

from the first term of which we get the Euler-Lagrange equation 

 𝐾𝐾𝑣𝑣(𝑖𝑖𝑖𝑖) + 𝑁𝑁𝑣𝑣′′ = 0. (A1.7) 

Inserting the kinematic boundary conditions, which correspond to the equal bending angles of the 

beam and the rigid bars at the fixed boundaries (Appendix Figure 1.2) 

 

⎩
⎪
⎨

⎪
⎧ 𝑣𝑣(0)

𝑙𝑙𝑟𝑟
= 𝑣𝑣′(0),

𝑣𝑣(𝑙𝑙𝑠𝑠)
𝑙𝑙𝑟𝑟

= −𝑣𝑣′(𝑙𝑙𝑠𝑠),
 (A1.8) 

into the boundary terms in Eq. (A1.6), we can further obtain the static boundary conditions 
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 � 𝐾𝐾𝑣𝑣′′(0) = 𝐾𝐾𝐾𝐾′′′(0)𝑙𝑙𝑟𝑟 ,
𝐾𝐾𝑣𝑣′′(𝑙𝑙𝑠𝑠) + 𝐾𝐾𝐾𝐾′′′(𝑙𝑙𝑠𝑠)𝑙𝑙𝑟𝑟 = 0. 

(A1.9) 

These static boundary conditions correspond to the moment balance about the two pinned joints at 

the end of the structure (Appendix Figure 1.2a, c-d),  

 � 𝑀𝑀(0) − 𝑉𝑉(0)𝑙𝑙𝑟𝑟 cos[𝜑𝜑(0)] − 𝑁𝑁𝑁𝑁(0) = 0,
−𝑀𝑀(𝑙𝑙𝑠𝑠) − 𝑉𝑉(𝑙𝑙𝑠𝑠)𝑙𝑙𝑟𝑟 cos[𝜑𝜑(0)] + 𝑁𝑁𝑁𝑁(𝑙𝑙𝑠𝑠) = 0, 

(A1.10) 

where M and V are the bending moment and shear force, respectively. Using the relation between 

M and V obtained by the moment equilibrium of an infinitesimal segment (Appendix Figure 1.2c):  

 𝑀𝑀′ − 𝑁𝑁𝑣𝑣′ = 𝑉𝑉 cos𝜑𝜑, (A1.11) 

and the relation between the moment and curvature 𝑀𝑀 = −𝐾𝐾𝑣𝑣′′/�1 − 𝑣𝑣′2, Eq. S10 can recover 

Eq. (A1.9) with the terms higher than the second order neglected. 

 

Appendix Figure 1.2 Free body diagrams of (a) the beam, (b) an infinitesimal segment of the beam, 

and (c, d) the two rigid bars.  

 The general solution to Eq. (A1.7) is 
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 𝑣𝑣(𝑥𝑥) = 𝐴𝐴 sin𝑘𝑘𝑘𝑘 + 𝐵𝐵 cos 𝑘𝑘𝑘𝑘 + 𝐶𝐶𝐶𝐶 + 𝐷𝐷, (A1.12) 

in which A, B, C, and D are arbitrary constants and k2 equals N/K. Plug the general solution, Eq. 

(A1.12), into the boundary conditions, Eqs. (A1.8) and (A1.9), and we get 

 �

𝑘𝑘𝑙𝑙𝑟𝑟𝐴𝐴 − 𝐵𝐵 + 𝑙𝑙𝑟𝑟𝐶𝐶 − 𝐷𝐷 = 0,
(sin𝑘𝑘𝑙𝑙𝑠𝑠 + 𝑘𝑘𝑙𝑙𝑟𝑟 cos 𝑘𝑘𝑙𝑙𝑠𝑠)𝐴𝐴 + (cos 𝑘𝑘𝑙𝑙𝑠𝑠 − 𝑘𝑘𝑙𝑙𝑟𝑟sin 𝑘𝑘𝑙𝑙𝑠𝑠)𝐵𝐵 + (𝑙𝑙𝑠𝑠 + 𝑙𝑙𝑟𝑟)𝐶𝐶 + 𝐷𝐷 = 0,

𝑘𝑘𝑙𝑙𝑟𝑟𝐴𝐴 − 𝐵𝐵 = 0,
(sin𝑘𝑘𝑙𝑙𝑠𝑠 + 𝑘𝑘𝑙𝑙𝑟𝑟 cos 𝑘𝑘𝑙𝑙𝑠𝑠)𝐴𝐴 + (cos𝑘𝑘𝑙𝑙𝑠𝑠 − 𝑘𝑘𝑙𝑙𝑟𝑟sin𝑘𝑘𝑙𝑙𝑠𝑠)𝐵𝐵 = 0.

 (A1.13) 

This algebraic equation system can be rewritten as 𝐌𝐌[𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷]T = 0. The constants A, B, C, 

and D have nonzero solutions only when the determinant of the coefficient matrix M vanishes, 

det(𝐌𝐌) = 0, which yields 

 2𝑘𝑘𝑙𝑙𝑟𝑟 cos 𝑘𝑘𝑙𝑙𝑠𝑠 = (𝑘𝑘2𝑙𝑙𝑟𝑟2 − 1) sin 𝑘𝑘𝑙𝑙𝑠𝑠. (A1.14) 

Eq. (A1.14) can be numerically solved, and the smallest positive root 𝑘𝑘𝑐𝑐𝑐𝑐  corresponds to the 

smallest critical load 𝑁𝑁𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑐𝑐𝑐𝑐2 𝐾𝐾 . Note that the critical force Ncr recovers that of a simply 

supported beam when lr=0. A non-zero lr can significantly reduce the critical buckling force of this 

equivalent structure of a beam fixed to two rigid bars. The deflections of the buckled beam can be 

obtained by eliminating B, C and D in Eq. (A1.12), which yields 

 𝑣𝑣(𝑥𝑥) = 𝑎𝑎 sin(𝑘𝑘𝑐𝑐𝑐𝑐𝑥𝑥 + 𝛾𝛾), (A1.15) 

where 𝑎𝑎 = 𝐴𝐴�𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2 + 1 is the amplitude of the first buckling mode, and tan 𝛾𝛾 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑙𝑙𝑟𝑟. 

Next, let us consider the post-buckling behavior of the beam when the load N slightly 

exceeds the critical load Ncr. We expand the potential energy P [v; N] in Eq. (A1.1) with respect 

to the load N near N = Ncr, 
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 𝑃𝑃[𝑣𝑣;𝑁𝑁] = 𝑃𝑃2[𝑣𝑣;𝑁𝑁𝑐𝑐𝑐𝑐] + (𝑁𝑁 − 𝑁𝑁𝑐𝑐𝑐𝑐)𝑃̇𝑃2[𝑣𝑣;𝑁𝑁𝑐𝑐𝑐𝑐] + 𝑃𝑃4[𝑣𝑣;𝑁𝑁𝑐𝑐𝑐𝑐], (A1.16) 

where ( )̇ = 𝜕𝜕 𝜕𝜕𝜕𝜕⁄  and the terms higher than the fourth order have been neglected. The first term 

on the right-hand side of Eq. (A1.16) vanishes due to the equilibrium, and the potential energy 

now becomes 

 𝑃𝑃[𝑣𝑣;𝑁𝑁] = (𝑁𝑁 − 𝑁𝑁𝑐𝑐𝑐𝑐)𝑃̇𝑃2[𝑣𝑣;𝑁𝑁𝑐𝑐𝑐𝑐] + 𝑃𝑃4[𝑣𝑣;𝑁𝑁𝑐𝑐𝑐𝑐]. (A1.17) 

Using Eqs. (A1.15) and (A1.4), we can express 𝑃̇𝑃2[𝑣𝑣;𝑁𝑁𝑐𝑐𝑐𝑐] and 𝑃𝑃4[𝑣𝑣;𝑁𝑁𝑐𝑐𝑐𝑐] as  

 𝑃̇𝑃2[𝑎𝑎;𝑁𝑁𝑐𝑐𝑐𝑐] = −𝑎𝑎2𝑘𝑘𝑐𝑐𝑐𝑐2 �𝑙𝑙𝑠𝑠�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�+2𝑙𝑙𝑟𝑟�
4�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�

, (A1.18a) 

 𝑃𝑃4[𝑎𝑎;𝑁𝑁𝑐𝑐𝑐𝑐] = 𝑎𝑎4𝑘𝑘𝑐𝑐𝑐𝑐4 𝑁𝑁𝑐𝑐𝑐𝑐
𝑙𝑙𝑠𝑠�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�

2
+2𝑙𝑙𝑟𝑟�1−𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�

64�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�
2 . (A1.18b) 

The amplitude of the first buckling mode a can be achieved by minimizing the potential energy 

with respect to 𝑎𝑎, 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 0,  

 𝑎𝑎 = 1
2𝑘𝑘𝑐𝑐𝑐𝑐

�𝑁𝑁−𝑁𝑁𝑐𝑐𝑐𝑐
𝑁𝑁𝑐𝑐𝑐𝑐

32𝑙𝑙𝑠𝑠�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�
2
+64𝑙𝑙𝑟𝑟�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�

𝑙𝑙𝑠𝑠�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�
2
+2𝑙𝑙𝑟𝑟�1−𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�

. (A1.19) 

The axial displacement of the beam Δ𝑙𝑙𝑠𝑠 can be calculated as 

 ∆𝑙𝑙𝑠𝑠 = ∫ �1 −�1 − 𝑣𝑣′2� 𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠
0 ≈ ∫ 1

2
𝑣𝑣′2𝑑𝑑𝑑𝑑𝑙𝑙𝑠𝑠

0 = 𝑎𝑎2𝑘𝑘𝑐𝑐𝑐𝑐2 �𝑙𝑙𝑠𝑠+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2𝑙𝑙𝑠𝑠−2𝑙𝑙𝑟𝑟�
4�1+𝑘𝑘𝑐𝑐𝑐𝑐2 𝑙𝑙𝑟𝑟2�

. (A1.20) 

The bending angle φ(x) can be calculated as 

 𝜑𝜑(𝑥𝑥) = sin−1�𝑣𝑣′(𝑥𝑥)� = sin−1(𝑎𝑎𝑘𝑘𝑐𝑐𝑐𝑐 cos(𝑘𝑘𝑐𝑐𝑐𝑐𝑥𝑥 + 𝛾𝛾)). (A1.21) 
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A1.3 Comparing Results from the Finite Element Simulations, Analytical Model and 

Experiments 

 

Appendix Figure 1.3 The dependence of the strains in the (a, c, e) x and (b, d, f) y directions on the 

pressure for three metamaterials with different geometric parameters: (a, b) uniformly large holes 

(r/L = R/L = 0.475, t/L = 0.05), (c, d) uniformly small holes (r/L = R/L = 0.450, t/L = 0.10), and (e, 

f) alternatingly large and small holes (r/L = 0.350, R/L = 0.550, t/L = 0.10). The results from the 

finite element simulations (red), analytical model (blue), and experiments (black) reveal the same 

effect of the geometric parameters on the pattern transformation of metamaterials.  

A1.4 Videos 

Appendix Video 1.1 Snapshots of the pattern transformation, and the corresponding strain-pressure 

curves in the x and y directions predicted by our analytical model for a metamaterial with the 
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geometric parameters t/L=0.05, and r/L = R/L = 0.475 (same as Fig. 7c). In the left panel, the red 

dashed frames represent the initial boundaries of the lattice and the black dashed frames represent 

the current boundaries of the lattice. In the middle and the right panels, the red dots on the two 

curves depict the instantaneous values of the transformation strain and pressure that correspond to 

the deformed shape in the left panel.  

 

Appendix Video 1.2 Snapshots of the pattern transformation, and the corresponding strain-pressure 

curves in the x and y directions predicted by our analytical model for a metamaterial with the 

geometric parameters t/L=0.10, and r/L = R/L = 0.450 (same as Fig. 7d). 

 

Appendix Video 1.3 Snapshots of the pattern transformation, and the corresponding strain-pressure 

curves in the x and y directions predicted by our analytical model for a metamaterial with the 

geometric parameters t/L=0.10, r/L = 0.350, and R/L = 0.550 (same as Fig. 7e). 
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Appendix 2 Supplementary Materials for Snapping-back Buckling 

of Wide hyperelastic Columns 

A2.1 Finite Element Simulations 

 We used the commercial software Abaqus/Standard for our static finite element 

simulations. We modeled columns as an incompressible neo-Hookean material in plane strain 

conditions with hybrid quadratic rectangular elements (Abaqus type CPE8H). Defects with very 

small sizes were introduced to trigger buckling and creasing instabilities (Figure 3.1B). In all cases 

except w/L = 0.24, the size of the imperfection for buckling is Δd/w = 0.001, and the size of the 

imperfection for creasing is r/w= 0.002. Since the case with w/L = 0.24 approaches the boundary 

between negative and positive post-buckling slopes, a finer Δd is needed, which is Δd/w = 0.0002, 

an order of magnitude smaller than that in other cases. We performed a mesh refinement study to 

ensure the mesh size is at least one order of magnitude smaller than the dimension of the finest 

part of the samples. As a result, approximately from 6x104 to 4x105 rectangular elements are 

involved in each finite element model, depending on the width-to-length ratio of columns.  

A2.2 Analytical Solution for the Onset Strains of Buckling and Barreling in 

Hyperelastic Columns 

 Consider an incompressible hyperelastic column of width w, length L and infinite in depth. 

This column is compressed by a load F between two flat frictionless plates (Appendix Figure 2.1A). 

Once the critical condition is reached, the column can exhibit either buckling (Appendix Figure 

2.1B) or barreling (Appendix Figure 2.1C) instability [140]. In this section, we will derive the 

critical strain εcr = |Δlcr/L| for column buckling and barreling. We find for an incompressible neo-
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Hookean column with an arbitrary width-to-length ratio w/L, buckling always occurs prior to 

barreling, because εcr for buckling is always lower than that for barreling. 

 

Appendix Figure 2.1 Schematic of a hyperelastic column forming buckling or barreling instability 

under an axial compression. (A) A hyperelastic column (in blue) of width w, length L, and infinite 

in depth is compressed by a load F between two flat smooth plates (in black). Schematics of the 

buckling (B) and barreling (C) modes. 

 Since both buckling and barreling are symmetric about the y axis (Appendix Figure 2.1), it 

is equivalent to only analyzing half of the column with symmetric boundary conditions. The 

deformation gradient tensor F, with the stress-free state as the reference configuration under the x-

y coordinate, can be written as 

 , ,

, ,

1
1

x y

x y

u u
v v
+ 

=  + 
F , (A2.1) 

where u and v are displacement fields in the x and y direction, and ( ) ( ), ,  ,i i i x y= ∂ ∂ = . By 

setting 1=F  (| | denotes the determinant of a matrix), we can derive the incompressibility 

condition as 
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 , , , , , , 0x y x y y xu v u v u v+ + − = . (A2.2) 

The isotropic hyperelastic material models we adopt is incompressible neo-Hookean solid that has 

the following elastic energy density function in the plane strain condition: 

 ( )T 2
2

W trµ  = − F F , (A2.3) 

where μ is the shear modulus. The total potential energy of the top half of the column is given by 

 ( )2 2 2 2 2

, , , , , , ,0 2 0 0 2

L w L L w

x x y x y y xw w
Wdydx F u dx p u v u v u v dydxφ

− −
= − + + + −∫ ∫ ∫ ∫ ∫ , (A2.4) 

where p is a Lagrangian multiplier and the load F can be further expressed as the integral of the 

first Piola-Kirchhoff stress Sxx through the top surface: 

 
2 2

22 2
11 2F

w w

xx x Lw w
x L

WF S dy dy
=− −

=

∂
= =

∂∫ ∫ . (A2.5) 

With Eqs. (A2.1)-(A2.5), we rewrite the total potential energy  

 ( ) ( )2 2 2 2 2 2
, , , , , , , , , , , , ,20 2

2 2
2

L w

x y x y x y xx x x y x y y xx Lw
u u v v u v S u p u v u v u v dydx

µ
φ

=−
= + + + + + − + + + − 

  ∫ ∫ . (A2.6) 

Successive Frechet differentiation [139] of Eq. (A2.6) with respect to [ ]T, ,V u v p=  gives 

 

( )
( )
( )

1,2

2 2

, , , , , ,0 2

, 1, , 1, , 1, , 1, 1, 1,

1 1

1, 1, , 1, , 1, , 1, , 1,

xx xx L

L w

x y x y y xw

x x y y x x y y x y

x y y x x y x y y x

S u

p u v u v u v dydx

u u u u v v v v u v

V

p u v v u u v v u u v

µ

φ
=

−

− +

+ + −

 + + + + +
 

′  = +
 
 + + + − −  

∫ ∫ , (A2.7) 

 

( )
( )
( )
( )

2 2 2, 2, , 2, , 2, , 2, , 2,

0 2

1, 2, 1, 2, 1, 2, 1, 2,

1

1 2
2 1, 1, , 1, , 1, , 1, , 1,

1, 2, 1, 2, 1, 2, 1, 2,

L w x y y x x y x y y x

w

x x y y x x y y

x y y x x y x y y x

x y y x y x x y

p u v v u u v v u u v
dydx

u u u u v v v v

VV
p u v v u u v v u u v

p u v v u u v v u

µ

φ
−

+

+ + + − −

 + + +
 
 +

′′  =
+ + + − − + 

 
 + − − 

∫ ∫ . (A2.8) 
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where [ ]T, ,=i i i iV u v p  (i = 1, 2) denote the admissible vector field corresponding to the i-th order 

Frechet derivative of the total potential energy ϕ. The equilibrium vector field of V can be 

determined by extremizing the total potential energy given in Eq. (A2.6), which requires 

 ( ); 0V Vφ ε ε δ′  =  . (A2.9) 

where ε is the absolute value of the shortening Δl in the x direction divided by the original length 

of the column L, i.e. l Lε = ∆ . The fundamental solution V0 to Eq. (A2.9), which corresponds to 

a uniform deformation, is given by 

 ( )
( )

0

0 0
2

0

1

1 1

ε
ε ε

µ ε

 −    = = −       − −  

u x
V v y

p
. (A2.10) 

The buckling mode V1 and its corresponding buckling condition εcr is given by 

 ( )0 1; 0cr crV V Vφ ε ε δ′′   =  , (A2.11) 

which yields the following differential equations for V1: 

 

( )
( )

( ) ( )

1, 1, 1,

1, 1, 1,

1, 1,

1 0

1 0

1 1 0

xx yy x cr

xx yy cr y

x cr cr y

u u p

v v p

u v

µ ε

ε µ

ε ε

+ +  −  = 
+ + − =

− + − =

, (A2.12) 

with the boundary conditions 

 ( )2
1, 1, 1 0 at 2y x cru v y wε+ − = = ± , (A2.13) 

 ( ) ( )2
1, 1, 11 1 0 at 2y x cr crv u p y wε ε µ− − + − = = ± , (A2.14) 

 ( )2
1, 1, 1 0 at 0 and 2x y crv u x x Lε+ − = = = , (A2.15) 
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 1, 0 at 0 and 2yu x x L= = = . (A2.16) 

where Eqs. (A2.13)-(A2.15) are natural boundary conditions, while Eq. (A2.16) is an essential 

boundary condition. The admissible displacement fields also need satisfy the following boundary 

conditions that eliminates the rigid body translations along the x and y directions 

 ( ) ( )1 10, 0 0,  4, 0 0u x y v x L y= = = = = = . (A2.17) 

 Here we restrict ourselves to the lowest critical condition and try the following solution 

 ( ) ( )1
2, sinu

xu x y A y
L
π

= , (A2.18) 

 ( ) ( )1
2, sinu

xu x y A y
L
π

= , (A2.19) 

 ( ) ( )1
2, cosp

xp x y A y
L
π

= . (A2.20) 

Substitution of these expressions into Eq. (A2.12) yields 

 

( )

( ) ( )

2

2

2 2 0
1

12 0

2 1 0
1

u u p
cr

cr
v v p

u cr v
cr

A A A
L L

A A A
L

A A
L

π π
µ ε

επ
µ

π ε
ε

 ′′ − − =  − 

− ′′ ′− + = 
 

′+ − =
−

. (A2.21) 

where ()ʹ = d() / dy. These three homogeneous ordinary differential equations can be solved by 

substituting 

 ( ) ( ) ( ),  ,  y y y
u v pA y e A y e A y eρ ρ ρα β γ= = =  (A2.22) 

into Eq. (A2.21), which yields 
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( )
( )

( ) ( )

2
2

2
2

2 20
1

120 0

2 1 0
1

cr

cr

cr
cr

L L

L

L

π πρ
µ ε

α
ρ επρ β

µ
γ

π ρ ε
ε

  − −   −  
  −    − =          

 − −
  

. (A2.23) 

The nontrivial solution can be obtained if the determinant of the coefficient matrix vanishes, which 

yields 

 
( )

( )
2 2

22 2
2

2 1 2 1 0
1

cr
cr

L L
π πρ ρ ε

ε

     − − − =     
   −     

. (A2.24) 

The roots are thus 

 ( )1,2 3,4 2

2 1 2,  
1 cr

L L
π πρ ρ

ε
= ± = ±

−
. (A2.25) 

Thus, the solutions to Eq. (A2.21) can be expressed as the following hyperbolic functions 

 
( ) ( )1 2 3 42 2

2 1 2 2 1 2
sinh sinh cosh cosh

1 1
u

cr cr

A y y y y
L L L L
π π π π

α α α α
ε ε

= + + +
− −

      
      

         
, (A2.26) 

 
( ) ( )1 2 3 42 2

2 1 2 2 1 2
sinh sinh cosh cosh

1 1
v

cr cr

A y y y y
L L L L
π π π π

β β β β
ε ε

= + + +
− −

      
      

         
, (A2.27) 

 
( ) ( )1 2 3 42 2

2 1 2 2 1 2
sinh sinh cosh cosh

1 1
p

cr cr

A y y y y
L L L L
π π π π

γ γ γ γ
ε ε

= + + +
− −

      
      

         
. (A2.28) 

Substituting Eqs. (A2.26)-(A2.28) into Eq. (A2.21), we can express β1, β2, β3, β4, γ1, γ2, γ3, γ4 as 

functions of α1, α2, α3 and α4 
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( ) ( )

( )
( )

( )
( )

1 3 2 4 3 1 4 22 2

1 2 2 3 4 43 3

1 1, , , , 
1 1

2 1 2 10, 1 , 0, 1
1 1

β α β α β α β α
ε ε

πµ πµγ γ ε α γ γ ε α
ε ε

= − = − = − = −
− −

   
= = − − = = − −   

− −      

cr cr

cr cr
cr cr

L L

. (A2.29) 

Further substituting Eqs. (A2.18)-(A2.20) and Eqs. (A2.26)-(A2.29) into the boundary conditions 

shown in Eqs. (A2.13)-(A2.14) (the boundary condition Eq. (A2.15) is satisfied automatically), 

we have 

 

1

12 2

34 3

4

0

α
α
α
α

 
     =    
 
 

A 0
0 A

, (A2.30) 

where A12 and A34 are both 2-by-2 matrices 

 
( ) ( ) ( )

( )
( )

( ) ( )

4 2 2
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2
2 2 2

1 2 11 cosh cosh
1 1 1

2 1 1sinh 1 sinh
1 1 1

π π
ε ε ε

π πε
ε ε ε

      +    
  − − −      =  

      − +     
 − − −        

cr cr cr

cr
cr cr cr

w w
L L

w w
L L

A , (A2.31) 
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( )

( ) ( )

4 2 2

34

2
2 2 2

1 2 11 sinh sinh
1 1 1

2 1 1cosh 1 cosh
1 1 1

π π
ε ε ε

π πε
ε ε ε

      +    
  − − −      =  

      − +     
 − − −        

cr cr cr

cr
cr cr cr

w w
L L

w w
L L

A . (A2.32) 

A nontrivial solution to Eq. (A2.30) exists when the determinant of the coefficient matrix vanishes, 

which yields 

 12
12 34

34

0= =
A 0

A A
0 A

. (A2.33) 

Eq. (A2.33) holds if 
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 12 340 and 0= ≠A A , (A2.34) 

or 

 12 340 and 0≠ =A A , (A2.35) 

or 

 12 340 and 0= =A A . (A2.36) 

From Eq. (A2.34), we have α3 = α4 = 0 and  

 
( ) ( ) ( )

2

4 2 6

1 1 41 tanh tanh
1 1 1cr cr cr

w w
L L
π π

ε ε ε

     + =     
 − − −      

, (A2.37) 

which governs the critical strain εcr for column buckling. The solution to Eq. (A2.21) then becomes 

 
( )1 2 2

2 1 2
sinh sinh

1
u

cr

A y y
L L
π π

α α
ε

= +
−

  
  

    
, (A2.38) 

 
( )3 4 2

2 1 2
cosh cosh

1
v

cr

A y y
L L
π π

β β
ε

= +
−

  
  

    
, (A2.39) 

 
( )1 2 2

2 1 2
sinh sinh

1
p

cr

A y y
L L
π π

γ γ
ε

= +
−

  
  

    
. (A2.40) 

Similarly, Eq. (A2.35) yields α1 = α2 = 0 and 

 
( ) ( ) ( )

2

4 6 2

1 4 11 tanh tanh
1 1 1cr cr cr

w w
L L
π π

ε ε ε

    + =    
 − − −      

, (A2.41) 

which leads to the critical strain εcr for column barreling. The solution to Eq. (A2.21) is rewritten 

as 
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( )3 4 2

2 1 2
cosh cosh

1
u

cr

A y y
L L
π π

α α
ε

= +
−

  
  

    
, (A2.42) 

 
( )1 2 2

2 1 2
sinh sinh

1
v

cr

A y y
L L
π π

β β
ε

= +
−

  
  

    
, (A2.43) 

 
( )3 4 2

2 1 2
cosh cosh

1
p

cr

A y y
L L
π π

γ γ
ε

= +
−

  
  

    
. (A2.44) 

Eq. (A2.36) does not exists since there is no critical strain εcr that satisfies both Eq. (A2.37) and 

Eq. (A2.41).  

With Eqs. (A2.37) and (A2.41), we are able to calculate the critical strains εcr for column 

buckling and barreling as functions of the width-to-length ratio w/L (Appendix Figure 2.2), from 

which, we conclude that column buckling occurs prior to barreling for any w/L lower than 1. Once 

the critical strain εcr is obtain, one may get the critical force Fcr from Eq. (A2.5), which yields 

 
( )3

11
1

cr cr
cr

F wε µ
ε

 
= − − 

−  
. (A2.45) 

 

Appendix Figure 2.2 Critical strains for column buckling (blue line) and barreling (red line) as 

functions of the width-to-length ratio w/L. 
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A2.3 Sensitivity of the Snapping-back Buckling Modes to Imperfections 

 The relation between the imperfection r/w and the critical condition for the snapping-back 

buckling modes is plotted in Appendix Figure 2.3. This diagram shows that the impact of the 

imperfection used to trigger creases on the snapping-back buckling modes is limited. 

 

Appendix Figure 2.3 Critical strain Δlbuckle/L and critical force Fbuckle/wμ for buckling as functions 

of the imperfection r/w when w/L = 0.28 and Δd/w = 0.001. 

A2.4 Experiments 

 We fabricated two identical wide columns with w/L = 0.28 (width w = 14.6 mm, length L 

= 52.0 mm, depth b =30.0 mm) and one slender column with w/L = 0.20 (width w = 10.4 mm, 

length L = 52.0 mm, depth b =24.0 mm) by molding silicone rubber (EcoflexTM 00-30, shear 

modulus μ = 20 KPa). We glued the columns onto acrylic plates and loaded the samples by a 

uniaxial testing machine (Instron 5966) equipped with a 500 N load cell. The measurement 

accuracy of a compressive force F is ± 0.5% of reading and the measurement accuracy of a 

displacement Δl is ± 0.01 mm. We conducted displacement-controlled and force-controlled tests 
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at loading/unloading rates ±5 mm/min and ±2 N/min, respectively. To avoid adhesion in the 

regions of self-contact, we put some silicone oil onto the surfaces of the columns. 

A2.5 Experiment Results to Contrast the Snapping-back and Snapping-through 

Buckling Modes. 

 We conduct uniaxial loading and unloading tests for columns with width-to-length ratio 

w/L = 0.20 under displacement control at a ±0.1/min strain rate, and make a comparison between 

w/L = 0.20 and 0.28 (Appendix Figure 2.4). Unlike the sharp drop in the loading path of w/L = 

0.28 (red color), which is identified as snapping-back buckling, the force declines more gently 

after the onset of buckling when w/L = 0.20 (magenta color), which is identified as snapping-

through bucking. The kink in the loading path of w/L = 0.20 indicates the onset of crease. (See 

Appendix A2.4 and Appendix Video 2.3 for details.) 

 

Appendix Figure 2.4 Normalized force F/(wbμ) and displacement Δl/L relations for two columns 

with w/L = 0.20 (width w = 10.4 mm, length L = 52.0 mm, depth b = 24 mm) and w/L = 0.28 (width 

w = 14.6 mm, length L = 52.0 mm, depth b =30.0 mm)  
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A2.6 Discrete Model 

 To understand and capture the transitions between different buckling modes of a column 

as its width-to-length ratio w/L varies, we have developed a discrete model, which simplifies half 

of a column as a rigid bar supported by an extensional spring and a rotational spring (Figure 3.5A). 

This model accounts for coupling between stretching and bending, which stems from geometric 

nonlinearity and should not be neglected for wide columns since the pre-compression needed for 

buckling is nontrivial. 

 To correctly construct the elastic energies of the two springs, let us first derive the strain 

energy of a beam under both axial stretching and bending. Consider a prismatic Euler beam with 

width w, depth b and length l. Based on the Euler-Bernoulli beam theory, the displacement fields 

are 
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(A2.46) 

where ux, uy and uz are the total displacements in the axial (x) and the transverse (y and z) directions, 

us(x) is the axial displacement in the neutral axis due to axial tensile/compressive loads, v(x) is the 

deflection in the z direction and φ(x) is the bending angle. The Green-Lagrange strain in the x 

direction with high order terms is 
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where ( ) ( ), = ∂ ∂x x . The strain energy U of this beam with linear elastic behavior is given by 
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where E denotes the Young’s modulus, A = wb denotes the area of the cross section, 3 12=I bw  is 

the second moment of inertia about z axis. The first term is linearly proportional to the axial rigidity 

EA and can be viewed as the stretching energy Us, and the second term is linearly proportional to 

the flexural rigidity EI and can be viewed as the bending energy Ub. Thus, the strain energy U in 

Eq. (A2.48) can be rewritten as 

 = +s bU U U , (A2.49) 

where 
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 Now we consider the vicinity of the buckling point where the bending angle φ and 

deflection v start to rise but are still extremely small. We rewrite the stretching energy Us as 
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in which we have neglected the higher-order terms of us,x and the terms related to the deflection v 

since the term of 2
,s xu  is dominant. In the bending energy Ub, we have neglected the last two terms 

because they are of order 4
,xO ϕ   , which yields 
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Here we keep the coupling terms between stretching us and bending φ in the bending energy Ub, 

which is absent in Euler’s elastica. The strain energy U now becomes 
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 Inspired by the strain energy of an Euler beam, we construct the elastic energy of the 

discrete model (Figure 3.5A) as 

 ( )221 1
2 2

ξ= + +discrete c c b b b cU K q K q q q , (A2.55) 

where the length of the rigid bar L/2 equates the length of the Euler beam l, the vertical 

displacement qc at the base of the rigid bar corresponds to the total displacement of the Euler beam 

in the axial direction, and the inclination angle qb of the rigid bar corresponds to the net bending 

angle of the Euler beam (Figure 3.5A), i.e., 
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L L

c s x b xq u dx q dxϕ= =∫ ∫ . (A2.56) 

The first term in the elastic energy of the discrete model in Eq. (A2.55) is the stretching energy 

stored in the linear extensional spring with a stiffness Kc = 2EA/L. The second term in Eq. (A2.55) 

is the bending energy stored in the rotational spring with a stiffness Kb = 2EI/L. The bending energy 
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not only depends on the inclination angle qb, but also the vertical displacement qc, with ξ the 

coupling coefficient between stretching and bending.  

 Suppose the rigid bar in the discrete model is loaded vertically by F. The vertical 

displacement of the load 2∆l  depends on qc and qb following the geometric relation, 

 ( )1 cos
2 2c b
l Lq q∆
= + − . (A2.57) 

The displacement qc and inclination angle qb can be determined by extremizing the following 

potential energy 
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which yields two equilibrium equations 
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By solving Eq. (A2.59) and (A2.60), we can obtain the relations between load F and displacement 

2∆l .  

 We plot the normalized load-displacement curves for different width-to-length ratios w/L 

ranging from 0.1 to 0.34 (Figure 3.5B), from which one can observe the transitions from the 

continuous, snapping-through to snapping-back buckling mode as w/L increases. To highlight the 

role of coupling between stretching and bending in determining the buckling mode, we rewrite the 

elastic energy of the discrete model in Eq. (A2.55) as 
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 + + ξ= c b
discrete discrete discrete discreteU U U U , (A2.61) 

where c
discreteU , b

discreteU  and ξ
discreteU  represent the stretching, bending, and coupling energy 

components dependent on qc, qb, and both qc and qb, respectively, i.e., 
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We select three cases that exhibit distinctive buckling modes in Figure 3.5B: w/L = 0.10 

(continuous buckling), w/L = 0.20 (snapping-through buckling) and w/L = 0.32 (snapping-back 

buckling), and plot each energy component of discreteU  as a function of displacement (Appendix 

Figure 2.5). We note that when w/L = 0.10, ξ
discreteU  is much smaller than c

discreteU  and b
discreteU  after 

the buckling; when w/L = 0.20, ξ
discreteU  is on the same order of magnitude as c

discreteU  and b
discreteU  in 

the post-buckling; whereas ξ
discreteU  in the case of w/L = 0.32 grows as fast as b

discreteU  in the vicinity 

of the bifurcation point. This is because as w/L increases, the critical value of qc for buckling 

increases, which leads to a significant contribution of the coupling energy ξ
discreteU  to the total 

energy. Thus, we can conclude that the effect of the coupling between stretching and bending can 

be tuned by varying w/L, and a strong coupling effect results in the snapping-back buckling mode.  
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Appendix Figure 2.5 The role of coupling between stretching and bending in determining the 

buckling mode. The stretching c
discreteU , bending b

discreteU , and coupling ξ
discreteU  energy components 

of total elastic energy discreteU  in the discrete model as functions of ∆l L  when (A) w/L = 0.10, (B) 

w/L = 0.20 and (C) w/L = 0.32. (A-C have the same legend). 

A2.7 Videos 

Appendix Video 2.1 Uniaxial loading and unloading test for a column exhibiting a snapping-back 

buckling mode under displacement control. This column has a width-to-length ratio w/L = 0.28 

(width w = 14.6 mm, length L = 52.0 mm, depth b =30.0 mm). The loading/unloading rate is ±5 

mm/min. 

 

Appendix Video 2.2 Uniaxial loading and unloading test for a column exhibiting a snapping-back 

buckling mode under force control. This column has a width-to-length ratio w/L = 0.28 (width w 

= 14.6 mm, length L = 52.0 mm, depth b =30.0 mm). The loading/unloading rate is ±2 N/min. 
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Appendix Video 2.3 Uniaxial loading and unloading test for a column exhibiting a snapping-

through buckling mode under displacement control. This column has w/L = 0.20 (width w = 10.4 

mm, length L = 52.0 mm, depth b = 24 mm) The loading/unloading rate is ±5 mm/min. 
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Appendix 3 Supplementary Materials for Reusable Energy-

absorbing Architected Materials 

A3.1 Finite Element Modeling  

We used the commercial software Abaqus/Standard for our static finite element 

simulations. The static Riks method was implemented to capture the unstable equilibrium force-

displacement responses. We modeled columns as an incompressible neo-Hookean material in 

plane strain conditions with hybrid quadratic rectangular elements (Abaqus type CPE8H). Defects 

with very small sizes were introduced to trigger buckling and creasing instabilities (Appendix 

Figure 3.1). The size of the imperfection for buckling is Δd/w = 0.001, and the size of the 

imperfection for creasing is r/w= 0.002. We performed a mesh refinement study to ensure the mesh 

size is at least one order of magnitude smaller than the dimension of the finest part of the samples. 

As a result, approximately from 6x104 to 4x105 quadrilateral elements are involved in each finite 

element model, depending on the width-to-length ratio of columns. 

 

Appendix Figure 3.1 Setup of finite element (FE) modeling. (A) A 2D hyperelastic column with a 

width-to-length ratio w/l is subjected to a compressive force F or a displacement Δl that results in 

buckling of the column. (B) Due to symmetry, only the top half of the column in (A) is selected 
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for finite element modeling, where the bottom side is constrained by a symmetric boundary 

condition and the mid-point of the top side is restricted to moving vertically to eliminate rigid-

body motions. A very small displacement defect Δd in the horizontal direction is introduced to the 

bottom side of the half column in its stress-free state (light blue) to trigger buckling. A quarter of 

a circle with a small radius r is introduced as a defect to trigger the initiation of a crease at both 

the bottom right and top left corners of the half column. A rigid frictionless surface (dashed line) 

abuts one of the quarter-circle defects to form a self-contacting fold. 

 

Appendix Figure 3.2 Non-monotonic change of 𝐸𝐸disMax 𝜇𝜇𝜇𝜇𝜇𝜇⁄  with w/l. (A) Force-displacement 

equilibrium path for a wide column of w/l =0.3, with the definition of the width Δε, height ΔF, and 

area 𝐸𝐸disMax 𝜇𝜇𝜇𝜇𝜇𝜇⁄  of the hysteresis under a force-controlled loading. (B) Δε (left) and ΔF (right) as 

functions of w/l. (C) Non-monotonic change of 𝐸𝐸disMax 𝜇𝜇𝜇𝜇𝜇𝜇⁄  as w/l increases. Estimation of the 

hysteresis by the product of Δε and ΔF (red) agrees well with the accurate calculated area (blue). 

A3.2 Fabrication 

 We fabricated the samples by molding silicone elastomers into the 3D printed molds. 

EcoflexTM 00-30 was used for the samples containing columns with a width-to-length ratio w/l = 

0.30, SORTA-Clear 40, which has a modulus over 10 times higher than the Ecoflex 00-30, was 



155 
 

used for the samples containing columns with w/l = 0.14. As a result, these samples with two 

different w/l have similar critical forces for column buckling. The characterization of the moduli 

of the two silicone elastomers is shown in Appendix A3.6. 

A3.3 Static Tests 

 We used a uniaxial testing machine (Instron 5966) with a 500 N load cell to measure the 

displacement-controlled force-displacement relations of the proposed architected materials. The 

experimental results shown in Figure 3 and 5 were obtained at a strain rate of ±0.2 min-1 (16 

mm/min). During the tests, the deformation of the samples was recorded by a Canon EOS 6D 

digital SLR camera. To investigate the effect of the number of loading cycles on the mechanical 

behavior of the samples, we conducted 50 loading and unloading compressive tests at a strain rate 

±0.2 min-1 for the samples shown in Figure 3B. To explore whether the behavior is rate-dependent, 

we conducted the tests at strain rates ranging from ±0.05 min-1 to ±1 min-1.  

A3.4 Drop Tests 

To explore the energy-absorbing performance of the proposed architected material, we 

dropped the sample from different heights to create impacts at its bottom, while measured the 

impact force at its top. The setup of the drop tests is shown in Figure S8. The sample together with 

some steel plates attached to its bottom was dropped from different heights h ranging from 1 cm 

to 20 cm. The total weight dropped is 1.142 kg. A slider on a rail was used to guide the fall of the 

sample. A piezoelectric accelerometer (PCB Piezotronics, Inc., model number: 352C23) was 

attached onto the top plate on the sample to record its acceleration. The impact force can be 

calculated by multiplying the acceleration by the mass of the top plate (m = 0.156 kg). The drop 

test was recorded using a Phantom V7.2 high speed camera at 6600 frames per second. The 
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Appendix Video 3.2 shows the deformation process of the sample during the impact. This movie 

is played at 100 frame per second, which is 66 times slower than the actual time scale. From this 

movie, we can see the strain rate is roughly 4000 min-1, which is 20000 times higher than the strain 

rate in the static tests. 

A3.5 Theory for the Force-displacement Response of a Snapping-back or Snapping-

through Column Chain under Displacement Control. 

 In this section, we determine the force-displacement response of a column chain containing 

n number of identical snapping-back or snapping-through columns with a width-to-length ratio w/l 

under displacement control. A single column’s equilibrium force-displacement path is obtained 

through a FE simulation, as shown in Figure 5.1. Based on the FE simulation result, we first 

determine all the equilibrium force-displacement branches of the column chain, and then identify 

the stability of each branch. 
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Appendix Figure 3.3 Determine the stable equilibrium force-displacement paths for a column 

chain. (A and B) The equilibrium force-displacement paths of a single column with a width-to-

length ratio w/l = 0.20 (A) and 0.30 (B) from FE simulations. (C) Possible triples (x, y, z) for a 

column chain with n = 3 number of columns connected in series, where x, y, and z represent the 

numbers of columns whose displacements are on the branches 1, 2, and 3, respectively. The triples 

in blue, pink, and green denote the equilibrium configurations with y = 0, y = 1, and y ≥ 2, 

respectively. (D and E) Equilibrium force-displacement paths for a column chain containing n = 3 

number of columns with w/l = 0.20 (D) and 0.30 (E). The solid curves represent the stable 

equilibrium branches, whereas the dashed curves represent the unstable equilibrium branches 

when the displacement is controlled. The curves and the corresponding triples in (C) share the 

same colors. 
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 Since the columns are connected in series (See Figure 5.2A), the total force F acting on the 

column chain equals the force Fi acting on each column, and the total displacement ΔL equals the 

sum of the displacement Δli of all the columns (i = 1, 2, …, n). When a column exhibits the 

snapping-through (Appendix Figure 3.3A) or snapping-back (Appendix Figure 3.3B) buckling 

mode, a given force Fi within the range of (Fmin, Fmax) corresponds to three different displacements 

Δli, which are on the three different branches 1, 2 and 3. For a column chain with n number of 

identical columns subjected to a force Fi (𝐹𝐹min < 𝐹𝐹𝑖𝑖 < 𝐹𝐹max), we define a triple (x, y, z), where x, 

y and z represent the number of columns whose displacements Δli are on the 1, 2, and 3 branches, 

respectively. Each triple leads to one equilibrium F – ΔL branch. Counting the total number of 

triples is a combinatorial problem: in how many ways the n identical columns can be divided into 

three distinct groups, in which empty groups are allowed. There are C𝑛𝑛+22 =  (𝑛𝑛 + 1)(𝑛𝑛 + 2) 2⁄  

number of different triples, corresponding to the same number of equilibrium F – ΔL branches. 

Take n = 3 as an example. There are C3+22 = (3 + 1)(3 + 2) 2⁄ = 10 different triples, which can 

be displayed in the configurational space (Appendix Figure 3.3C) [74]. The equilibrium branch 

represented by the triple (x, y, z) has the following total displacement ΔL 

 1 2 3∆ = ∆ + ∆ + ∆L x l y l z l , (A3.1) 

where Δl1, Δl2 and Δl3 are the displacements corresponding to the force F on the branches 1, 2 and 

3, respectively. In this way, we can identify all the equilibrium F – ΔL branches. Appendix Figure 

3.3D and E are the examples of the 10 equilibrium F – ΔL branches for the column chains 

composed of n = 3 number of columns with w/l = 0.20 (Appendix Figure 3.3D) and 0.30 (Appendix 

Figure 3.3E). 
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Note that not all the equilibrium F – ΔL branches are stable when the displacement ΔL is 

controlled. A stable equilibrium F – ΔL branch requires the following Hessian matrix Hij to be 

positive-definite 
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where G is the free energy, λ is the control parameter, and q1, …, qm are the generalized state 

variables. When the total displacement ΔL is specified (λ = ΔL), the free energy is the total elastic 

energy of the column chain U. 

Next, we determine the stable equilibrium F – ΔL branches under displacement control for 

a column chain composed of columns exhibiting the snapping-through buckling mode. The 

stability of the snapping-through elements connected in series has been well studied in the 

literature [74]. Here we briefly summarize how the stable equilibrium F – ΔL branches of the 

column chain are determined. 

The elastic energy of this column chain depends only on the displacement of each column 

Δli,  

 ( )
1=

= ∆∑
n

i i
i

U U l , (A3.3) 

where Ui is the elastic energy of column i. Since ΔL is specified, we can eliminate the state variable 

Δln in Equation (A3.3) by ∆𝑙𝑙𝑛𝑛 = ∆𝐿𝐿 − ∑ ∆𝑙𝑙𝑖𝑖𝑛𝑛−1
𝑖𝑖=1 . Then the total elastic energy U can be expressed 

as a function of state variables ∆𝑙𝑙1,∆𝑙𝑙2, … ,∆𝑙𝑙𝑛𝑛−1, 
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Substituting Equation (A3.4) into Equation (A3.2), we obtain a n-1 by n-1 Hessian matrix Hij 
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where 𝑘𝑘𝑚𝑚 = 𝜕𝜕2𝑈𝑈𝑚𝑚 𝜕𝜕(∆𝑙𝑙𝑚𝑚)2⁄  (𝑚𝑚 = 1, 2, … ,𝑛𝑛)  represent the slope of the equilibrium force-

displacement curve for column m at the displacement Δlm. If the Hessian matrix in Equation (A3.5) 

is positive definite, the equilibrium F – ΔL branch is stable. Otherwise, the branch is unstable. The 

Hessian matrix Hij is positive definite if and only if all of its principal minors are positive 
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The sign of Aj depends on the number of columns whose displacements are on the branch 2 

featuring a negative slope. When there is no column on the branch 2 (y = 0), all the km (m = 1, 

2, …, n) in Equation (A3.6) are positive and thus Hij is positive definite. When there are no less 

than two columns on the branch 2 (y ≥ 2), one can always reorganize the columns such that the 

first and the last columns have displacements on their branch 2, i.e. k1 < 0 and kn < 0. Thus, Hij is 

not positive definite since A1 = k1 + kn < 0. When there is exactly one column on its branch 2 (y = 

1), we assume, without loss of generality, that the (n-1)th column has a displacement on its branch 

2, then kn-1 < 0 and km > 0 (m = 1, 2, …, n-2, n). Therefore, Aj > 0 (j = 1, 2, …, n-2) and the positive 

definiteness of Hij depends only on An-1 

 1
11

1
−

==

  
=   
  

∑∏
n n

n i
li l

A k
k

. (A3.7) 

Note that ∏ 𝑘𝑘𝑖𝑖𝑛𝑛
𝑖𝑖=1 < 0 and 
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An-1 > 0 if the slope of the equilibrium F – ΔL branch is negative. 
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In summary, the equilibrium F – ΔL branches are stable if either (i) there is no column on 

the branch 2, or (ii) there is exactly one column on the branch 2 while the overall equilibrium F – 

ΔL curve of the column chain has a negative slope. Otherwise, the equilibrium branches are 

unstable. Appendix Figure 3.3D shows the stable (solid lines) and unstable (dashed lines) 

equilibrium F – ΔL branches when ΔL is controlled for a column chain composed of n = 3 number 

of columns with w/l = 0.20, which exhibit the snapping-through buckling mode.  

 For a column chain composed of columns exhibiting the snapping-back buckling mode, 

the stable equilibrium F – ΔL branches can be determined by the following. Note that the force-

displacement curve featuring the snapping-back buckling (Appendix Figure 3.4A) can be 

mathematically separated into a monotonic force-displacement curve (Appendix Figure 3.4B) and 

a force-displacement curve featuring the snapping-through buckling (Appendix Figure 3.4C). The 

monotonic force-displacement curve (Appendix Figure 3.4B) is selected such that the branch 2 

(purple) shown in Appendix Figure 3.4A corresponds to the negative slope part (the purple branch 

in Appendix Figure 3.4B) of the force-displacement curve featuring the snapping-through buckling. 

The column exhibiting the snapping-back buckling mode can be regarded as a nonlinear spring 

connected in series to a snapping-through element. A column chain containing n columns can then 

be viewed as a system containing n nonlinear springs and n snapping-through elements connected 

in series. The n nonlinear springs can be merged into a single spring with the equivalent force-

displacement behavior. Therefore, the column chain containing n columns exhibiting the snapping-

back buckling mode is equivalent to a serial combination of n snapping-through elements and a 

single nonlinear spring.  

 Following the previous procedure, the Hessian matrix Hij for this column chain is 
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where 𝑘𝑘�𝑚𝑚 (𝑚𝑚 = 1, 2, … ,𝑛𝑛) and 𝑘𝑘�spring represent the slope of the equilibrium force-displacement 

curve of the snapping-through elements and the nonlinear spring, respectively. 𝑘𝑘�spring is always 

positive. H is positive definite if and only if its principal minors are all positive 
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Since 𝑘𝑘�spring is positive, it does not affect the stability. The conclusion made for the column chain 

with columns exhibiting the snapping-through buckling mode can be applied here. Take the 

column chain composed of n = 3 number of columns with w/l = 0.30, which exhibit snapping-back 

buckling mode, as an example. Among its 10 equilibrium F – ΔL branches (Appendix Figure 3.3E), 

the branches (blue curves) that correspond to zero column on its branch 2 are stable. The reason is 

that the equivalent system contains no snapping-through element on its branch 2. Thus, 

𝑘𝑘�𝑚𝑚 (𝑚𝑚 = 1, 2, … ,𝑛𝑛)  in Equation(A3.10) are greater than zero, leading to a positive definite 

Hessian matrix. The branches (green curves) that correspond to no less than two columns on their 

branch 2 are unstable. The reason is the following. We assume, without loss of generality, that the 

first and the last columns have displacements on their branch 2. Thus the two corresponding 

snapping-through elements are also on their branch 2, i.e. 𝑘𝑘�1 < 0 and 𝑘𝑘�𝑚𝑚 < 0, yielding 𝐴𝐴1 = 𝑘𝑘�1 +

𝑘𝑘�𝑚𝑚 < 0. Therefore, the Hessian matrix is not positive definite. The stability of the branches (pink 
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curves) that have exactly one column on its branch 2 depends solely on the slope of the equilibrium 

F – ΔL branches. The branches are stable if and only if the overall slope is negative. The reason is 

the following. We assume, without loss of generality, that the (n-1)th column has a displacement 

on its branch 2. Correspondingly, the snapping-through element of this column also has a 

displacement on its branch 2, i.e. 𝑘𝑘�𝑛𝑛−1 < 0. Note that 𝑘𝑘�𝑚𝑚 (𝑚𝑚 = 1, 2, … ,𝑛𝑛 − 2,𝑛𝑛) are positive, we 

get 
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Then the equilibrium F – ΔL branches are stable if 
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Note that ∏ 𝑘𝑘�𝑖𝑖𝑛𝑛
𝑖𝑖=1 < 0 and 𝑘𝑘�spring > 0, and 
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Therefore, An-1 > 0 and An > 0 if the slope of the equilibrium F – ΔL branch is negative. 
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Appendix Figure 3.4 Schematic of equivalence between a column exhibiting the snapping-back 

buckling mode and a nonlinear spring connected in series to a snapping-through element. A force-

displacement curve featuring the snapping-back buckling (A) is equivalent to a superposition of a 

monotonic force-displacement curve (B) and a force-displacement curve featuring the snapping-

through buckling (C). The branches 1 (blue), 2 (purple), and 3 (green) in (A) correspond to the 

branches 1 (blue), 2 (purple), and 3 (green) in (C), respectively. 

 

Appendix Figure 3.5 Energy dissipation of curved beams stacked in series. (A) Schematic of one 

curved beam in its initial (upper) and deformed (lower) states. This beam has a circular cross 

section with a diameter w. (B) Normalized force-displacement equilibrium path obtained from FE 

analysis. This curved beam exhibits a snapping-through buckling mode. The shaded area indicates 

the maximum normalized dissipated energy under force-controlled loading, 𝐸𝐸disMax 𝜇𝜇𝜇𝜇𝜇𝜇⁄ , where A 
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denotes the area of the cross section. The geometric parameters of this curved beam are: w/l = 0.1, 

d/l = 0.28. (C) The energy dissipation efficiency η as a function of the number of layers n for the 

curved beams (red), compared with that of wide columns with w/l = 0.30 (blue). 

A3.6 Characterization of Silicone Elastomers 

 Next, we conducted uniaxial compression tests to characterize the initial shear modulus of 

the two silicone rubbers. We molded two solid cubes of length 50 mm, depth 50 mm and width 50 

mm out of Ecoflex 00-30 and SORTA-Clear 40. The cubes sandwiched between two acrylic plates 

were loaded by a uniaxial testing machine (Instron 5966) equipped with a 500 N load cell. The 

nominal stress-strain relations for the two silicone rubbers at a strain rate of 0.3 min-1 were obtained 

and plotted in Appendix Figure 3.6. We modeled both materials by the following incompressible 

neo-Hookean model 

 ( ) ( )Ttr 3 det 1
2
µ  = − +  −   W pFF F , (A3.14) 

where W is the strain energy density function, µ is the initial shear modulus, F is the deformation 

gradient tensor and p is the hydrostatic pressure. The nominal (first Piola-Kirchoff) stress under 

uniaxial compression is then given by 

 
( )

( )11 112
11

1 1
1

µ ε
ε

 
= − − 

−  
S , (A3.15) 

where S11 and ε11 represent the nominal stress and strain along the loading direction, respectively. 

We fitted Equation (A3.15) to the experimental data using the linear least-square method, yielding 

µ = 16.461 kPa for Ecoflex 00-30 and 288.147 kPa for SORTA-Clear 40. In Appendix Figure 3.6, 

we can see that the incompressible neo-Hookean model can capture the stress-strain behavior up 

to 10% strain very well. 
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Appendix Figure 3.6 Characterization of the initial shear modulus for the silicone rubbers. (A and 

B) The relation between nominal stress and nominal strain in uniaxial compression tests for 

Ecoflex 00-30 (A) and SORTA-Clear (B). The black dots represent the experimental data, while 

the red lines represent the prediction of incompressible neo-Hookean model. 

 

Appendix Figure 3.7 The effect of the number of loading cycles and the strain rates on the force-

displacement relation of the sample when the displacement is controlled. (A) Every tenth of the 50 

force-displacement measurements with strain rate ±0.2 min-1 is plotted. The force-displacement 

behavior is barely affected by the number of the loading cycles. (B) The force-displacement 
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measurements under different strain rates ranging from ±0.05 min-1 to ±1 min-1. The strain rate has 

a very limited effect on the force-displacement behavior 

 

Appendix Figure 3.8 Setup of the drop test. The sample together with some steel plates attached 

to its bottom was dropped from different heights h ranging from 1 cm to 20 cm. The total weight 

dropped is 1.142 kg. A slider on a rail was used to guide the fall of the sample. A piezoelectric 

accelerometer was attached onto the top plate of the sample to record its acceleration. 
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Appendix Figure 3.9 The loading (red) and unloading (blue) curves of 8-layered architected 

materials with columns of w/l = 0.30 (dashed) and 0.14 (solid). The shaded areas enclosed by the 

loading and unloading curves denote the normalized dissipated energy 𝐸𝐸dis 𝜇𝜇𝜇𝜇𝜇𝜇⁄ . 

 

Appendix Figure 3.10 The method of applying preloads on the proposed architected materials. As 

preloads, some weight balances are hung on the two sides of the top layer of the material. 
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A3.7 Videos 

Appendix Video 3.1 The displacement-controlled force-displacement response of the 8-layered 

architected material with columns of w/l = 0.30. 

 

Appendix Video 3.2 Drop test for the proposed architected material when the energy input Einp = 

1.8 J. 

 

Appendix Video 3.3 The displacement-controlled force-displacement response of the 8-layered 

architected material with columns of w/l = 0.14. 

 

Appendix Video 3.4 The displacement-controlled force-displacement response of the 8-layered 

architected material with columns of w/l = 0.30 when a preload 0.4Fcr is applied. 

 

Appendix Video 3.5 The displacement-controlled force-displacement response of the 8-layered 

architected material with columns of w/l = 0.30 when a preload 0.7Fcr is applied. 
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Appendix 4 Supplementary Materials for Blueprinting 

Photothermal Shape-morphing of Liquid Crystal Elastomers 

A4.1 Constitutive Model of LCEs for FEM Simulations 

We use the commercial software Abaqus/Standard for our finite element simulations. We 

implemented the following neo-classical free energy density [187] for LCEs in Abaqus by writing 

a user-defined material subroutine (UMAT) 

 𝜓𝜓 = 𝜇𝜇
2

[Tr(𝒈𝒈�−1𝐅𝐅𝒈𝒈�0𝐅𝐅T) − 3] + 𝐾𝐾
2

(𝐽𝐽 − 1)2 − 𝜇𝜇 ln 𝐽𝐽, (A4.1) 

where µ is the shear modulus, K is the bulk modulus, F is the deformation gradient and 𝐽𝐽 = det(𝐅𝐅), 

𝒈𝒈�  is a temperature-dependent three-dimensional metric tensor that describes the anisotropy of 

LCEs with respect to the isotropic phase in the current configuration [186], and 𝒈𝒈�0 denotes 𝒈𝒈� in 

the reference configuration which is selected as the nematic phase at temperature T = 60℃. The 

metric tensor 𝒈𝒈� can be expressed as 

 𝒈𝒈� = 𝑔𝑔�⊥ �𝐈𝐈 + �𝑔𝑔�∥
𝑔𝑔�⊥
− 1�𝒏𝒏⨂𝒏𝒏� ,𝒏𝒏 = 𝐅𝐅𝒏𝒏0

|𝐅𝐅𝒏𝒏0|
, (A4.2) 

where 𝑔𝑔�∥ and 𝑔𝑔�⊥ are eigenvalues of 𝒈𝒈� parallel and orthogonal to the director and 𝑔𝑔�∥𝑔𝑔�⊥2 = 1, I is a 

3-by-3 identity matrix, n is a unit vector along the director, and n0 denotes n in the reference 

configuration. The stretch λ relates to the metric tensors by 

 𝜆𝜆 = �𝑔𝑔�∥ 𝑔𝑔�0∥⁄ , (A4.3) 

where 𝑔𝑔�0∥ is the eigenvalue of 𝒈𝒈�0 parallel to the director. To determine the dependence of 𝑔𝑔�∥ and 

𝑔𝑔�⊥ on temperature, we fit the stretch-temperature relation to the experimental data (Figure 6.1C) 

and obtain 
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 𝜆𝜆 = 0.6�1 + 1.778 120−𝑇𝑇
60

, (A4.4) 

where T denotes temperature within the range of 60℃ to 120 ℃. The stretch 𝜆𝜆⊥ perpendicular to 

the director (Figure 6.1C) can be calculated based on incompressibility 

 𝜆𝜆⊥ = �1 𝜆𝜆⁄ . (A4.5) 

Equations (A4.4) and (A4.5) indicate that upon heating, LCEs transition from the nematic phase 

(T = 60℃) to the isotropic phase (T = 120℃), yielding a contractive stretch of 0.6 and a tensile 

stretch of 1.29 parallel and orthogonal to the director, respectively. From the definition of the 

metric tensor, we know that 𝑔𝑔�∥(𝑇𝑇 = 120℃) = 1, and therefore, according to Equation (A4.3), we 

have  𝑔𝑔�0∥ = 1/𝜆𝜆2(𝑇𝑇 = 120℃) = 2.778. Based on Equations (A4.3) and (A4.4), the dependence of 

𝑔𝑔�∥ on temperature can be expressed as 

 𝑔𝑔�∥ = 1 + 1.778 120−𝑇𝑇
60

, (A4.6) 

and 𝑔𝑔�⊥ can be obtained by 𝑔𝑔�⊥ = �1/𝑔𝑔�∥. 

A4.2 Stretch Profiles for Given Constant Gaussian Curvature  

 We obtain the stretch profiles giving constant Gaussian curvature by numerically solving 

Equation (6.8). The target constant (non-dimensional) Gaussian curvature Kw2 is ±0.8. Equation 

(6.8) can be solved using Matlab ODE45 solver with a relative error tolerance of 1x10-10. The 

initial conditions are adjusted such that the stretches are experimentally accessible in our system. 

To define a stretch profile yielding the same Gaussian curvature as the target one, we fit a 9th-order 

polynomial to the solution such that the relative error of the obtained Gaussian curvature is less 

than 1x10-6. As a result, the stretch profile corresponding to positive Gaussian curvature 0.8 is 
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𝜆𝜆(𝑣𝑣) = 0.0008016𝑣𝑣9 − 0.008048𝑣𝑣8 + 0.02585𝑣𝑣7 − 0.05128𝑣𝑣6 +

0.07006𝑣𝑣5 − 0.09382𝑣𝑣4 + 0.1015𝑣𝑣3 − 0.4649𝑣𝑣2 + 0.45𝑣𝑣 + 0.78, 
(A4.7) 

and the stretch profile corresponding to negative Gaussian curvature -0.8 is 

 
𝜆𝜆(𝑣𝑣) = −0.0003549𝑣𝑣9 − 0.002021𝑣𝑣8 + 0.01206𝑣𝑣7 − 0.01331𝑣𝑣6 −

0.007834𝑣𝑣5 − 0.00651𝑣𝑣4 + 0.04632𝑣𝑣3 + 0.3555𝑣𝑣2 − 0.4𝑣𝑣 + 0.9. 
(A4.8) 

A4.3 Supplementary Figures 

 

Appendix Figure 4.1 Shape predicted by (A) Theory and (B) FEM for Gaussian stretch profiles 

with d = 0.3 (top row) and d = 0.4 (bottom row). (C) Experiments match the predicted shape. 
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Appendix Figure 4.2 Comparison of curvature predicted by theory and FEM for (A) positive 

Gaussian curvature and (B) negative Gaussian curvature. 

 

Appendix Figure 4.3 (A) Non-axisymmetric mode predicted by the FEM for the prescribed 

constant negative Gaussian curvature via the stretch profile shown in Figure 4A. (B) Normalized 

free energy difference between the curved states Π and the flat state Π0 as a function of percentage 

of prescribed stretches 𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. The non-axisymmetric mode bifurcates from the flat state at a 
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lower stretch and is energetically preferred. To achieve the axisymmetric mode in the FEM 

simulations, a symmetric boundary condition about u/w = 0.5 is applied. The non-axisymmetric 

mode, however, has free boundary conditions in the FEM simulations. 
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