
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
N-day Vulnerabilities: Detection, Bisection, and Measurement

Permalink
https://escholarship.org/uc/item/12m5n7hk

Author
Zhang, Zheng

Publication Date
2025

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/12m5n7hk
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

N-day Vulnerabilities: Detection, Bisection, and Measurement

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Zheng Zhang

March 2025

Dissertation Committee:

Dr. Zhiyun Qian, Chairperson
Dr. Heng Yin
Dr. Manu Sridharan
Dr. Chengyu Song

Copyright by
Zheng Zhang

2025

The Dissertation of Zheng Zhang is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First, I would like to express my deepest gratitude to my advisor, Prof. Zhiyun Qian, for

his unwavering guidance and support. He has always provided me with invaluable advice,

ranging from the intricacies of research to practical methods of working. When I first met

him, I knew very little about computer science. Under his patient mentorship, I gradually

grew in knowledge and skill, eventually earning my Ph.D. in Computer Science. His passion

for research and steadfast dedication to his career have deeply inspired me; he is one of my

most important role models.

I am also very grateful to my committee members, Prof. Heng Yin, Prof. Chengyu

Song, and Prof. Manu Sridharan, for their invaluable advice and insightful discussions

throughout my dissertation.

I am deeply grateful to my lab mates and colleagues at UCR. Our discussions and

collaborations have been both productive and enjoyable, and their support outside the lab

has been invaluable throughout my Ph.D. journey. I would like to especially thank the

following individuals (in no particular order): Hang Zhang, Dongdong She, Zhongjie Wang,

Daimeng Wang, Yue Cao, Shitong Zhu, Yizhuo Zhai, Weiteng Chen, PengXiong Zhu, Yu

Hao, Keyu Man, Xiaochen Zou, Xingyu Li, Xinan Zhou, Zhenchuan Liang, Haonan Li,

Guoren Li, Juefei Pu, Qing Deng, Shenghan Zheng, Zhutian Liu, Yuan Tan, Dazhi Feng,

Yifan Wu, and many others.

During my long years at UCR, I received help from many people, including both

my professors and administrative staff. I regret that I cannot list everyone here, but your

tremendous support was essential in helping me navigate this journey. I would like to give

iv

special thanks to Vanda Yamaguchi. From course selection to internships and graduation,

your patience and assistance were invaluable at every important step along the way.

Above all, I am most grateful to my family. No matter where I am or how far

apart we are, my parents and grandparents have always supported me in every possible

way. Whenever I faced challenges, I could always feel your unwavering support. A heartfelt

thank you to my uncle and aunt—we have always shared a special connection. Though we

made independent choices, fate brought us together across thousands of miles. Over these

past few years, I have been fortunate to receive so much care from you. Lastly, I want to

thank my little cousin. Watching you grow stronger and more outstanding has been a great

source of encouragement for me.

v

To my family for all the support.

vi

ABSTRACT OF THE DISSERTATION

N-day Vulnerabilities: Detection, Bisection, and Measurement

by

Zheng Zhang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2025

Dr. Zhiyun Qian, Chairperson

Open-source projects are widely reused in commercial software, yet its collabora-

tive nature exposes it to significant security challenges, particularly N-day vulnerabilities.

These vulnerabilities remain exploitable after patches have been released, largely due to

delayed patch propagation in decentralized ecosystems. This research addresses the criti-

cal issue of prolonged vulnerability exposure by exploring the underlying causes of patch

delays and developing automated tools that can help accelerate the patch porting process

and reduce the window for attackers.

We first present a comprehensive measurement study of the Android kernel patch

ecosystem, which systematically analyzes how security patches move from the Linux main-

line through various layers of customization by chipset manufacturers and OEM vendors.

Our findings indicate that patch delays are a systemic issue, with some patches taking

months—or even over a year—to fully reach end-users, which increases the risk of exploita-

tion. We analyzed the underlying causes, and one significant reason is that maintainers

lack knowledge about which versions are affected by vulnerabilities. In other words, they

vii

are unsure when a vulnerability was introduced and which versions are impacted, making

it unclear whether the versions they maintain need to be patched.

Based on the above observations, we need to speed up the patch porting process to

reduce the attack window of N-day vulnerabilities. Identifying the affected versions of these

vulnerabilities is crucial for the patch porting process. Therefore, we tackle the challenge of

bug bisection—the process of tracing vulnerabilities back to their originating commits. Tra-

ditional methods, such as dynamic testing and heuristic-based BIC (bug-inducing-commit,

the change that first introduced the vulnerability into the codebase) identification, have

shown limitations due to environmental inconsistencies and oversimplified assumptions. To

overcome these issues, we introduce a novel approach that uses under-constrained sym-

bolic execution to analyze code statically across multiple versions. This method precisely

identifies whether the vulnerability logic exists in a given version, thereby isolating the

bug-inducing commit.

However, the above method still faces several limitations. It requires a proof-

of-concept, supports only a narrow range of bug types, and its accuracy is not very high

(although it is higher than that of traditional methods). These shortcomings drive us to ex-

plore alternative approaches. Finally, we enhance bug bisection by employing large language

models (LLMs) that combine code diffs and contextual commit messages. This multi-step

filtering approach, which uses both coarse-grained and fine-grained analysis, significantly

improves the accuracy of vulnerability detection. Together, these integrated techniques can

help accelerate the patching process and reduce the exposure window for N-day vulner-

abilities, contributing to a more secure open-source ecosystem. These contributions offer

viii

practical solutions for swiftly mitigating vulnerabilities, enhancing open-source security, and

ensuring robust resilience in critical software systems.

ix

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Background . 1
1.2 Overview . 3
1.3 Roadmap . 7

2 An Investigation of the Android Kernel Patch Ecosystem 8
2.1 Introduction . 9
2.2 Android Kernel Ecosystem . 11
2.3 Measurement Goal and Pipeline . 15
2.4 Patch Presence Test . 17

2.4.1 Repository Target . 18
2.4.2 Source Code Target . 20
2.4.3 Binary Target . 23

2.5 Evaluation . 27
2.5.1 Dataset . 27
2.5.2 Accuracy . 28
2.5.3 Patch Propagation in Upstream kernels 31
2.5.4 Patch propagation to Android OEM phones 37

2.6 Causes of Patch Delays . 43
2.7 Discussion . 57
2.8 Related Work . 58
2.9 Conclusion . 60

3 SymBisect: Accurate Bisection for Fuzzer-Exposed Vulnerabilities 61
3.1 Introduction . 62
3.2 Background and Motivation . 65
3.3 Overview . 68

3.3.1 Motivating Example . 68

x

3.3.2 Challenges and Insights . 71
3.3.3 System Architecture . 72

3.4 SymBisect Design . 75
3.4.1 Guidance Generator . 75
3.4.2 Guidance Transformer . 77
3.4.3 Symbolic Detector . 79

3.5 Implementation . 80
3.5.1 Guidance Transformer . 80
3.5.2 Symbolic Detector . 81

3.6 Evaluation . 84
3.6.1 Accuracy of SymBisect (RQ1) . 87
3.6.2 Comparison (RQ3) . 89
3.6.3 Scalability of Different Exploration Strategies (RQ4) 96

3.7 Discussion . 97
3.8 Related Work . 99
3.9 Conclusion . 101

4 Breaking Barriers: Accurate Bug Bisection with Full Patch Context and
LLM Insight 103
4.1 Introduction . 104
4.2 Motivation . 108

4.2.1 Motivating example . 108
4.2.2 Limitations of previous methods . 112
4.2.3 Insights . 113

4.3 Design . 114
4.3.1 Design Motivation . 114
4.3.2 Workflow . 118
4.3.3 Candidate Commit Generation . 119
4.3.4 BIC Filtering . 123
4.3.5 Result Finalization . 124

4.4 Implementation . 125
4.5 Evaluation . 126

4.5.1 Accuracy of SymBisect (RQ1) . 129
4.5.2 Comparison against SOTA Tools (RQ2) 134
4.5.3 Ablation Study (RQ3) . 137

4.6 Related Work . 141
4.7 Conclusion . 143

5 Conclusions 144

Bibliography 147

xi

List of Figures

2.1 Android ecosystem for kernel version 4.4 12
2.2 Measurement pipeline. 15
2.3 Fiber Workflow . 23
2.4 Upstream patch delays (Linux CVEs) . 30
2.5 Linux mainline to LTS (Linux CVEs) . 31
2.6 LTS to Android common (Linux CVEs) . 32
2.7 Android to Qualcomm mainline (Linux CVEs) 33
2.8 Qualcomm mainline to stable (Linux CVEs) 34
2.9 Qualcomm mainline to stable (Qualcomm CVEs) 35
2.10 Delay between Qualcomm stable and OEM phones 37
2.11 End-to-end delay between earliest patch and OEM phones 38
2.12 End-to-end delay between earliest patch and OEM phones 39
2.13 Different OEM vendor comparison . 40
2.14 High/low-end phone comparison . 41
2.15 Patch delays from Linux mainline to LTS (by severity) 42
2.16 Case study: CVE-2019-2215 . 45
2.17 Notification delays of Linux CVEs (by severity) 47
2.18 Notification delays of Qualcomm CVEs (by severity 48
2.19 Post-notification delays of cherry-picked patches (by severity) 49

3.1 The Bug-inducing commit and Patch of a vulnerability from syzbot 69
3.2 Vulnerability detection via symbolic execution 71
3.3 Overview of SymBisect . 73
3.4 Comparison of commit number between correct and incorrect cases 88
3.5 Case study of syzbot FN . 93
3.6 Case study of V0Finder FN . 94
3.7 Case study of VSZZ FP . 95
3.8 Scalability Evaluation . 97

4.1 Motivating example . 109
4.2 Motivating example #2 . 111
4.3 Workflow of SymBisect . 118

xii

4.4 Candidate Generators . 119
4.5 Explanation of TP/FP/FN . 130
4.6 Distribution of inaccurate cases over version distances 130
4.7 Ablation Study with Different Design Points. 138

xiii

List of Tables

2.1 Data set of measurements . 25
2.2 Corresponding repository of CVE in Android security bulletin 26
2.3 Accuracy of patch presence test . 28
2.4 The ratio of CVEs patched by merge . 50

3.1 The results of vulnerable versions detection 84
3.2 The results of bug-inducing commit identification 84
3.3 The reasons of PoC-based method failed 90
3.4 The relationship between strategy and guidance 96

4.1 The results of BIC identification . 129
4.2 The results of vulnerable versions detection 129
4.3 The reasons of SymBisect’s inaccuracy 129
4.4 The reasons of VSZZ method failed . 134
4.5 The reasons of V0Finder method failed 135
4.6 The reasons of SymBisect method failed 135
4.7 The accuracy with different LLM models 140
4.8 The accuracy with/without commit message 140

xiv

Chapter 1

Introduction

1.1 Background

Open-source software is the foundation of countless critical systems and devices,

yet its collaborative nature comes with inherent challenges in ensuring security [7, 96].

One of the most significant challenges is the phenomenon of N-day vulnerabilities—security

flaws that remain exploitable well beyond the point at which they have been discovered

and disclosed (in many cases, even after the initial patch is released). These vulnerabilities

present a serious risk because attackers can take advantage of the lag between the discovery

of a flaw and its complete remediation across all systems [88].

In many open-source ecosystems, software is developed in a highly decentralized

fashion. Projects like the Linux kernel or Android operate under a model where multiple

parties, ranging from upstream developers to various downstream vendors, contribute to the

evolution of the code [96, 119, 14, 156]. For instance, the Android ecosystem is built upon

the Android Open Source Project (AOSP), which itself is derived from the Linux kernel.

1

This code is then further customized by chipset manufacturers and original equipment

manufacturers (OEMs) before finally reaching end-users. Such a multi-tiered process can

introduce significant delays in the propagation of security patches. A patch that is applied in

the upstream repository may take months to reach the final product, leaving users vulnerable

during the interim.

To decrease attack windows, we need to accelerate the patching process of N-day

vulnerabilities. To accelerate the patching process, we must quickly identify the scope of

N-day vulnerabilities (for example, determining which stable Linux versions are impacted

by vulnerabilities discovered in the Linux mainline) so that we can promptly notify af-

fected downstream maintainers. To accurately identify the affected range, it is crucial to

understand its origin and the precise point in the software’s evolution when the flaw was

introduced [58, 170, 194]. This task, known as bug bisection, is defined as tracing back

through the commit history to identify the bug-inducing commit (BIC)—the change that

first introduced the vulnerability into the codebase.

Traditional bug bisection methods have typically relied on dynamic testing ap-

proaches, such as executing a proof-of-concept (PoC) across multiple versions, or on heuristic-

based static analyses of code diffs. However, each of these methods has notable limitations.

Dynamic testing approaches, for example, are often hampered by inconsistencies in the ex-

ecution environment. Variations in build configurations or runtime environments can lead

to false negatives or false positives, making it difficult to reliably determine whether a par-

ticular version remains vulnerable. Additionally, executing a PoC across different versions

may inadvertently trigger unrelated bugs, further complicating the analysis. On the other

2

hand, heuristic-based static methods generally assume a direct correlation between the code

changes indicated in a patch and the bug-inducing commit. This assumption oversimplifies

the complexity of software evolution. In many cases, the vulnerability is not solely localized

to the lines of code modified by the patch; rather, it may result from a subtle interaction be-

tween multiple commits or from code that is logically related but not immediately adjacent

in the commit history.

Overall, the background reveals two intertwined problems: the delayed propaga-

tion of security patches in complex open-source ecosystems and the difficulties in accurately

identifying the commits responsible for introducing vulnerabilities. Both issues significantly

contribute to the persistence and severity of N-day vulnerabilities. The inherent complexity

of multi-party development environments and the limitations of traditional analysis tech-

niques underscores the need for innovative approaches that can accurately identify affected

versions of N-day vulnerabilities, thereby accelerating the patch porting process and ulti-

mately reducing attack windows.

1.2 Overview

To address these challenges, a comprehensive research effort has been undertaken

that spans the measurement of patch delays, the development of advanced bug bisection

techniques, and the integration of novel approaches. The overarching goal of this work is to

mitigate the risks associated with N-day vulnerabilities by both understanding the underly-

ing causes of patch delays and by providing effective tools for accurate N-day vulnerability

detection.

3

The first component of this research is an in-depth measurement study of the

Android kernel patch ecosystem. By systematically analyzing the propagation of patches

across multiple layers—from the initial commit in the Linux mainline to the final deployment

by OEM vendors—this work provides quantitative insights into the timing and bottlenecks

that hinder the swift deployment of security updates. The study examines a wide array of

data sources, including public security bulletins, firmware releases, and commit logs, to build

a detailed picture of the patch propagation process. The findings reveal that patch delays are

a systemic issue, often extending to several months or even over a year, which significantly

increases the window of vulnerability for billions of devices. Our analysis showed that one

important reason behind this is that maintainers do not know which versions are affected

by vulnerabilities. They are uncertain about when a vulnerability was introduced (In other

words, they don’t know which commit introduced the bug) and which versions are impacted,

so they cannot easily determine if their maintained versions need a patch. This empirical

evidence establishes a strong motivation for developing more effective solutions to accelerate

patch propagation.

To accelerate the process of patch propagation, it’s important to identify affected

versions of N-day vulnerabilities. Thus the next phase of the research focuses on the problem

of bug bisection—the process of identifying the specific commit that introduced a vulner-

ability. Given the limitations of traditional methods, we introduces a new approach called

SymBisect [210] that leverages under-constrained symbolic execution. This technique in-

volves statically analyzing the code across multiple versions to determine the presence or

absence of the vulnerability logic. By symbolically executing relevant code paths, it becomes

4

possible to accurately assess whether a vulnerability exists in a particular version, thereby

enabling the precise identification of the bug-inducing commit. The symbolic execution

framework is carefully designed to focus on the portions of code that are most relevant

to the vulnerability, thereby addressing the scalability issues (path explosion) that have

traditionally limited the applicability of such techniques.

However, SymBisect still has several limitations, such as the requirement for a

PoC, supporting only limited bug types (e.g., use-after-free and out-of-bounds memory

access without race conditions), and relatively low accuracy (around 75%). These short-

comings motivate us to explore new approaches. Specifically, building on the advances in

large language models (LLMs), the final component of this research introduces the use of

LLMs to enhance the bug bisection process further (called LLMBisect). Modern LLMs

have demonstrated impressive capabilities in understanding both programming languages

and natural language, which opens up new possibilities for analyzing patches in their full

context. Unlike conventional methods that rely solely on code diffs, the LLM-based ap-

proach takes into account the rich contextual information contained in commit messages as

well. These messages often provide valuable insights into the intent behind code changes,

the rationale for modifications, and hints about the underlying vulnerability logic. By in-

corporating this unstructured natural language information into the analysis, the research

achieves a more nuanced understanding of the patch context. The LLM-based method is

implemented through a multi-step filtering approach. Initially, a coarse-grained filtering

stage rapidly narrows down the pool of candidate commits by utilizing simple patch in-

formation and keyword matching. This preliminary stage is computationally efficient and

5

significantly reduces the number of commits that require more intensive analysis. In the

subsequent fine-grained filtering stage, the LLM is employed to conduct an in-depth analysis

of each candidate commit. The model evaluates both the code changes and the accompa-

nying commit messages to determine whether the candidate is likely to be the bug-inducing

commit. To ensure robustness against inconsistencies and potential false positives inherent

in LLM outputs, a majority voting mechanism is integrated at key stages of the analysis.

This multi-step process has been shown to dramatically improve the accuracy of identifying

bug-inducing commits, achieving performance levels that surpass traditional approaches.

Note that LLMBisect and SymBisect can complement each other. Although LLM-

Bisect has several advantages, it requires a patch, whereas SymBisect can be used in cases

where a PoC exists but a patch has not yet been developed (for example, new bugs ex-

posed by fuzzers). By integrating these three components—empirical measurement of patch

delays, symbolic execution-based bug bisection, and LLM-powered bug bisection—this re-

search offers a holistic approach to mitigating N-day vulnerabilities. The measurement

study provides a solid foundation by highlighting the urgency and scale of the patch prop-

agation problem, while the advanced bisection techniques deliver practical tools for rapidly

identifying the affected versions of vulnerabilities. The combined efforts aim to reduce the

exposure window of N-day vulnerabilities and enable faster, more targeted remediation. In

doing so, the work not only advances the state of the art in vulnerability detection but also

offers actionable insights for improving the overall security posture of open-source software

ecosystems.

6

1.3 Roadmap

The structure of this dissertation is as follows: Chapter 2 presents our measure-

ment study of the Android patch ecosystem. Chapter 3 introduces SymBisect, a tool that

automatically identifies bug-inducing commits in fuzzer-exposed vulnerabilities using under-

constrained symbolic execution. Chapter 4 describes LLMBisect, which leverages large lan-

guage models to enhance bug bisection by analyzing both code changes and contextual

commit messages to precisely locate the bug-inducing commit. Chapter 5 concludes the

dissertation.

7

Chapter 2

An Investigation of the Android

Kernel Patch Ecosystem

Abstract

Open-source projects are often reused in commercial software. Android, a

popular mobile operating system, is a great example that has fostered an ecosystem of

open-source kernels. However, due to the largely decentralized and fragmented nature,

patch propagation from the upstream through multiple layers to end devices can be

severely delayed. In this paper, we undertake a thorough investigation of the patch

propagation behaviors in the entire Android kernel ecosystem. By analyzing the CVEs

and patches available since the inception of the Android security bulletin, as well as

open-source upstream kernels (e.g., Linux and AOSP) and hundreds of mostly binary

OEM kernels (e.g., by Samsung), we find that the delays of patches are largely due to the

current patching practices and the lack of knowledge about which upstream commits being

8

security-critical. Unfortunately, we find that the gap between the first publicly available

patch and its final application on end devices is often months and even years, leaving a

large attack window for experienced hackers to exploit the unpatched vulnerabilities.

2.1 Introduction

Open-source software is ubiquitous and often serves as the foundation of our

everyday computing needs. Unfortunately, they also contain a large number of

vulnerabilities — there are new security patches released weekly for open-source software

(e.g., Linux).

It can be tricky to ensure timely delivery of patches for open-source software

because of the widespread reuse phenomenon where multiple versions or branches of the

open-source software co-exist and can be divided into so-called upstream and downstream

ones. Downstream developers reuse much of the upstream software and add finishing

touches (e.g., customization, stability fixes). More importantly, downstream developers

have to take critical security patches from upstream to eliminate vulnerabilities. This is

often challenging because upstream and downstream branches are often developed and

maintained by different organizations and companies that often have different priorities

and goals in mind.

The single most prominent example is the Android ecosystem. The Android open-

source Project (AOSP) kernels are derived from Linux kernels (i.e., reused in Android)

with many features added for mobile devices. In turn, the AOSP kernels are reused by

chipset vendors such as Qualcomm who add additional hardware-specific changes. A chipset

vendor’s kernel is then finally reused by OEM vendors such as Samsung and Xiaomi. This

means that the patches can originate from more than one upstream kernels (e.g., Linux,

AOSP, and Qualcomm), and the propagation can take multiple steps to finally reach the

OEM vendors. Even though Google has been working diligently with OEM vendors on

patching, e.g., through its monthly update program [7], the ecosystem is unfortunately so

decentralized that it is beyond the control of a single entity.

Motivated by the lack of transparency and understanding of the patching process,

we set out to investigate the unique and complex Android kernel ecosystem. Specifically,

we are interested in the following high-level aspects:

(1) The relationship between the upstream and downstream kernels, e.g., who is

responsible for the initial patch, and how does it propagate?

(2) The timeliness of patch propagation, e.g., what is the typical delay in each

step with the patch propagation and where is the bottleneck?

(3) The factors that influence the patch propagation, e.g., what are the current

best practices by different entities, and how can we improve the situation?

It is challenging to conduct such a measurement study. Specifically, even though

Android kernels inherit the open-source license from Linux, kernel sources from OEM

vendors are often released broken/half-baked, with substantial delays, and only

intermittently (e.g., when the phone was initially released) [155, 149]. In contrast, the

binary ROMs (i.e., firmware images) are easier to find. Therefore, to be able to analyze

closed-source Android firmware images, we build a static analysis tool on top of

FIBER [207], a state-of-the-art tool capable of conducting patch presence test in binaries.

By analyzing the patches announced in the Android security bulletin, 20+ OEM

phone models, and 600+ kernel images, we delineate many interesting findings that reveal

intriguing relationships among different parties as well as the bottleneck of the whole patch

propagation process. When fair to do so, we also compare the responsiveness among different

parties, e.g., which OEM vendors are more diligent in patching their devices.

We summarize our contributions as follows:

• We investigate the unique Android kernel ecosystem that is decentralized and fragmented.

We mine the patch propagation delays across all layers and locate the bottleneck.

• We improve a state-of-the-art source-to-binary patch presence test tool and develop a

system on top of it to check the closed-source kernels from OEM vendors. We plan

to open-source our system and release the dataset to improve the transparency of the

ecosystem.

• We conduct a large-scale measurement that shows nearly half of the CVEs are patched

on OEM devices roughly 200 days or more after the initial patch is publicly committed

in the upstream, and 10% – 30% CVEs are patched after a year or more.

• Furthermore, by mining the commit methods and correlating them with notification dates

published by Google and Qualcomm, we explain the causes of patch delays. We also distill

takeaways and potential prescriptive solutions to improve the current situation.

2.2 Android Kernel Ecosystem

Android is known for its diverse and fragmented ecosystem where multiple variants

of the operating system co-exist [96]. On one hand, the scale and diversity of the ecosystem

Mainline

LTS
4.4.y

4.4 Mainline

 Fork Patch Patch propagation

 Mi 6

4.4

4.4 Stable

4.5 4.6 ...4.4

Figure 2.1: Android ecosystem for kernel version 4.4

participants definitely contributed to Android’s overall success. On the other hand, it is

extremely challenging to ensure the consistency and security of every Android variant out

on the market. It is especially true for Android kernels which are themselves derived from

the upstream Linux kernel.

Hierarchy of Linux/Android kernels. Figure 2.1 illustrates the typical relationship

between the upstream and downstream kernels. At the very top, we have the Linux mainline

that moves forward rapidly with all the features and bug fixes. Its kernel versions are tagged

as 4.4, 4.5, etc. Periodically when appropriate, it gets forked into stable (e.g., 4.3.y) or long

term support (LTS) branches (e.g., 4.4.y) with mostly only bug fixes [120]. The difference

between stable and LTS branches is that the former is short-lived (a few weeks) while the

latter is supported for a few years. For the benefit of longer support, Android common

kernels (e.g., 4.4) typically follow the LTS branches. Meanwhile, Google developers will

add the necessary changes for mobile devices to turn the Linux kernel into an Android

kernel [119]. In addition, the developers will merge the fixes from Linux to ensure that they

stay up-to-date and bug-free.

In Figure 2.1, Google’s Android common 4.4 is initially forked from Linux mainline

4.4 and in the future merges all the changes from Linux LTS 4.4.y. Then there are branches

maintained by SoC vendors such as Qualcomm, MediaTek, and Exynos (out of which only

Qualcomm provides the complete history in git repos). Take Qualcomm as an example,

when the company decides to ship a new SoC like Snapdragon 835, it may choose to fork

a then-recent Android common 4.4.y. In fact, there exists a generic 4.4.y branch and

multiple chipset-specific branches all maintained by Qualcomm (simplified in Figure 2.1).

Interestingly, sometimes Qualcomm may choose to fork directly from upstream Linux (e.g.,

4.9.y) instead of Android common. Nevertheless, it will still merge significant changes from

Android common later on. According to our analysis, SoC vendors typically take fixes and

security patches from its direct upstream, Android common, instead of Linux. This practice

is reasonable as Google has already done a significant amount of work for the SoC vendors

such as patch compatibility tests for Android kernels. However, this also increases the patch

propagation delay due to the extra hop.

Finally, at the very bottom of the hierarchy is the OEM vendor kernel. Depending

on the device model and its chipset, e.g., a Xiaomi phone using Snapdragon 835, the

corresponding branch from the SoC vendor will be forked (Qualcomm’s 4.4.y). The OEM

vendor may then optionally add new features (e.g., Samsung’s kernel hardening [162]) or

simply only port bug fixes from the upstream (for smaller OEM vendors). However, when

it comes to security patches, OEM vendors tend to have a tighter connection with Google

who monthly updates its Android security bulletin since 2015. According to our knowledge,

Google serves as the main point of contact notifying OEM vendors about various security

vulnerabilities even though the original patch may come from other parties (e.g., Linux

or Qualcomm). From Sep 2017, Qualcomm has also established its own security bulletin

and independently notifies its customers about Qualcomm-specific vulnerabilities [70, 156],

which overlap with the ones on the Android security bulletin.

Android security bulletin is a central location where Google publishes monthly updates

on Android security patches and their corresponding CVEs [7]. For the CVEs affecting the

open-source Android components (for kernels, most are open-source except some proprietary

drivers, e.g., by MediaTek), there will be links to the upstream kernel commits representing

the patches of the vulnerabilities.

It is worth noting that as Android kernels can be customized by individual OEM

vendors, the bulletin may not cover OEM-specific vulnerabilities (e.g., an OEM device may

use a custom file system). Nevertheless, it represents Google’s best effort to keep track of

vulnerabilities that affect the Android common kernel, the upstream Linux kernel, and SOC

vendors (primarily Qualcomm). In fact, each CVE has a corresponding link to its patch

(i.e., a git commit) that belongs to one of the three kernel repositories.

Before publicizing the vulnerabilities on the Android security bulletin, Google

notifies OEM vendors at least one month earlier to ensure that affected devices are

patched [8]. In other words, the publication of vulnerabilities on the Android security

bulletin represents a major event in the patch management cycle, after which unpatched

devices will be in danger. Indeed, our measurement results suggest that OEM vendors are

 Patch
evolution tracker Crawler E-FIBER Patch locator

Patched functions
Reference kernels

Target kernel
 (src)

 Matcher(src)

Target kernel
 (bin)

Patched
/Unpatched
/None

Target repos

 Patch time
 /Unpatched
 /None

Patch commits
Reference repos

CVE info
Original patch

Patch commit
in target repo

Type1 : repo target Type2: source snapshot target Type3: binary target

Patched
/Unpatched
/None

Figure 2.2: Measurement pipeline.

dependent on Google for patching.

2.3 Measurement Goal and Pipeline

As alluded to earlier, the goal of the measurement is to shed light on the patch

propagation in the fragmented Android kernel ecosystem. In this paper, we explicitly

assume the knowledge of the affected function(s) and the source-level patch itself, as the

upstream Linux/Android kernels do offer detailed patch commits. As a result, our goal

is that given a CVE, we will track the propagation of the initial patch along the chain of

upstream-downstream kernels. Together with the CVE publication time on the Android

security bulletin, we can paint a timeline of patch commit and announcement events in the

whole patch management cycle.

Before we introduce the measurement pipeline, we first introduce the three

different types of kernels that are publicly accessible, with increasing degrees of

difficulties to analyze.

(1) Type 1: Repository. Kernels made available through git repositories contain

complete commit history. They represent the easiest case to analyze as a security patch can

be easily located in the commit log — typically they simply copy the commit message and/or

reference the commit given in the Android security bulletin’s link. Linux, Android common,

Qualcomm and Nexus/Pixel kernels belong to this category. Unfortunately, other SoC

vendors such as Samsung Exynos, MediaTek, and Huawei Kirin do not offer git repositories

corresponding their recent chipsets.

(2) Type 2: Source code snapshots. Most OEM vendors prefer to release their

kernels in the form of source code snapshots without commit history (Google’s own

Nexus/Pixel phones are exceptions). It is usually possible to check if a particular CVE is

patched in the snapshot via simple source-level function comparison (more details in

§2.4.2). The issue though, is that such snapshots are released with substantial delays and

often sporadically, leading to missing data points and inconclusive results.

(3) Type 3: Binary. The most available form of OEM kernels is the binary one –

firmware images or ROMs. In fact, there is an abundant supply of Android ROMs on both

first-party [39, 40] and third-party websites [36, 37]. These ROMs represent a valuable data

source for patch propagation analysis, as long as we can accurately test patch presence in

these binaries.

Measurement pipeline. Now we introduce the measurement pipeline

(Figure 2.2) that integrates the analysis of the above three kernel types:

(1) Crawler. Initially, we crawl the kernel-related CVE information from Google’s

Android security bulletin [7]. This includes CVE numbers, specific patch commits, and the

corresponding repositories in which the patches were committed.

(2) Patch locator. This is to analyze type 1 target kernels (i.e., repositories). It

attempts to determine if a given patch (or a similar one) exists in a target kernel repository

(§2.4.1). If so, it outputs the corresponding patch commit in the repository, which then also

serves as the reference in the patch presence test for type 2 and type 3 kernels.

(3) Patch evolution tracker. The tracker tries to collect all possible versions of a

patched function (i.e., the function can continue evolving after the security patch) in the

repositories, this can help us reliably test the patch presence in both type 2 (i.e., source

snapshot) and type 3 (i.e., binary) kernels.

(4) Source-level matcher. It tries to match each patched function version (identified

by the evolution tracker) to the target function in a type 2 kernel, in order to perform a

source-level patch presence test (§2.4.2).

(5) E-FIBER. E-FIBER is capable of translating each patched function version

into a binary signature and then matching the signature in type 3 binary kernel as a patch

presence test. We build E-FIBER on top of FIBER [207], a state-of-the-art binary patch

presence test system. We will articulate the improvements we made over FIBER in §2.4.3.

2.4 Patch Presence Test

In this section we will detail the methodology of patch presence tests against the

three kernel types.

To better facilitate the discussion of this paper, we call the patch linked in

Android security bulletin the “linked upstream patch”, which can only be in type 1

kernels (repositories), i.e., Linux, Android commons, Qualcomm. Interestingly, later we

find that these may not be the earliest patches.

2.4.1 Repository Target

When our target is a repository, we search through the commit history using the

patch locator to test the presence of an equivalent patch.

Patch locator: We combine various information about the original patch to

determine its presence in the target repository. Specifically, we have the following procedure:

1) For each commit, we attempt to perform a simple string match on the commit

subject. If it is a patch they borrow from the upstream, the downstream kernels typically

retain the original subject. If there are multiple hits, we use the commit message to identify

the real match. Typically, the downstream kernels will not only copy the original commit

message but also reference the upstream commit, e.g., cherry picked from commit XYZ.

If no results are found, we perform the second step.

2) When commit subject and message are not retained when applying the same

patch in downstream, we search through the commit history of the corresponding patched

file, attempting to match the complete source level changes (including both the

added/removed lines as well as the context lines) with those in the original patch. If still

no match, we move to the next step.

3) It is possible that the downstream kernel has customized the patched function

and its context lines no longer match those in the original patch. We therefore also attempt

to match the added and deleted lines only (ignoring the context lines). However, if still no

results are found, we keep the commits that matched with at least some blocks of added

lines (which we call “change sites”) in the original patch.

In any of the above steps, if there are multiple results returned, we manually

identify the correct one by inspecting the commit message (note that the message is no

longer exactly copied else the first step would have caught it). In addition, if no match

is ever found after all the steps, we attempt a manual search using parts of the message

of the original commit as a last resort. Only if this step fails to locate any commit will

we determine the commit is missing. In practice, we find these cases that require manual

analysis are small (6.8% in our experiments).

In addition, there are several special cases we need to pay attention to:

(1) File path/name change: If we cannot find any commits that change the patched

file, we extend the search region to files that have the same name but in different directories

(sometimes the downstream kernel would decide to rearrange certain source files). If we

find any commit that renamed the patched file at some points, we also track the evolution

of the renamed file.

(2) Function name change: similar to file names, the name of a function may also

change over time. We develop a small script to track the evolution of them too by checking

the related commits.

(3) Patched at initialization time: sometimes a kernel repository or branch may

choose to copy the entirety of a source file and commit it as a brand new file. In that case,

we lose the actual commit that applied the patch. However, we can still match the change

sites given in the original patch.

Finally, we note that there can be several reasons when a patch is not found: 1)

the patched file/function simply doesn’t exist in this branch (e.g., a vulnerable Qualcomm

driver is not used in Huawei devices), 2) the vulnerability does not affect the particular

branch/repository, 3) The vulnerability fails to be patched. In our evaluation, we consider

a CVE not applicable for a particular target if it falls under case 1).

2.4.2 Source Code Target

For kernel source snapshots, we need a way to check its source code against the

patched version and infer the patch presence. A naive approach is to match the patched

function from upstream against the same function in the snapshot. However, there can

be multiple versions of the patched functions (i.e., due to further commits to the same

functions), and we do not know which version the target may take (regardless of whether

it is source code or binary target). Even worse, the patched function name or patched file

may change altogether as mentioned previously.

Our solution to this problem is straightforward. In addition to the single version

of a patched function, we choose multiple versions of the patched function to represent the

patch of a vulnerability. In general, we have two criteria to select the versions we should

consider:

(1) Complete. We should be able to discover all patched versions of a function —

unless the version is internal to the OEM and not visible in the upstream kernel repositories

due to vendor-customization.

(2) Unique. The patched version should not occur in the unpatched version of the

kernel. Otherwise, it no longer can distinguish the patched and unpatched cases.

Patch evolution tracker: In order to generate a complete set of patched function

versions, we need to pick one or more reference kernels first where we can track the evolution

of a function post-patch — this means that we must use kernel repositories with commit

history as reference kernels.

In this paper, we choose the repositories from Qualcomm as our reference kernels.

This is because Qualcomm has the largest market share as a chipset vendor and therefore is

the direct upstream of most Android devices. If a bug is fixed in Linux or Android common

kernels, they should also exist in Qualcomm; in other words, Qualcomm has a superset of

patches.

Qualcomm maintains different repositories for several major kernel versions (e.g.,

4.4 and 4.9). Within each repo, there is typically a “general release branch” (which we

simply refer to as mainline) and multiple “stabilization branches” (which we refer to as

stable) exist [68]. A stable branch usually corresponds to specific chipsets and OS versions

(e.g., Android 8.0) and only port fixes from the mainline. For example, branch

kernel.lnx.4.4.r34-rel in repo msm-4.4 has tags sharing a prefix of LA.UM.7.2.r1

which corresponds to snapdragon 660 and Android 9.0 [69].

As any OEM kernel either forks from or follows a corresponding Qualcomm stable

branch (which determines the chipset) and Qualcomm repo (which determines the kernel

version), we choose the reference repo according to its kernel version. In practice, this

minimizes the differences between the two and improves the accuracy of the patch presence

test.

After choosing repositories, we need to determine in which branches to track the

patched functions. In principle, we could choose all the branches (including mainline and

stabilization) but it may be unnecessary and time-consuming. Instead, we choose the

mainline branch only for the following reasons: 1) Generally, vulnerabilities are patched in

the mainline first and then propagated to the chipset-specific branches. Due to delays, the

patch may not even exist in a chipset-specific branch but we cannot rule the vulnerability

out. 2) We prefer to generate generic signatures which are not overly-specific; otherwise

there may be too many signatures to generate in the end. In §3.6, we will show that this

strategy produces satisfactory accuracy.

Source-level matcher After collecting the different versions of the patched

functions in the corresponding repository, e.g., Qualcomm 4.4, we need to compare them

against the function in the target kernel. There are several ways to do so, e.g., hash-based

methods [59], a straightforward string match of a few representative lines (e.g., changes

made in the patch) in the function, or even a simple string match of the whole function.

We decide to use the most strict and simplest method — strict string matching

of the whole patched function (using all the evolved versions post-patch) after stripped

trailing white spaces for the following reasons: 1) It is strict and never produces any false

positive, i.e., if we claim that a function is patched, it must match some version of the

patched function (and not any unpatched version). 2) The method is simple and easy to

reason about. While it does produce false negatives, e.g., the target kernel may customize

the patched function so that it looks different but still patched, we find that these cases are

uncommon and we are able to manually analyze them (given that we have the target kernel

source).

e.g.

e.g.

-
+
... ...

...

Source
Patches

Ref. function
(src)

Change site
analyze

Signature
translation

Compile

Ref. function
(bin)

Tgt. function
(bin)

Signature
matching

Locate in
target binary

Change Site Analyzer

Signature Generator

Matching Engine

Unique Src
Changes

Binary
Signatures

a=b
If(a)
...

Compile

Locate in
tgt. binary Similarity Test

Symol Table

FIBER

Change Site Analyzer

Signature Generator

Matching Engine

Unique Src
Changes

Binary
Signatures

func(int a,int b)
{
 ...
+ if(a+b>5)
+ foo();
 ...
}

ADD X2,X0,X1
CMP X2,5
B.GT Addr0

Addr0:
BL foo

CompileCompile

Ref. kernels
Patches

(src)

Ref. kernels
(bin)

Tgt. kernels
(bin)

Figure 2.3: Fiber Workflow

2.4.3 Binary Target

If the target is a binary, neither of the previous two methods works. The key

challenge is that the patched functions at the binary level are unlikely to be identical

even if their sources are the same. This is because of various kernel and compiler options

that can influence the compiled binary instructions. Therefore, we choose to generate

binary signatures (in the patched function) to test the presence of patch in the target. The

signature is what represents the semantics of a patch.

Specifically, we build an improved version of FIBER whose original workflow is

illustrated in Figure 2.3. There are three main steps: 1) it first analyzes a patch (i.e.,

changes made in one or more places) and checks the uniqueness of each change site. Then

it picks a few suitable change sites for signature generation. 2) FIBER compiles the kernel

and extracts relevant sequences of instructions (and even symbolic formulas involving the

computation of variables) representing the semantics of these change sites. 3) FIBER

matches the signatures against a target binary.

Unfortunately, there are several limitations acknowledged and summarized in the

original paper: 1) Function inline. (2) Function prototype change (3) Code customization.

(4) Patch adaptation. (5) Other engineering issues. We observe that several of these issues

share a common root cause: patched functions evolve over time and FIBER picks only the

initial version of the patched function for signature generation. This means that if the release

date of the target kernel and the original patch differ significantly, the generated signature

is likely out-of-date for the target kernel. In our preliminary evaluation of FIBER spanning

3 years of reference and target kernels, we find that its accuracy dropped considerably

compared to what was reported in [207] due to this issue.

To overcome this limitation, we simply leverage the patch evolution tracker

(proposed earlier) to identify the multiple versions of the patched functions so that a more

complete set of signatures can be generated. This is especially important when the change

sites of the original patch are completely erased during the evolution of the patched

function.

In addition, we also address two other technical problems mentioned earlier: (1)

the patched function becomes inlined, and (2) the binary signatures look different for the

same source due to different compilers and configuration options (FIBER has some degree

of robustness but can still be affected as discovered in our preliminary analysis).

Function inlining can cause a direct failure in locating the patched function in the

reference binary (missing from the symbol table) and therefore failure in generating the

Type of target Company Repo (Num of branches) or Phone models (Num of Roms)

Repository

Linux Linux(mainline, linux-3.18.y, linux-4.4.y, linux-4.4.y, linux-4.14.y)
AOSP common Android common(android-3.18, android-4.4, android-4.9, android-4.14)
Qualcomm msm-3.18(8), msm-4.4(17), msm-4.9(15), msm-4.14(1)
Pixel Android msm (Pixel l, Pixel 2, Pixel 3)

Binary

Samsung
Galaxy S7(78), Galaxy S8(52), Galaxy S9(32),
Galaxy Note9(28), Galaxy A9 Star(11), Galaxy A8s(9)

Xiaomi
Mi 6(84), Mi8 Lite(24), Mi 8(12), Redmi 4(41),
Redmi 4pro(38), Redmi Note7(21), Mi Max2(75)

Huawei Mate 10(37), P20 pro(31), Honor10(30)
Oppo R11s(11)
LG V30(10)
Oneplus Oneplus5(27), Oneplus6(18)

Source snapshot

Sony XperiaXZ1(23)
Samsung Galaxy S8(1), Galaxy S9(1)
Xiaomi Mi 8(1), Mi 9(1), Mi Max2(1), Redmi Note7(1)
Huawei Mate 10(1), P20 pro(1)
Oppo FindX(1)

Table 2.1: Data set of measurements

signature.

Our solution is as follows: we try to find the caller of the patched function which

should contain the inlined version of the patched function. If the caller is also inlined, then

we will recursively locate the caller of the caller until one is found in the symbol table. Since

the reference kernels are compiled by E-FIBER, we can make use of debug information to

locate the exact sequence of instructions that belongs to the patched function (which is

inlined), and generate the signatures (which are now in the context of a caller) accordingly.

This signature can then be matched in the target kernel which has the same inlined behavior.

To address the compiler and configuration issues. We vary these configurations

ahead of time in generating the binary signature.

(1) Compilers. Most vendors use GCC to compile their source code, however, a

few new devices released in 2019 (whose corresponding Linux versions are 4.14) use Clang.

Different compilers can yield vastly different binary instruction sequences to the point it

repository Num. CVEs

1 Linux 141
2 Qualcomm msm-3.4 12
3 Qualcomm msm-3.10 52
4 Qualcomm msm-3.18 115
5 Qualcomm msm-4.4 63
6 Qualcomm msm-4.9 15
7 AOSP msm 2

Table 2.2: Corresponding repository of CVE in Android security bulletin

becomes hard to semantically test the equivalence of the two. As a result, we use both

compilers to compile 4.14 reference kernels and generate two versions of signatures.

(2) Optimization levels. Through sampling a few kernel source snapshots from

major OEM vendors, we find that all of them use either Os or O2 as the compiler

optimization levels. We, therefore, generate signatures with both optimization levels.

(3) Configuration files. Besides optimization levels, other kernel configuration

options (to enable and disable certain kernel components) vary. In the mainline branch of

Qualcomm repos (e.g., 4.4 or 4.9), there are typically a few config files. For example, msm-

4.9 has 16 config files in total and only 8 of them are specific to Android chipsets, including

sdm845-perf defconfig (Snapdragon 845), msm8937-perf defconfig (Snapdragon 430),

etc. We pick only the config files that are relevant to the Android devices we are interested

in testing. For example, snapdragon 845 is used in Mi 8. Thus sdm845-perf defconfig is

used to generate the corresponding signatures.

2.5 Evaluation

2.5.1 Dataset

Overall, we collected 402 kernel CVEs released on Android Security Bulletin every

month since its inception in Aug 2015 until May 2019. This includes the main bulletin [7]

as well as a Pixel bulletin [21]. We summarize the crawled CVEs in Table 2.2. Clearly,

most of them link to Linux and Qualcomm instead of AOSP Android repositories.

We also summarize the target kernels used in our evaluation in Table 2.1. Overall,

we collected 3 levels of upstream kernels as introduced before, i.e., Linux, Android common

and Qualcomm. 8 most popular Android brands (Google Pixel, Samsung, Xiaomi, Huawei,

Oppo, OnePlus, Sony, LG), covering 26 phone models and 701 released kernel instances

(either source or binary). For most phone models, the kernel instances cover a time range

of one to two years. We collect these kernels through both official and third-party websites.

Our experience is that most official websites supply only the latest ROM for each phone

model, and occasional source snapshots. The one exception is that SONY offers all source

code snapshots on its websites. To obtain historical versions of ROMs, we rely mostly on

third-party websites [41, 45, 36, 37].

We extract compilation dates (i.e., build dates) from these ROMs which are used

to compare against various dates such as Android security bulletin release date and patch

dates on the upstream. Note that we collect many historical kernel versions (e.g., 78 versions

for Samsung Galaxy S7) for the same phone model in order to conduct a longitudinal study

on their patching behavior.

To generate robust signatures using E-FIBER (see §2.4.2 and §2.4.3), we have

Device
Kernel
Version

Source code Binary
Cnt. TP TN FP FN Accuracy Cnt TP TN FP FN Accuracy

Samsung S8 4.4.78 351 257 59 0 35 90.03% 246 202 37 0 7 97.15%

Samsung S9 4.9.112 302 293 3 0 6 98.01% 189 180 2 0 7 96.30%

Xiaomi Mi8 4.9.65 232 208 23 0 1 99.57% 168 149 15 0 4 97.62%

Xiaomi Mi9 4.14.83 262 258 3 0 1 99.62% 173 165 1 0 7 95.95%

Redmi Note7 4.4.153 356 342 13 0 1 99.72% 265 255 7 0 3 98.87%

Xiaomi Max2 3.18.31 328 217 88 0 23 92.98% 208 155 45 2 6 96.15%

Huawei P20 4.9.97 137 114 12 0 11 91.97% 83 76 5 0 2 97.59%

Huawei Mate10 4.4.23 147 74 67 0 6 95.92% 86 53 26 2 5 91.86%

Oppo FindX 4.9.65 235 210 19 0 6 97.45% 186 171 12 0 3 98.39%

Table 2.3: Accuracy of patch presence test

used in total 19 different config files from msm-3.18, msm-4.4, msm-4.9, and msm-4.14

Qualcomm repos that represent the chipsets encountered in our OEM devices. We use two

compiler optimization settings: -Os and -O2. We also need to account for patch evolution.

In the end, we compiled a total of 2,488 reference kernels all from Qualcomm repos with

11,093 signatures generated in the end (note one compilation allows multiple signatures to

be generated).

2.5.2 Accuracy

In this section, we will describe the accuracy of patch presence test against three

types of kernel targets presented in §2.4.

First of all, for kernels that are in the repository form, since we have conducted

both automated and manual analysis (for the few subtle cases) exhaustively on every CVE

and every branch, we treat the results as ground truth.

For kernels that are in source snapshots or binary ROMs, we sample a number

of them to evaluate the accuracy of the patch presence test at both the source and binary

level. Specifically, we picked 9 kernels, each from a different phone model covering 4 different

brands. These 9 kernels are available in both source snapshot and binary, which allows us

to verify the results of binary patch presence test using the corresponding source code. The

results are summarized in Table 2.3. Generally, our solution works well for both source and

binary targets with an average accuracy of more than 96%. To give more details, we also

analyzed the sources of inaccuracies.

In the case of source snapshot targets, since we consider a function patched only

when a strict string match of the full function is found, it leads to no false positives but

some false negatives are observed, which are due to customization of the patched functions.

The results suggest that Huawei and Samsung have more customization than others. This

is consistent with the fact that Samsung and Huawei are the top 2 players in the Android

market and have the strongest product differentiation.

In the case of binary targets, the inaccuracies come from 1) Customization of the

patched function. 2) Even when source code is the same, the binaries may look different due

to vendor customization of compiler’s config options, which we do not have complete access

to (other than those from the periodic source snapshots). Interestingly, we can see generally

comparable and even lower false negative rates compared to the source snapshot targets.

This is because the source-level patch presence test is based on strict string matching of the

whole patched function (and will fail to match any vendor customized functions). On the

other hand, FIBER by design has some resistance against customization as the generated

signatures only characterize a small (but key) portion of the patched function.

Besides, the number of CVEs and their corresponding patches that we can track

for binary kernel targets is smaller. One common reason is that many vulnerable drivers

0 100 101 102 103

(LTS/Android common/Qualcomm
- Linux mainline) in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Linux LTS
Android
Qualcomm mainline
Qualcomm stable

Figure 2.4: Upstream patch delays (Linux CVEs)

are included in the source snapshot but are not compiled into the binaries. Other

technical reasons are: 1) FIBER was not able to generate signatures for certain cases. 2)

Generation/Matching of signatures costs too much time (over a threshold of 2 hours,

which is determined by the distribution of time consuming we observed). These cases

attribute to about 10% of the CVEs and were excluded from the binary patch presence

test.

Overall, the patch presence test accuracy result gives us confidence in the

measurement study in §2.5.4. We also note that patch presence test in upstream source

100 101 102 103

(Linux LTS - Linux mainline)
 in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

linux-3.18.y
linux-4.4.y
linux-4.9.y
linux-4.14.y

Figure 2.5: Linux mainline to LTS (Linux CVEs)

repos is independently done through patch locator as described in §2.4.1.

2.5.3 Patch Propagation in Upstream kernels

In this section, we focus on analyzing the patch propagation in the upstream

kernel repos using the patch locator described in §2.4.1. With the exact time and date

of individual commits, we are able to track the patch propagation precisely and make a

number of interesting observations about both Linux and Qualcomm vulnerabilities.

Figure 2.4 gives an overview of the cumulative patch delays observed at each

layer with respect to Linux mainline (here all included CVEs affect Linux). As we can

see, Linux internally (mainline → LTS) already has a substantial delay, with 20% of the

patches being 100 days or longer. On the other hand, Google does a good job in tracking

-103 -102 -101 -100 0 100 101 102 103

(Android common - Linux LTS)
 in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

android-3.18
android-4.4
android-4.9
android-4.14

Figure 2.6: LTS to Android common (Linux CVEs)

Linux vulnerabilities, as the line representing the Android common’s patch delays is closely

aligned with that of Linux LTS. Qualcomm’s mainline is noticeably slower in picking up

patches from its upstream (note the log-scale nature of the X-axis). Finally, we find that

Qualcomm can be considered the bottleneck as it is extremely slow in propagating most of

its patches from mainline to stable branches. For about half of the cases, the Qualcomm-

internal propagation delay is at least 2 to 3 months. From the end-to-end point of view,

the majority of patches take over 100 days for them to propagate from Linux mainline all

the way to Qualcomm stable. About 15% of the patches took 300 or more.

If we break the result down further layer by layer, Figure 2.5 shows the delay

incurred in Linux internally (mainline → LTS) across all four major kernel versions 3.18,

-103 -102 -101 -100 0 100 101 102 103

(Qualcomm - Android common)
 in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

qualcomm-3.18
qualcomm-4.4
qualcomm-4.9
qualcomm-4.14

Figure 2.7: Android to Qualcomm mainline (Linux CVEs)

4.4, 4.9 and 4.14. We see 5% to 25% of patches experience a delay of 100 days or longer (with

3.18 being the worst). In extreme cases, after patched in Linux mainline, CVE-2017-15868 is

not patched in Linux LTS 3.18 until 954 days later. Not too long ago, a critical vulnerability

CVE-2019-2215 was not patched in Linux LTS 4.4 until about 600 days later, ultimately

leaving most downstream OEM kernels such as Pixel2 and Samsung S8/S9 vulnerable [102].

The case for Linux LTS → Android common (Figure 2.6) is different and

interesting. The delays are much smaller where more than half of the CVEs are patched in

Android common the same day as Linux LTS or earlier. When we look into the reason, we

find that the maintainer of Linux LTS, Greg Kroah-Hartman, also helps maintain the

Android common repository (note the large fraction of 0-day delay cases). After merging

-102 -101 -100 0 100 101 102 103

(Qualcomm stable - Qualcomm mainline)
 in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

kernel.lnx.3.18.r33-rel
kernel.lnx.4.4.r27-rel
kernel.lnx.4.9.r7-rel

Figure 2.8: Qualcomm mainline to stable (Linux CVEs)

commits from mainline to LTS, he usually merges commits from LTS to Android common

repository right away. The other thing worth noting is that about 10% – 20% of the

patches are applied in Android common first and then appear in LTS, exhibiting negative

delays. This is because Google has been diligently scouting for important security patches

everywhere, sometimes picking up patches from Linux mainline directly and bypassing the

slow Linux LTS. Google is capable of doing this because (1) they hire many engineers who

are also Linux maintainers, and (2) Google offers a bug bounty program and thus many

Linux bugs are reported to Google first who typically tries to get Linux mainline to patch

first and then port it immediately (according to the feedback we received from Google).

The case for Android common → Qualcomm mainline (shown in Figure 2.7) is

-103 -102 -101 -100 0 100 101 102 103

(Qualcomm stable - Qualcomm mainline)
 in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

kernel.lnx.3.18.r33-rel
kernel.lnx.4.4.r27-rel
kernel.lnx.4.9.r7-rel

Figure 2.9: Qualcomm mainline to stable (Qualcomm CVEs)

similar in the sense that also about 5% – 20% of the patches are observed in Qualcomm first

and then Android common. Similar to Google, Qualcomm also independently ports patches

from Linux mainline. Interestingly, this means that even after Google picked up patches

from Linux mainline directly, there are additional mainline patches missed by Google which

are picked up by Qualcomm directly.

The last step in the pipeline is about the Qualcomm mainline branch (e.g., 3.18)

to its corresponding stable. As shown in Figure 2.8, we pick three representative stable

branches that correspond to the Android devices and OS versions we will analyze (recall

that stable branches are specific to chipsets and Android OS versions). We note that other

branches yield similar results (except those ones with insufficient history). We excluded all

4.14 stable branches because they are too new to have sufficient history. Overall, we can

see that the delay is very substantial compared to the earlier steps. For 4.4, about 80%

of the patches are delayed for 100 days or longer and 20% delayed for 200 days or longer.

4.9 is somewhat better than 4.4 with 80% of the patches delayed for 60 days or longer.

Both are far worse than the internal delays in Linux (Figure 2.5). Interestingly, the 3.18

stable branch shows a comparable delay to 4.4 (and even slightly better) — a sharp contrast

with the previous step that the Qualcomm 3.18 mainline being the slowest among all other

mainlines (shown in Figure 2.7). Upon closer inspection, this is due to an older patching

practice for the Qualcomm 3.18 repo which we will discuss in detail in §2.6.

In summary, for vulnerabilities that originate in Linux, we pinpoint the internal

propagation delays within Qualcomm and Linux (i.e., mainline to stable/LTS) to be clear

bottlenecks. In addition, we find that newer kernel versions (from 3.18 to 4.14) generally

correspond to more timely patch propagation across all these layers. The improvement

however appears to have stabilized since 4.9.

Finally, we also inspect vulnerabilities that originate in Qualcomm — they

constitute more than 60% of the CVEs as shown in Table 2.2. Surprisingly, as shown in

Figure 2.9, the patch delays seem abnormally small compared to the Linux vulnerabilities

(Figure 2.8). We suspect this is because Qualcomm is much more aware of the

vulnerabilities specific to its own code, i.e., triaged and analyzed internally, and thus can

react faster. We will provide more evidence to support this in §2.6.

200 0 200 400 600 800
(OEM phones - Qualcomm stable)

 in Days(Linear-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

kernel version 3.18(linux)
kernel version 4.4(linux)
kernel version 4.9(linux)
kernel version 3.18(qual)
kernel version 4.4(qual)
kernel version 4.9(qual)

Figure 2.10: Delay between Qualcomm stable and OEM phones

2.5.4 Patch propagation to Android OEM phones

In this section, we follow the patch propagation pipeline to OEM vendors using a

variety of Android devices as described in §2.5.1. We are primarily interested in measuring

the patch delay and understanding generally whether OEM delays represent the bottleneck

in the end-to-end patch propagation. In addition, these Android devices are produced and

maintained by different companies, marketed as high-end or low-end phones, and released

in diverse geographic regions. We therefore also examine how these factors may influence

the patching behavior. For most phones, we are able to retrieve a continuous stream of

firmware images (one image per month according to build dates). Thus we can pinpoint

when a patch is applied.

0 100 200 300 400 500 600 700 800
(OEM phones - earliest patch)

 in Days(Linear-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

kernel 3.18(linux)
kernel 4.4(linux)
kernel 4.9(linux)
kernel 3.18(qual)
kernel 4.4(qual)
kernel 4.9(qual)

Figure 2.11: End-to-end delay between earliest patch and OEM phones

Figure 2.10 shows the patch propagation delay from Qualcomm stable to OEM

phones (aggregated over all the phones). For every OEM phone, we pick one or more

corresponding Qualcomm stable branches as upstream with the matching chipset and

Android OS versions (note a phone may upgrade its Android OS version during its

lifetime). As we can see, for Qualcomm-specific vulnerabilities (in dotted lines), OEM

phones fall behind Qualcomm stable significantly — the delay is 100 days or more for 70 -

90% of CVEs. On the other hand, for vulnerabilities that originated in Linux, we find that

the delays are noticeably smaller. This is due to Linux vulnerabilities being patched much

earlier in upstream (Linux and Google’s Android common) and therefore OEM vendors do

not necessarily need to wait for patches to propagate to Qualcomm stable. For example,

0 100 200 300 400 500 600 700 800
(OEM patch - earliest patch)

in Days(Linear-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

OEM moderate
OEM high/critical

Figure 2.12: End-to-end delay between earliest patch and OEM phones

they could be notified by Google earlier.

Next, we also plot the end-to-end delay in Figure 2.11 by adding up delays in each

propagation layer in the whole ecosystem. Here the earliest patch is either Linux mainline or

Qualcomm, depending on whether the vulnerability is originated from Linux or Qualcomm.

Generally, both cases incur significant delays with Linux vulnerabilities being generally

worse. This is understandable because a Linux patch naturally has a longer propagation

chain compared to a Qualcomm patch. As we can see, more than half of the Linux CVEs

are delayed for 200 days or more, and 10% to 30% of CVEs are delayed for more than a

year. This is an unacceptably long delay that allows experienced hackers to craft exploits

100 200 300 400 500 600 700 800
Time since 03-29-2017
 in Days(Linear-Scaled)

0

5

10

15

20

25

30

N
um

be
r o

f p
at

ch
ed

 C
VE

s

Pixel2
samsungS8
xiaomi6
huaweimate10
oneplus5
oppoR11s
sonyXperiaXZ1
LGV30

Figure 2.13: Different OEM vendor comparison

against unpatched OEM devices. CVE-2019-2215 is one such example [101].

Next, we analyze a number of factors that might influence the patch delays in

OEM phones.

•Vulnerability severity. Intuitively, more severe vulnerabilities should be patched sooner

rather than later by OEM vendors (or upstream). However, as shown in Figure 2.12,

the result is not supportive. Specifically, we plot the distribution of end-to-end patch

propagation delays by vulnerability severity levels. In §2.6, we will offer a much more

detailed explanation of the phenomenon (after reaching out to Google). Note that there

are only 33 critical CVEs from the security bulletin, and 30 of them are very old (originally

patched before 2017) not applicable to many of the new OEM devices. Thus we combine

them with high severity CVEs.

• Name brand. To do a fair comparison, we sample 8 phones from 8 first-tier companies

100 200 300 400 500
Time since 02-25-2018
 in Days(Linear-Scaled)

6
8

10
12
14
16
18
20
22

Nu
m

be
r o

f p
at

ch
ed

 C
VE

s

xiaomi8(High)
xiaomi8lite(Low)
samsungS9(High)
samsungA9star(Low)

Figure 2.14: High/low-end phone comparison

which are all high-end and released in 2017: Google Pixel2, Samsung S8, Xiaomi Mi 6,

Huawei Mate 10, Oneplus 5, Oppo R11s, SONY Xperia XZ1 and LG V30. Their

corresponding kernel versions are also the same — 4.4.y. We only compare the CVEs that

affected all target phones and ignore the CVEs patched beforehand. As seen in

Figure 2.13, the results show that Google Pixel 2 and SONY clearly did the best. In

contrast, Xiaomi, Oppo, and LG are the slowest.

• High-end vs. Low-end. This may be an expected result as companies tend to devote

more resources to their flagship phones. Figure 2.14 shows the comparison between high-

end phones (Mi 8, Galaxy S9) and low-end phones (Mi8 Lite, Galaxy A9 star) in Samsung

and Xiaomi.

• Geographic locations and carriers. We did a small sample analysis of Samsung

and Huawei phones, and the results show that the same kind of phone (only with minor

0 100 101 102 103

(Linux LTS - mainline)
 in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Moderate
High
Critical

Figure 2.15: Patch delays from Linux mainline to LTS (by severity)

adjustments, e.g., for local carriers) in different regions got patched at the same time in

most cases, with about only 10 percent of the cases being slightly different.

• Time after release. Android devices are known to have a relatively short support

lifetime, e.g., Google phones now offer mostly 3 years of security updates [99]. In practice,

most phones (especially high-end ones) do indeed enjoy at least 2 years of support. A major

exception is Xiaomi’s Redmi 4, a popular low-end phone popular in China and India. It was

released in 2017 and still had some updates (i.e., new firmware images) until March 2019.

However, surprisingly it stopped patching any security vulnerabilities since early 2018 (less

than a year).

2.6 Causes of Patch Delays

So far, we have quantified the patch delays in the Android kernel ecosystem mostly

in a “blackbox” manner. However, other than blaming the long chain of patch propagation,

we have not explored the reasons why the delays are so profound. They can be illuminating

for future improvements in patching practices.

To achieve this goal, we collect additional information to help explain the rationale

behind the patching practices by each participating party in the ecosystem. Specifically,

we will analyze the security bulletins released by more organizations (Qualcomm), extract

more details related to each patch commit, and reach out for information to the various

parties including Google, Qualcomm, and Samsung.

From an intent point of view, a security patch can be applied in either of the

two ways: knowingly or unknowingly. For example, an OEM vendor may be notified by

Google about a serious security vulnerability and knowingly look for patches from upstream.

On the other hand, Google may be blindly applying all upstream commits from Linux

LTS to Android common branches, not knowing which are important security patches.

Understanding the intent will provide valuable insight into the patching delays.

Based on this basic framework, we propose the following hypotheses to explain the

slow patching.

(1) Even though the Android kernel ecosystem is largely open-source, the

“knowledge of a security vulnerability” is often lacking and does not traverse the

ecosystem fast enough, preventing security patches from being recognized and

“knowingly” picked up by those who are affected (e.g., OEM vendors).

(2) A downstream kernel branch may have drifted from the upstream (e.g.,

customization in downstream), it is not always possible to blindly apply all upstream

commits (conflicts can arise). This may cause some kernels to lower the frequency to

“sync” with upstream kernel branches, reducing the possibility of “unknowingly” patching

a vulnerability in time.

To validate the hypotheses, we look into detailed commit log of kernel

repositories. As all kernel repos (i.e., Linux, Qualcomm, and Android common) are

managed by git, we are able to differentiate through the commit log whether an upstream

patch is knowingly “cherry-picked” or unknowingly “merged” (together with a stream of

commits) into a downstream kernel branch. They correspond to the command git

cherry-pick <upstream-commit> and git merge <upstream-commit> respectively. The

semantic of cherry-pick is to pick a specific upstream commit and port it over to

downstream, whereas merge pulls all the commits since last divergence up to

<upstream-commit>.

Cherry-pick is more flexible as it can patch specific vulnerabilities without influ-

encing other features. However, it requires knowledge about which upstream commit cor-

responds to an important security patch. In other words, the downstream must either be

notified about the patch or identify the security issue proactively.

Merge treats all upstream commits equally and does not differentiate between

security patches (severe or not) and other bug fixes. If done frequently enough, patch

delays can be effectively reduced. The drawback is that manual resolution is needed when

merge conflicts occur.

10-07-2019

2-01-2018

2-06-2018

3-07-2018

03-22-2019

10-1-2019

Merge Cherry-pick Fork

Linux mainline

Notification

Google ASB

Linux
4.4.y

Android
4.4

Qual stable
(Android P)

Samsung
S8-p

Qual stable
(Android O)

Samsung
S8-opatched

unpatched

Qual
mainline

09-08-2017

8-25-2018

04-11-2018

Figure 2.16: Case study: CVE-2019-2215

Similar to merge, fork is sometimes used by a downstream to become a clone of an

upstream. This way, the downstream automatically inherits all the patches applied in the

upstream at the time of fork. The drawback is if any customization is made in downstream,

however, it needs to be ported over to the newly forked branch.

Next, we use a case study of a known CVE to demonstrate when these patch

operations are performed, and how they can help explain the patch delays.

Case study. In Figure 2.16, we illustrate the above patch operations using CVE-

2019-2215, a serious vulnerability that allows rooting [102] which was originally patched

in Linux mainline on 2/1/2018. The cherry-pick by Linux 4.4 LTS occurred on 10/7/2019

with a long delay. Notably, Google’s Android common 4.4 branch proactively cherry-picked

the patch from Linux mainline on 2/6/2018 (bypassing its direct upstream). Unfortunately,

Google does not appear to be aware of how serious the vulnerability is, evident by the

extremely late Android security bulletin announcement on 10/5/2019 (an 18 months delay)

and Google’s public statement admitting them being informed by the project zero team

on 9/26/2019 [101]. It is also worth noting that no CVE was issued prior to the point.

During this time, Qualcomm was uninformed about the vulnerability either. Its stable

branch kernel.lnx.4.4.r27-rel did not cherry-pick the patch, leaving the corresponding

Samsung S8-Oreo (Android 8.x) to be vulnerable all this time [102].

On the other hand, Qualcomm stable branch kernel.lnx.4.4.r35-rel,

representing the same chipset with an upgraded Android Pie (9.x) had been merging

updates from android-4.4 periodically (merge is preferred in Qualcomm stable prior to its

release), thus patching the vulnerability on 3/7/2018. Luckily, when Samsung S8

upgraded its OS from Oreo to Pie, it forked from this stable branch, inheriting the patch

unknowingly. Unfortunately, other OEM phones using the same chipset (and staying on

Android Oreo) will remain vulnerable unless they cherry-pick patches elsewhere. In fact,

we have checked that kernel.lnx.4.4.r27-rel never bothered to apply the patch until

the end of its lifetime on 1/22/2020.

The case study gives us good insight on how the patching process is like in the

ecosystem. Next, we will generalize the insight by analyzing each step of the propagation

closely and offer takeaways and suggestions on how to improve the ecosystem.

1. Linux community. Linux vulnerabilities are always first patched in Linux

mainline and then cherry-picked by downstream branches. Since Linux stable/LTS branches

aim to operate as reliably and stably as possible, there is a formal set of rules guiding the

100 101 102 103

(ASB release - earliest Android common
 patch) in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

All moderate
All high
All critical
Cherry-pick moderate
Cherry-pick high
Cherry-pick critical

Figure 2.17: Notification delays of Linux CVEs (by severity)

cherry-pick of upstream patches [18], e.g., “it cannot be bigger than 100 lines, with context;

it must fix a real bug that bothers people, ... a real security issue”.

Thanks to the close collaboration between Linux mainline and stable maintainers

and the fact they belong to the same community, patch delays between the two are generally

small. The outlier 3.18.y was noticeably slower than others. It turns out that other than

the fact that it is an older branch, it was never meant to be an LTS branch. However, due to

popular demand from Android kernels which decide to fork from 3.18.y, it remains actively

maintained for much longer than originally intended. This may partially explain the slow

cherry-pick of upstream patches. In other LTS branches, patch delays are generally small

despite a long tail.

Unfortunately, due to the general principle followed by Linux that “a bug is a

100 101 102 103

(ASB release/Qual notification -
 earliest Qual patch) in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

ASB moderate
ASB high/critical
Qual moderate
Qual high/critical

Figure 2.18: Notification delays of Qualcomm CVEs (by severity

bug” [33], oftentimes the Linux community does not realize whether a bug is truly an

exploitable security bug until much later. By convention, security patches in Linux are

not labeled as such in the public commit logs [100]. This creates a situation where Linux

LTS maintainers are not even aware of the impact of those vulnerabilities. As supporting

evidence shown in Figure 2.15, counterintuitively, CVEs that are (later) rated as critical and

high by Google turn out to take noticeably longer time for Linux to patch, indicating the lack

of knowledge by Linux. In fact, we find 17 out of 37 patches for critical vulnerabilities were

initially missed in the initial “train” of cherry-picked patches, as they appear “out-of-order”

with respect to other cherry-picked patches.

Even when Linux is aware of a security vulnerability, e.g., notified by an external

party via the private vulnerability reporting mailing list, security@kernel.org, this

100 101 102 103

(OEM cherry-pick - ASB/Qual notification)
in Days(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

OEM moderate(ASB)
OEM high/critical(ASB)
OEM moderate(Qual notify)
OEM high/critical(Qual notify)

Figure 2.19: Post-notification delays of cherry-picked patches (by severity)

knowledge may or may not propagate internally to Linux LTS maintainers. In addition, as

Linux’s commits are often intentionally opaque [100], the knowledge is almost definitely

lost outside of Linux, preventing downstream kernels from cherry-picking the

corresponding patches timely. The only publicly available mechanism to document such

knowledge is the CVE database. However, it is known to be incomplete and takes a long

time to assign a CVE number and to update the entry [33].

Therefore, a better mechanism to track security issues is needed. Specifically, for

the vulnerabilities that are reported to Linux through its private mailing list, we argue

that it is a big missed opportunity where Linux has already triaged the bug and can clearly

label the corresponding fixes as security-critical to help the downstream kernel (this is much

more efficient than the CVE mechanism). For other bug fixes, we call for better tools to

Propagation step 3.18 4.4 4.9 4.14

LTS ->Android 63/106 74/105 70/74 30/31

Android ->Qualcomm 26/95 93/109 72/74 61/66

Table 2.4: The ratio of CVEs patched by merge

automatically reason about the nature of a bug and determine if it has serious security

implications — a recent tool has been developed by Wu et al. [195].

2. Google. Android common kernels are forked from Linux stable/LTS initially

and then add Android-specific changes on top (sometimes referred to as “out-of-tree” code).

Over the years, Google has been upstreaming much of its code to Linux mainline and

reducing such “out-of-tree” code [114]. This allows Android common kernels to merge

patches from Linux LTS with a delay of 0 day, a week, to a month sometimes, and only

occasionally cherry-pick from Linux mainline directly for important security patches. This

is evident in Table 2.4 which shows the exact numbers of patches merged vs. cherry-picked.

Note that 3.18 and 4.4 are exceptions as most of the patches in the beginning were cherry-

picked from Linux mainline where the delays are less predictable (some are creating negative

delays compared to Linux LTS).

In addition to keeping its own Android common kernels up-to-date, Google has

another important responsibility to notify OEM vendors about security patches. While the

exact notification date is mostly not made public, according to Google, it typically goes out

at least a month prior to the information appearing on the security bulletin [8]. Surprisingly,

as Figure 2.17 shows, in the majority of the CVEs, it takes anywhere from 100 to 500 days

for the details to appear on the security bulletin (note that the actual notification should

be at least 30 days earlier). In the extreme 20% of the CVEs, it takes 500 days or more. We

believe this is due to the fact that Google is not really aware of which of the merged patches

are security-critical — indeed the delays shown in the figure do not appear correlated with

the severity of vulnerabilities.

In the same figure, we also show the notification delays of CVEs where Google

knowingly cherry-picked important security patches. Indeed, the delays are noticeably

smaller. This indicates the lack of knowledge is the culprit again, supporting our hypotheses.

There is still not too much difference based on vulnerability severity levels. After finishing

the analysis, we also confirmed with Google that this is expected as their pipeline does not

distinguish severity levels by design. Every month, all issues rated above the threshold and

known to Google, e.g., moderate and above, are worked on together in a batch. Exceptions

occur only under extraordinary circumstances where disclosure of a serious vulnerability is

imminent.

In general, for vulnerabilities that originate in Linux, better and more automated

vulnerability triage seems to be a key capability that can benefit Google. Manually sifting

through merged upstream commits and narrowing down to the handful that eventually

appears on the Android security bulletin can be prohibitively expensive. Alternatively, if

Linux has done the triage already, Google can benefit directly from the knowledge, e.g.,

through tighter collaboration.

For vulnerabilities that originate in Qualcomm, Google should have the first-hand

knowledge already — they are almost always informed by either Qualcomm or external

parties about the specifics. In such cases, the notification to OEM vendors should be as

swiftly as possible, which unfortunately is not the case as we will discuss later in the section.

3. Qualcomm. Qualcomm maintains many more branches compared to Linux

and Google and the overhead of patch tracking and management goes up. However, we find

its mainline branches are maintained in a similar fashion to Android common. As seen in

Table 2.4, mainlines primarily merge commits from Android common and only occasionally

cherry-picks patches from Linux directly. One difference is the merge frequency is generally

lower than that of Android common, resulting in longer delays as shown in Figure 2.7.

On the other hand, Qualcomm stable branches are maintained differently. After

they are forked from a mainline and labeled as “release”, only cherry-picks are performed.

This creates the same paradox that even though Qualcomm mainlines merge patches

relatively timely, the developers are not aware of the security-critical nature of these

patches. As a result, it can take Qualcomm stables a long time to cherry-pick the patches.

Indeed, Figure 2.8 illustrates the dramatic delay. Shockingly enough, after we reach out to

Qualcomm about the delays, their response indicates that this is because stable branches

often receive Linux-specific patches only when customers ask for them explicitly.

In principle, even if Qualcomm is interested in proactively patching Linux

vulnerabilities, the knowledge gap needs to be bridged by Linux (e.g., labeling the security

nature of a patch). However, Qualcomm can do its part by merging more patches to

stable branches without distinguishing their nature, despite the fact that Qualcomm

stables are designed to include bug fixes only. This is because Qualcomm stables are

already based on Android common branches and indirectly from Linux stable/LTS, which

commit necessary bug fixes only (no new features). Interestingly, we observe two recent

stable branches based on Android 10, namely kernel.lnx.4.9.r34-rel and

kernel.lnx.4.9.r30-rel in Qualcomm follow this very strategy.

In contrast, for vulnerabilities that originate in Qualcomm kernels, we know that

they are patched much more timely in stable branches (see Figure 2.8). In such cases,

Qualcomm is likely already aware of the nature of the bugs — most are described as

externally reported or internally discovered during auditing. Thus Qualcomm should be

able to notify OEM vendors as soon as patches are available. Unfortunately, after

collecting data from Qualcomm’s security bulletin (released monthly since Sep 2017), we

found that the delay between the earliest patch and its own notification date is not ideal

(median delay: 63 days, mean delay: 130 days), as shown in Figure 2.18 (surprisingly

indiscriminative of the vulnerability severity again). Note that we combine high/critical

CVEs into one line here because there are only three critical Qualcomm kernel CVEs since

the inception of Qualcomm’s security bulletin.

After confirming with Qualcomm, we know that the customer notification is sent

out (to all OEM vendors) only after fixes have been widely propagated on affected branches.

However, we believe the notification process can be more agile — a subset of OEM vendors

can be notified as soon as their corresponding branches have the patches ready. Even

better, oftentimes the patches are not really different across branches, Qualcomm can simply

notify all customers as soon as the earliest patch is ready and OEM vendors can make an

early decision (e.g., testing the patch independently before applying). This way, the major

bottleneck of late notification can be mitigated.

According to the same figure, there is another delay of two to three months before

Google publishes these CVEs on its security bulletin. Since most OEM vendors follow

Google’s monthly schedule to update security patch level, OEM patches will be unnecessarily

delayed.

4. OEM phones. To understand how patching is performed on OEM kernels,

we refer to the Pixel source branches as well as an Oneplus repo that happened to contain

the complete commit history. We observe that these kernels cherry-pick patches from

Qualcomm (either mainline or stable) and even Linux sometimes. In addition, when OEM

vendors decide to upgrade the Android OS (e.g., Android Oreo to Android Pie), they

usually abandon the old branch and develop another stable branch (forking from

upstream) that corresponds to the new Android OS (as the case study about Samsung S8

showed). We can infer that other OEM vendors follow the same strategy of (1)

cherry-picking instead of merging, and (2) forking when upgrading. This is because (1)

the firmware images often skip upstream patches (so it is unlikely performing git merge),

and (2) OS upgrades always happen together with the kernel version updates, which is

also the case with Qualcomm stable branches — OS upgrades lead to a new stable branch

with an advanced kernel version. In addition, we always observe a large number of kernel

patches applied when the firmware is upgraded to a new Android OS.

Specifically, depending on the exact phone model, 30% to 75% of CVEs can be

patched through forking a new branch from upstream. This is not a healthy number because

Android OS upgrades usually happen on a yearly basis and not to mention that there are

often additional delays for these upgrades to reach user devices (e.g., carrier delays). Clearly,

more patches should have been cherry-picked in between upgrades.

For the cherry-picked patches, we consider them timely if they are applied within

a reasonable amount of time after Google or Qualcomm notify the OEMs, which is

typically expected to be a month or two. Unfortunately, OEM vendors are often

significantly behind the schedule. As Figure 2.19 shows, 80% of the Qualcomm CVEs take

OEMs 100 days or more to deploy corresponding patches. This is likely because OEM

vendors ignore Qualcomm’s notifications and prefer to follow the monthly updated

security patch level set by Google. We contacted Samsung and confirmed that OEMs are

bound to follow Android’s monthly bulletin while no such strict requirements exist for

Qualcomm. This is reflected in the figure where more than 50% of the CVEs take OEMs

less than a month (sometimes even beforehand) to patch after the Android security

bulletin publication (which is within the expectations [47]). As we can see, Google’s

notification plays a huge role in getting OEMs to patch.

We note that there is a small fraction of patches (roughly 5%) delayed for 200

days or more after Google’s security bulletin is published. This is not only due to slow

and infrequent security updates by some devices but also occasionally skipped CVEs (out

of the ones published together in a month). For example, we find that Samsung S8 has

skipped nothing but CVE-2018-13900 from Google’s Feb 2019’s security bulletin, which

interestingly got patched eventually in 2020. Finally, from Figure 2.19, we do not find

significant correlation between the severity of vulnerabilities and timeliness of patches being

cherry-picked by OEMs. Note that the number of critical cherry-picked patches by OEMs

is very limited, especially for some new phones, thus we combine high and critical ones

into a single line. In fact, CVE-2018-13900 is a high severity vulnerability yet skipped by

Samsung S8.

To improve the situation, OEM vendors should obviously react more timely to

the earliest notification, e.g., Qualcomm. Furthermore, similar to what we suggest for

Qualcomm, OEM vendors can consider merging patches directly from upstream instead

of cherry-picking them. We also hope that high-end and low-end phones can be treated

equally, as we show low-end phones tend to receive patches more slowly in Figure 2.14. At

the end of the day, we believe a better and more automated patching/testing process will

help.

Summary. Overall, the analysis supports our hypothesis and we propose three

general areas that need improvement.

More efficient triage systems. The triage process of security vulnerabilities today

is largely manual. This is evident in the case study where the initial bug fix made in

Linux mainline was never treated seriously enough by the rest of the ecosystem (Linux LTS

failed to cherry-pick it also). Better automated reasoning tools (e.g., [195]) can assist the

developers in identifying security-critical bugs and take actions accordingly.

More efficient knowledge propagation. Unfortunately, even when the knowledge

of an important security vulnerability does become available in one party, it either does

not have a good mechanism to propagate the information (e.g., Linux), or propagate the

information in a delayed manner (e.g., notification by Google and Qualcomm). In addition,

sometimes it is beneficial to propagate the knowledge in the reverse direction (e.g., some

patches shown to be applied in Google before Linux LTS). Ideally, this process should be

more automated to reduce delay.

Cleanly separate the changes made in downstreams. Current patching practices

in downstreams largely rely on cherry-picking, i.e., Linux LTS, Qualcomm stables, and

OEMs. If a downstream kernel can cleanly separate its customization code from the

upstream, or even better, upstream its customization (as is the case with Google[114]), the

responsibility of patching upstream vulnerabilities can be completely automated with

merging, i.e., Android common and Qualcomm mainlines. A downstream kernel can

simply merge automatically and fix security issues unknowingly.

2.7 Discussion

Unpatched kernels. By design, patch presence test is unable to equate the absence of

patches with the target “being vulnerable”. Throughout our measurements, we observe

many cases where the downstream kernels never apply patches from upstream. However,

this could simply mean that the downstream kernel is not affected by the upstream

vulnerability, e.g., due to customization of the vulnerable function. This is why we focus

on the patched cases only, because it implies the downstream kernels are affected.

Further delays after the OEM patches. Our patch propagation measurement stops

at the kernel compilation (build) dates. However, in practice, there are additional delays

before the OEM updates can arrive at a user device. They include carrier certification

delays (for carrier-locked phones), and users intentionally delaying the firmware update

even if it is already available through OTA. Unfortunately, such delays are hard to

quantify and we consider them out of scope. To get a basic sense of carrier certification

delays, we manage to find the LG V30/Samsung S7/Samsung S8 on T-Mobile websites

and SamsungS7/SamsungS8 on ATT websites that appear to publish the firmware release

date. The average delay between built and release is about 20 days. To draw any

meaningful conclusions though, a large-scale analysis needs to be done across more devices

and carriers.

Chipset vendors other than Qualcomm. In addition to Qualcomm, other major SoC

vendors include MediaTek, Kirin, and Exynos. Unfortunately, none of these vendors

provides the complete git repositories for their recent chipsets. In addition, the CVEs

specific to Kirin and Exynos chipsets are published only on Huawei’s and Samsung’s

official websites but no links exist to the corresponding patches. Together, they represent

a hurdle for any external party to track their patches. We suspect reverse engineering on

the firmware images will be the only way to analyze the presence and absence of patches.

2.8 Related Work

Code similarity at the source and binary level. To conduct our measurement we

need the ability to accurately test the patch presence at both source level (e.g., the source

code of the phone kernel is released) and binary level (e.g., only ROMs are available for

the target phone). There exist a large body of work aiming to compute the source/binary

code similarity (e.g., to find similar functions as a given vulnerable one), using a variety of

source and binary level features [57, 110, 109, 152].

In theory, these work can be used to test the patch presence by computing a target

function’s similarity to the patched/unpatched functions). Unfortunately, similarity-based

approaches are fundamentally fuzzy and not suitable to capture the essence of a security

patch which often makes only very small changes to patched functions and can still look

similar to the unpatched version of the function. Tuning the similarity-based approach for

patch presence test is an interesting but orthogonal problem.

Binary patch presence test. FIBER [207] is a state-of-art open-source tool to test the

patch presence in binaries with the aid of the fine-grained source level patch information.

It generates binary signatures that accurately capture the syntax and semantic information

of the patch change sites, and then matches them in the target binary. It suits our needs

perfectly and therefore we leverage and build on top of FIBER to test the patch presence

for over 600 Android ROMs. To ensure that it works well in our large-scale measurement,

we enhance the original FIBER to overcome several of its technical weaknesses as detailed

in §2.4.3.

Android security patch investigation. Farhang et al. [88] have recently conducted a

measurement on Android security patches, including both user and kernel components, with

some minor overlap with this paper. In particular, they also analyzed the delay from the

patch date (linked from the security bulletin which we now know is often not the earliest

date) to the release date on the bulletin and observed a large delay. However, this represents

only a small part of the picture of the end-to-end patch propagation in the ecosystem all the

way from the upstream Linux to the end Android devices. Specifically, they do not attempt

to locate patches in the source or binary at all. Thus they cannot find the bottleneck

of patch delay. On the other hand, we not only showed where the bottleneck is but also

explained why they exist with actionable insights and takeaways. More importantly, we

also give suggestions on how to improve the patch propagation in the ecosystem.

Patch and vulnerability lifecycle analysis. There exist a number of measurement

studies focusing on various aspects of patch propagation in open-source software. Li et

al. [128], Shahzad et al. [165] and Frei et al. [91] performed large-scale measurements

regarding the vulnerability lifecycle and the patching timeliness, based on publicly

available information collected from data sources like CVE databases [19] and open-source

repositories. Some of them focus on specific open-source projects, like Farhang et al. [88]

focusing on Android and Ozment et al. [148] targeting FreeBSD. No analysis has been

dedicated to the Android kernel ecosystem which involves the analysis of multiple parties

in depth and the analysis of source and binary kernels.

2.9 Conclusion

In this paper, we delved deep into the Android kernel patch ecosystem, revealing

the relationship among different parties as well as the bottleneck in patch propagation.

This represents a first data point to measure such a huge, decentralized, fragmented, and

yet collaborative project. We also analyze that the study is worthwhile in identifying

deficiencies and opportunities to better manage such a project in the future.

Chapter 3

SymBisect: Accurate Bisection for

Fuzzer-Exposed Vulnerabilities

Abstract

The popularity of fuzzing has led to its tight integration into the software

development process as a routine part of the build and test, i.e., continuous fuzzing. This

has resulted in a substantial increase in the reporting of bugs in open-source software,

including the Linux kernel. To keep up with the volume of bugs, it is crucial to

automatically analyze the bugs to assist developers and maintainers. Bug bisection, i.e.,

locating the commit that introduced a vulnerability, is one such analysis that can reveal

the range of affected software versions and help bug prioritization and patching. However,

existing automated solutions fall short in a number of ways: most of them either (1)

directly run the same PoC on older software versions without adapting to changes in

bug-triggering conditions and are prone to broken dynamic environments or (2) require

61

patches that may not be available when the bug is discovered. In this work, we take a

different approach to looking for evidence of fuzzer-exposed vulnerabilities by looking for

the underlying bug logic. In this way, we can perform bug bisection much more precisely

and accurately. Specifically, we apply under-constrained symbolic execution with several

principled guiding techniques to search for the presence of the bug logic efficiently. We

show that our approach achieves significantly better accuracy than the state-of-the-art

solution by 16% (from 74.7% to 90.7%).

3.1 Introduction

In recent years, large-scale programs such as the Linux kernel are being

continuously fuzzed for the purpose of improving code quality and

security [98, 55, 182, 86, 150, 103]. Such continuous fuzzing systems have been shown

highly effective in identifying new bugs, e.g., syzbot [97] reports thousands of bugs in the

Linux kernel.

While fuzzing is highly effective, this poses large workload to software developers

and maintainers, as the continuous stream of bugs requires various analysis, e.g., bug triage

and patching, that is often done largely manually today [132]. This is a hard problem as

we already see over 8,000 bugs found by syzbot are auto-closed due to the lack of human

investigations [97]. Thus, automating the analysis of fuzzer-exposed bugs is a worthwhile

goal.

One important analysis that needs automation is bug bisection, i.e., the process of

identifying commit that introduced a bug (also called vulnerability-contributing commits,

or bug-inducing commits). It proves instrumental in various aspects. For example, it can

help developers and maintainers understand the bug and facilitate patch development [46];

it can also pinpoint the vulnerable software versions to inform users about whether they

need to worry about updating their software [58, 26].

To achieve this goal, researchers have proposed several automated approaches, but

unfortunately they all have significant shortcomings.

The first type of approach directly executes the original PoC on older software

versions to see which version would still crash after running the PoC. However, it is

reported that such a dynamic solution suffers from several issues [25]: 1) Broken dynamic

environment (e.g., build or runtime errors) leading to versions being skipped. 2)

Accidental triggering of unrelated bugs. 3) Changes in the underlying bug-triggering

condition.

The second type of approach requires patches, which may not be available at the

time of the bug discovery. Even if the patches are available, such static solutions rely on

heuristics which are inherently imprecise [50, 159]. For example, when given the code diff

in a patch, their solutions consider the bug-inducing commit to be the one that introduces

one or more lines in the code diff [58, 194]. However, such a solution does not take into

account the bug-triggering conditions and can miss important details that are outside of

the scope of the code diff in the patch.

Motivated by the above deficiencies, we take a different approach from the

traditional methods. In particular, we aim to reason about the presence of vulnerability

logic through static code analysis. Fundamentally, our approach investigates many more

possible inputs beyond what’s included in the original PoC. Furthermore, static methods

can effectively circumvent a series of problems caused by the broken dynamic

environments such as build errors. Finally, it does not require the development of patches

in advance. To this end, we leverage symbolic reasoning which is the most precise way

of confirming the presence of a vulnerability statically. A crucial characteristic of this

approach is that it can automatically distinguish significant changes from

vulnerability-irrelevant changes and effectively eliminate the influence of

vulnerability-irrelevant changes on the results.

More specifically, we apply under-constrained symbolic execution [157] in different

software versions to precisely identify the presence/absence of the same vulnerablility logic

that is inherited from the released PoC. Then with a simple binary search algorithm, we can

pinpoint the commit that introduced the vulnerability. To address the scalability challenges

of symbolic execution, we leverage the trace associated with the PoC to guide the symbolic

execution.

Following the methodology proposed in this paper, we apply it to the context of

Linux kernel and the corresponding continuous fuzzing platform syzbot [97]. We show that

it significantly outperforms state-of-the-art approaches in terms of accurately determining

the vulnerable versions of bugs found with fuzzing. We summarize our contributions as

follows:

• We developed a novel and drastically different solution of an automatic bisection tool

called SymBisect, targeting fuzzer-exposed vulnerabilities. Our method is precise as

it relies on looking for the presence of key vulnerability logic represented by symbolic

formulas. We have implemented SymBisect for Linux kernel bugs reported on syzbot.

We open-sourced the solution to facilitate the reproduction of results and further research

[24].

• We proposed a new method to address the scalability problem in under-constraint sym-

bolic execution in the Linux kernel. Our insight is that in the specific context of fuzzing

results, we are able to use the knowledge of the vulnerability from the PoC to guide the

symbolic execution in a principled fashion.

• We evaluated the performance of SymBisect against other state-of-the-art methods. We

demonstrate that it not only achieves much higher accuracy than the PoC-based bisection

but even outperforms the methods dependent on the presence of patches. Specifically,

it can identify 83% of the vulnerable versions that elude detection in the PoC bisection

implemented by Syzbot.

3.2 Background and Motivation

In recent years, fuzzing has played a significant role in discovering vulnerabilities

in the Linux kernel [97, 98]. However, manual analysis of the extensive results generated

by fuzzing has placed a tremendous burden on maintainers [17]. Automatic analysis of

fuzzing results, such as identifying vulnerable versions and simultaneously identifying

when vulnerabilities were introduced, is highly beneficial for understanding the logic of

vulnerabilities, developing patches, notifying the respective maintainers, and backporting

patches to vulnerable Long-Term-Support branches. For example, Rui Abreu et al.

observed that automating bug bisection that pinpoints the bug-inducing commits can

speed up fixing fuzzer-exposed bugs in Google’s proprietary code on average by a factor of

2.23 [46]. In this paper, we define

PoC-based bisection. The most straightforward approach is to dynamically re-execute

the PoC that triggered the bug on older commits. This method is employed by the

continuous fuzzing platform syzbot [97]. Specifically, syzbot starts bisection by running

the same PoC with the commit on which the bug was discovered, ensures that it can

reproduce the bug, and then goes back release-by-release (e.g., v5.4 to v5.3) to pinpoint

the earliest release without the kernel crash (again using the same PoC). The predicate for

bisection is binary (crash vs. no crash), not trying to differentiate between different

crashes. This is intentional because bugs can manifest in a different ways (under different

bug titles) [25]. However, this inevitably introduces false positives as unrelated bugs can

sometimes be triggered. In fact, a small-scale analysis showed that unrelated bugs being

triggered contributed to 66% of incorrect bisection [26]. In addition, such an approach

also leads to false negatives, i.e., failing to report a kernel version being affected by the

bug during bisection. They can be due to build/boot errors, bugs that are difficult to

reproduce, and failing to account for changes in bug-triggering conditions (no adaptation

in the original PoC). Overall, a previous small-scale study conducted by the syzbot team

concludes that the bisection accuracy is only about 50% [26], highlighting the need for a

better solution.

Patch-based bisection. The basic idea of SZZ is to identify the bug-inducing commit

by tracing the modified lines in the patch back to the most recent commit that introduced

the lines. This method is static and effectively assumes the source lines removed or

changed by the patch are responsible for introducing the bug. The SZZ algorithm has

many variations, among which VSZZ [58] is the latest improvement aimed specifically at

vulnerabilities (instead of general bugs). VSZZ modifies SZZ slightly by tracing back the

commit history to the earliest commit (as opposed to the most recent) that introduces the

deleted lines of a patch. However, such methods require patches input, which are not

available at the time of bug discovery. Furthermore, the SZZ algorithm and its variants

are fundamentally heuristics and their accuracies are limited [50]. Finally, they are unable

to handle patches with only added lines [58], which are quite common in security patches

(e.g., adding a bounds check).

Our insight. This motivates us to develop a solution that looks for the presence of the

vulnerability logic in target software versions.

Specifically, we propose to leverage under-constrained symbolic execution to

effectively address the shortcomings of existing solutions. Compared to PoC-based

bisection, our solution (1) is static, thus sidestepping the challenges stemming from broken

dynamic environments; (2) focuses on the specific vulnerability, allowing it to overlook

other unrelated bugs; (3) considers more possible inputs and execution paths, alleviating

the concern of changes in the underlying bug-triggering conditions.

Compared to the existing patch-based methods, our solution (1) does not require

patches, which are not available when a fuzzer first finds the bugs; (2) looks for the

presence of vulnerability logic as opposed to syntatic information such as the presence of

certain source lines or tokens; (3) inspects the vulnerability logic beyond the scope of

patch functions, allowing a much more complete and informed validation compared to

heuristics that concentrate on only the code diff or the functions involved in patches.

3.3 Overview

In this section, we begin with a motivating example to provide a concise overview

of why existing methods fall short and the intuition behind SymBisect. We will also

discuss the main challenges of implementing our solution. Following that, we introduce the

overall architecture of SymBisect.

3.3.1 Motivating Example

Figure 4.1 illustrates an integer overflow vulnerability that leads to an

out-of-bounds memory access. Specifically, the bug-inducing commit modifies the

function htab map alloc(), which in turn calls function bpf map charge init() and

function prealloc init(). Prior to this commit, the function bpf map charge init()

had a check at line 6, which checked the variable size to prevent any potential integer

overflow in prealloc init(). However, the removal of this safeguard paved the way for

the occurrence of an integer overflow. To mitigate this vulnerability, the subsequent

patch introduced a type-casting operation at line 8 within prealloc init(), effectively

preventing the risk of integer overflow.

Prior PoC-based tool executed the released PoC in versions preceding the patch.

However, in this case, it triggered an unrelated bug, leading the kernel to crash before it

could access the function htab map alloc(). Consequently, this resulted in an imprecise

bisection result — syzbot thinks the kernel version is vulnerable and keep checking even

The Bug-inducing Commit:
static struct bpf_map *htab_map_alloc(...)
1 - cost = S1*C1 + S2*S3;

2 - cost += S2*C2
3 - err = bpf_map_charge_init(..., cost);
4 - if (err)
 - goto free_htab;

5 err = prealloc_init(...);

int bpf_map_charge_init(...,u64 size)

6 if (size >= U32_MAX - PAGE_SIZE)

 return -E2BIG;

The Patch:
static int prealloc_init(...)
 S3 = S3 + C2;

7 - htab->elems =bpf_map_area_alloc(S2*S3,
8 + htab->elems =bpf_map_area_alloc((u64)S2*S3,

S1: (u64)htab->n_buckets C1: sizeof(struct bucket)
S2: (u64)htab->elem_size C2: num_possible_cpus()
S3: htab->map.max_entries

Figure 3.1: The Bug-inducing commit and Patch of a vulnerability from syzbot

earlier versions.

Prior Patch-based tools derive various forms of signatures, primarily syntactic, from the

patch function prealloc init(). In this case, the bug-inducing commit does not alter the

patch function. Consequently, these solutions are unable to capture the commit and fail

to differentiate versions preceding and following the bug-inducing commit. This leads to

incorrect identification of the bug-inducing commit.

Our solution symbolically executes the relevant functions until it reaches the target source

line and evaluates the symbolic constraints to check whether an out-of-bound memory

access can occur — we know it is an out-of-bound bug from the bug report. Specifically,

the symbolic execution starts from the syscall entry that triggered the bug (available from

the call stack in the bug report). By enlarging the analysis scope, our solution effectively

explores more of the state space and is not confined to the patch function. It effectively

addresses both the limitation of patch-based bisection and potential changes in the bug-

triggering conditions. Additionally, by disregarding unrelated bugs, it resolves the issues

associated with PoC-based bisection.

Figure 3.2 illustrates a portion of the symbolic execution process. In the non-

vulnerable version (prior to the bug-inducing commit), the variable cost is assigned in lines

1 and 2, with a subsequent check at line 6. While there are two branches in line 6, only one

of them leads to the vulnerability point. Within this path, symbolic execution identifies a

crucial constraint: S2(S3+C2) + S1*C1 <U32 Max - 4096. This constraint ensures that

the overflow condition S2(S3+C2) >U32 Max is never satisfied, preventing any subsequent

out-of-bounds occurrences (the OOB section isn’t depicted in the figure). Consequently, this

version is deemed non-vulnerable, which is correct. In contrast, in the vulnerable versions,

the critical check against the cost is removed. As a result, the overflow condition becomes

solvable by the symbolic execution engine, leading to an out-of-bounds (OOB) situation

later on. Accordingly, our solution correctly classified this version as vulnerable.

 Before inducing commit:
Line1 Assignment: cost = S1*C1 + S2*S3
Line2 Assignment: cost += S2*C2
Line6 Constraint S1*C1 + S2(S3+C2) < U32_Max - 4096
Line7 Overflow condition: S2(S3+C2) > U32_Max
Not solvable => Not vulnerable

Symbolic execution trace (partly):
...... -> htab_map_alloc() -> bpf_map_charge_init()
 -> prealloc_init() ->

 After inducing commit (before patch):
Line8 Overflow condition: S2(S3+C2) > U32_Max
Solvable => Vulnerable

Figure 3.2: Vulnerability detection via symbolic execution

3.3.2 Challenges and Insights

Despite the advantages of using symbolic execution to confirm the presence of

vulnerability logic precisely, symbolic execution also faces its own challenges.

Scalability concerns. In the motivating example, we showed only a segment of the

symbolic execution in Figure 3.2. In reality, our solution will encounter many more

functions (i.e., starting from the syscall entry) and accumulate many more symbolic

constraints. This can lead to the classic scalability challenge for symbolic execution, as the

number of forked states may grow exponentially as the execution progresses. This makes

the solution seemingly ill-suited for a large scope of analysis, especially against large-scale

software such as the Linux kernel. Previous methods deal with this problem by confining

the scope of symbolic execution to one specific function [207] or utilizing concolic

execution[67]. Nevertheless, these methods are unsuitable for our purpose: the existence

of a vulnerability is not determined by a single function, and we do not want to

over-constrain the possible inputs through concolic or concrete execution.

Key observation. We observe that, to overcome the above challenge, it is possible to

leverage fine-grained trace-level information about how the vulnerability is manifested

(e.g., where the vulnerability is triggered, and which functions are involved) in the

reported version to guide the exploration in the target version. This information allows us

to distinguish the key statements from the unrelated ones for a specific vulnerability. As

an illustration, coverage data can help de-prioritize less relevant execution paths. By

utilizing this approach, SymBisect effectively narrows the scope of exploration, thus

enhancing efficiency and mitigating the scalability challenge of symbolic execution.

3.3.3 System Architecture

As illustrated in Figure 3.3, our tool, denoted as SymBisect, requires three

essential inputs for its operation:

• The source code of the program on which the bug was reported – we refer to it as the

reference version. This version should be compilable and bootable as the fuzzer has

successfully found the bug on this version.

• Proof of Concept (PoC): This is the executable or script that can reliably trigger the

vulnerability in the reference version of the program.

• The source code of the program in potentially vulnerable target versions: These are the

other versions of the program that we want to assess for the same vulnerability.

SymBisect is designed for vulnerabilities found through fuzzing. So both the

compilable and bootable source code of the reference program and the PoC are naturally

available when a vulnerability is found via fuzzing. With such inputs, SymBisect bisects

Programs
(target versions)

Program
(ref version)

Guidance
Transformer

Guidance
Generator

Symbolic
Detector

PoC

Detector

Non-vulnerable
versions

Bug-inducing
commit

Vulnerable
versions

Figure 3.3: Overview of SymBisect

the bug in a fashion similar to syzbot (except that SymBisect is completely static). It first

evaluates historical versions backwards – one major release version at a time (e.g., v5.5 and

then v5.4). Through this iterative process, SymBisect can identify the boundary or range

for which the bug-inducing commit falls under (e.g., between v5.4 and v5.5). Subsequently,

SymBisect follow a simple binary search procedure to pinpoint the specific commit that

introduced the bug.

SymBisect consists of three primary components, designed to accurately identify

vulnerabilities while also addressing scalability issues:

Guidance Generator. SymBisect first runs a PoC to trigger the specific vulnerability

in the reference version of the program, thereby collecting essential execution traces.

Utilizing these traces, SymBisect systematically produces three primary categories of

guidance for subsequent symbolic detection. Firstly, SymBisect attempts to align the

call stack trace (also called call trace in the syzbot bug report) of the execution on the

target version to the one on the reference version (referred to as Call Stack Guidance)

This effectively steers the exploration of symbolic execution towards the function where

the vulnerability is observed. Secondly, . This is useful when there are a large number of

possible execution paths that follow the same call stack. Lastly, SymBisect reuses the

callees involved in indirect calls (referred as Indirect Call Guidance), thereby informing

the symbolic detector to focus on a limited number of indirect call targets (as opposed to

all possible ones computed using static analysis). More details are in §3.4.1.

Guidance Transformer. Upon identifying the above three kinds of guidance, SymBisect

transforms them from the reference version into the target versions of the program. This

enables a more efficient symbolic execution and a more accurate vulnerability detection

process on these target versions. It’s important to highlight that guidance translation

between versions is done at the source code level, which remains stable and unaffected

by compiler optimizations. To enhance the precision and robustness of those guidance

when applied to differing target versions of the program, SymBisect employ multiple

optimizations during the guidance transformer phase. More details about the guidance

transformer will be provided in §3.4.2.

Symbolic Detector. The symbolic detector is a form of detector that can capture (or

re-capture) the bugs that were reported by a fuzzer. The detector is applied to a target

version, where it tracks all variables, especially symbolic variables, including the symbolic

sizes of allocated objects. However, instead of attempting to find all possible bugs during

the exploration (which is clearly not scalable), we narrowly focus on the specific bug at

hand, with the help of the aforementioned guidance. Throughout the execution, the

symbolic detector leverages guidance from preceding phases. Specifically, it dynamically

adjusts the execution state schedule, aiming to alleviate path explosion. Additionally, the

detector refines the callees of indirect function calls based on prior indirect call guidance.

For vulnerability detection, the symbolic detector relies on call trace guidance to ensure

accurate detection of the same vulnerability previously identified. More details about the

under-constrained symbolic detector can be found in §3.4.3.

3.4 SymBisect Design

In this section, we delve into the intricacies of SymBisect’s design by dissecting

each component, discussing the challenges encountered, and illustrating our corresponding

solutions.

3.4.1 Guidance Generator

Overall, this components attempts to guide SymBisect when SymBisect

executes the PoC in the reference version of the program to trigger a specific vulnerability

and collects the execution trace. Then, SymBisect produces three categories of guidance

from the execution traces, which we explain below.

Call Stack Guidance. The call stack guidance represents the state of the call stack at

the moment a vulnerability is triggered. This information can be readily collected when

the corresponding bug is triggered in the reference version of the software under

investigation. Utilizing the call stack guidance serves multiple purposes. First, it assists in

identifying an appropriate entry function as the starting point for our symbolic

detector. Second, it assists in pinpointing the target line where the vulnerability is

triggered, allowing the symbolic detector to focus on the same vulnerability rather than

any arbitrary vulnerability. We use call stack guidance to constrain the exploration of a

target version so that it only explores the basic blocks that can potentially lead to the

same stack trace. Correspondingly, we translate call stack guidance into basic-block-level

priorities to guide the exploration.

• Highest Priority: basic blocks that dominate the basic blocks in the call stack will receive

the highest priority. This indicates that their execution is essential for reaching the bug

while maintaining the same call stack. The set of such basic blocks can be identified

through the dominator analysis on the control flow graph of functions in the call stack.

• Lowest Priority: basic blocks, upon the execution of which can cause deviations from the

call stack, will receive the lowest priority. Consequently, a symbolic detector should avoid

executing any of these blocks. They can be identified through reachability analysis.

In addition to the call stack guidance, we will need more fine-grained guidance if there

are still too many possible execution paths that follow the same call stack. Specifically

we propose to prioritize the execution path directly at the basic block level. The idea is

that a basic block in the target version is likely to be non-critical if (1) the basic block is

not executed in the reference version and (2) it remains unchanged in both the reference

and target versions of the program. Therefore, the symbolic execution should prioritize the

exploration of branches whose basic blocks have higher priority. Note that when there are

conflicts, path guidance must yield to call stack guidance because the most critical goal

is to ensure the vulnerable function being reached. We translate path guidance into the

basic-block-level priorities as follows:

• High Priority: basic blocks covered by the execution trace in the reference version of the

program will receive high priority (lower than the highest priority).

• Low Priority: basic block not covered by the execution trace in the reference will receive

low priority.

The indirect call guidance records the callee functions associated with each indirect

function call encountered in the execution trace. Its primary role is to facilitate the

accurate resolution of indirect function calls during the symbolic execution process,

particularly in the target versions of the software under analysis.

3.4.2 Guidance Transformer

To enhance both the efficiency of symbolic execution and the precision of

vulnerability detection in target program versions, it is essential to translate the three

categories of guidance collected from a reference version. Specifically, one fundamental

task is to map basic blocks from the binary form in the reference version, where execution

traces are collected, to the LLVM IR in the target version, where symbolic execution is

executed. One potential solution is first to map the binary-level basic blocks from

reference to target. However, due to compiler optimizations, even if the source code lines

are identical, their binary basic blocks may differ, making this solution undesirable.

Our solution employs source code as an intermediate representation to improve

the mapping accuracy between the reference and target versions. The transformation

sequence for basic blocks begins with the binary form in the reference version, moves to its

source code, transitions to the source code in the target version, and ends in the LLVM IR

of the target version. To facilitate these mappings, we use the debug information to

transition between binary and source code and between source code and LLVM IR.

Additionally, Git is employed for source code mapping between the reference and target

versions. During the transformation sequence, we take care of multiple corner cases to

enhance the precision (more details in §3.5.1).

After transforming the call stack to the target version, we verify the presence of

the target line triggering the vulnerability. If absent, the target version is deemed non-

vulnerable. If present, we examine whether there is a potential path from the entry to the

target function in the call graph. A missing path directly results in a negative outcome.

• Medium Priority: basic blocks unique to the target version, which do not map to any

basic blocks in the reference version, will receive medium priority. Compared to the low

priority basic blocks – the ones seen in reference version yet not exercised, we are less

certain about the utility of such basic blocks; therefore we prefer to explore them with a

higher priority compared to the basic blocks that were seen in both reference and target

versions but not exercised in the reference.

Then, all the guidance (call stack, five lists of varying priorities, and indirect call

mapping) are forwarded to the subsequent component.

3.4.3 Symbolic Detector

After generating guidance for the target version of the program under analysis,

the symbolic detector conducts under-constrained symbolic execution on these targeted

versions. Specifically, the detector monitors all variables within the program to identify

potential vulnerability patterns, such as use-after-free or out-of-bound access errors. We

propose multiple improvements to enhance the ability of under-constrained symbolic

execution, including but not limited to handling symbolic addresses, and symbolic sizes of

allocated memory. The details are described in §3.5.2. Throughout this execution, the

symbolic detector utilizes the guidance generated in prior stages to enhance its

effectiveness.

Call Stack Guidance. Symbolic execution is initiated at a selected entry function,

determined by examining the call stack. Specifically, execution starts at the first

meaningful function in the call stack — we choose to start at the syscall handler [103]

(which is typically several layers behind the generic syscall entry). The symbolic execution

process ends upon detecting a vulnerability (resulting in a positive output) or upon

hitting a time constraint (yielding a negative output). Importantly, the detector only

checks for vulnerabilities upon reaching the specified target line in the guidance, avoiding

hitting any unrelated bugs accidentally. Also, the basic blocks with the lowest priority are

prohibited from execution.

Path guidance. When symbolic execution encounters a symbolic condition, it forks to

explore both true and false branches. This forking behavior primarily contributes to the

path explosion in symbolic execution. The path guidance is employed to address this. This

approach prioritizes exploration by first traversing branches with higher priority. When two

branches have the same priority, one is randomly selected to be explored first.

Indirect Call Guidance. During symbolic execution, if we observe the indirect call target

being assigned explicitly to a function pointer, we can unambiguously determine the indirect

call target. Otherwise, we initially refer to the indirect call guidance to identify the indirect

call target. If we find a match for the specific indirect call, we use the specific target from

the guidance directly. Otherwise, we utilize the state-of-the-art type-based analysis [137] to

resolve indirect calls (which may produce multiple targets).

3.5 Implementation

In total, the implementation of SymBisect has 4,726 LoC Python code for the

Guidance Generator and Guidance Transformer and 4,347 LoC of C++ for the Symbolic

Detector atop KLEE [72]. In the following sections, we will delve into further details

regarding the Guidance Transformer (§3.4.2), and Symbolic Detector (§3.4.3).

3.5.1 Guidance Transformer

Code formatting. Because we employ source code as an intermediate representation

during the guidance transformer, we require each source code line to be associated with

only a single basic block. To achieve this, we develop a simple source code formatter that

divides composite lines into simpler ones. For instance, splitting “} else if(cond){” into

two distinct lines. This is done for both the reference version and the target version at the

beginning.

Accurate coverage collector. SymBisect leverage KCOV mechanism to discern which

sections of the code have been covered. Syzkaller offers a tool to save the coverage data

from KCOV. However, this operation is not always reliable. When the kernel crashes, some

coverage can be lost. To improve this, SymBisect modifies the kernel to record the KCOV

buffer in a log upon a kernel crash.

Refine guidance. compiler optimizations (compiling the Linux kernel with -O0 is

generally not supported), e.g., function inlining, and reordering, can lead to inaccuracies

when mapping basic blocks in binary instructions into their corresponding source code

lines with debug information – we find that the coverage of many basic blocks can be lost.

To mitigate such impact, we implement an analysis of the basic blacks with the control

flow graph and the dominator tree. We recover potentially lost basic block coverage under

the following two conditions: 1) Should a line within a BB be marked as covered by a test

case, it is necessary to mark all lines within that same BB as covered as well. 2) In

instances where a covered BB is dominated by another BB (indicating that it is invariably

executed after the dominating BB), it’s essential that the dominator BB is also marked as

covered.

3.5.2 Symbolic Detector

Under constraint symbolic variables. We choose to symbolize all variables without

concrete values in static environments, including global variables and arguments of system

calls. This approach allows us to explore a broader range of potential execution paths

during our analysis.

Symbolic address. In its original form, KLEE does not adequately support

under-constrained symbolic addresses. When it encounters read/write operations to a

symbolic address, KLEE typically generates a specific concrete address based on the

current constraints.

The logic KLEE employs for dealing with under-constrained symbolic addresses is

not reliable, particularly when faced with a multitude of such addresses. There might be

instances where a symbolic address does not map onto any existing object. In such cases,

arbitrarily concretizing this address to an existing object and proceeding with read/write

operations can lead to incorrect outcomes.

Instead, we apply an improved mechanism in UCKLEE [78] to deal with

symbolic addresses that have not been encountered before. When attempting to

write/read to such a novel symbolic address, our system allocates a new object. Besides

that, we maintain mappings between symbolic and concrete addresses. Therefore,

subsequent attempts to access the same symbolic address will, in reality, be directed

toward the corresponding concrete object as per the mapping. This procedure ensures

that each symbolic address is consistently linked to a unique concrete object, thereby

improving the precision of read/write operations and overall analysis.

Symbolic size. The original way KLEE allocates a new object with symbolic size is also

not suitable for our situation. Specifically, if the size is symbolic, it generates a specific

concrete size, and then KLEE tries to half its size until the size is no larger than a small

constant (i.e., 128 in KLEE v2.2).

In our under-constraint cases, it will result in many objects with small sizes, such

automatic concretization may result in the inaccuracy of the results. For example, if there

is a path that can only be explored with a size larger than the constant, it will always be

skipped.

Instead, we implement a solution similar to the previous work[178] to handle this

issue. We choose to track the symbolic sizes. We allocate the object with a large constant

size in memory to make sure that the intended access to the object won’t be missed and

log the symbolic size. When there is a check against the size of an object, we always use

the symbolic size.

Function modeling. To improve the scalability of symbolic execution, we manually model

more general library functions belonging, such as strcpy(), malloc().

Vulnerability checker. The under-constraint nature of our symbolic execution will

introduce some false positives when asserting the presence of vulnerability logic. To

mitigate the problem, we concentrate on detecting the vulnerability on the corresponding

line (called target line) in the target version where the vulnerability is triggered – we

require the same line to be present in the reference and target version.

Once reaching the target line, for each read/write operation, we extract the address

(usually symbolic) and find the corresponding object. If no corresponding object is found

(usually happens in UAF cases), instead of allocating new under-constrained memory, we

report the vulnerability directly. Otherwise, SymBisect compares the offset with the size

of the object under current constraints. If the offset can be larger than the size (usually

happens in OOB cases), SymBisect reports the vulnerability and terminates the execution.

Finally, if none of these is detected, SymBisect keeps exploring various execution paths

until a time limit is reached or runs out of paths to explore, leading to a negative result.

Tools TP FP TN FN Accuracy Precision Recall F-1 Score

SymBisect 237 29 348 31 90.7% 89.1% 88.4% 88.7%
Syzbot(PoC) 146 27 350 122 76.9% 84.4% 54.5% 66.2%
V0Finder 138 0 377 130 79.8% 100.0% 51.5% 68.0%
VSZZ 250 145 232 18 74.7% 63.4% 93.3% 75.4%

Table 3.1: The results of vulnerable versions detection

Tools Correct Incorrect Accuracy

SymBisect 24 8 75%
Syzbot 16 16 50%

V0Finder 11 21 34.375%
VSZZ 18 14 56.25%

Table 3.2: The results of bug-inducing commit identification

3.6 Evaluation

In this section, we evaluate SymBisect based on the following three research

questions.

• RQ1: How precisely does SymBisect identify the vulnerable versions for a specific vul-

nerability? How precisely does it determine the exact bug-inducing commit?

• RQ3: How effective is SymBisect, when compared with state-of-the-art

(PoC-based/patch-based) bug-inducing commit identification methods?

• RQ4: How efficient is SymBisect in conducting its analysis? Specifically, how does the

provided guidance/exploration strategy improve efficiency?

Evaluation Target and Vulnerability Dataset. We assess SymBisect on Linux kernel

bugs reported on syzbot [97]. This choice is made due to several factors. First, syzbot is

among the earliest and most mature continuous fuzzing platforms and the Linux kernel

is among the most popular open source software. Second, the Linux kernel is the largest

software that is being continuously fuzzed today. Third, there are a variety and a large

number of bugs reported on syzbot continuously, which require bisection. We believe our

solution generalizes beyond the Linux kernel as it is likely more complex than most other

software.

Therefore, we randomly sampled 50 bugs from syzbot reports that meet the

following requirements: 1) reported in the last 4 years. 2) labeled to have OOB or UAF

impact. 3) not race conditions (which our symbolic detector currently does not support).

4) with PoCs and the bugs can be reproduced. 5) the corresponding patch has a “Fixes:”

tag (to be explained below).

A “Fixes:” tag is included in a patch that points to one or more previous commits

that are considered to introduce the corresponding bug. We treat it as the ground truth

because we verified that they are consistent with our definition of bug-inducing commits (see

later for “ground truth verification”). Note that SymBisect does not require the presence

of a “Fixes:” tag to operate; we choose such bugs to merely simplify the evaluation process.

For each vulnerability, our tool begins with the released vulnerable version and

inspects every major release version (e.g., v5.10) until the oldest version, v4.20, in our

dataset. Versions prior to v4.20 present compatibility issues with the Clang/LLVM

toolchain. While more engineering work might address this, it diverts from our primary

focus. . In total, our dataset consists of 645 bug-version pairs. We will determine whether

each version is affected by a bug (vulnerable vs. non-vulnerable). We evaluate the

accuracy of SymBisect against these bug-version pairs. Subsequently, to evaluate

bug-inducing commit identification, we retained the bugs introduced after v4.20 (32 in

total): SymBisect employs a binary search to pinpoint the exact bug-inducing commit.

All experiments are conducted in Ubuntu-20.04 with 1TB memory and Intel(R)

Xeon(R) Gold 6248 20 Core CPU @ 2.50GHz * 2. For each bug-version pair, we allocate a

single CPU core for a maximum of 10,000 seconds of symbolic execution.

Comparison Targets. We compare SymBisect with the three following lines of work:

• PoC-based bisection. Syzbot bisects bugs with PoCs to find the commit that introduced

the bug [25]. We employ a crawler to directly retrieve results from the website. In

instances where bisection results are unavailable, we execute the PoC on the target kernels

to get the results.

• Patch-based bisection with SZZ algorithm. As described in §2.2, this line of research

assesses vulnerability-(un)affected versions by locating the vulnerability-introducing

commit with SZZ and its variants. In this line of work, VSZZ [58] is the state-of-the-art

tool and it’s open source. We set up VSZZ with their default options according to the

tutorials[30].

• Patch-based bisection with vulnerable code clone detection. These methods are based

on code similarity comparison. V0Finder [194] is a recent vulnerable code clone detector

that is used to discover the first version where a vulnerability is introduced. We set up

V0Finder with their default options according to the tutorials[28].

Evaluation metrics. For the evaluation of determining the vulnerable versions for a

specific vulnerability, for each bug-version pair, we will get a verdict as true positives (TP),

true negatives (TN), false positives (FP), or false negatives (FN). Then we calculate the

corresponding accuracy, precision, recall, and F1 score. For pinpointing the precise bug-

inducing commit, we received a binary result (either identifying the correct bug-inducing

commit or not) from which we calculated the accuracy.

.

3.6.1 Accuracy of SymBisect (RQ1)

Accuracy of vulnerable version detection. As shown in Table 4.2, SymBisect

achieves an overall accuracy of 90.7% over 645 versions, higher than all existing tools.

Note that this evaluation is performed on a per-bug-version-pair basis.

Accuracy of bug-inducing commit identification. Table 4.1 shows the results of

bug-inducing commit identification, SymBisect outperformed all the other cases with an

accuracy of 75%. The reason the accuracy is lower (than vulnerable version detection) is

that it aggregates the results from all kernel versions for a single bug. For example, if the

vulnerability was introduced in v5.3, we might correctly label v5.4 as vulnerable; however,

if we mistakenly labeled v5.3 as non-vulnerable, then we still will end up with an incorrect

bisection result for the specific bug (FN). Upon manual inspection, we discovered that

among these eight cases of inaccuracy, five were due to FPs, and three resulted from FNs.

False positives in SymBisect. SymBisect has 29 false positives (misidentifying non-

vulnerable versions as vulnerable). The FPs generated by SymBisect tool arise from

the intrinsic characteristics of under-constrained symbolic executions. For example, global

variables are symbolized in our approaches, allowing the constraints to represent them as

potentially holding any value of the specified type. However, such a variable could be

101 102 103 104

Number of commits between
non-vulnerable and released vulnerable version

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Correct-allcommits
Correct-relevantcommits
Incorrect-allcommits
Incorrect-relevantcommits

Figure 3.4: Comparison of commit number between correct and incorrect cases

hard-coded somewhere that symbolic execution cannot access. Consequently, such under-

constraining can lead to SymBisect concluding infeasible behaviors in practice.

As an example false positive, we find an OOB bug that arises from a lack of checks

against socket types. In the kernel, different types of sockets possess different sizes. The

mappings between the socket type and the corresponding structure sizes are stored as global

variables in the kernel, which are symbolized in our detectors. When under-constrained,

the symbolized mapping can produce any sizes from a given socket type, leading to false

positives.

False negatives in SymBisect. Our evaluation records 31 false negatives (misidentifying

vulnerable versions as non-vulnerable). The primary cause of FNs is the scalability issue.

Certain vulnerabilities can be triggered only via a specific path, which might not be covered

in the symbolic execution due to the time threshold, despite our effort to apply principled

guidance during exploration. Moreover, the guidance may not be complete due to differences

between the reference and target versions. If the symbolic execution lacks accurate guidance,

it is likely to encounter scalability issues due to the complexity of kernels.

An example of this challenge occurs when a vulnerability site is influenced by a

check against a pivotal variable. The vulnerability can be triggered only when this variable

is set to a particular value in preceding functions. Yet, the distance between this value

assignment and the condition check is substantial, with many functions with many state

forks interspersed. Even with our guidance, satisfying such a nuanced condition in a limited

time to activate the vulnerability proves challenging, resulting in false negatives.

3.6.2 Comparison (RQ3)

As shown in Table 4.2, SymBisect outperforms other tools effectively. It

achieves higher accuracy (90.7% compared to the 77.1% average of preceding tools) and

higher F1 scores (88.7% as opposed to 69.8%) than all previous tools. As expected, we

observed that the main reasons for inaccuracies in existing PoC-based methods are the

broken dynamical environment, inadvertent triggering of unrelated bugs, and evolving

bug-triggering conditions as the code progresses. The failures of patched-based tools are

due to their dependence on unreliable syntactic information and only consider a limited

portion of bug-related code. In comparison, our solution based on static symbolic

reasoning aims to capture the logic of the specific vulnerability and extend its scrutiny to

Reason FN FP
Solved

in SymBisect

Hard to reproduce 38 0 15
Detector not introduced 8 0 8

Build/boot errors 14 0 14
Config disabled 9 0 9

Trigger another bug 0 27 27
Over-constraint on inputs 53 0 53

Total 149 126

Table 3.3: The reasons of PoC-based method failed

a much broader context beyond the confines of the patched function.

Improvements over syzbot bisection. Table 3.3 outlines the reasons for the PoC-based

method’s failures in our dataset. The first five types are cited from the official syzbot

documentation[25], while the final reason, “over-constraint” is a reason we observed. In

fact, we find that it is the most common reason for inaccuracies. Notably, SymBisect has

effectively addressed 83% of the inaccuracies associated with the PoC-based approach. We

will now detail the causes of each failure and how SymBisect addressed them, as follows:

• Vulnerability with low probability of triggering. PoC-based approach often struggles to

reproduce bugs that have a very low probability of triggering even in the released version

that corresponds to the PoC. At present, for every target version, syzbot conducts testing

only 10 times [25]. It is probable that vulnerabilities may not be triggered within these

limited attempts. The under-constraint feature of SymBisect enhances its capability to

fulfill the preconditions necessary for triggering the bug. As a result, SymBisect yields

accurate results for 15 of the 38 cases within the given time threshold.

• Detector not introduced. The PoC-based approach is dependent on specific detectors,

like the KASAN sanitizer. Until these detectors are integrated into the kernel, PoCs

cannot detect vulnerabilities effectively. In contrast, SymBisect is equipped with its

own symbolic execution detector, eliminating the need for reliance on sanitizers in the

Linux kernel.

• Build/boot errors. As we discussed in §3.2, the static feature of SymBisect bypasses the

problem resulting from kernel boot errors.

• Config disabled. As PoC-bisection goes back in time, certain kernel configs may be

forcefully disabled when they conflict with the other config options. In contrast, since

our solution does not require the compilation of the entire kernel, we can simply force

other config conflicts to be disabled and make sure the vulnerable modules involved are

compiled into LLVM bitcode for our analysis.

• Accidental triggering of unrelated bugs. The PoC has the potential to activate unrelated

kernel bugs that break the program. Current syzbot does not look at the exact crash, nor

does it attempt to distinguish between different types of crashes, leading to some FPs.

In contrast, our tool focuses on the specific bug only upon reaching the target line (and

analyze its associated operations). This allows us to effectively sidestep this issue.

• Over-constraint on inputs. This is essentially due to changes in the underlying bug-

triggering conditions. Executing the original PoC does not always activate the bug in

some vulnerable versions. Input mutations become necessary under these circumstances.

The under-constrained symbolic execution approach treats all potential entry function

arguments and global values comprehensively, effectively addressing these false negatives.

Figure 3.5 presents an OOB vulnerability. Specifically, in function mpol parse str() if

the str variable starts with “=”, the flags variable will reference the first byte of str. If

a certain condition at line 2 is met, the program skips to line 4. Here, a write operation

occurs that exceeds the boundaries of str, leading to an out-of-bounds write. The PoC-

based syzbot bisection incorrectly pinpoints a bug-inducing commit which modified the

function shmem parse one—the caller of the mpol parse str() function. Prior to this

misidentified commit, another check at line 8 was in place against the opt variable. The

initial PoC fails this check, causing syzbot to label versions before this commit as non-

vulnerable. However, by using a different input that bypasses this check, the bug remains

exploitable. Instead, SymBisect symbolizes the inputs, making it easier to bypass such

checks as long as a feasible solution exist.

Improvements over V0Finder. V0Finder failed to discover 107 vulnerable versions

out of 230 cases, resulting in a low recall of 46.5%. The main reason is that V0Finder

does a strict syntactic similarity comparison for the whole function. Specifically, after

normalization and abstraction, it concludes that the target version is vulnerable only if

the patch functions are strictly the same as those in the released version. Thus it cannot

detect the vulnerable cases that are syntactically different, but convey the same vulnerable

functionality.

In Figure 3.6, we see an illustrative example. Here, a 4-byte size variable is prone

to an overflow at line 3. To address this, the patch modifies the variable’s size to 8 bytes.

However, the bug-inducing commit pinpointed by V0Finder is actually a feature

The incorrect Bug-inducing Commit
(Identified by Syzbot Bisection):

static int shmem_parse_one(...)

8 - else if (!strcmp(opt, "mpol")) {
 -
9 - if (mpol_parse_str(value, &ctx->mpol))

10+ if (IS_ENABLED(CONFIG_NUMA)) {
 +
11+ if (mpol_parse_str(param->string, &ctx->mpol))

The vulnerable function:
int mpol_parse_str(char *str,...)
1 char *flags = strchr(str, '=');
2 if(condition)
3 goto out

4 if (flags)
5 *flags++ = '\0';

out:
6 if (flags)
7 *--flags = '=';

Figure 3.5: Case study of syzbot FN

enhancement commit, unrelated to the vulnerability. This commit introduces multiple

lines into the patched function. Due to this, V0Finder incorrectly designates all preceding

versions as non-vulnerable, leading to a multitude of false negatives.

SymBisect, instead of syntactic comparison, extracts accurate semantic

information. Thus it can distinguish vulnerability-irrelevant changes from significant

changes effectively. Furthermore, it does not rely on patches. Whether the patch changes

a function or not is irrelevant to SymBisect. As a result, SymBisect can eliminate a

The incorrect Bug-inducing Commit
(Identified by V0Finder):

int qrtr_endpoint_post(...)

+ if (cb->type == QRTR_TYPE_NEW_SERVER) {
+ const struct qrtr_ctrl_pkt *pkt = data + hdrlen;
+ qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
+ }

 The Patch:
int qrtr_endpoint_post(...)
 struct qrtr_cb *cb;
1 - unsigned int size;
2 + size_t size;

3 if (len != ALIGN(size, 4) + hdrlen)
 goto err;

Figure 3.6: Case study of V0Finder FN

large number of FN cases of V0Finder. This significant advantage is largely due to the

differing foundational design principles of the two systems.

Improvements over VSZZ. VSZZ processes a patch as input and identifies the

vulnerability-introducing commit by backtracing the patch’s deleted lines through the

code commit history to the earliest instance, facilitated by line matching. The earliest

commit where these deleted lines were initialized is then marked as the commit that

induced the bug. When multiple deleted lines originate from different commits, VSZZ

selects the earliest of those commits as the bug-inducing commit. If the patch does not

have any deleted lines, VSZZ identifies the commit that initialized the file mentioned in

the patch as the bug-inducing commit.

Figure 3.7 illustrates a typical scenario where the underlying assumption fails,

 The incorrect Bug-inducing Commit：
 (initialize the file)
6 + TRACE("Block @ 0x%llx, %scompressed size %d\n", index,

 The Patch:
int squashfs_read_data(...)
1 - TRACE("Block @ 0x%llx, %scompressed size %d\n", index,
2 + TRACE("Block @ 0x%llx, %scompressed size %d\n", index - 2,

 compressed ? "" : "un", length);
 }

3 + if (length < 0 || length > output->length ||
 + (index + length) > msblk->bytes_used) {
4 + res = -EIO;
5 + goto out;
 + }

 The correct Bug-inducing Commit：
int squashfs_read_data(...)

7 TRACE("Block @ 0x%llx, %scompressed size %d\n", index,
 - compressed ? "" : "un", length);
8 - if (length < 0 || length > output->length ||
 - (index + length) > msblk->bytes_used)
9 - goto block_release;

Figure 3.7: Case study of VSZZ FP

leading to a false positive. The deleted line 1 in the patch function is not created by the

vulnerability-inducing commit, leading to backtracing to an earlier point. All commits

situated between the commit identified by VSZZ and the actual inducing commit will be

marked as FPs. In detail, the vulnerability was brought into the codebase by a commit that

removed a certain validation check at line 8, then the vulnerability was patched by putting

the check back in. However, the line they removed from the patch was just for logging that

is not really related to the vulnerability. VSZZ traced this logging line back to when the

whole function was first added, resulting in some FPs.

Strategy Implementation

SymBisect Exploration + Indirect call + Stack + Path

Pure Exploration Exploration + Indirect call

Pure Re-tracing Indirect call + Stack + Path

Stack Exploration + Indirect call + Stack

Path Exploration + Indirect call + Path

Table 3.4: The relationship between strategy and guidance

Basically, the commit that introduces the vulnerability may not alter the patch

function at all, as demonstrated in our motivating example. Even if it does alter the

patch function, it may not modify the deleted lines in the patch, just as in the above

example. Furthermore, even if the bug-introducing commit does change the deleted lines,

it may only modify them rather than create them. In such cases, VSZZ may backtrace

beyond the actual bug-introducing commit. These factors contribute to 112 false positives,

a significantly higher figure than those seen with the other methods.

In contrast, our semantic method does not hinge on such a strong assumption.

The symbolic execution engine accurately extracts semantic information, clarifying their

relationship with the vulnerability.

3.6.3 Scalability of Different Exploration Strategies (RQ4)

To understand how the guidance helps with the overall results, we conduct a

comparative study against alternative strategies. Fundamentally, SymBisect balances

the exploration (i.e., allowing execution of the basic blocks in the medium-priority list)

with re-tracing (i.e., aligning the execution trace with the one in the reference version).

Therefore, we consider the following strategies that fall under various places in the

101 102 103
Execution time until reach target line

in seconds(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SymBisect
Pure Exploration
Pure Re-tracing
Stack
Path

Figure 3.8: Scalability Evaluation

spectrum: (1) pure exploration without any re-tracing or guidance (no consideration of

basic block priorities), (2) pure re-tracing strictly following path guidance (i.e., when a

branch leads to a high/highest priority exists, the other branches are prohibited from

execution), (3) exploration with call stack guidance only. (4) exploration with path

guidance only.

3.7 Discussion

Exploration range. As discussed in §3.2, Relying solely on patch functions presents

inherent disadvantages, prompting us to explore entire traces in order to gather

comprehensive information relevant to vulnerabilities within the program. However, these

traces may encompass thousands of functions, with the majority of them unrelated to the

vulnerability at hand. Consequently, achieving a balance between scalability and accuracy

primarily relies on determining the appropriate exploration range. While we employ

specific heuristics to limit the range, there is still room for a more systematic approach to

this decision-making process. For example, we envision one can apply static analysis (less

precise but more scalable) to identify the vulnerability-related functions in advance, then

skipping the unrelated functions when applying symbolic execution. Developing such a

solution would significantly improve our capability to identify and address vulnerabilities

without overwhelming our resources.

Support more bug types. The types of vulnerabilities supported by SymBisect

depend on the symbolic engine it is based on (currently KLEE) and the detectors built on

top of it (or provided by KLEE itself). SymBisect currently supports bugs that manifest

as OOB and UAF, including type confusion and integer overflow bugs that manifest as

OOB. There are a few types of bugs that are interesting to support for future

improvements: (1) additional bug types such as use-before-initialization [204], (2) bugs

that require precise reasoning across multiple syscalls, and (3) race conditions bugs. For

(1), it requires additional symbolic detectors to recognize other bug types. For (2),

symbolic execution across multiple syscalls is feasible but presents an additional scalability

challenge. For example, in some OOB cases, the allocation and use of the vulnerable

object occur in different system calls. Without analyzing the allocation, the analysis of

the subsequent syscall on use will be under-constrained and therefore potentially lead to

false positives. This means we will need to first collect the symbolic expression for the

object size (in one syscall), and then reason about whether the use can go out-of-bounds

(in another syscall). We envision an optimization to terminate the symbolic execution of

the allocation syscall earlier, as soon as the object size info is collected and leave other

unexplored variables under-constrained. For (3), there are specialized symbolic detectors

that can detect specific race condition bugs, e.g., multi-reads and double-fetch [202]. In

the context of bisection, we envision that a more general approach is to recognize the

interleaving points [203] and record the desired interleaving during the execution of the

PoC in the reference version and use it to guide the execution of the target version.

Support bugs without PoCs. When a fuzzer discovers bugs, it usually generates a

corresponding PoC, but there are exceptions. In some cases, syzakaller only produces a

bug report. We wish to point out that our tool does not necessarily have to rely on PoCs.

Instead, as long as we can obtain traces that trigger the vulnerability, it would be sufficient

to guide the symbolic execution. For example, with hardware support (e.g., Intel Processor

Trace [94]), we envision bug reports can be accompanied with corresponding control flow

information.

3.8 Related Work

Under-constrained symbolic execution in OS kernels. UCKLEE [158] represents the

initial implementation of an under-constrained symbolic execution virtual machine based on

KLEE. It is primarily utilized for patch verification as well as rule-based generalized checks,

encompassing areas such as memory leaks, uninitialized data, and user input vulnerabilities.

UBITect [204] and IncreLux [205] utilize under-constrained symbolic execution to identify

feasible paths and mitigate false positives in static analysis when detecting Use-Before-

Initialization (UBI) bugs. SID [195] aims to distinguish security-related patches from other

bug fixes, which is different from our work. It attempts to set up a model for several

types of vulnerabilities with the help of under-constraint symbolic execution, rather than

simply extracting and comparing characteristics. Besides, previous studies that attempted

to perform symbolic execution on operating system kernels addressed the scalability issues

using the following methods: 1) Decrease the scope of symbolic execution when analyzing

operating system kernels. For example, performing intra-procedural analysis on a specific

function such as the patch function [207] [195]. However, the approach may not be suitable

for our purposes. The existence of a vulnerability is not determined by a single function.

2) Concretizing symbolic inputs and global variables [67, 197]. In our cases, it will result in

an over-constraint problem.

Dynamic vulnerable version identification. The information about the affected

versions of a vulnerability is quite important [167]. Dai et al. [75] proposed a PoC

migration approach that takes a PoC as input and migrates the PoC to verify other

affected versions. However, it specifically targets user-space programs. Furthermore, as

demonstrated in § 3.6, over-constraint on inputs is only one of the causes of failure.

Information-retrieval-based bisection. Locus [188] was the initial method to pinpoint

bugs at the software change level using token similarities from bug reports. ChangeLocator

[196] determines Bug-Inducing Commit (BIC) using crash call stack information. Orca

[61] ranks commits based on bug symptoms, like exception messages or customer feedback.

Bug2Commit [142] aggregates features from bug reports and commit, averaging their vector

representations. FONTE [52] identifies BIC via test coverage. It ranks commits by the

suspiciousness of their modifications. Despite their scalability, these methods fall short in

accuracy. As mentioned in the Background section, The state-of-the-art, Fonte, only reaches

a 36% accuracy rate.

3.9 Conclusion

The identification of vulnerable versions of Open Source Software and pinpointing

bug-inducing commits are crucial for vulnerabilities uncovered through fuzzing. In response

to this, we introduce SymBisect, a precise methodology grounded in symbolic analysis.

The central principle is that detailed symbolic information tends to be more stable compared

to both the original PoC and syntactic similarity assessments during software evolution.

Our experimental results confirm that SymBisect not only significantly surpasses the

existing PoC-based approach in terms of accuracy, but also outperforms methods that

rely on patches. With the insights gained from SymBisect about vulnerable versions,

developers can precisely locate the bug-inducing commit. This empowers them to address

the potential threats brought about by fuzzing vulnerabilities, thus promoting a more secure

software ecosystem.

Acknowledgment

We thank anonymous reviewers for their insightful comments and suggestions.

This work is supported by the National Science Foundation under Grant #2155213,

#2247881 and a Google Gift.

Chapter 4

Breaking Barriers: Accurate Bug

Bisection with Full Patch Context

and LLM Insight

Abstract

Bug bisection has been an important security task that aims to understand the

ranges of software versions impacted by the bug, i.e., identifying the commit that

introduced the bug. However, traditional patch-based bisection methods are faced with

several significant barriers: For example, they assume that the bug-inducing commit

(BIC) and the patch commit modify the same functions, which is not always true; they

often rely purely on code changes, while the commit message frequently contains a wealth

of vulnerability-related information; they are also based on simple heuristics (e.g.,

assuming the BIC initializes lines deleted in the patch) and lack a logical analysis of the

103

vulnerability.

In this paper, we make the observation that Large Language Models (LLMs) are

well positioned to break the barriers of existing solutions, e.g., comprehend both textual

data and code well in patches and commits. We develop a comprehensive multi-stage

pipeline leveraging LLMs to (1) take advantage of full patch information, (2) have LLM

assess logic of the bug and the likelihood of a commit being the one that introduced the

bug, and (3) gradually narrow down the candidate with multiple down-select processes. In

our evaluation, we demonstrate that our approach achieves significantly better accuracy

than the state-of-the-art solution by more than 38%.

4.1 Introduction

N-day vulnerabilities are known security flaws which are often not fixed timely,

due to complex dependency chains and limited maintenance resources [85]. The

widespread reuse of open-source projects exacerbates this problem, as there are usually

multiple downstream distributions maintained by different parties in the ecosystem [211],

making it difficult to apply upstream security patches timely across all distributions.

Research has shown the popularity and severity of this problem in critical open-source

projects such as Linux [132] and Android [211], potentially affecting billions of users.

The information of affected software versions of a specific vulnerability is crucial

for N-day vulnerability mitigation. To obtain such information, it is necessary to locate the

commit introducing the vulnerability (i.e., bug-inducing commit, or BIC) — an essential

task known as bug bisection. In this paper, we align with previous studies [210] and define a

BIC as a commit that introduces a software bug into a program. It is possible for multiple

commits to contribute to the bug, with the final commit making the bug triggerable. In such

cases, we consider the final commit as the BIC, as it marks the point when the vulnerability

is considered to exist.

Automated bug bisection can significantly speed up the bug-fixing process in

downstreams (e.g., 2.23x on average for Google’s codebase, according to a previous study

[7]), however, achieving a high accuracy remains challenging. Consequently, public

information of vulnerable versions (e.g., in NVD database [19]) is usually incomplete or

inaccurate, as shown in previous study [54, 198, 112].

Existing automatic bug bisection approaches can be classified into several

categories, each with its own significant limitations:

(1) PoC-Based. Directly or symbolically execute the PoC (Proof-of-Concept) against each

software version to test whether the vulnerability can be triggered. [97, 210] Though

straightforward, this approach suffers from limited availability of vulnerability PoCs.

Furthermore, direct PoC execution [97] often fails due to subtle variations across software

versions, resulting in low accuracy [26], while symbolic analysis [210] is known to be

expensive, and only supports limited bug types (e.g., use-after-free, out-of-bounds memory

access).

(2) Bug Report-Based. These approaches first collect available bug reports and then identify

possible BICs by their “relevance to the bug” [52, 188, 61], with simplified assumptions such

as “a BIC should touch the code where the failure happens”. Similar to PoCs, detailed bug

reports are often not available. Moreover, the simplified assumptions/heuristics may not

hold in reality, reducing the accuracy, e.g., Fonte’s [52] accuracy drops to 36% when N=1

in its top-N ranking algorithm.

(3) Patch-Based. Being the most widely used, these approaches statically analyze the

bug-fix commit (usually available for vulnerabilities in open-source projects) to “infer” the

bug-inducing commit in the commit history. Existing techniques in this category [170, 58,

123, 194, 212, 192] generally rely on manually developed, hardcoded, and thus inherently

imprecise heuristics. For example, one common one is to treat the commit that introduces

one or more lines deleted by the bug-fix as the bug-inducing commit; however, there are

many situations where the bug-inducing commit and the fix commit do not intersect. For

example, a patch can add an additional security check before the original vulnerable code

(without removing any existing lines of code), potentially in a different function, or the

deleted lines in the bug-fix are irrelevant. Another significant shortcoming is that existing

approaches usually only analyze the structured code changes in the bug-fix patches, while

unable to take any advantage of the commit messages in the unstructured natural language

form. However, commit messages often contain rich and valuable information that can

boost the bug bisection performance (e.g., hints on the vulnerability root causes).

In this paper, we target patch-based bisection because it is the most widely

applicable scenario — not all bugs come with PoCs or crash reports. We specifically have

three goals: i) support all types of patches and vulnerabilities, ii) utilize full patch

information including both code changes and commit messages, and iii) go beyond the

simple hardcoded heuristics and make accurate decisions based on analysis of the

vulnerability logic. To achieve these goals, we propose SymBisect, an LLM-powered

highly accurate bug-bisection solution. Our core insight is that LLM is capable of

understanding both code and natural languages, extracting useful information for

bug-bisection. Recent LLM models (e.g., OpenAI o1) also show impressive abilities in

code reasoning.

Though promising, there are several obstacles to the direct application of LLMs.

First, LLMs tend to produce excessive false positives, aggressively and incorrectly labeling

commits as bug-inducing. Second, they can exhibit self-consistency issues, yielding

conflicting decisions across multiple runs. Finally, the cost of using LLMs on large-scale

software is prohibitive: modern projects often contain tens of thousands of commits, and

processing each one naively can lead to substantial token consumption and increased time

and monetary costs.

To overcome these challenges, we design and implement a multi-step filtering

approach. First, we perform coarse-grained filtering to extract potential BIC candidates at

scale (§4.3.3), based on various patch information (e.g., code changes, commit message

keywords). This process is cheap and efficient as it rely minimally on the LLMs, yet, it

effectively narrows down the BIC search scope for later more expensive stages, improving

both accuracy and performance. Next, we conduct fine-grained BIC filtering, utilizing

LLMs’ code and natural language reasoning capability. To address the false positives, our

filtering is multi-round, ensuring that the LLM is sufficiently exposed to all promising

BICs for a better comparative assessment. This design significantly boosts our accuracy.

Finally, we carefully adopt the majority voting mechanism in limited key steps, to

mitigate LLM’s self-consistency issues without incurring high performance overhead.

We extensively evaluate SymBisect on Linux kernel, one of the most complex and

important open-source software. The results show that SymBisect achieves a remarkable

accuracy of 91%, significantly outperforming state-of-the-art bug-bisection approaches. We

summarize our contributions as follows:

(1) We developed a novel and significantly different solution: an automatic bisection tool

called SymBisect. It overcomes the limitations of previous tools by fully leveraging patch

information, including commit messages, and utilizing advanced LLMs for logical analysis

of code. We plan to open-source the solution to enable the reproduction of results and

support further research.

(2) We proposed a new multi-step filtering approach to address the challenges of directly

applying LLMs in bisection tasks, significantly improving the accuracy of SymBisect.

(3) We evaluated the performance of SymBisect against other state-of-the-art methods and

demonstrated that it significantly outperforms existing tools (91% vs. 51%). We analyzed

the barriers that previously hindered higher accuracy in earlier tools and explained how our

solution overcomes these challenges.

4.2 Motivation

4.2.1 Motivating example

Figure 4.1 illustrates a race-condition-induced use-after-free vulnerability.

However, in this example, the true BIC that introduced the vulnerability modified a

completely different function from the one targeted by the patch. Specifically, the

The Bug-inducing Commit(partly):
static void __gsm_data_queue(...)
+ mod_timer(&gsm->kick_timer,...);

+static void gsm_kick_timer(...)

static int gsm_cleanup_mux(...)
/* Finish outstanding timers, making sure

they are done */
+ del_timer_sync(&gsm->kick_timer);

 The Patch:
ty: n_gsm: fix race condition in status line
change on dead connections
gsm_cleanup_mux() cleans up the gsm by closing
all DLCIs, stopping all timers, removing the
virtual tty devices and clearing the data
queues. This procedure, however, may cause
subsequent changes of the virtual modem status
lines of a DLCI. More data is being added the
outgoing data queue and the deleted kick timer
is restarted to handle this. At this point many
resources have already been removed by the
cleanup procedure. Thus, a kernel panic occurs.
Fix this by proving in gsm_modem_update() that
the cleanup procedure has not been started and
the mux is still alive.

static int gsm_modem_update(...)
+ if (dlci->gsm->dead)
 return -EL2HLT;

Figure 4.1: Motivating example

bug-inducing commit introduced a new thread that runs the newly introduced function

gsm kick timer(), while the patch commit adds a check in gsm modem update() to

ensure that the cleanup process has not been initiated before it it allowed to create the

timer thread (it will eventually call gsm data queue()), and hence eliminating the

possibility of a race.

SymBisect, is the state-of-the-art PoC-based Bisection method, cannot accurately extract

the BIC in this case because: 1. There is no existing Proof of Concept (PoC). 2. SymBisect

only supports two specific types of bugs: Out-of-Bounds (OOB) and Use-After-Free (UAF).

Specifically, it does not support race condition cases.

VSZZ, the state-of-the-art method in the SZZ family [170, 124, 74, 145, 58], fails to handle

such cases because its fundamental assumption is that the BIC modifies the same functions

as the patch (specifically, that the BIC initializes the lines deleted in the patch). However,

in this case, the BIC and the patch modify completely different functions.

V0Finder, an advanced vulnerable code clone detection method, identifies vulnerable

versions by comparing the patch functions of the target version and the patch functions

before the patch, after normalization and abstraction. If they are identical, the target

version is considered vulnerable. However, this method fails in the illustrated case because

the BIC does not modify the patch functions at all.

This case motivates us to think of a better approach for extracting candidate

commits, one that goes beyond merely tracking patch functions. In fact, in this example,

although the BIC modifies a different function than the patch, we note that

gsm cleanup mux() is explicitly mentioned in the patch description. This provides an

important hint that we can expand our focus to not only analyze code changes but also

extract valuable information from commit messages.

Figure 4.2 illustrates another motivating example, which represents a NULL

 The incorrect BIC (VSZZ)
thermal_zone_device_register_with_trips(...)
+release_device:
+ put_device(&tz->device);
+ tz = NULL;

 The Patch
thermal_zone_device_register_with_trips(...)
release_device:
 put_device(&tz->device);
- tz = NULL;
remove_id:
 ida_free(&thermal_tz_ida, id);
free_tzp:
 kfree(tz->tzp);

 The correct BIC
thermal_zone_device_register_with_trips(...)
remove_id:
 ida_free(&thermal_tz_ida, id);
+free_tzp:
+ kfree(tz->tzp);

 The incorrect BIC (V0Finder)
thermal_zone_device_register_with_trips(...)
- if (!ops) {
+ if (!ops || !ops->get_temp) {

pr_err("Thermal zone device . . .");

Figure 4.2: Motivating example #2

pointer deference bug. In this example, although the BIC modifies the same function as

the patch and is thus included among the candidates, the flawed heuristics of traditional

methods prevent them from accurately identifying the correct BIC.

Specifically, the buggy code incorrectly sets tz to NULL under certain conditions,

which causes the NULL pointer to be dereferenced subsequently in kfree(tz->tzp). The

patch fixes this vulnerability by removing the assignment that sets tz to NULL.

The commit introducing this vulnerability added a kfree() function call where the

null dereference occurs. Before the BIC, the kfree function call did not exist, so naturally,

the null dereference was not an issue.

VSZZ does not try to understand the logic of the vulnerability. Instead, it tracks

the lines deleted in the patch, leading back to the commit that initialized the line (in this

case, an earlier commit that first created the line of tz = NULL). This completely overlooks

the actual BIC.

V0Finder’s flawed heuristics, comparing hash values (essentially string matching

after normalization and abstraction) of the whole patch function, take a different approach,

focusing on all commits that modified the patched function. Specifically, it identifies a

commit that modified the patch function (the latest one before the patch) as the BIC, but

this modification is unrelated to the vulnerability. V0Finder does not determine whether

the modification is logically connected to the vulnerability; it simply assumes that, before

the modification, the function was different, and therefore, the vulnerability did not exist.

4.2.2 Limitations of previous methods

Based on the motivating examples, we summarize the key weaknesses in patch-

based methods, including SZZ algorithm and its variants [170, 124, 74, 145, 58] and most

vulnerable code clone detection solutions [123, 194, 212, 163]. They suffer from the following

limitations:

1) They often only consider code changes, ignoring commit messages, which

frequently contain crucial information about vulnerabilities.

2) They fail to account for cases where a Bug-Introducing Commits (BIC) does

not change the functions affected by the patch.

3) Many of them focus on deleted lines in the patch, making them ineffective

when patches only include added lines or when the deleted lines are not critical to the

vulnerability.

4) They tend to treat all code changes (such as deleted lines) equally. In reality,

not all changes are of equal significance to the vulnerability.

5) Their judgments are often based on simple heuristics rather than logical

reasoning. For example, VSZZ, the state-of-the-art SZZ method, traces back commit

history to the earliest commit (instead of the most recent) that introduces the deleted

lines of a patch. Such heuristics are often not accurate.

4.2.3 Insights

Revisiting the motivating example, we propose three design goals for an improved

solution:

1) Leverage Full Patch Context: The solution should utilize the complete patch

context, including both the patch code diff and commit messages, as these provide critical

clues about the bug-inducing commit.

2) Minimize Assumptions and Requirements: Unlike approaches such as VSZZ,

the solution should support patches that only add lines. It should also handle all types of

bugs rather than being restricted to specific categories (e.g., SymBisect). Additionally, it

must accommodate patches that do not modify functions, a limitation seen in V0Finder.

3) Incorporate Logical Reasoning: The approach should analyze the logic of the

vulnerability to make a decision on the bug-inducing commit, rather than depend on

simplistic and hardcoded heuristics like those used in VSZZ and V0Finder.

To achieve these goals, we propose leveraging large language models (LLMs) for

the task of bug bisection. LLMs are well-suited for this purpose due to their ability to

comprehend both code and patch descriptions. Moreover, they are trained on all types of

bugs and patches and thus not limited to reasoning about specific types of bugs/patches.

LLMs have demonstrated effectiveness in various bug analysis tasks [201, 181, 129, 180] and

have been improving one generation after another.

4.3 Design

4.3.1 Design Motivation

Though LLMs show great potential in improving existing bug bisection techniques,

it remains unclear how exactly they should be utilized to achieve the best performance.

Intuitively, bug bisection is the process of identifying the BIC from a list of candidate

commits related to a given patch and its associated vulnerability. Thus, we can divide the

process into two steps: 1) extracting candidate commits from the commit history, and 2)

selecting the exact bug-inducing commit from the candidate commits.

Below, we will discuss these two steps separately, starting with a baseline design.

We then discuss the challenges we empirically encountered when testing such a design with

a small set of real-world cases. The observations and insights gained when evaluating them

enable us to come up with corresponding solutions. Through this iterative refinement, we

ultimately present our final, optimized design.

Collection of BIC candidates.

Baseline. A straightforward way of collecting BIC candidates is to generalize the

state-of-the-art method, i.e., VSZZ and V0Finder, which considered only the commits that

changed patch function(s). Specifically, we can collect all historical commits that modify

the patched function(s). The intuition is that this represents a superset of commits

encompassing the BICs identifiable by previous methods. It can also overcome their

limitation of not supporting patches with added lines only (no deleted lines).

Challenge #1. The total number of commits that modified the patch function is often

quite large in the commit history. Too many candidates can reduce the accuracy of the

LLM (as observed in our preliminary experiments). Moreover, some BICs do not modify

the patch functions at all, which will be missed by the above solution.

Observation #1. Not all functions or lines modified in the bug-fix commit are equally

important or relevant to the vulnerability. For example, some code changes are merely for

refactoring purposes without changing the semantics of the code. Previous methods also

attempt to identify irrelevant code changes. However, their methods are limited to only

simple patterns such as adding or removing comments [194, 123].

Solution #1. We change the simple non-distinguishing function-based candidate selection

to a fine-grained critical-line-based selection. Specifically, we first identify the most relevant

changed lines to the vulnerability from the bug-fix commit, with LLM’s help, and then

include only historical commits that touch these lines in the candidate list. This approach

significantly reduces the number of candidates to inspect (by 81% in our evaluation on

average). An additional benefit is that this critical-line-based method enables us to include

BIC candidates beyond the function scope (e.g., changing a global variable definition).

Challenge #2. While this improves the accuracy if the BIC indeed modified the critical

lines, it still does not solve an aforementioned problem — the code change made in the

bug-inducing and bug-fix commits can be disjoint (e.g., in different functions or files).

Observation #2. The patch commit messages often contain useful clues hinting at the

vulnerability’s root cause and connecting it to the bug-fix (e.g., the commit message of a

bug-fix in foo()may mention that the vulnerability originates from bar()). The motivating

example illustrated this point.

Solution #2. Going beyond the function- and critical-line-based candidate selection, we

can leverage LLMs to select additional BIC candidates using hints extracted from the

commit messages (e.g., commits that modified a function mentioned in the commit

message). Because we look for functions or variables outside of the patched function, it is

complementary to the previous two methods by design.

Selection of BIC from candidates

Baseline. Given that LLMs are fully capable of comprehending code and textual data,

a baseline method can be: let LLMs inspect the BIC candidates in reverse chronological

order, the first one recognized as BIC will be the selected one (i.e., as mentioned in §4.1,

we define BIC as the last commit contributing to the vulnerability). While plausible, we

identified multiple challenges during our preliminary experiments.

Challenge #3. High false positive rate. During the reverse chronological traversal, LLM

tends to recognize BICs overly eagerly and thus stop early, missing the real BICs, resulting

in low accuracy.

Observation #3. Despite having FPs, LLMs perform well in discerning the real BIC

when it is presented together with FP candidates.

Solution #3. We adopt a two-round BIC selection: 1) let the LLM inspect all candidates

and identify all potential BICs, without early termination, and 2) let the LLM compare all

the identified BICs and select a final one.

Challenge #4. Though our evaluation shows that the critical-line-based method improves

the overall accuracy compared to the function-based method, vulnerability-relevant lines

can still sometimes be missed by LLMs in some cases, resulting in false negatives in BIC

recognition.

Observation #4. We have three methods for generating BIC candidates, each with its

own trade-offs. Their results can complement each other.

Solution #4. To avoid missing the correct BICs, we feed all three sets of BIC candidates to

the LLM (using the three methods described earlier). To further improve accuracy, we make

a final selection from the results generated by different methods (e.g., function-based and

critical-line-based), rather than merging the candidate commits at the beginning. This is

because the accuracy of the LLM tends to drop when we feed a large set of BIC candidates.

In other words, we will feed only three candidates to the LLM, when it is making the final

verdict. In most cases, even if a method produces a wrong candidate, it will not be selected

among the final three. However, if it does produce the correct candidate, it will be very

likely chosen finally.

Figure 4.3: Workflow of SymBisect

4.3.2 Workflow

Motivated by the above design explorations, we present the workflow of our final

design of SymBisect in Fig. 4.3. As we can see, there are three overall stages: 1) Candidate

Commit Generation. 2) BIC Filtering. 3) Result Finalizer.

Candidate Commit Generation. Given a bug-fix commit, this stage’s goal is to list all

historical commits that could potentially be the BIC for future investigation (i.e., candidate

generation). As described previously, we have three candidate commit generation methods,

based on patch functions, critical lines, and commit messages, respectively. These methods

can complement each other (Solution #1 and Solution #2 in Section 4.3.1).

BIC Filtering. At this stage, we aim to select the most likely Bug-Inducing Commit (BIC)

from each list generated in the first stage, resulting in up to three final BIC candidates.

This process is divided into two phases: the pre-filtering phase, which identifies possible

BICs, and the post-filtering phase, which selects the most likely BIC (Solution #3 in Section

4.3.1).

Result Finalization. At this stage, we finalize our decision by selecting one final Bug-

Inducing Commit (BIC) from the potential BICs (up to three) identified during the BIC

filtering stage. (Solution #4 in Section 4.3.1)

Majority voting. LLMs sometimes make different decisions regarding BIC selection in

multiple runs (i.e., self-consistency). We observed that there usually exists a

“dominating” decision occurring in most runs. Thus We adopt a “majority voting”

mechanism in our design, where we run LLMs multiple times for BIC identification and

select the most frequent answer as the final decision.

4.3.3 Candidate Commit Generation

To make a Venn Diagram, you
choose your colors for the
circles and then go to
CUSTOM on the paint can
and use the translucency
slider

Template by Alice Keeler G2
(Critical line)

G1
 (Patch function)

G3
 (Message)

True
BICs

Figure 4.4: Candidate Generators

The quality of the candidate lists can significantly impact the accuracy of the final

BIC identification. On the one hand, too many commits in the list will simultaneously

increase the likelihood of errors and the cost. On the other hand, missing relevant commits

leads to false negatives. As a result, we would ideally like the list to (1) contain the true BIC,

and (2) be small enough. In practice, these two goals are hard to achieve simultaneously.

We will present our key design below to strike a good balance.

Function-based Generator. As used in the baseline method (§4.3.1), the most

commonly used generator in existing work is based on patched function(s) in the bug-fix

commit, where all historical commits modifying the same function(s) are selected as

candidates. This strategy is effective as bug-inducing and -fix commits frequently modify

the same function(s).

Critical-line-based Generator. First, it recognizes lines that are truly relevant to

the vulnerability logic (i.e., critical lines). To achieve this, we utilize LLM’s ability to

comprehend both code and natural language to recognize critical lines, which are far more

accurate than heuristic-based approaches used in existing work. We also provide LLM with

the full definitions of the patched functions, as a part of prompt engineering, to better

facilitate its understanding of vulnerability logic. Second, we will only treat historical

commits that modify critical lines as BIC candidates.

Conceptually, we would like an LLM to focus on particular parts of the code that

pertain to the vulnerability, whether they are part of the patched functions or changes to

a global variable definition (if it is included in the code diff). It turns out that it is a non-

trivial task. As mentioned, prior work often relies on overly simplistic heuristics to define

critical lines. For example, all deleted lines within a function are considered critical[58], or

every line in the patched functions is defined as critical[194]. We would like to generalize it

and improve it, with the help of LLMs.

In particular, we divide patches into three types and apply tailored strategies using

LLMs to identify critical lines:

(1) Patches with deleted lines. Deleted lines in a bug-fix commit are often related to the

vulnerability, so in this case, we narrow our scope of critical line identification to the

deleted lines (excluding trivial ones like comments) to improve efficiency. However, if

LLMs recognize no critical lines among those deleted, we expand our scope to the whole

patched function.

(2) Patches with only added lines. If a patch has only added lines, previous solutions,

such as VSZZ simply give up. However, we would extract critical lines from the entire

modified function/struct. Specifically, we would feed the whole patch, including the code

diff and commit message, as well as the complete definitions of the affected functions. For

example, if the patch merely adds a range check for a variable (such as an array index),

the LLM can analyze the commit message and the function’s surrounding code to identify

critical statements related to this variable (e.g., an array access with the index, where the

out-of-bounds (OOB) error occurs). These critical statements are often modified in the

BIC.

(3) Patches with only reordered lines. These patches merely change the line positions

(e.g., adjust the critical section length by moving the lock/unlock statements). Here

vulnerabilities are usually caused by improper relative positioning of two lines, one being

the line modified by the patch and the other whose relative order to the modified line has

changed. Therefore, merely focusing on the presence of modified lines is insufficient to

determine whether a vulnerability exists. The introduction of a vulnerability is often

closely related to the other line. Therefore, for such patches, we extract critical lines from

the modified lines and the affected context statements (the statements whose relative

position to the modified line has been altered after applying the patch). For example, if a

patch moves a Lock() call to an earlier position in the function, thereby extending the

scope of the lock to include more statements, the statements newly encompassed by the

lock after the patch are considered affected context statements. These often include

critical statement related to the vulnerability.

Commit-message-based Generator. As discussed in §4.3.1, neither of the above

generators can correctly include the BIC candidate if it has no overlap (regarding the

modified code) with the bug-fix commit. To address this issue, we design the third

generator based on commit messages, from which we extract valuable information

regarding the vulnerability. More specifically, we try to extract the following information

from the commit message:

(1) Function/struct/variable names. They could indicate the actual location of the vulner-

able code or global variables.

(2) Commit hashes. Some commit messages directly reference earlier (BIC) commits by

their hashes. We also include names of modified functions by the bug-fix as keywords,

though technically they are not extracted from the bug-fix commit messages. They are

useful because even the BIC may not modify the same functions, it might still modify their

callers which contain their names in the code. To avoid redundant execution, we disregard

all functions or structs modified by the Bug-fix commit (which have already been tracked by

the first two generators). After running the three above candidate generators independently,

we obtain three candidate lists at the end of this stage, which will be fed as input to the

next stage (§4.3.4).

4.3.4 BIC Filtering

In §4.3.3, we generate three lists of candidates, at this stage, we try to pick one

most likely BIC from each list, resulting in up to three final BIC candidates (it is posible that

no BIC is selected from a certain list) for the next stage (§4.3.5). One straightforward way

to pick the BIC from a candidate list, as mentioned in §4.3.1, is to inspect each commit in

reverse chronological order and stop when one is recognized as the BIC. However, this leads

to a high positive rate because the “most likely” BIC infers that it can only be reliably

identified from a comparison of multiple potential ones. Therefore, we design our BIC

filtering process to be composed of two sub-phases: the pre- and post-filtering.

(1) Pre-Filtering. For every commit in a candidate list, we prompt it with the original

bug-fix commit to LLM for a decision regarding whether it could be the BIC. This will

result in multiple potential BICs selected by the LLM.

(2) Post-Filtering. The LLM is then instructed to perform a comparative assessment of

all selected BICs in the pre-filtering phase, to finally pick one most likely BIC per candidate

list.

This design gives LLMs sufficient opportunities to review all candidate commits

and carefully compare them for better-informed decisions, significantly boosting the BIC

identification accuracy, compared to baseline early stop solution.

4.3.5 Result Finalization

The last BIC filtering stage (§4.3.4) outputs up to three potential BICs selected

from multiple candidate lists, while we still need to finalize our decision by picking one final

BIC. To achieve this, our procedure is similar to the last stage (§4.3.4). Specifically, we

present all BIC candidates (up to three) to the LLM for a comparative evaluation, in order

to reach a final BIC decision as SymBisect’s output. Note that though rarely the case, it

is possible that SymBisect eventually fails to output any BIC (e.g., zero candidates were

selected in the previous BIC filtering or this result finalization process).

As mentioned in §4.3.1, we have three methods of generating BIC candidates. They

can complement each other. As a result, SymBisect adopts all three of the aforementioned

BIC candidate generators. Our design is to have them work independently initially. Later

on, we will attempt to pick the final result with Result Finalization. Note that we do not

want to merge all the candidates into the same set initially and then have LLM pick one.

This is because such a set will be too large which will hurt the accuracy. As mentioned in

§4.3.1, the number of candidates produced by the function-based generator is already large,

limiting the LLM’s accuracy in picking the right BIC. It is therefore beneficial to keep

the set of candidates produced by critical-line-based and commit-message-based methods

separate. This way, if the correct BIC is located in either of the two sets, it will likely

be correctly identified by the LLM. Again, the function-base generator can be viewed as a

backup option. In case the correct BIC is present in only its result, then at least we would

still have a chance to identify it.

4.4 Implementation

We implement a prototype of SymBisect with 5,331 LoC in Python. In this

section, we discuss some noteworthy implementation details.

Function-Based Candidate Generation. One can use a git command to track all

commits that modify a specific function: git log <commit hash>

-L:<funcname>:<filename>. However, it can miss some commits when the function

has been renamed or the file that contains the function has been renamed. To address this

limitation, we developed a script to track all commits that modify the given file/function

more comprehensively, correctly handling the renaming issues. For each commit, we then

extract the functions modified by it, enabling us to obtain the complete list of commits

modifying the specific function.

Patch Type Classification. We implement a Python script to first determine the type of

patch (e.g., those with only added lines). This is relatively straightforward. We first extract

and ignore all changes relating to comments, and then can easily classify patches into those

with only added lines and those with deleted lines (we do not differentiate the patches

with only deleted lines). Among the patches with deleted lines, if there are also added

lines, we then use a simple string-match-based heuristic to identify reordered statements.

Specifically, we consider a patch as reordering changes if and only if all the changes are

related to reordering. In other words, all the removed lines must show up as added lines in

another location verbatim.

After collecting this information, we first obtain historical commits that modify

the same files as the bug-fix commit, then for each commit, we check whether it matches any

of the extracted information with the commit message (e.g., has the same hash, change/call

the mentioned function, etc.). If so, we also consider it as a BIC candidate, which can be

missed by function-based or critical-line-based generators.

Majority Voting. As mentioned in §4.3.2, we employ the majority voting mechanism

to battle the well-known self-consistency issue of LLMs (i.e., multiple runs with the same

input produce contradictory results). Specifically, we execute the LLM session for a set

number of times (defaulted at 7) to reach a consensus.

LLM Models. In our implementation, we primarily use OpenAI o1

(o1-preview-2024-09-12) as the main LLM. We also evaluate other models, including

GPT-4o (gpt-4o-2024-08-06) and the open-source, Llama 3

(nvidia/llama-3.1-nemotron-70b-instruct). The results of these evaluations are

presented in Section 4.5.3. The specific prompts used in each step are included in the

appendix.

4.5 Evaluation

In this section, we evaluate SymBisect to answer the following research questions:

• RQ1: How accurately does SymBisect identify BICs?

• RQ2: How does SymBisect compare against other state-of-the-art BIC identification

methods?

• RQ3: How does each design point of SymBisect contribute to its final performance?

Dataset. We evaluate SymBisect against Linux kernel CVEs. Several key considerations

inform this choice: (1) Linux kernel is one of the most important and widely used software,

its ecosystem contains numerous downstream distributions potentially impacted by N-day

vulnerabilities, highlighting the importance of an accurate bug bisection, (2) The kernel

also has one of the most complex codebases, containing a wide range of vulnerabilities

reported daily by security practitioners. We believe the diversity and complexity of Linux

kernel CVEs can rigorously test SymBisect’s accuracy and reliability. Note that despite

our choice, SymBisect by design is agnostic to the target software or vulnerability types.

Given the sheer number of Linux kernel CVEs and the high cost of advanced

LLM tokens (e.g., o-1 preview), we randomly sampled 100 CVEs in each of 2023 and

2024 (200 in total). We specifically include CVEs in 2024 as they are published after the

LLM knowledge cut-off date, validating whether SymBisect’s result is influenced by the

LLM’s pre-existing knowledge about the CVEs (The results show that there is no significant

difference. SymBisect demonstrated similar accuracy on CVEs from 2023 and 2024). We

also included CVEs in 2023 because the CVE assignment criteria became more relaxed

starting from 2024 (e.g., many non-security issues also had CVEs assigned) [15, 27, 11].

Testing these CVEs demonstrates SymBisect’s accuracy on security vulnerabilities more

reliably.

Ground Truth. To get the ground truth (i.e., the correct BIC for a specific vulnerability),

we intentionally include in our dataset only those CVEs whose fix commit has a fixes tag

[12], which points to the BIC(s) given by kernel developers. We then manually verify them

according to our BIC definition and assemble the ground truth. For example, in the patch

3f77c7d605b21, the developer incorrectly treated the first occurrence of the bug function

as the BIC; even though the bug originated from its subsequent update. After manual

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/ patch/?id=3f77c7d605b2

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/patch/?id=3f77c7d605b2

verification, we identified and corrected 12 cases with inaccurate fix tags. It is important

to note that fix tags are merely used to provide the ground truth that is otherwise difficult

to obtain - we remove the fixes tags from bug-fix commits before testing SymBisect.

Comparison Targets. We extensively compare SymBisect with three state-of-the-art

tools covering different bug bisection methodologies:

(1) PoC-based bisection. SymBisect[210] is a state-of-the-art PoC-based bisection tool. It

generates various guidance from PoC execution traces and uses principally guided under-

constrained symbolic execution to confirm the bug’s existence. However, it only supports

limited vulnerability types and relies on PoCs — unavailable for most Linux kernel CVEs.

Even then, we would like to see how SymBisect compares to SymBisect using its evaluation

dataset, which SymBisect supports very well. This is an interesting experiment that can

showcase the performance differences between the symbolic reasoning (in SymBisect) and

LLM’s reasoning (in SymBisect).

(2) Patch-based bisection with SZZ-style algorithms. As mentioned in §4.2, SZZ-style

algorithms generally rely on the assumption that BIC will initialize lines deleted in the

bug-fix commits. We select VSZZ [58] — the state-of-the-art open-source tool in this

domain — as a comparison target, we configure it with default options specified in its

tutorial [30].

(3) Patch-based bisection with vulnerable code clone detection. These methods are based

on code similarity comparison between the vulnerable pre-fix version and a specific target

version to probe the first vulnerable version (§4.2). V0Finder [194] is a latest tool in this

Dataset Tools Correct Incorrect Accuracy

SymBisect
(200 CVEs)

SymBisect 182 18 91%
V0Finder 66 134 33%
VSZZ 102 98 51%

SymBisect
(32 syzbot bugs)

SymBisect 29 3 90.6%
SymBisect 24 8 75%

Table 4.1: The results of BIC identification

Tools TP FP FN Precision Recall F-1 Score

SymBisect 4121 151 146 96.5% 96.6% 96.5%
V0Finder 1594 56 2748 96.6% 36.7% 53.2%
VSZZ 4140 1660 85 71.4% 98.0% 82.6%

Table 4.2: The results of vulnerable versions detection

direction, we configure it with its default options [28] in our comparison.

4.5.1 Accuracy of SymBisect (RQ1)

Accuracy of BIC Identification. Table 4.1 shows the results of BIC identification with

different tools, SymBisect consistently achieves the highest accuracy of more than 90%,

outperforming other state-of-the-art tools by significant margins (i.e., 25.6% - 58%).

Specifically, SymBisect accurately identified the correct BICs for the two motivating

examples mentioned in Section 4.2. Note that the comparison with SymBisect is based on

Phase Reason Num

Candidate commit
Generation

BIC changed different files 8
Insufficient info in commit messages 2

BIC Filtering Not Pick groundtruth as final BIC 4

Result Finalization Not Pick groundtruth as final BIC 4

Table 4.3: The reasons of SymBisect’s inaccuracy

True BIC Identified BIC Patch

FN TP

FP TP

Figure 4.5: Explanation of TP/FP/FN

50 25 0 25 50
(Identified Vulnerable - True Vulnerable)versions

0

10

20

30

Nu
m

 o
f i

nc
or

re
ct

 c
as

es VSZZ
V0Finder
LLMBisect

Figure 4.6: Distribution of inaccurate cases over version distances

SymBisect’s own dataset due to its reliance on PoCs and specific vulnerability types, as

mentioned previously in §4.5. These results show SymBisect’s superior accuracy, even on

dataset originally designed for other tools. We will describe the comparison results in

detail in §4.5.2.

Accuracy of Vulnerable Version Detection. One common application of bug bisection

is to determine the software versions affected by a vulnerability, informing downstream

developers for timely patch porting [211]. From this perspective, solely evaluating the

accuracy of BIC identification has its limitations. For example, if a vulnerability is fixed

in version 6.0 but introduced in version 5.0, a tool that identifies the introduction of the

bug in version 5.1 or 5.19 would both be considered inaccurate from the perspective of BIC

identification accuracy. However, the impact of such inaccuracies on downstream users can

vary significantly.

Therefore, in addition to verifying whether our tool accurately identifies

bug-inducing commits, we also evaluate the accuracy of identifying vulnerable versions.

Specifically, once the BIC is determined, we can identify all vulnerable versions on the

Linux mainline branch, i.e., versions between the BIC and the patch, considering only

major releases such as v5.0, v5.1. By comparing the vulnerable versions derived from the

true BIC with those derived from the BIC identified by our tool, we calculate the tool’s

false positives (FP), false negatives (FN), and true positives (TP) for this task. As Figure

4.5 shows, once we identify the BIC, we can determine the numbers of TP, FN, and FP

based on its relative position to the true BIC and the patch commit. However, the

number of TNs depends on the manually selected starting point (e.g., whether we start

counting from v2.6 or v4.0) and is not a fixed value. Therefore, TNs are not included in

our statistics.

Figure 4.6 shows the distribution of inaccurate cases for different methods in terms

of FP/FN versions. The X-axis represents the number of FP or FN vulnerable versions for

each case (e.g., 10 indicates a case where the method produced 10 false positive vulnerable

versions, and -5 indicates a case where the method produced 5 false negative vulnerable

versions). Note that, as shown in Figure 5, a single method cannot produce both FP and

FN for the same case.

We group the inaccurate cases into intervals of 5 based on their FP/FN counts

and plot the number of cases in each group on the Y-axis. From the figure, we can observe

that VSZZ produces a large number of false positive versions, V0Finder generates many

false negative versions, whereas SymBisect significantly reduces both false positives and

false negatives.

N-day vulnerabilities. In our evaluation dataset, which includes 200 randomly selected

Linux CVEs, we identified 22 N-day bugs that were not patched in the latest Linux LTS

patches (a total of 45 bug-LTS pairs). We confirmed our findings with Linux maintainers,

which validated the effectiveness of our results. Most of them remain unpatched because

the maintainers lack the time and resources to address conflict issues. A smaller portion

has been overlooked by maintainers for various reasons. We believe that if our method

is applied to cases without a ‘Fixes’ tag, more unpatched N-day vulnerabilities would be

discovered. We leave this exploration as future work.

Inaccuracy Analysis. As shown in Table 4.1, SymBisect has 18 inaccurate bisection

cases out of the 200 CVEs, after inspecting each, we summarize 4 underlying reasons arising

in 3 different phases of SymBisect (Fig. 4.3), as listed in Table 4.3. We now detail these

reasons by phase.

Phase I: Candidate Generation. SymBisect will miss the correct BIC (i.e., false

negative) if it is not included in the initial candidate list, 10 failure cases belong to this

category. Specifically, for 8 of them, the BIC and bug-fix commits modify completely

different files, making it difficult to recognize the correct BIC candidates without incurring

a high cost (e.g., we need to enumerate virtually all commits for all files in the codebase.).

In the remaining 2 cases, the BIC and bug-fix commit modify different functions, structs,

or variables within the same file, however, our candidate generator fails to correlate them

based on the bug-fix commit message, which does not contain enough hints (e.g., the

vulnerable function name) to locate the remotely related BIC.

Phase II: BIC Filtering. In this phase, LLMs first try to identify (multiple) potential BICs

from a specific generator’s candidate list, then select one BIC from multiple by comparing

them. We have 4 failure cases where the true BIC does not survive this filtering process.

Upon further investigation, we found that the failure is mainly because of the excessive

number of potential BICs to filter (e.g., 84.25 on average for these 4 cases vs. 36.5 for all).

This confirms our design consideration (§4.3.1) that more candidate commits can decrease

the accuracy, besides increasing the costs. We also observed that LLM’s self-consistency

issue contributes to 3 of these failure cases, where the correct BIC can be selected in some

LLM runs but not in others.

It is worth noting that we do not have any inaccurate cases in the pre-filtering phase

(e.g., LLMs fail to pick the correct BIC from the generator’s candidate list at beginning),

this confirms our observation (§4.3.1) that LLM is less likely to make FNs when deciding

whether an individual commit is a potential BIC.

Phase III: Result Finalization. Phase II selects one BIC from each of three generators’

candidate lists, resulting in three final BIC candidates. Then, the result finalizer further

selects one BIC from these three. 4 failure cases are due to that the correct BIC does not

Reason
Inaccurate

Cases
Solved

in SymBisect

BIC changed different functions 19 9
Only focus on deleted lines 28 27
Not identified critical lines 6 5

Flawed Heuristic 45 40

Total 98 81

Table 4.4: The reasons of VSZZ method failed

survive this final “1/3” selection process. We observed that the failure here is again related

to LLMs’ self-consistency (e.g., correct BICs can survive in some runs).

4.5.2 Comparison against SOTA Tools (RQ2)

As shown in Table 4.1 and Figure 4.6, SymBisect significantly outperforms other

state-of-the-art tools regarding accuracy. In this section, we provide an in-depth analysis

of these tools’ inaccuracies and how SymBisect improves over them.

VSZZ. VSZZ identifies the BIC as the earliest commit that initializes the lines deleted by

the bug-fix commit. If the bug-fix does not delete any lines, the commit initializing the

file modified by the bug-fix will be treated as the BIC. We group VSZZ’s inaccurate cases

based on flaws in this heuristic algorithm and discuss how SymBisect addresses them.

Flaw 1. VSZZ fundamentally assumes that deleted lines in the bug-fix commit are related

to the vulnerability’s root cause, so the BIC must introduce these lines. However, the BIC

can actually be within completely different functions (e.g., 19 such cases in our dataset) or

irrelevant to those deleted lines (6 such cases in our dataset).

Flaw 2. The bug-fix commit can have no deleted lines, in this case, the heuristic of “treating

Reason
Inaccurate

Cases
Solved

in SymBisect

BIC changed different functions 19 9
Not identified critical lines 84 80

Flawed Heuristic 31 28

Total 134 117

Table 4.5: The reasons of V0Finder method failed

Reason
Inaccurate

Cases
Solved

in SymBisect

Under-constraint Symbolization 5 4
Scalability 3 3

Total 8 7

Table 4.6: The reasons of SymBisect method failed

the line-initialization commit as BIC” is oversimplified and highly inaccurate. 28 of bug-fix

commits in our dataset have no deleted lines.

Flaw 3. The BIC may modify but not initialize the deleted lines in the bug-fix commit,

violating VSZZ’s heuristic. We observed 45 such cases in our dataset.

The above flaws stem from VSZZ’s reliance on hardcoded, simplified, and

code-oriented heuristics. SymBisect, on the other hand, utilizes LLM’s deep and flexible

understanding of vulnerability logic (e.g., recognize critical lines) to identify BICs, with

minimal assumptions, e.g., the presence (Flaw 2) and significance (Flaw 1) of deleted

lines and BIC’s operation (Flaw 3.). Furthermore, SymBisect takes advantage of full

patch context, including the commit messages, to extract valuable information for BIC

locating, significantly addressing Flaw 1. As a result, SymBisect resolves 81 out of 98

VSZZ’s inaccurate cases.

V0Finder. V0Finder treats the pre-patched version of functions modified in the bug-

fix commit as vulnerable, it then compares it to all previous versions syntactically, by

essentially a whole-function strict string match with certain abstraction and normalization.

All identical historical versions will also be treated as vulnerable, while the BIC is the

commit turning a non-vulnerable version into vulnerable. We detail V0Finder’s weaknesses

as follows.

Flaw 1. Similar to Flaw 2 of VSZZ, the BIC may not make changes to the same functions

as in the bug-fix commit (e.g., 19 such cases in our dataset), rendering V0Finder’s patch-

function-based BIC probing invalid.

Flaw 2. V0Finder’s syntactical similarity calculation is unaware of semantics and

vulnerability logic. Consequently, it will likely identify a historical commit as the BIC

wrongly, as long as it makes any changes (that cannot be normalized or abstracted away

by V0Finder’s string matching algorithm) in the function patched by the bug fix, These

changes may not relate to the vulnerability at all (e.g., not on the critical lines of the

vulnerability) — 84 of V0Finder’s inaccurate cases are due to this, or relate to but not

introduce the vulnerability — 31 failure cases are due to this.

As mentioned before, SymBisect addresses these shortcomings by making

decisions based on the understanding of the vulnerability logic with the help of LLMs and

its comprehensive consideration of the patch contexts. As a result, SymBisect resolves

117 out of 134 V0Finder’s inaccurate cases.

SymBisect. SymBisect decides whether a specific vulnerability affects a software version

with under-constrained symbolic execution, guided by hints extracted from PoC execution

traces for better scalability. Despite its reliance on PoC and limited support for vulnerability

types, we identify issues impacting its accuracy on its own evaluation dataset (that we use

for our comparison).

Flaw 1. Under-constraint symbolic execution assumes overly relaxed constraints (and

often infeasible) of program variables unknown in its analysis scope, e.g., global variables

initialized outside of the local analyzed function(s). This results in over-approximation of

program behaviors, for instance, a software version can wrongly be recognized as

vulnerable. SymBisect fails in 5 cases in our dataset due to this reason.

Flaw 2. Symbolic execution is known to be expensive. To address the scalability issue,

SymBisect utilizes information (e.g., promising paths) extracted from PoC execution traces

to guide its symbolic execution. However, this guide may be incomplete or inaccurate,

leading to missed vulnerable paths and/or conditions, eventually causing inaccuracies in BIC

identification. We observed 3 such inaccurate cases in the SymBisect evaluation dataset.

SymBisect, unlike SymBisect, does not rely on the expensive symbolic execution

for BIC identification. Instead, its decision is based on LLM’s profound understanding of

the vulnerability logic, from both code changes and commit messages, avoiding the above

difficulties.

4.5.3 Ablation Study (RQ3)

Effectiveness of Design Points.

As discussed in §4.3.1, our final design results from multiple iterations and

refinements of a baseline workflow. During this process, we adopt different effective design

points that all improve SymBisect’s accuracy. To demonstrate it, we start with the

baseline method and gradually integrate each of our design points, observing the change in

BIC detection accuracy. We show the results in Fig. 4.7, as can be seen, the accuracy

steadily improves as more design points are adopted (e.g., from 30.5% to 91%). In the

remainder of this section, we detail the reasons behind these improvements by analyzing

each intermediate configuration in Fig. 4.7.

(0) C
1 - Bas

eline

(1) +
BIC

Filte
ring

(2) C
1→ C2

(3) +
Resu

lt Fin
alize

r (C1
+ C2)

(4) +
C3

(5) +
Majori

ty Votin
g

20

40

60

80

100

C1: Patch-Function-Based Candidates

C2: Critical-Line-Based Candidates

C3: Commit-Message-Based Candidates30.5%

77.5%
81.5% 84% 87%

91%

A
cc
u
ra
cy

(%
)

Figure 4.7: Ablation Study with Different Design Points.

(0) The Baseline Method. As described in §4.3.1, the most straightforward baseline method

inspired by existing work is to let LLM inspect each commit (reverse chronologically) that

touches the same function(s), i.e., candidates are generated using the patch-function-based

generator alone. The first identified BIC will be output as the final result. As analyzed in

§4.3.1, this approach has a low accuracy (30.5% in Fig. 4.7) mainly due to LLM’s high false

positive rate in single-commit BIC decision and missing true BIC with single generator.

(1) Added: BIC Filtering. We then adopt the BIC comparative filtering process (§4.3.4),

where all potential BICs are identified and then compared by the LLM to determine the

most likely one. As shown in Fig. 4.7, this significantly improve the accuracy compared to

the strawman workflow (30.5% → 77.5%).

(2) Replaced: C1 → C2. Patch-function-based candidate generation (i.e., C1 in Fig. 4.7)

can result in too many candidates, confusing the LLM and eventually reducing accuracy.

We show that a more fine-grained critical-line-based strategy (C2 in Fig. 4.7 to replace C1,

detailed in §4.3.3) increases the accuracy from 77.5% to 81.5%.

(3) Added: Result Finalizer. As discussed in §4.3.1, critical-line-based candidate generation

(C2 in Fig. 4.7) is more precise, however, it can also miss true BICs if some critical lines

are missed. Our solution is to combine C2 and C1 with the result finalizer (§4.3.5), this

design further improves the accuracy (81.5% → 84% in Fig. 4.7).

(4) Added: Commit-Message-Based Candidate Generation. Neither C1 nor C2 captures

BICs having no code overlaps with the corresponding bug-fix commits, as mentioned in

§4.3.1. We thus develop another strategy that seeks implicitly connected BICs from the

commit messages of the bug-fix (C3 in Fig. 4.7, detailed in §4.3.3). As shown in Fig. 4.7,

this improves the accuracy to 87% from the previous configuration.

(5) Added: Majority Voting. As mentioned before (§4.5.1), the well-known self-consistency

issue of LLMs can negatively impact our accuracy, when the correct decision is not yielded

in the first run. To address this, we incorporate the majority voting mechanism which

selects the most frequent answer among multiple LLM runs in the result finalizer. This

further improves SymBisect’s accuracy compared to the previous configuration (i.e., 87%

→ 91% in Fig. 4.7).

Model
Inaccurate

Cases
Accuracy

OpenAI o1 18 91%
GPT-4o 69 65.5%
LLama3.2 58 71%

Table 4.7: The accuracy with different LLM models

Patch
Information

Inaccurate
Cases

Accuracy

Commit Message+ Code Change 18 91%
Code Change 58 71%

Table 4.8: The accuracy with/without commit message

The Role of Commit Messages.

One of SymBisect’s major advantages is its utilization of the full patch

information, including both code changes and natural language commit messages. Besides

C3 in Fig. 4.7 for candidate initialization, commit messages also help LLMs make more

informed decisions when inspecting each commit for BIC identification. To quantitatively

understand the commit message’s impact, we strip the commit messages of all commits

and re-run our evaluation. Note that the impact is multi-front: (1) the

commit-message-based generator basically no longer works, (2) the critical-line-based

generator is substantially weaker because the LLM can no longer benefit from the commit

messages to understand the logic of the bug, and (3) the selection of the BICs is also

weaker because the LLM can no longer benefit from the description of the purpose of the

candidate commits. As shown in Table 4.8, the gap in accuracy is significant: 71% vs 91%.

Different LLMs.

SymBisect’s design is agnostic to the underlying LLM, nonetheless, we conduct a

comparative evaluation by swapping between three widely used LLMs: OpenAI o1, GPT-4o,

and LLama 3, covering both commercial and open-source models. The evaluation results

are summarized in Table 4.7. As can be seen, OpenAI o1 achieves the highest accuracy

(91%) likely due to its enhanced reasoning capability, followed by LLama 3 (71%) and

GPT-4o (65.5%). We found that the majority of inaccuracies occur during the process of

comparing multiple suspected BICs and selecting the final result (specifically, during the

Post-Filtering and Result Finalizer stages). For example, GPT-4o produced a total of 49

inaccurate cases across these two steps. This suggests a gap for different models in tasks

which requires extensive reasoning on multiple code snippets and commit message.

4.6 Related Work

The Application of LLMs in Program Analysis. Recent research has explored the

integration of LLMs into static analysis to enhance its effectiveness in code comprehension

and bug findings [181, 179, 129, 180]. LLMs have also been employed to understand and

generate code comments, documentation, and system logs, improving code readability and

maintainability [113, 130, 95]. The integration of LLMs in program analysis represents a

significant advancement in software engineering, offering tools that enhance productivity,

code quality, and security.

PoC-based vulnerable version identification. SymBisect [210] leverages

under-constrained symbolic execution to determine whether a specific software version

contains a given vulnerability, enabling the identification of BICs. However, SymBisect

supports only specific types of functions and requires an existing PoC. Dai et al.[75]

proposed a PoC migration approach that takes an initial PoC as input and adapts it to

identify other affected versions; however, it is specifically designed for user-space

programs.

SZZ Methods. SZZ (short for Śliwerski, Zimmermann, and Zeller) [170] is an algorithm

designed to identify bug-inducing commits in version control systems, also called B-SZZ.

It identifies earlier changes at the location of a bug fix as bug-inducing commits. However,

its straightforward approach struggles to handle complex bugs effectively. To address this

limitation, AG-SZZ [124] incorporates an annotation graph to exclude non-semantic

changes, such as whitespace, comments, and formatting adjustments, thereby reducing

false positives. MA-SZZ [74] further improves on this by filtering out meta-changes like

branch modifications and file attribute updates, ensuring that only source code changes

are analyzed. V-SZZ [58] expands the algorithm’s scope by targeting vulnerabilities

introduced in earlier software versions. NEURAL-SZZ [175] leverages a Heterogeneous

Graph Attention Network (HAN) to capture semantic relationships between lines of code,

enhancing precision in tracing bug origins. However, it is limited to Java and exhibits a

relatively high false positive rate. Combining advanced techniques like NEURAL-SZZ and

V-SZZ can significantly improve bug-tracing accuracy, while AG-SZZ and MA-SZZ remain

practical solutions for simpler scenarios.

Vulnerable code clone detection. Vulnerable code clone detection is a specialized type

of code clone detection [49, 160, 161, 168, 87]. It involves identifying pieces of source code

in software systems that are similar to or identical to code fragments known to have

security vulnerabilities. They usually perform similarity comparisons on what they define

as vulnerability-related code (usually a few lines within the patch function or the entire

function) [123, 109, 64, 200, 212, 64, 194]. However, vulnerability-related code extraction

based on simple heuristics may not effectively extract the code most relevant to

vulnerabilities. Similarly, similarity comparisons based on predefined rules cannot always

accurately determine whether a vulnerability truly exists in a given version. Essentially,

these methods do not compare vulnerabilities based on their logical structure. Our

evaluation demonstrates that, for this type of analysis, the state-of-the-art methods have

limited accuracy in complex programs (such as Linux).

4.7 Conclusion

In conclusion, we introduced SymBisect, a novel, LLM-driven bug bisection

pipeline that effectively pinpoints bug-inducing commits in Linux kernel. By combining

both code changes and commit-message insights, SymBisect overcomes the limitations of

traditional patch-based methods, which often fail to capture the true scope and context of

a vulnerability. Our results underscore the potential of large language models to

streamline vulnerability detection, reducing the window in which attacks can occur.

Chapter 5

Conclusions

In this work, we set out to address the challenges posed by N-day vulnerabilities in

open-source software, with a special focus on the Android kernel ecosystem. Our research

makes three major contributions:

1. Comprehensive Measurement Study: We conducted a large-scale measurement

study of patch propagation across multiple layers—from the Linux mainline to various

downstream kernels used in Android devices. Our analysis revealed that delays in patch

deployment are common, sometimes taking months or even years to fully reach end users.

These delays increase the window during which attackers can exploit known vulnerabilities.

We analyzed the root causes behind the significant delays, including flaws in the overall

Android patch propagation mechanism. We shared our findings with major players in the

Android ecosystem, such as Google, Qualcomm, and Samsung. We were invited to present

at the Google Android Security Organization and collaborated with a team to deploy our

tool, which helped spur Google to propose solutions to the identified issues.

144

2. Novel Bug Bisection Technique (SymBisect): Traditional bug bisection

methods often struggle because they rely solely on dynamic testing or simple heuristics.

To overcome these limitations, we introduced SymBisect—a novel tool that uses

under-constrained symbolic execution to trace vulnerabilities back to their bug-inducing

commits. By isolating the exact change that introduced a vulnerability, SymBisect can

significantly reduce false positives and improve the accuracy of bisection.

3. Integration of Large Language Models (LLMBisect): Recognizing that commit

messages and code context contain valuable information, we enhanced our approach with

LLM-driven techniques. These models help analyze both code diffs and natural language

descriptions, allowing our system to better capture the true context of a vulnerability. This

integration further improves the precision of bug-inducing commit identification and speeds

up the patch porting process .

Together, these contributions offer a more complete solution to the twin problems

of delayed patch propagation and inaccurate bug bisection. By demonstrating that a

combination of precise symbolic analysis and modern LLM capabilities can effectively

narrow the exposure window for N-day vulnerabilities, our work lays a strong foundation

for both improved automated security analysis and practical vulnerability remediation.

While our methods show promising results, challenges remain. For instance,

although LLMBisection is applicable to various bugs and achieves high accuracy, it is

designed only to identify the upstream-affected versions. It does not consider the impact

of downstream customization on vulnerability exposure. Even if the affected versions are

known, customization may prevent the direct application of upstream patches,

necessitating manual work by maintainers. Therefore, to fully address the N-day

vulnerability problem, our approach should be integrated with other techniques, such as

automatic patch translation.

Ultimately, this dissertation provides actionable insights and practical tools that

can help the open-source community reduce the risk of N-day vulnerabilities. By acceler-

ating the detection and patching of vulnerabilities, our approach contributes to building a

more secure and resilient software ecosystem.

Bibliography

[1] https://git-scm.com/.

[2] https://subversion.apache.org/.

[3] https://android.googlesource.com/.

[4] https://www.kernel.org/.

[5] https://cve.mitre.org/.

[6] Android Operating System. https://www.android.com/.

[7] Android Security Bulletin. https://source.android.com/security/bulletin/.

[8] Android Security Bulletin—January 2020. https://source.android.com/

security/bulletin/2020-01-01.

[9] BinDiff. https://www.zynamics.com/bindiff.html.

[10] CVE: Vulnerabilities By Year. https://www.cvedetails.com/browse-by-date.

php.

[11] Data for May 2024 CVE. https://github.com/jgamblin/monthlyCVEStats/blob/
main/2024/May/May2024.ipynb.

[12] Fixes Tag. https://docs.kernel.org/process/submitting-patches.html.

[13] Github Annual Report. https://octoverse.github.com/.

[14] Google wants Android to use regular Linux kernel, potentially improving
updates and security. https://www.androidpolice.com/2019/11/19/

google-wants-android-to-use-regular-linux-kernel-potentially-improving-updates-and-security/.

[15] kernel.org Added as CVE Numbering Authority (CNA). https://www.cve.org/

Media/News/item/news/2024/02/13/kernel-org-Added-as-CNA.

[16] KLEE bug type. https://mailman.ic.ac.uk/pipermail/klee-dev/2020-April/

001983.html.

147

https://git-scm.com/
https://subversion.apache.org/
https://android.googlesource.com/
https://www.kernel.org/
https://cve.mitre.org/
https://www.android.com/
https://source.android.com/security/bulletin/
https://source.android.com/security/bulletin/2020-01-01
https://source.android.com/security/bulletin/2020-01-01
https://www.zynamics.com/bindiff.html
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://github.com/jgamblin/monthlyCVEStats/blob/main/2024/May/May2024.ipynb
https://github.com/jgamblin/monthlyCVEStats/blob/main/2024/May/May2024.ipynb
https://docs.kernel.org/process/submitting-patches.html
https://octoverse.github.com/
https://www.androidpolice.com/2019/11/19/google-wants-android-to-use-regular-linux-kernel-potentially-improving-updates-and-security/
https://www.androidpolice.com/2019/11/19/google-wants-android-to-use-regular-linux-kernel-potentially-improving-updates-and-security/
https://www.cve.org/Media/News/item/news/2024/02/13/kernel-org-Added-as-CNA
https://www.cve.org/Media/News/item/news/2024/02/13/kernel-org-Added-as-CNA
https://mailman.ic.ac.uk/pipermail/klee-dev/2020-April/001983.html
https://mailman.ic.ac.uk/pipermail/klee-dev/2020-April/001983.html

[17] Linux Kernel Faces Reduction in Long-Term Support Due to
Maintenance Challenges. https://www.linuxjournal.com/content/

linux-kernel-reduction-longterm-support.

[18] Linux stable kernel patch rules. https://www.kernel.org/doc/Documentation/

process/stable-kernel-rules.rst.

[19] National Vulnerability Database. https://nvd.nist.gov/.

[20] NetworkX Python Package. https://networkx.github.io/.

[21] Pixel Update Bulletins. https://source.android.com/security/bulletin/pixel.

[22] Qualcomm customer-specific releases for Android. https://wiki.codeaurora.org/
xwiki/bin/QAEP/release.

[23] Security Patch for CVE-2015-8955. https://git.kernel.org/

pub/scm/linux/kernel/git/stable/linux-stable.git/commit/?id=

8fff105e13041e49b82f92eef034f363a6b1c071.

[24] SymBisect Source Code. https://github.com/zhangzhenghsy/SymBisect.

[25] Syzbot Bisection. https://android.googlesource.com/platform/external/

syzkaller/+/HEAD/docs/syzbot.md#bisection.

[26] Syzbot Bisection Motivation. https://lore.kernel.org/all/CACT4Y+Y3nN=

nLEkHXLFcX7vxp_vs1JrD=8auJ3cX9we6TQHO+w@mail.gmail.com/T/#u.

[27] The kernel becomes its own CNA. https://lwn.net/Articles/961961/.

[28] V0Finder Source Code. https://github.com/WOOSEUNGHOON/V0Finderpublic.

[29] Valgrind. http://valgrind.org/.

[30] VSZZ Source Code. https://figshare.com/ndownloader/files/31748777.

[31] VUDDY Source Code. https://github.com/squizz617/vuddy.

[32] Vulnerability Definition. https://csrc.nist.gov/glossary/term/software_

vulnerability.

[33] What to do about CVE numbers. https://lwn.net/Articles/801157/.

[34] Android Security Bulletin—February 2017. https://source.android.com/

security/bulletin/2017-02-01, 2019.

[35] HiSilicon. http://www.hisilicon.com/, 2019.

[36] Huawei-firmware. http://huawei-firmware.com/phone-list/, 2019.

[37] Latest Official Android ROMs. https://www.cnroms.com/, 2019.

https://www.linuxjournal.com/content/linux-kernel-reduction-longterm-support
https://www.linuxjournal.com/content/linux-kernel-reduction-longterm-support
https://www.kernel.org/doc/Documentation/process/stable-kernel-rules.rst
https://www.kernel.org/doc/Documentation/process/stable-kernel-rules.rst
https://nvd.nist.gov/
https://networkx.github.io/
https://source.android.com/security/bulletin/pixel
https://wiki.codeaurora.org/xwiki/bin/QAEP/release
https://wiki.codeaurora.org/xwiki/bin/QAEP/release
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/commit/?id=8fff105e13041e49b82f92eef034f363a6b1c071
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/commit/?id=8fff105e13041e49b82f92eef034f363a6b1c071
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/commit/?id=8fff105e13041e49b82f92eef034f363a6b1c071
https://github.com/zhangzhenghsy/SymBisect
https://android.googlesource.com/platform/external/syzkaller/+/HEAD/docs/syzbot.md#bisection
https://android.googlesource.com/platform/external/syzkaller/+/HEAD/docs/syzbot.md#bisection
https://lore.kernel.org/all/CACT4Y+Y3nN=nLEkHXLFcX7vxp_vs1JrD=8auJ3cX9we6TQHO+w@mail.gmail.com/T/#u
https://lore.kernel.org/all/CACT4Y+Y3nN=nLEkHXLFcX7vxp_vs1JrD=8auJ3cX9we6TQHO+w@mail.gmail.com/T/#u
https://lwn.net/Articles/961961/
https://github.com/WOOSEUNGHOON/V0Finderpublic
http://valgrind.org/
https://figshare.com/ndownloader/files/31748777
https://github.com/squizz617/vuddy
https://csrc.nist.gov/glossary/term/software_vulnerability
https://csrc.nist.gov/glossary/term/software_vulnerability
https://lwn.net/Articles/801157/
https://source.android.com/security/bulletin/2017-02-01
https://source.android.com/security/bulletin/2017-02-01
http://www.hisilicon.com/
http://huawei-firmware.com/phone-list/
https://www.cnroms.com/

[38] MediaTek still has no plans to release source code to the community. https://www.
xda-developers.com/mediatek-source-code-release-no-plans/, 2019.

[39] MIUI Global ROM. http://c.mi.com/oc/miuidownload/index, 2019.

[40] Oppo Software Updates. https://oppo.custhelp.com/app/soft_update, 2019.

[41] Sammobile. www.sammobile.com, 2019.

[42] Samsung Exynos. https://www.samsung.com/semiconductor/minisite/exynos/

products/all-processors/, 2019.

[43] Samsung to lay off nearly 300 as it closes Austin unit
project. https://www.statesman.com/business/20191101/

samsung-to-lay-off-nearly-300-as-it-closes-austin-unit-project, 2019.

[44] Sony Software binaries. https://developer.sony.com/develop/open-devices/

downloads/software-binaries, 2019.

[45] Stock ROM files. https://stockromfiles.com/, 2019.

[46] Rui Abreu, Franjo Ivančić, Filip Nikšić, Hadi Ravanbakhsh, and Ramesh
Viswanathan. Reducing time-to-fix for fuzzer bugs. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 1126–
1130. IEEE, 2021.

[47] Adam Conway. How Monthly Android Security Patch Updates Work. https://www.
xda-developers.com/how-android-security-patch-updates-work/.

[48] Yehuda Afek, Omer Ben-Shalom, and Anat Bremler-Barr. On the structure and
application of BGP policy Atoms. 2002.

[49] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam, and
Bilal Maqbool. A systematic review on code clone detection. IEEE access, 7:86121–
86144, 2019.

[50] Nikolaos Alexopoulos, Manuel Brack, Jan Philipp Wagner, Tim Grube, and Max
Mühlhäuser. How long do vulnerabilities live in the code? a {Large-Scale} empirical
measurement study on {FOSS} vulnerability lifetimes. In 31st USENIX Security
Symposium (USENIX Security 22), pages 359–376, 2022.

[51] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. http://tools.

ietf.org/html/rfc2581, 1999.

[52] Gabin An, Jingun Hong, Naryeong Kim, and Shin Yoo. Fonte: Finding bug inducing
commits from failures. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 589–601. IEEE, 2023.

[53] Manish Anand, Edmund B. Nightingale, and Jason Flinn. Self-Tuning Wireless
Network Power Management. Wireless Networks, 2005.

https://www.xda-developers.com/mediatek-source-code-release-no-plans/
https://www.xda-developers.com/mediatek-source-code-release-no-plans/
http://c.mi.com/oc/miuidownload/index
https://oppo.custhelp.com/app/soft_update
www.sammobile.com
https://www.samsung.com/semiconductor/minisite/exynos/products/all-processors/
https://www.samsung.com/semiconductor/minisite/exynos/products/all-processors/
https://www.statesman.com/business/20191101/samsung-to-lay-off-nearly-300-as-it-closes-austin-unit-project
https://www.statesman.com/business/20191101/samsung-to-lay-off-nearly-300-as-it-closes-austin-unit-project
https://developer.sony.com/develop/open-devices/downloads/software-binaries
https://developer.sony.com/develop/open-devices/downloads/software-binaries
https://stockromfiles.com/
https://www.xda-developers.com/how-android-security-patch-updates-work/
https://www.xda-developers.com/how-android-security-patch-updates-work/
http://tools.ietf.org/html/rfc2581
http://tools.ietf.org/html/rfc2581

[54] Afsah Anwar, Ahmed Abusnaina, Songqing Chen, Frank Li, and David Mohaisen.
Cleaning the nvd: Comprehensive quality assessment, improvements, and analyses.
IEEE Transactions on Dependable and Secure Computing, 19(6):4255–4269, 2021.

[55] Cornelius Ascherm, Sergej Schumilo, Tim Blazytko, Robert Gawlik, , and Thorsten
Holz. Fuzzing with input-to-state correspondence. NDSS, 2019.

[56] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley.
Enhancing symbolic execution with veritesting. ICSE’14.

[57] Brenda S. Baker. Parameterized duplication in strings: Algorithms and an application
to software maintenance. SIAM J. Comput., 26(5):1343–1362, October 1997.

[58] Lingfeng Bao, Xin Xia, Ahmed E Hassan, and Xiaohu Yang. V-szz: automatic
identification of version ranges affected by cve vulnerabilities. In Proceedings of the
44th International Conference on Software Engineering, pages 2352–2364, 2022.

[59] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. ICSM’98.

[60] Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic execution of multithreaded
programs from arbitrary program contexts. ACM SIGPLAN Notices, 49(10):491–506,
2014.

[61] Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Maddila, and Adithya Abraham
Philip. Orca: Differential bug localization in {Large-Scale} services. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages 493–
509, 2018.

[62] Swapnil Bhartiya. Greg Kroah-Hartman Explains How the Kernel
Community Is Securing Linux. https://www.linux.com/topic/linux/

greg-kroah-hartman-explains-how-kernel-community-securing-linux-0/.

[63] Martial Bourquin, Andy King, and Edward Robbins. Binslayer: Accurate comparison
of binary executables. In Proceedings of the 2nd ACM SIGPLAN Program Protection
and Reverse Engineering Workshop.

[64] Benjamin Bowman and H Howie Huang. Vgraph: A robust vulnerable code clone
detection system using code property triplets. In 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 53–69. IEEE, 2020.

[65] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forcasting
and Control. Prentice Hall, 3rd edition, 1994.

[66] Hong Chao, Chun-Yu Ho, Tin Cheuk Leung, and Travis Ng. To Root or Not to
Root? The Economics of Jailbreak. Technical report, Social Science Research Network
(SSRN), 2013.

https://www.linux.com/topic/linux/greg-kroah-hartman-explains-how-kernel-community-securing-linux-0/
https://www.linux.com/topic/linux/greg-kroah-hartman-explains-how-kernel-community-securing-linux-0/

[67] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. Koobe: Towards
facilitating exploit generation of kernel out-of-bounds write vulnerabilities. USENIX
Security, 2020.

[68] Code Aurora. Android for MSM Project. https://wiki.codeaurora.org/xwiki/

bin/QAEP/.

[69] Code Aurora. Android releases. https://wiki.codeaurora.org/xwiki/bin/QAEP/
release.

[70] Code Aurora. Security Bulletin. https://www.codeaurora.org/category/

security-bulletin/page/3.

[71] International Data Corporation. Smart Phone OS Market Share. http://www.idc.

com/promo/smartphone-market-share/os.

[72] Dawson Engler Cristian Cadar, Daniel Dunbar. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. USENIX Symposium
on Operating Systems Design and Implementation (OSDI 2008) December 8-10, 2008,
San Diego, CA, USA.

[73] Weidong Cui, Marcus Peinado, Zhilei Xu, and Ellick Chan. Tracking rootkit footprints
with a practical memory analysis system. USENIX Security’12.

[74] Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta
Coelho, and Ahmed E. Hassan. A framework for evaluating the results of the szz
approach for identifying bug-introducing changes. IEEE Trans. Softw. Eng., 2017.

[75] Jiarun Dai, Yuan Zhang, Hailong Xu, Haiming Lyu, Zicheng Wu, Xinyu Xing, and
Min Yang. Facilitating vulnerability assessment through poc migration. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pages 3300–3317, 2021.

[76] Valentin Dallmeier and Thomas Zimmermann. Extraction of bug localization
benchmarks from history. ASE’07.

[77] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup: Precise static detection of
common vulnerabilities in firmware. ACM SIGPLAN Notices, 53(2):392–404, 2018.

[78] Dawson Engler David A Ramos. Under-constrained symbolic execution: Correctness
checking for real code. USENIX Security, 2015.

[79] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, 2008.

[80] Dan Nguyen-Huu Dharmesh Thakker, Max Schireson. Tracking the explo-
sive growth of open-source software. https://techcrunch.com/2017/04/07/

tracking-the-explosive-growth-of-open-source-software/.

https://wiki.codeaurora.org/xwiki/bin/QAEP/
https://wiki.codeaurora.org/xwiki/bin/QAEP/
https://wiki.codeaurora.org/xwiki/bin/QAEP/release
https://wiki.codeaurora.org/xwiki/bin/QAEP/release
https://www.codeaurora.org/category/security-bulletin/page/3
https://www.codeaurora.org/category/security-bulletin/page/3
http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os
https://techcrunch.com/2017/04/07/tracking-the-explosive-growth-of-open-source-software/
https://techcrunch.com/2017/04/07/tracking-the-explosive-growth-of-open-source-software/

[81] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec: Boosting
static representation robustness for binary clone search against code obfuscation and
compiler optimization. In 2019 IEEE Symposium on Security and Privacy (SP), pages
472–489. IEEE, 2019.

[82] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and Gang Wang.
Towards the detection of inconsistencies in public security vulnerability reports. In
USENIX Security Symposium, pages 869–885, 2019.

[83] Niall Douglas. User Mode Memory Page Allocation: A Silver Bullet For Memory
Allocation? Technical report, 2011.

[84] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. Identifying
open-source license violation and 1-day security risk at large scale. In Proceedings of
the 2017 ACM SIGSAC Conference on computer and communications security, pages
2169–2185, 2017.

[85] Clément Elbaz, Louis Rilling, and Christine Morin. Fighting n-day vulnerabilities
with automated cvss vector prediction at disclosure. In Proceedings of the 15th
International Conference on Availability, Reliability and Security, pages 1–10, 2020.

[86] eng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 2018.

[87] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. Functional
code clone detection with syntax and semantics fusion learning. In Proceedings of
the 29th ACM SIGSOFT international symposium on software testing and analysis,
pages 516–527, 2020.

[88] Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags. Hey
google, what exactly do your security patches tell us? a large-scale empirical study
on android patched vulnerabilities. 2019.

[89] Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou, Andrew Henderson, and Heng
Yin. Extracting conditional formulas for cross-platform bug search. ASIACCS’17.

[90] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin.
Scalable graph-based bug search for firmware images. CCS ’16.

[91] Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. Large-scale
vulnerability analysis. In Proceedings of the 2006 SIGCOMM workshop on Large-
scale attack defense, pages 131–138. ACM, 2006.

[92] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic clones.
In Proceedings of the 30th international conference on Software engineering, pages
321–330, 2008.

[93] Debin Gao, Michael K. Reiter, and Dawn Song. Binhunt: Automatically finding
semantic differences in binary programs. In Information and Communications
Security, 2008.

[94] Xinyang Ge, Weidong Cui, and Trent Jaeger. Griffin: Guarding control flows using
intel processor trace. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’17, 2017.

[95] Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang, Ge Li, Zhi
Jin, Xiaoguang Mao, and Xiangke Liao. Large Language Models are Few-
Shot Summarizers: Multi-Intent Comment Generation via In-Context Learning.
In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE ’24, pages 1–13, New York, NY, USA, February 2024. Association
for Computing Machinery.

[96] Google. Distribution dashboard. https://developer.android.com/about/

dashboards.

[97] Google. Google syzbot. https://syzkaller.appspot.com/upstream/.

[98] Google. Google syzkaller. https://github.com/google/syzkaller.

[99] Google. Learn when you’ll get Android updates on Pixel phones and Nexus devices.
https://support.google.com/pixelphone/answer/4457705?hl=en.

[100] Google. Stable Kernel Releases & Updates - Security. https://source.android.

com/devices/architecture/kernel/releases#security.

[101] Google Project Zero. Bad Binder: Android In-The-Wild
Exploit. https://googleprojectzero.blogspot.com/2019/11/

bad-binder-android-in-wild-exploit.html.

[102] Google Project Zero. Issue 1942: Android: Use-After-Free in Binder driver. https:

//bugs.chromium.org/p/project-zero/issues/detail?id=1942.

[103] Yu Hao, Guoren Li, Xiaochen Zou, Weiteng Chen, Shitong Zhu, Zhiyun Qian, and
Ardalan Amiri Sani. Syzdescribe: Principled, automated, static generation of syscall
descriptions for kernel drivers. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 3262–3278. IEEE Computer Society, 2023.

[104] Yongzhong He, Yiming Wang, Sencun Zhu, Wei Wang, Yunjia Zhang, Qiang Li, and
Aimin Yu. Automatically identifying cve affected versions with patches and developer
logs. IEEE Transactions on Dependable and Secure Computing, 2023.

[105] Thong Hoang, Julia Lawall, Richard J Oentaryo, Yuan Tian, and David Lo. Patchnet:
a tool for deep patch classification. ICSE’19 Demonstrations.

[106] He Huang, Amr M. Youssef, and Mourad Debbabi. Binsequence: Fast, accurate and
scalable binary code reuse detection. ASIACCS’17.

[107] Zhen Huang, Mariana DAngelo, Dhaval Miyani, and David Lie. Talos: Neutralizing
vulnerabilities with security workarounds for rapid response. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 618–635. IEEE, 2016.

https://developer.android.com/about/dashboards
https://developer.android.com/about/dashboards
https://syzkaller.appspot.com/upstream/
https://github.com/google/syzkaller
https://support.google.com/pixelphone/answer/4457705?hl=en
https://source.android.com/devices/architecture/kernel/releases#security
https://source.android.com/devices/architecture/kernel/releases#security
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1942
https://bugs.chromium.org/p/project-zero/issues/detail?id=1942

[108] Frank K Hwang, Dana S Richards, and Pawel Winter. The Steiner tree problem,
volume 53. Elsevier, 1992.

[109] Jiyong Jang, Abeer Agrawal, and David Brumley. Redebug: finding unpatched code
clones in entire os distributions. Oakland’12.

[110] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. ICSE’07.

[111] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In 29th International
Conference on Software Engineering (ICSE’07), pages 96–105. IEEE, 2007.

[112] Yuning Jiang, Manfred Jeusfeld, and Jianguo Ding. Evaluating the data inconsistency
of open-source vulnerability repositories. In Proceedings of the 16th International
Conference on Availability, Reliability and Security, pages 1–10, 2021.

[113] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong Huo,
Pinjia He, Jiazhen Gu, and Michael R. Lyu. LILAC: Log Parsing using LLMs
with Adaptive Parsing Cache. Proceedings of the ACM on Software Engineering,
1(FSE):137–160, July 2024.

[114] Jonathan Corbet. Bringing the Android kernel back to the mainline. https://lwn.
net/Articles/771974/.

[115] Hyuckmin Kwon Jonghoon Kwon Heejo Lee Hongzhe Li. A scalable approach for
vulnerability discovery based on security patches. in applications and techniques in
information security. In Applications and Techniques in Information Security (ATIS
2014). Springer, Berlin, Heidelberg, 109–122.

[116] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, Jul 2002.

[117] Wooseok Kang, Byoungho Son, and Kihong Heo. Tracer: Signature-based static
analysis for detecting recurring vulnerabilities. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages 1695–1708,
2022.

[118] PCWorld Katherine Noyes. Open Source Software Is Now a Norm in Busi-
nesses. https://www.pcworld.com/article/228136/open_source_software_now_

a_norm_in_businesses.html.

[119] Android Kernel. How Android common kernels developed. https://source.

android.com/devices/architecture/kernel/android-common, 2019.

[120] Linux Kernel. How the development process works. https://www.kernel.org/doc/
html/latest/process/2.Process.html, 2019.

https://lwn.net/Articles/771974/
https://lwn.net/Articles/771974/
https://www.pcworld.com/article/228136/open_source_software_now_a_norm_in_businesses.html
https://www.pcworld.com/article/228136/open_source_software_now_a_norm_in_businesses.html
https://source.android.com/devices/architecture/kernel/android-common
https://source.android.com/devices/architecture/kernel/android-common
https://www.kernel.org/doc/html/latest/process/2.Process.html
https://www.kernel.org/doc/html/latest/process/2.Process.html

[121] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: A search engine for binary
code. In 2013 10th Working Conference on Mining Software Repositories (MSR),
2013.

[122] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. Mecc: memory
comparison-based clone detector. In Proceedings of the 33rd International Conference
on Software Engineering, pages 301–310, 2011.

[123] S. Kim, S. Woo, H. Lee, and H. Oh. Vuddy: A scalable approach for vulnerable code
clone discovery. Oakland’17.

[124] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Jr. Whitehead. Au-
tomatic identification of bug-introducing changes. In 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE’06), 2006.

[125] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and Andreas Zeller.
Predicting faults from cached history. ICSE’07.

[126] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In Proceedings of the 8th International Symposium on Static Analysis,
SAS ’01, pages 40–56, London, UK, UK, 2001. Springer-Verlag.

[127] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled reverse
engineering of types in binary programs. 2011.

[128] Frank Li and Vern Paxson. A large-scale empirical study of security patches. CCS’17.

[129] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. Enhancing static analysis
for practical bug detection: An llm-integrated approach. Proceedings of the ACM
on Programming Languages (PACMPL), Volume 8, Issue OOPSLA1, 8(OOPSLA1),
2024.

[130] Jiawei Li, David Faragó, Christian Petrov, and Iftekhar Ahmed. Only diff Is Not
Enough: Generating Commit Messages Leveraging Reasoning and Action of Large
Language Model. Proceedings of the ACM on Software Engineering, 1(FSE):745–766,
July 2024.

[131] Jingyue Li and Michael D Ernst. Cbcd: Cloned buggy code detector. In Proceedings
of the 34th International Conference on Software Engineering, pages 310–320. IEEE
Press, 2012.

[132] Xingyu Li, Zheng Zhang, Zhiyun Qian, Trent Jaeger, and Chengyu Song. An
investigation of patch porting practices of the linux kernel ecosystem. arXiv preprint
arXiv:2402.05212, 2024.

[133] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: finding copy-paste and related bugs
in large-scale software code. IEEE Transactions on Software Engineering, 32(3):176–
192, March 2006.

[134] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. Vulpecker:
an automated vulnerability detection system based on code similarity analysis.
ACSAC’16.

[135] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng,
and Yuyi Zhong. Vuldeepecker: A deep learning-based system for vulnerability
detection.

[136] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. Gplag: detection of software
plagiarism by program dependence graph analysis. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
872–881. ACM, 2006.

[137] Kangjie Lu and Hong Hu. Where does it go? refining indirect-call targets with
multi-layer type analysis. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1867–1881, 2019.

[138] Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez Tejeda,
Matthew Mokary, and Brian Spates. When a patch goes bad: Exploring the properties
of vulnerability-contributing commits. In 2013 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, pages 65–74. IEEE, 2013.

[139] Jiang Ming, Meng Pan, and Debin Gao. ibinhunt: Binary hunting with inter-
procedural control flow. In Proceedings of the 15th International Conference on
Information Security and Cryptology, 2012.

[140] Audris Mockus and Lawrence G Votta. Identifying reasons for software changes using
historic databases. In icsm, pages 120–130, 2000.

[141] Seyed Mohammadjavad, Hamid Tavakoli, Hang Zhang, Zheng Zhang, Ardalan Amiri
Sani, and Zhiyun Q. Charm: Facilitating dynamic analysis of device drivers of mobile
systems. USENIX Security, 2018.

[142] Vijayaraghavan Murali, Lee Gross, Rebecca Qian, and Satish Chandra. Industry-scale
ir-based bug localization: A perspective from facebook. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 188–197. IEEE, 2021.

[143] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumitras.
The attack of the clones: A study of the impact of shared code on vulnerability
patching. In 2015 IEEE symposium on security and privacy, pages 692–708. IEEE,
2015.

[144] Michal Nazarewicz. A Deep Dive into CMA. https://lwn.net/Articles/486301/.

[145] Edmilson Campos Neto, Daniel Alencar da Costa, and Uirá Kulesza. The impact
of refactoring changes on the szz algorithm: An empirical study. In 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), 2018.

https://lwn.net/Articles/486301/

[146] OpenSignal. Android Fragmentation Visualized. http://opensignal.com/reports/
2015/08/android-fragmentation/, 2015.

[147] James O’Toole. Mobile apps overtake PC Internet usage in U.S. http://money.cnn.
com/2014/02/28/technology/mobile/mobile-apps-internet/.

[148] Andy Ozment and Stuart E Schechter. Milk or wine: does software security improve
with age? In USENIX Security Symposium, pages 93–104, 2006.

[149] Idrees Patel. Xiaomi Still Hasn’t Released Kernel Sources for the Mi A1. https://

www.xda-developers.com/xiaomi-not-released-kernel-sources-mi-a1/, 2018.

[150] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. Tfuzz: fuzzing by program
transformation. In IEEE Symposium on Security and Privacy. IEEE, 2018.

[151] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. Vccfinder: Finding potential
vulnerabilities in open-source projects to assist code audits. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pages
426–437, 2015.

[152] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-architecture bug
search in binary executables. Oakland’15.

[153] J. Pewny, F. Schuster, C. Rossow, L. Bernhard, and T. Holz. Leveraging semantic
signatures for bug search in binary programs. ACSAC’14.

[154] Nam H Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N Nguyen.
Detection of recurring software vulnerabilities. In Proceedings of the IEEE/ACM
international conference on Automated software engineering, pages 447–456. ACM,
2010.

[155] piunikaweb. Asus releases botched up kernel sources for Zenfone Max
M2 family on launch day. https://piunikaweb.com/2018/12/12/

asus-releases-botched-up-kernel-sources-for-zenfone-max-m2-family-on-launch-day/,
2018.

[156] Qualcomm. Security Bulletin. https://www.qualcomm.com/company/

product-security/bulletins.

[157] David A. Ramos and Dawson Engler. Under-constrained symbolic execution:
Correctness checking for real code. USENIX Security’15.

[158] David A. Ramos and Dawson R. Engler. Under-constrained symbolic execution:
Correctness checking for real code. In Jaeyeon Jung and Thorsten Holz, editors,
24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015, pages 49–64. USENIX Association, 2015.

http://opensignal.com/reports/2015/08/android-fragmentation/
http://opensignal.com/reports/2015/08/android-fragmentation/
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/
https://www.xda-developers.com/xiaomi-not-released-kernel-sources-mi-a1/
https://www.xda-developers.com/xiaomi-not-released-kernel-sources-mi-a1/
https://piunikaweb.com/2018/12/12/asus-releases-botched-up-kernel-sources-for-zenfone-max-m2-family-on-launch-day/
https://piunikaweb.com/2018/12/12/asus-releases-botched-up-kernel-sources-for-zenfone-max-m2-family-on-launch-day/
https://www.qualcomm.com/company/product-security/bulletins
https://www.qualcomm.com/company/product-security/bulletins

[159] Gema Rodŕıguez-Pérez, Gregorio Robles, Alexander Serebrenik, Andy Zaidman,
Daniel M Germán, and Jesus M Gonzalez-Barahona. How bugs are born: a model
to identify how bugs are introduced in software components. Empirical Software
Engineering, 25:1294–1340, 2020.

[160] Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach. Science of
computer programming, 74(7):470–495, 2009.

[161] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. Sourcerercc: Scaling code clone detection to big-code. In Proceedings of the
38th international conference on software engineering, pages 1157–1168, 2016.

[162] Samsung. Knox Deep Dive: Real-time Kernel Pro-
tection (RKP). https://www.samsungknox.com/en/blog/

knox-deep-dive-real-time-kernel-protection-rkp, 2019.

[163] Eunjin Choi Heejo Lee Seunghoon Woo, Hyunji Hong. Movery: A precise approach
for modified vulnerable code clone discovery from modified open-source software
components. USENIX Security, 2022.

[164] Seulbae Kim Heejo Lee Seunghoon Woo, Sunghan Park and Hakjoo Oh. Centris:
A precise and scalable approach for identifying modified open-source software
reuse. In Proceedings of the IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), 2021.

[165] Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X Liu. A large scale
exploratory analysis of software vulnerability life cycles. In 2012 34th International
Conference on Software Engineering (ICSE), pages 771–781. IEEE, 2012.

[166] Abdullah Sheneamer and Jugal Kalita. Semantic clone detection using machine
learning. In 2016 15th IEEE international conference on machine learning and
applications (ICMLA), pages 1024–1028. IEEE, 2016.

[167] Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, and Min Yang. Precise (un)
affected version analysis for web vulnerabilities. In 37th IEEE/ACM International
Conference on Automated Software Engineering, pages 1–13, 2022.

[168] G Shobha, Ajay Rana, Vineet Kansal, and Sarvesh Tanwar. Code clone detection—a
systematic review. Emerging Technologies in Data Mining and Information Security:
Proceedings of IEMIS 2020, Volume 2, pages 645–655, 2021.

[169] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis. Oakland’16.

[170] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce
fixes? ACM sigsoft software engineering notes, 30(4):1–5, 2005.

https://www.samsungknox.com/en/blog/knox-deep-dive-real-time-kernel-protection-rkp
https://www.samsungknox.com/en/blog/knox-deep-dive-real-time-kernel-protection-rkp

[171] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce
fixes? In ACM sigsoft software engineering notes, volume 30, pages 1–5. ACM, 2005.

[172] SRLabs. The Android patch ecosystem – Still fragmented, but improving. https:

//srlabs.de/bites/android-patch-gap-2020/.

[173] Bogdan Alexandru Stoica, Utsav Sethi, Yiming Su, Cyrus Zhou, Shan Lu, Jonathan
Mace, Madanlal Musuvathi, and Suman Nath. If At First You Don’t Succeed, Try,
Try, Again...? Insights and LLM-informed Tooling for Detecting Retry Bugs in
Software Systems. In Proceedings of the ACM SIGOPS 30th Symposium on Operating
Systems Principles, pages 63–78, Austin TX USA, November 2024. ACM.

[174] T-mobile. Software updates: LGV30. https://www.t-mobile.com/support/

devices/android/lg-v30v30-plus/software-updates-lg-v30v30-plus.

[175] Lingxiao Tang, Lingfeng Bao, Xin Xia, and Zhongdong Huang. Neural szz
algorithm. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 1024–1035, 2023.

[176] Yuan Tian, Julia Lawall, and David Lo. Identifying Linux bug fixing patches. ICSE’12.

[177] Yuan Tian, Julia Lawall, and David Lo. Identifying linux bug fixing patches. ICSE’12.

[178] David Trabish, Shachar Itzhaky, and Noam Rinetzky. A bounded symbolic-size model
for symbolic execution. In Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and
Massimiliano Di Penta, editors, ESEC/FSE, pages 1190–1201. ACM, 2021.

[179] Nalin Wadhwa, Jui Pradhan, Atharv Sonwane, Surya Prakash Sahu, Nagarajan
Natarajan, Aditya Kanade, Suresh Parthasarathy, and Sriram Rajamani. CORE:
Resolving Code Quality Issues using LLMs. Proceedings of the ACM on Software
Engineering, 1(FSE):789–811, July 2024.

[180] Chengpeng Wang, Yifei Gao, Wuqi Zhang, Xuwei Liu, Qingkai Shi, and Xiangyu
Zhang. LLMSA: A Compositional Neuro-Symbolic Approach to Compilation-free
and Customizable Static Analysis, December 2024. arXiv:2412.14399 [cs].

[181] Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu, and Xiangyu Zhang.
Sanitizing Large Language Models in Bug Detection with Data-Flow. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Findings of the Association for
Computational Linguistics: EMNLP 2024, pages 3790–3805, Miami, Florida, USA,
November 2024. Association for Computational Linguistics.

[182] DaimengWang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V. Krishnamurthy,
and Nael Abu-Ghazaleh. Syzvegas: Beating kernel fuzzing odds with reinforcement
learning. USENIX Security, 2021.

[183] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K Roy.
Ccaligner: a token based large-gap clone detector. In Proceedings of the 40th
International Conference on Software Engineering, pages 1066–1077, 2018.

https://srlabs.de/bites/android-patch-gap-2020/
https://srlabs.de/bites/android-patch-gap-2020/
https://www.t-mobile.com/support/devices/android/lg-v30v30-plus/software-updates-lg-v30v30-plus
https://www.t-mobile.com/support/devices/android/lg-v30v30-plus/software-updates-lg-v30v30-plus

[184] Shu Wang, Xinda Wang, Kun Sun, Sushil Jajodia, Haining Wang, and Qi Li.
Graphspd: Graph-based security patch detection with enriched code semantics. In
2023 IEEE Symposium on Security and Privacy (SP), pages 604–621. IEEE Computer
Society, 2022.

[185] Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao, and Xuandong Li. Automatic
detection and validation of race conditions in interrupt-driven embedded software. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 113–124, 2017.

[186] Emil Wåreus and Martin Hell. Automated cpe labeling of cve summaries with machine
learning. In Detection of Intrusions and Malware, and Vulnerability Assessment:
17th International Conference, DIMVA 2020, Lisbon, Portugal, June 24–26, 2020,
Proceedings 17, pages 3–22. Springer, 2020.

[187] Huihui Wei and Ming Li. Positive and unlabeled learning for detecting software
functional clones with adversarial training. In IJCAI, pages 2840–2846, 2018.

[188] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. Locus: Locating bugs from
software changes. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, pages 262–273, 2016.

[189] Yang Wen, Jicheng Cao, and Shengyu Cheng. Ptracer: A linux kernel patch trace
bot.

[190] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
Deep learning code fragments for code clone detection. In Proceedings of the 31st
IEEE/ACM international conference on automated software engineering, pages 87–
98, 2016.

[191] Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son. Hiddencpg: large-scale
vulnerable clone detection using subgraph isomorphism of code property graphs. In
Proceedings of the ACM Web Conference 2022, pages 755–766, 2022.

[192] Seunghoon Woo, Hyunji Hong, Eunjin Choi, and Heejo Lee. {MOVERY}: A precise
approach for modified vulnerable code clone discovery from modified {Open-Source}
software components. In 31st USENIX Security Symposium (USENIX Security 22),
pages 3037–3053, 2022.

[193] Seunghoon Woo, Hyunji Hong, Eunjin Choi, and Heejo Lee. MOVERY: A precise
approach for modified vulnerable code clone discovery from modified open-source
software components. In Kevin R. B. Butler and Kurt Thomas, editors, 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022,
pages 3037–3053. USENIX Association, 2022.

[194] Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo Lee, and Sven Dietrich.
V0finder: Discovering the correct origin of publicly reported software vulnerabilities.
In USENIX Security Symposium, pages 3041–3058, 2021.

[195] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. Precisely characterizing
security impact in a flood of patches via symbolic rule comparison. NDSS, 2020.

[196] Rongxin Wu, Ming Wen, Shing-Chi Cheung, and Hongyu Zhang. Changelocator:
locate crash-inducing changes based on crash reports. Empirical Software Engineering,
23:2866–2900, 2018.

[197] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. {FUZE}:
Towards facilitating exploit generation for kernel {Use-After-Free} vulnerabilities. In
27th USENIX Security Symposium (USENIX Security 18), pages 781–797, 2018.

[198] Julia Wunder, Alan Corona, Andreas Hammer, and Zinaida Benenson. On nvd users’
attitudes, experiences, hopes, and hurdles. Digital Threats: Research and Practice,
5(3):1–19, 2024.

[199] Sen Chen Feng Wu Tianming Liu Xiapu Luo Xian Zhan, Lingling Fan and Yang
Liu. Atvhunter: Reliable version detection of third-party libraries for vulnerability
identification in android applications. In Proceedings of the 43rd International
Conference on Software Engineering (ICSE), 2021.

[200] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li, Binghong
Liu, Yang Liu, Wei Huo, Wei Zou, et al. {MVP}: Detecting vulnerabilities using
{Patch-Enhanced} vulnerability signatures. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1165–1182, 2020.

[201] Hanxiang Xu, Shenao Wang, Ningke Li, Kailong Wang, Yanjie Zhao, Kai Chen, Ting
Yu, Yang Liu, and Haoyu Wang. Large Language Models for Cyber Security: A
Systematic Literature Review, July 2024. arXiv:2405.04760 [cs].

[202] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. Precise
and scalable detection of double-fetch bugs in os kernels. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 661–678. IEEE, 2018.

[203] Tuba Yavuz. Sift: A tool for property directed symbolic execution of multithreaded
software. In 2022 IEEE Conference on Software Testing, Verification and Validation
(ICST), pages 433–443, 2022.

[204] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun Qian,
Mohsen Lesani, Srikanth V. Krishnamurthy, and Paul L. Yu. Ubitect: a precise and
scalable method to detect use-before-initialization bugs in linux kernel. In ESEC/FSE,
pages 221–232. ACM, 2020.

[205] Yizhuo Zhai, Yu Hao, Zheng Zhang, Weiteng Chen, Guoren Li, Zhiyun Qian, Chengyu
Song, Manu Sridharan, Srikanth V. Krishnamurthy, Trent Jaeger, and Paul L. Yu.
Progressive scrutiny: Incremental detection of UBI bugs in the linux kernel. In 29th
Annual Network and Distributed System Security Symposium, NDSS 2022, San Diego,
California, USA, April 24-28, 2022. The Internet Society, 2022.

[206] Haibo Zhang and Kouichi Sakurai. A survey of software clone detection from security
perspective. IEEE Access, 9:48157–48173, 2021.

[207] Hang Zhang and Zhiyun Qian. Precise and accurate patch presence test for binaries.
USENIX Security, 2018.

[208] Xiaodong Zhang, Zijiang Yang, Qinghua Zheng, Yu Hao, Pei Liu, and Ting Liu. Tell
you a definite answer: Whether your data is tainted during thread scheduling. IEEE
Trans. Software Eng., 46(9):916–931, 2020.

[209] Xiaodong Zhang, Zijiang Yang, Qinghua Zheng, Pei Liu, Jialiang Chang, Yu Hao,
and Ting Liu. Automated testing of definition-use data flow for multithreaded
programs. In 2017 IEEE International Conference on Software Testing, Verification
and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017, pages 172–183. IEEE
Computer Society, 2017.

[210] Zheng Zhang, Yu Hao, Weiteng Chen, Xiaochen Zou, Xingyu Li, Haonan Li,
Yizhuo Zhai, and Billy Lau. {SymBisect}: Accurate bisection for {Fuzzer-Exposed}
vulnerabilities. In 33rd USENIX Security Symposium (USENIX Security 24), pages
2493–2510, 2024.

[211] Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy Lau. An investigation of the
android kernel patch ecosystem. In 30th USENIX Security Symposium (USENIX
Security 21), pages 3649–3666, 2021.

[212] Deqing Zou, Hanchao Qi, Zhen Li, Song Wu, Hai Jin, Guozhong Sun, Sujuan Wang,
and Yuyi Zhong. Scvd: A new semantics-based approach for cloned vulnerable code
detection. In DIMVA, pages 325–344. Springer, 2017.

[213] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian. {SyzScope}:
Revealing {High-Risk} security impacts of {Fuzzer-Exposed} bugs in linux kernel. In
31st USENIX Security Symposium (USENIX Security 22), pages 3201–3217, 2022.

	List of Figures
	List of Tables
	Introduction
	Background
	Overview
	Roadmap

	An Investigation of the Android Kernel Patch Ecosystem
	Introduction
	Android Kernel Ecosystem
	Measurement Goal and Pipeline
	Patch Presence Test
	Repository Target
	Source Code Target
	Binary Target

	Evaluation
	Dataset
	Accuracy
	Patch Propagation in Upstream kernels
	Patch propagation to Android OEM phones

	Causes of Patch Delays
	Discussion
	Related Work
	Conclusion

	SymBisect: Accurate Bisection for Fuzzer-Exposed Vulnerabilities
	3.1 Introduction
	3.2 Background and Motivation
	3.3 Overview
	3.3.1 Motivating Example
	3.3.2 Challenges and Insights
	3.3.3 System Architecture

	3.4 SymBisect Design
	3.4.1 Guidance Generator
	3.4.2 Guidance Transformer
	3.4.3 Symbolic Detector

	3.5 Implementation
	3.5.1 Guidance Transformer
	3.5.2 Symbolic Detector

	3.6 Evaluation
	3.6.1 Accuracy of SymBisect (RQ1)
	3.6.2 Comparison (RQ3)
	3.6.3 Scalability of Different Exploration Strategies (RQ4)

	3.7 Discussion
	3.8 Related Work
	3.9 Conclusion

	4 Breaking Barriers: Accurate Bug Bisection with Full Patch Context and LLM Insight
	4.1 Introduction
	4.2 Motivation
	4.2.1 Motivating example
	4.2.2 Limitations of previous methods
	4.2.3 Insights

	4.3 Design
	4.3.1 Design Motivation
	4.3.2 Workflow
	4.3.3 Candidate Commit Generation
	4.3.4 BIC Filtering
	4.3.5 Result Finalization

	4.4 Implementation
	4.5 Evaluation
	4.5.1 Accuracy of SymBisect (RQ1)
	4.5.2 Comparison against SOTA Tools (RQ2)
	4.5.3 Ablation Study (RQ3)

	4.6 Related Work
	4.7 Conclusion

	5 Conclusions
	Bibliography

